
Biometric Patterns in Long-Evans Rats for
Automatic Behavior Analysis

Yifang Liu∗, Maira Saboia∗, Kelcie Schatz†, Matthew J. Paul†, Nils Napp∗
∗ Department of Computer Science and Engineering University at Buffalo

† Department of Psychology University at Buffalo

Abstract—Consistently detecting individuals is a key techni-
cal component of observing both wild and laboratory animal
behavior. We present a dataset of hood patterns for Long-
Evans laboratory rats in order to assess how well these patterns
can be used as biometric markers to determine a rat’s unique
identity from video data. The database consists of 60 individual
rats taken from 100 videos of pairwise interaction. The data
is analyzed with several standard pattern recognition tools to
test if building a recognition database based on hood pattern is
feasible. Preliminary results are encouraging but leave room for
obvious improvement. A reliable recognition module based on
hood patterns would be an extremely useful tool in automation,
since it can run in parallel to other approaches to tracking and
identity maintenance and either increase accuracy or provide
an independent ID check for automatic quality control in fully
automated systems.

Keywords—Long-Evans rats, Hooded Norway rats, long-term
tracking, Dataset, Animal Biometrics, Individual recognition.

I. INTRODUCTION

Long-term, minimally invasive, behavior analysis of ani-
mals has long been a goal in the research community. The rea-
son is twofold; first, this type of automation allows for a more
scalable, quicker and cost-effective analysis of traditional video
data. Second, it allows entirely novel types of analysis due
to the novel scale duration and finer quantitative resolution of
individual actions. For example, high resolution pose estimates
could uncover previously unknown social cues in animals. For
single animals and simple interactions excellent tools already
exist, however, social interactions between multiple individuals
over longer periods of time still present significant challenges
and is an active area of research [1], [2], [3].

Maintaining the identity of individual animals is one of the
fundamental difficulties in this type analysis since differences
in behavioral state or tendencies toward certain actions are
only useful if observations at one time can be reliably linked
to a specific individual. In practice, this problem is often
posed as a tracking problem and solved via visual appearance
or motion models to maintain identity between video frames
and/or by adding identifying visual or radio frequency markers.
In this paper we investigate the use of patterns in coloration
of laboratory rats (Rattus norvegicus) of the Long-Evans strain
as a biometric marker akin to fingerprints in humans. This
strain has a distinctive ”hood” pattern and is commonly used
in behavioral cognitive studies, [4], [5], [6], see Fig. 1. In
such studies consistent identity of multiple interacting individ-
uals where interactions can lead to confusion are particularly
interesting.
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Fig. 1: Example of different individuals from the dataset
showing the variation in lighting, size, and coloration. These
images were taken from video sequences in a consistent pose,
walking forward, that clearly shows the hood pattern.

The presented approach is related to the re-identification
problem in visual tracking, but poses a slightly more general
question about the identification quality of the markers them-
selves, i.e. if the coloration is a biometric marker [7]. To be a
good biometric marker, patterns should be uniquely identifying
between many individual rats taken in different times and
conditions. Biometric markers would make any type of long
term observation more reliable, as they could be used either
directly for analyzing individual images, for re-identification
during tracking, or could be used in parallel to tracking
methods in order to check the long-term identity maintenance
of tracking software. This complementary approach could be
particularly useful in completely automated settings where
independent identity measurements could be used for quality
assurance.

To answer the question of feasibility as a maker, we
present a dataset of 60 individual rats interacting in pairs, see
Section III, and give some initial results assessing the quality as
a biometric marker, see Section IV. The concluding Section V
discusses directions for future research.

II. RELATED WORK

Given raw video data, the task of automated behavior
annotation has several challenging steps. Individuals need to
be detected, tracked, and analyzed. The detection problem
is to find instances in a video frame or image; the tracking
problem is to associate detected instances in multiple video
frames and to associate them; These tracked video data are
the basis for quantitative behavior analysis, such as [8]. Pro-
duction grade open-source and commercial products exist for
behavioral analysis in many different animal, e.g. CTrax [9]



Noldus [10], [3] and often combine detection, tracking, and
analysis modules.

Animals with uniform appearance, shape, and where social
interactions do not produce overlapping locations are much
easier to track than highly deformable ones. For example, there
has been considerable success in tracking and analyzing large
volumes of fruit fly interactions [9].

For highly deformable and closely interacting animals, like
rodents, current tools work well for analyzing behavior of
single animals or social interactions where there is no risk
of confusion. Existing long-term trackers used on socially
interacting rodents, use visual markers [2], or a combination
of strong segmentation algorithms (to help maintain identity)
together with other traits, such as heat signatures [11] or
learned appearance models [12].

The closely related recognition problem is to identify
individuals from a database of known individuals. Biometric
studies in animals often focus on wildlife observation, where
fully tracking the motion of individuals is not feasible [7], [13].
In these applications, single video frames and photos need to
be matched to specific individuals.

