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Abstract—A practical, low-cost system is presented for con-
tinuous tracking of animals using depth-enabled multi-object
tracking. The system is capable of producing detailed, long-
term, continuous 3D movement data that can be used to detect
eating/drinking, aggression, and a multitude of other social inter-
actions. Results also demonstrate that physical parameters like
weight can be reliably estimated by the system. The combination
of movement data and physical parameters make it possible for
the system to monitor growth rate, classify aggression, and detect
early signs of compromised health allowing for individualized
care and management in large group settings.

I. INTRODUCTION

One of the biggest challenges to ensuring the wellbeing
and efficiency of pigs is rapidly and accurately identifying
compromised (sick or injured) pigs. To date, the only method
available for identification of compromised pigs is via manual
observation for visible indicators of sickness or illness (clinical
symptoms). However, given the quantity of pigs in modern
group-housed settings, it is a daunting task to ensure that each
pig is visually inspected even as frequently as once a day.

The pork industry is currently operating with a piglet
loss rate of 20.8% from birth to weaning when stillborns
are included [9]. According to Metafarms data analysis, first
quarter 2016 is seeing a nursery mortality rate of about 4%
at early stages of animal development [11]. In addition, the
industry is dealing with the devastating impact of multitude
of other viruses and bacteria such as PRRS, PEDv and PCV2.
PRRS alone is estimated to result in an annual loss of $664
million to U.S. swine producers in part due the to loss of
production efficiency [7]. PRRS infection slows growth by
20% and harms feed conversion by 15%, primarily in the early
phases of the infection [4]. Altogether, this data indicates that
early identification and treatment can yield substantial benefits
to producers.

A depth-enabled vision system is presented here as an
alternative to manual observation. The system automatically
identifies, maintains identification, continuously tracks move-
ment, and estimates physical properties of pigs within a
commercial setting. Figure 1 illustrates the individualized 3D
tracking of each pig’s location, orientation, and activity data.
While the system was designed for swine, it can be applied to
other animals, including livestock, companion animals, captive
wildlife, and biomedical animals.

Figure 1. Tracking software vizualization near the end of the trial; displays
current activities, velocity, locations of each pig, total travelled distance and
the cumulative time that each pig has spent performing each activity.

II. BACKGROUND

Over the past two decades, researchers have studied a
variety of methods and technologies used for behavioral mon-
itoring of animals [2], [15]. A popular approach to behavioral
monitoring is to equip the animals with wearable activity-
tracking devices. For example, accelerometer data-logging
collars have been used to identify the activities of pigs [3] and
to measure the level of locomotion in sows as they approach
farrowing [2]. Using machine learning, these systems are able
to classify feeding, rooting, walking, lying laterally, and lying
sternally with an average accuracy of 75%.

While accelerometer data-logging devices are capable of
detecting types of locomotion and behavior, there are several
real-world drawbacks. Accelerometers must be physically re-
moved from the pig for data collection prior to processing,
introducing additional stress to the animals. Sensors can also
be lost or destroyed due to biting.

Automated video tracking presents a non-invasive alterna-
tive to wearable devices. By using traditional color imaging
and background subtraction, researchers have designed meth-
ods for tracking in constrained environments where pigs walk
individually in front of the camera [10]. Cameras have also
been used to monitor locomotion and behavior on individual
animals within a narrow camera view [1].

To monitor multiple pigs simultaneously, it is necessary
to segment them from both the background and from one



Figure 2. Color, infrared, and depth frames captured by the Kinect v2 camera.

another; a difficult task considering their tendency to lie or
stand in groups (see Figure 1 (top-left corner)). Previous
attempts to achieve this level of segmentation using super-
vised learning produce accurate results when the pigs are
all simultaneously viewable (i.e., non-occluded) from a top-
down camera [13]. Recently, researchers developed a system to
automatically monitor locomotion by tracking multiple pigs in
the same environment by fitting predefined shapes resembling
a pig’s silhouette from a vertical perspective to the regions
obtained through conventional background subtraction [8].
These shapes allow the system to separating abutting pigs and
identify their orientation. Their system is able to achieve 90%
accuracy when classifying pigs as active or inactive.

Computer vision has also been used to identify the lying
behavior of group-housed pigs as a function of temperature
[12] and the movement patterns of individual pigs and the
entire herd have been extracted through optical flow to detect
abnormal behaviors [6]. The authors do not attempt to perform
long-term tracking, and acknowledge the high computational
complexity of trying to track individual animals.

Recognizing the need for a tracker that can handle multiple
homogenous targets, Giancardo et al. attempt to achieve long
term tracking of multiple mice in a confined living space
through the processing of thermal images [5]. They define a
set of social behaviors that correlate with certain genetic con-
ditions, introduce image processing techniques to distinguish
between abutting mice, and achieve individualized tracking
and behavioral monitoring. Their system, however, still swaps
labels between mice approximately once every 30 seconds.

