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Abstract—There is significant interest from the medical and
neuroscience communities for studying the behavior of zebrafish
larvae, particularly in the context of drug testing. In this paper, we
propose a method for analyzing the behavior of zebrafish larvae
in a high-throughput system using automatic image analysis.
Specifically, algorithms for estimating the poses of the larvae in
video recordings are presented. The pose estimation results are
subsequently used to estimate kinematic parameters, segment the
discretized movement into swim bouts (short bursts of movement)
and to categorize the swim bouts into a number of classes. The
distributions of bout classes are analyzed over time for different
doses of amphetamine and apomorphine and compared to control
groups. Preliminary results are presented indicating that the
proposed method is able to measure the effects of pharmacological
manipulations in the zebrafish larvae.

I. INTRODUCTION

Automatic image analysis for the purpose of analyzing the
behavior of animals is a commonly used tool in for example
medicine and biology [1]–[10]. When used appropriately, it
has the potential of greatly improving upon the quantity and/or
quality of data gathering.

Zebrafish is a popular model animal in the field of medicine,
but up until recently the commercially available automatic
tracking softwares have tracked only one position per fish,
consequently greatly limiting the behavioral analysis. However,
some papers present more advanced whole-body tracking and
analysis of curvature and bending motion of the fish. Fontaine et
al. proposes a method for tracking zebrafish using a geometrical
model of the fish [11], applied on videos recorded at 1500 fps
with 1024×1024 pixels resolution. Tian et al. presents a method
for tracking a single zebrafish in two cameras recording up to
250 fps at 640× 480 pixels resolution [5].

Here, however, we choose a compromise between quantity
and quality of tracking. A high-throughput system for automatic
tracking and analysis of zebrafish larvae behavior is presented,
using a skeleton-based model of the larvae. A single camera
recording 300 fps at 640 × 480 pixels resolution is used for
recording the behavior of 48 spatially separated larvae. The
high frame rate enables the detection of quick movements and
a higher temporal consistency than lower frame rates would,
while the large number of animals makes the system practically
useful for evaluating the effects of various stimuli.

II. EQUIPMENT AND VIDEO DATA

The behavioral setup consisted of a 300 fps digital camera
with a resolution of 640x480 pixels (Genie HM640, Teledyne
DALSA, Waterloo, Canada) connected to a computer with

Fig. 1. An image from the video where zebrafish larvae have been placed
in two 24 well microtiter plates. Superimposed projections of the geometric
model of the microtiter plates are plotted in red and blue.

video recording software (CamExpert v7.00.00.0912, Teledyne
DALSA, Waterloo, Canada; LabVIEW 2011 v11.0, National
Instruments, Austin, TX). In each experiment, 48 zebrafish
larvae where placed in separate wells in two 24-well microtiter
plates (Cat. No. 303002; Porvair Sciences, Leatherhead, UK)
that were milled to a depth of 9 mm to reduce shadow and
perspective artifacts. The output of the video recording system
was typically as presented in Fig 1.

III. POSE ESTIMATION

In this section, the procedure of estimating the poses of the
zebrafish larvae from the input video files is described. First,
the possible regions of movement of the larvae and a static
background image are estimated. Then the poses of the larva are
estimated in each regions using difference images created by
subtracting the estimated background from the current frame.

A. Calibration

Each zebrafish larva is placed in a well in one of the mi-
crotiter plates and is constrained to move within the bounds of
the well. Consequently, the tracking problem can be formulated
as the independent tracking of 48 larvae. Furthermore, the fact
that the wells are identically shaped is used for subsequent
analysis of zebrafish larvae behavior, where the center of each
of the wells is used to define a local coordinate system for each
larvae.

The positions of the wells are estimated as follows. First,
geometrical models of the microtiter plates are created using the
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Fig. 2. Tracking and data. (A) shows a subsection of a video frame displaying the well of one larva, with the estimated larva pose superimposed in red. (B)
shows the image in (A) after subtracting the background image. (C) shows a subsection of (B) with the larva pose superimposed in red. (D) shows the trajectory
of the head position a larva superimposed on an image from the video. The trajectory is colored green at the points belonging to a swim bout, and red elsewhere.
The blue asterisks represent the start of a swim bout numbered according to the number next to it. (E) shows the robustified speed function (see equation (3)) for
the larva in blue and the threshold used for swim bout detection as the straight line in black. (F) shows the speed measure vk(t) from Eq (4) at the time around
swim bout number 7 for k = 12, 24, 48. (G) shows the tracked x and y-coordinates of the head independently for a section of the time. Note the oscillatory
noise that is successfully classified as not being part of an actual movement.

known radii of the wells and the distances between them. Sec-
ondly, a thresholding procedure provides a number of circular
blobs corresponding to the wells. Thirdly, affine transformations
A1 and A2 from the models of the microtiter plates to the
center of the blobs are estimated using RANSAC and linear
least squares. Lastly, the regions that are subject to tracking is
found by projecting the well-regions in the geometrical models
of the microtiter plates. An example of calibration results is
shown in Fig 1. Additionally, tracked pixel coordinates of
larvae can be transformed to the units in the geometrical model
(e.g. millimeters) by applying the inverse of the estimated
transformations.