Here we investigate the same problem for back patterns of
Long-Evans rats. A reliable biometric, that does not require any
additional instrumentation, would be an invaluable addition to
any existing visual analysis toolkit. It could be used as either
as a direct tool for data association during tracking or as a
complementary system to check and correct other tracking
software, e.g. [11] which uses the heat signature recorded with
a thermal camera to correct data association when the tracker
has low confidence.

Recognition is extensively studied in the pattern recogni-
tion literature and human biometrics community. Biometrics in
humans requires insight into the particular features, e.g. key-
points in human faces or minutiae in fingerprints. We suspect
that the hood pattern should be a good biometric and compare
several pattern recognition approaches for recognizing individ-
uals: 1) using the outline of the hood pattern and applying a
generic shape recognition algorithm [14], 2) appearance based
methods in pixel space [15], [16] and 3) feature-based method
[17]. We apply these generic pattern recognition tools to our
novel rat biometric dataset described in the next section.

III. DATASET

The dataset was generated from video data of two rats
socially interacting in a 29”x29” square arena, with relatively
even lighting conditions and a light background, though varia-
tions within videos and across the field of view exist, see Fig. 1.
These videos were collected for a separate experiment investi-
gating the neurobiology of social interactions. The procedures
for data collection were approved by the Institutional Animal
Care and Use Committee at the researchs’ home institution.

The rats were observed by an overhead camera (Camera
description: color CCD MicrVideo camera. 1/3” CCD, 600
TV lines, 0.0001 Lux, 3.6mm lens: 1.18”x1.18” square). The
individual images were selected via two criteria based on the
rat body curvature and on the frame view: 1) the rat’s body
should be stretched and 2) it should be possible to see the
entire hood pattern from a single view. For example, Fig.2

depicts four viewpoints for a given rat. In the leftmost image,
the rat is bent; in the second and in the third images, despite
the rats are stretched, it is not possible to see the entire hood.
Only the rightmost view obeys both criteria.

We used a semi-automated approach to scan through large
amounts of video data and then selected frames that might
fulfill both criteria (view point and curvature), but had many
false positives. After thresholding, we used four measures
to automaticaly localize and crop the rat in each frame: 1)
Area: the number of pixels inside the rat outline should be
lesser than the sum of the area of the two rats. This way, we
avoid selecting images where the rats are intarecting, probably
touching each other. 2) Solidity: the ratio between the outline
area and the area of its convex hull (threshold > 0.7). 3) Aspect
ratio: the ratio between width and height of the rat (threshold
< 0.3). 4) Angle: the angle formed by topmost, centroid and
bottommost points should be greater than 178◦. These sets
contained frames that generally fulfilled the stretching criteria,
from which the frames with a complete view were picked
manually.

The selected images were rotated such that the head of
the animals were directed upwards. Then, the images were
cropped to 120x50 pixels, centered at the rat’s center of mass.
Furthermore, the animal’s tail was not kept on the resulting
image since it was marked with an artificial mark (black
Sharpie) and therefore must not be used as a phenotypic
characteristic.

Fig. 2: Curvature/Viewpoint-based selection criteria. Example
of different viewpoints for a given rat. Only the rightmost right
obeys the selection criteria.

The proposed rat biometric dataset contains images of
60 Long-Evans rats. In which, for each animal we selected
5 images, resulting in a dataset composed of 300 images.
Additionally, we created a testing dataset of 290 images which
were collected from the same set of cropped that we select
the dataset samples. The Fig. 1 portrays the variation in size,
coloration and lighting of samples in the dataset.

IV. PRELIMINARY RESULTS AND FUTURE WORK

Since the irregular outline of the dark hood is the most
striking visual feature, one approach is to make use of the
shape of the hood as a biometric marker. Alternatively one
could compare samples directly in pixel space and feature



space. Since those seem reasonable approaches to solve the
recognition problem, we present results for all of them. They
work but leave room for improvement. Likely a combination
of using shape for alignment and using graduation in coloring
as a component of computing the match score will be the most
effective.

For matching by outline we used a shape matching tech-
nique [14] which works by first finding an outline for the
shape by detecting the edge between the dark hood and
light colored body. The matching algorithm then find globally
discriminate points selected along the contour and solves the
correspondence problem between points in two distinct shapes.
The similarity between samples is computed by estimating an
aligning transform between them. The cost for this transforma-
tion and the distance between corresponding points are used
together as the measure of similarity.

For feature-based method, we used Affine-SIFT (ASIFT)
[17]. ASIFT is an extension of SIFT, which itself is invariant
to translation, rotation, and scaling. However, ASIFT is also
fully affine invariant. It simulates a set of sample views of
the original image by modifying two camera axis orientation
parameters (latitude and longitude angles), then applies SIFT
to the new set of views.

For the appearance based method, we consider the fol-
lowing two quality metrics: structure similarity and feature
similarity.