A key disadvantage when using conventional images for the
initial stage of background subtraction is that segmentation
failure occurs when foreground colors resemble background
colors. Changes in the image resulting from shadows and
fluctuations in lighting often result in mislabeled foreground
objects [16]. In contrast, when using a depth sensor, the fore-
ground can often easily be identified as areas that are closer
to the camera than the background. Thus, without altering the
background or camera pose, foreground segmentation of depth
frames is inherently more robust.

In 2013, a group of researcher at the Princeton Vision Group
recognized the importance of depth information and estab-
lished an online benchmark to evaluate the tracking perfor-
mance using depth-enabled cameras [14]. However, the bench-
mark does not consider the challenge of tracking multiple
visually indistinguishable targets over long time periods, and
most methods listed on the benchmark rely at least partially

Figure 3. User-selected regions corresponding to the pen floor (red boundary)
and the heat mat, feeder, and waterer (green boundaries), plane estimation
using RANSAC (cyan). The cyan points correspond to the dominant plane
that lies within the pen floor region defined by the user.

on the color distributions of targets. Thus, current solutions
are not sufficient for robust long-term animal tracking. As an
alternative to conventional multi-object tracking, the method
presented here uses 3D shape fitting and motion modeling to
track multiple homogenous targets over long durations

III. METHOD

Modern consumer-grade real-time depth cameras provide
a viable solution to serve as the backbone of an enhanced
visual tracking system [14]. A popular choice of such camera
is the Kinect v2 gaming peripheral developed by Microsoft to
track human movement. The Kinect v2 comes equipped with
a high-definition camera, an infrared illuminator, and a time-
of-flight depth sensor that produces color, infrared, and depth
frames, as illustrated in Figure 2. In addition to facilitating
depth measurement, the infrared illuminator makes it capable
of tracking day and night without the need for visible light.

The proposed method processes the frames provided by the
Kinect v2 camera in order to track multiple pigs simultane-
ously in a group-housed environment. The stages of processing
required for movement and activity tracking are described in
the following sections.

A. Adaptive capture of Kinect frames

Often, it is a waste of computational resources to capture
new data during times of inactivity, as young pigs spend
the majority of their time sleeping. Therefore, the system is
designed to track total movement between the last recorded
depth frame and the current depth frame provided by camera.
Specifically, when the percentage of pixels in the depth frame
that change by 5 cm or more between the previously captured
depth frame and the current one exceeds 0.2%, new data is
capture. For static scenes without reflective surfaces, observed
errors in the Kinect v2 depth measurements rarely exceed 3cm.
Thus, measurements that change by 5cm or more between
subsequent frames nearly always indicate true movement



within the scene. This value was empirically determined to
provide a good balance between smooth motion and a reduced
computational load.

A one-time visual calibration of the system requires the user
to select corner points defining the pen boundaries, feeder,
waterer, and heat mat (see Figure 3). Accurate identification
of the pen floor bounds is critical for foreground isolation and
tracking. To correct manual selection errors, a random sample
and consensus (RANSAC) plane-fitting routine is applied to
all depth points that lie within the bounds of the area selected
by the user (minus those belonging to the heat mat, since it is
1” higher than the pen floor).

By taking into account internal camera parameters and the
true dimensions of the pen floor, the four corners enable the
6-degree-of-freedom pose of the camera to be established with
respect to this plane, thus enabling the software to reorient the
3D points detected by the Kinect v2 camera from the camera’s
local coordinate system to the coordinate system of the pen
floor, where the bottom left corner of the pen is (x, y, z) =
(0, 0, 0) and the z-axis is perpendicular to the pen floor.

B. Back point extraction

Although the Kinect v2 captures a large number of depth
measurements corresponding to each pig, for the purpose of
robust tracking it was necessary to identify an area of the pig
that is nearly always visible and stable with respect to the pigs’
location and orientation. With the camera mounted vertically
above the pen, the points along the back were observed to
satisfy both of these conditions.

To detect points lying on the back, the normal direction of
each point in the foreground is calculated. Points with the Z
components of the unit normal vector greater than 0.75 belong
to surfaces roughly perpendicular to the ground plane and
identified as back points. Points must also satisfy convexity
criteria (as viewed from the camera), since the body shape of
pigs conforms roughly to an ellipsoid.

C. Appearance modeling using ellipsoid fitting and state-
conditioned motion filtering

Once the 3D point clouds have been processed so that they
include only the points along the back, an ellipsoid tracker is
used to maintain the position and orientation of the pigs. The
tracker is initialized with the pig locations manually and, in
all future frames, adjusts the position of an ellipsoid to each
new set of back points. It is essentially a variant of mean shift,
where the kernel is an ellipsoid, and points are associated with
the means in order from most reliable to least reliable.