Structure similarity (SSIM)[15] is used for measuring the
similarity between two images. The principal idea is that
human visual system is highly sensitive to the structural
distortions and automatically compensates for nonstructural
distortions (a change of luminance or brightness, a change of
contrast and a spatial shift). It assumes that the original image
signals have strong neighbor dependencies which are carrying
important information about the structures of the object. This
method compares local patterns of pixel intensities that have
been normalized for luminance and contrast.

Similar to SSIM, feature similarity (FSIM) [16] is also
proposed to measure image quality according to salient low-
level features: phase congruency (PC) and gradient magnitude
(GM). PC is a contrast-invariant and dimensionless measure of
the significance of a local structure, and GM is computed as
the secondary feature to encode contrast information. PC and
GM are complementary and they reflect different aspects of
the HVS colorspace in assessing the local quality of the input
image.

A. Preliminary Results

Each testing image was compared with all the images in
the dataset using shape matching technique [14], SSIM [15],
FSIM [16] and ASIFT [17]. For the shape matching technique,
the rat with minimum cost is considered as the correct ID; for
SSIM and FSIM, we consider the rat with the highest value as
the correct ID; and for ASIFT we measured the transition tilt,
which quantifies the deformation from an image to another.

Table I shows the accuracy of the four methods. It shows
that shape matching and ASIFT methods are more reliable
than appearance based method though shape matching only
uses an outline of the hood pattern. Especially, it is difficult

to identify two rats with a similar hood pattern using purely
appearance-based method (Fig .3).

Fig. 3: Different rats with a similar pattern

TABLE I: Accuracy for the four methods used

Method Accuracy
ASIFT 75.5%
Shape Matching 74.1%
SSIM 57.6%
FSIM 54.8%

In Table II, the second column represents that the accuracy
of ASIFT and SSIM among the images that misidentified
by shape matching method, and similar for third and fourth
column. From Table II, we can see there are 54.6% and 24.0%
of images that misidentified by shape matching but ASIFT and
SSIM can give correct results. Similarly, for ASIFT and SSIM.

Regarding Shape Matching and ASIFT, since around half
of the misidentified images can be classified correctly by the
other method, the information obtained by them are slightly
different. Therefore, combining shape recognition algorithm
and feature based algorithm may be one of our future work
for rat identification.

TABLE II: Accuracy of each method in misidentified images

Method Shape Matching ASIFT SSIM
Shape Matching none 49.2% 52.8%
ASIFT 54.6% none 49.6%
SSIM 24.0% 14.1% none

Fig. 4 gives five representative images from testing dataset.
(a) to (c) are examples that are misidentified by all the methods
in Table I, and (d) and (e) are identified correctly by all the
methods. The main differences between (a), (b), (c) and (d), (e)
are: 1) (d) and (e) have more changeable outline patterns, for
example, (d) has prominent edge pattern, and (e) has zigzaging
edges, which are easier to be distinguished by used methods.
However, (a) and (b) have smoother outlines; 2) even if (c)
has slightly irregular ourlines, it is blurred.

B. Future Work

To be useful the recognition software needs to be coupled
with an automated way to gather samples from an input video.
While the detection, quality assessment, and cropping are



(a) (b) (c) (d) (e)

Fig. 4: Representative testing images showing both exapmles
of individuals that were difficult to identify (a)–(c) and easy
to identify (d)(e).

partially automated at this point, we plan to fully automate
the process in the future.

Relatedly, since most video frames do not capture the
rat’s entire back pattern (see Fig. 2), for future work, we
plan to augment the dataset with side view for each rat,
which will provide additional information that could promote
more efficient and reliable re-identification approaches. Alter-
natively, multiple frames could be fused together to provide
a synthesized view of the complete pattern. This is similar to
current trends in human face biometrics that use 3D reference
models to account for appearance variations in 2D images.

In addition to using geometric reasoning to produce better
2D appearances of the patterns, we plan to use 3D cameras
that can help with viewing patterns as well as providing
more information about the animal’s pose. Such additional
3D sensors can also simplify and improve the detection,
segmentation, and tracking directly compared to a purely visual
approach.

An improved biometrics pipeline might also enable behav-
ior observations in laboratory animals where reliable tracking
is unfeasible, for example, long term observations that only
have a heavily occluded lateral views, such as filming housing
cages.

V. CONCLUSION

We present a new data set for testing the biometric quality
of Long-Evans hood patterns. Preliminary results using off-
the-shelf pattern recognition pipelines without tuning suggest
that this approach should be possible in populations with many
animals. Extracting the shape outline first and using it as a
representation works better than comparing the appearance in
pixel space directly. This is likely due to an alignment issue.
Therefore, a combined approach or reference model based
approach may provide even greater accuracy.

A biometric rat recognition pipeline would be helpful
to creating reliable, long-term, automated, behavior analysis
system. As such, we expect a refined version of this work
to be a useful tool for researchers working with this type of
animal.
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