Finally, a state-conditioned Kalman filter is used to estimate
the position and orientation of each pig. The Kalman filter
has two modes of operation, conditioned on whether the pig’s
previous height indicates that it is lying down or standing
up. When the pig is lying down, horizontal positioning relies
heavily on the previous state, discouraging motion. When
the pig is standing, horizontal positioning relies more on the
observed motion via ellipsoid fitting. In practice, this two-
state approach addresses the problem of object occlusion and

Figure 4. Point cloud accumulation for physical dimension estimation
(bottom) along with width estimates of ilium, flank, shoulder, and neck (top).

allows pigs to cross over each other while maintaining their
identification.

D. Weight estimation from point clouds

Recognizing that equipping each pig with unique ear tags
and/or paint patterns places an unwanted burden on a commer-
cial facility, a more desirable solution would be to differentiate
each pig based on its physical characteristics. In an effort to
extract the physical dimensions of the pigs, point cloud data
collected by the system over long durations is accumulated as
shown in Figure 4. Point cloud accumulation is performed by:
1) identifying when the pig is standing, 2) transforming the
points to a common coordinate system by undoing shift and
rotation, and 3) cleaning up noise by thresholding in a voxel
grid. The model extracted through point cloud accumulation
produces the top-down side contours illustrated in Figure 4.

IV. RESULTS

Preliminary results indicate that the proposed tracking
method is capable of reliably tracking the movements of
multiple pigs simultaneously over long durations of time. In an
experiment designed to evaluate the system’s capabilities, the
Kinect v2 camera connected to an Intel NUC computer was
mounted above a single pen at Union Farms in Ulysses, NE.
Fifteen pigs were then moved into the pen and the computer
captured 118,411 frames at an average of 6.27 frames per
second (fps) for approximately 5 hours and 14 minutes. Note
that, using the method described in Section III-A, the frame
rate varied between 0 to 20 fps.

The amount of individual and social activity peaks when
pigs first enter a new environment with new pen mates. These
movement patterns and complex interactions between pigs
caused the tracking to produce an error, on average, every
5 minutes. Therefore, to achieve reliable tracking for the
full 5 hours and 14 minutes, a video scoring interface was
developed to allow a human observer to pause tracking and
correct mistakes. Our preliminary experiment required the user
to make a total of 72 adjustments the tracking, where they were
able to validate the tracking by cross referencing with numeric
labels (1-15) painted on pigs’ backs.

A sample frame from the tracking visualization is shown
in Figure 1. Distinctly colored lines denote the location and
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Figure 5. Weight estimation based on visual clues results width mean absolute
error of 0.26kg, p-value = 1.55 · 10−6, and r = 0.89.

orientation of each pig, where the large circle at the center
contains the pig ID and the small circle at the head contains
an abbreviation of the current activity. The frame number
and time stamp are shown on the bottom and the activity
distribution and total movement statistics are given in the
table on the bottom right quadrant of the images. While there
were no health outcomes associated with the preliminary trial,
the system tracks activities that are clearly related to health
including eating and drinking durations, time elapsed before
first meal, and the ratio of activity to inactivity.

To evaluate the system’s ability to accurately parameterize
pigs, the manually recorded weight of each pig and the weight
predicted from the data are presented in Figure 5. An equation
derived using least squares relating the measurement extracted
from the point cloud data to the true weight is given by

Weight = 0.0002×FlankWidth2+0.04×NeckToIlium−8.07,

where lengths are in millimeters and weight is in kilograms.
The mean absolute error between the manually measured
weight and the predicted weight is 0.26kg.

Automatically extracted parameters like weight can be used
to resolve label swaps and other errors that occur during
tracking. They can also be useful health status indicators, such
as when there is a loss of weight due to lethargic behavior
associated with morbidity. More tracking data will likely reveal
additional measurements and statistics that allow the system
to uniquely identify each pig in order to recover from label
swaps. If successful, this could remove the need for fiducial
markers and, as a result, remove the additional stress placed
on the animal upon entry to the commercial facility.

V. CONCLUSION

The proposed visual tracking method was introduced and
evaluated in an industrial swine facility. Tracking of multiple
group-housed pigs for long durations of time is challenging
due to the near-identical appearance of the pigs and their
complex movements and interactions. Multiple stages of depth
frame processing were presented for extracting the data needed
for continuous tracking, and the results demonstrate that the
system is capable of achieving continuous tracking of multiple
group-housed pigs for long durations of time.

The system invariably loses track of targets and swaps
identities due to factors such as dynamic movements and
interactions among pigs, momentary system failure, and hu-
mans entering the pen. Therefore, a potential solution to the

swapping problem is presented that uses automated char-
acterization of physical properties. With the application of
additional parameter extraction, it may be possible for the
system to automatically correct swaps and allow it to achieve
continuous tracking for several weeks. This longitudinal data
could eventually be used to predict health outcomes and
drastically improve the efficiency of industry practices.
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