B. Background estimation

The static background is estimated by first modeling each
pixel (i, j) as belonging to one of two Gaussian distributions
(with expected values Fij and Bij) and subsequently estimating
the distributions. The distributions are estimated in an iterative
procedure defined as follows. Initialization is provided by
computing the mean value Mij of each pixel (i, j) over a set of
randomly selected frames. The darker distributions are assigned
the mean minus ε and the brighter distributions are assigned
the mean plus ε, i.e. F (0)

ij = Mij − ε and B
(0)
ij = Mij + ε,

for some small ε > 0. For a random image I and for each
pixel, the distance from the brighter distribution to the image
and from the darker distribution to the image is compared, and

the closest distribution is updated using moving average. After
N = 1000 iterations, the estimates have usually converged and
the procedure is finished. Since the larvae are dark and the
background is bright, the background is defined as the estimated
brighter distribution.

C. Pose-estimation

The pose of a zebrafish larva is estimated by first finding the
head position and then tracing the tail by adding points that
are incrementally more distant from the head. Each point is
estimated in sub-pixel resolution by linear (the tail) or quadratic
interpolation (the head).

For this purpose, a Gaussian smoothing is applied on the
difference image F = I − B and the position of the maximal
value provides an initial estimate of the head position in pixel-
resolution. The use of the position of the maximum as the
head position works sufficiently well due to the quality of the
difference images (cf. Fig 2(B-C)) and the shape of the larva.
The initial estimate is improved upon in the x and y-directions
independently by fitting quadratic polynomials to 5x1 and 1x5
neighborhoods around the initial position estimate. The sub-
pixel estimate of the head position (x0, y0) is defined as the
position of maximal value of the fitted polynomials.

The tail of the larva is traced by finding the maximal values
in a set of Npoints circles of increasing radii centered at



(x0, y0), i.e.

(xk, yk) = argmax
(x,y)∈Ω(x0,y0;rk)

F (x, y), k = 1, ..., Npoints − 1,

(1)
where F (x, y) is evaluated by linear interpolation of F using
the four neighboring pixels of the point (x, y), Ω(x0, y0; rk) is
the set containing all points on the circle of radius rk centered
at (x0, y0) and Npoints − 1 is the number of sought points on
the tail.

Additionally, the foreground pixel intensities (qk =
F (xk, yk)) at the estimated points are stored and used as a
quality measure. This means that for each larva and frame,
there are 3Npoints values stored:

(x0, y0, q0, ..., xNpoints−1, yNpoints−1, qNpoints−1). (2)

The pose estimation procedure is repeated for each larva in
every frame, creating data on the form (xi,j,k, yi,j,k, qi,j,k),
where i ∈ [0, Npoints − 1] is the point index, j ∈ [1, Nframes]
is the frame number and k ∈ [1, Nlarvae] is the larva number.

IV. BEHAVIORAL ANALYSIS

The zebrafish larvae move in discrete movements referred to
as swim bouts. This section describes how the swim bouts are
detected and normalized and resampled to enable meaningful
comparisons of different swim bouts. A clustering method is
then applied on the data in order to create a set of cluster centers
later used for classifying swim bouts. The classification results
are used in Section V to analyze the behavior of the zebrafish
larvae.

A. Swim bouts

A swim bout is defined as the time interval where the speed
of the larva is greater than some threshold. Due to the presence
of oscillatory tracking noise (see Fig 2(G)), a speed measure
that is robust to such noise is necessary. For this purpose, the
robustified speed measure v̂(t) is defined as

v̂(t) = min
k∈S

vk(t), (3)

where vk(t) is the average speed over a time window of width
k and centered at t, i.e.

vk(t) =
FPS

k

∥∥∥∥[x(t+ k/2)− x(t− k/2)
y(t+ k/2)− y(t− k/2)

]∥∥∥∥
2

(4)

where FPS is the frame rate (FPS = 300 in this case). In
this paper, the set of window sizes S = 12, 24, 48 provides
a qualitatively good compromise between detecting true swim
bouts and rejecting false swim bouts. Visualizations of Eq (3)
and Eq (4) on real data are presented in Fig 2(E) and Fig 2(F).

A potential swim bout interval is defined as the time interval
where the estimated robustified speed v̂(x, y, t) is larger than
a threshold vthr = 0.2 · 10−4 mm/frame. An example of the
activity function and threshold can be seen in Fig 2(E). This
clearly supports the idea of treating the behavior of the zebrafish
larvae as discrete swim bouts.

The potential swim bout intervals are post-processed by a
combination of dilation, erosion and removing intervals that

have low likelihood values (the q-value that was introduced in
Section III-C). This procedure has the effect that intervals that
are close enough are merged and intervals that are too short or
where the estimated tracking quality is too low are removed.
Some potential swim bout intervals that are removed during
post-processing can be seen in Fig 2(E).

B. Swim bout classification

In order to compare different swim bouts, a way of measuring
distances between swim bouts with different numbers of frames
is needed. To achieve this, the trajectory of the swim bouts were
equidistantly (in space) subsampled with K samples and time
was added as a dimension. Thus the trajectory of each swim
bout was represented on the form

SBi : X(i) =

x
(i)
1 x

(i)
2 ... x

(i)
K

y
(i)
1 y

(i)
2 ... y

(i)
K

t
(i)
1 t

(i)
2 ... t

(i)
K

 (5)

Thus data for all swim bouts can be represented by col-
umn stacking the resampled swim bouts in the matrix X =
[X(1)X(2)...X(Nbouts)].

As indicated by Fig 3(C), the space of swim bouts appears
to be continuous without any apparent clusters. However, it is
still meaningful to somehow bin the data. For this purpose, a
clustering method (k-means is used in this paper) is applied
to separate the data into groups. Before applying the k-means
method on X , the data is normalized to remove the effect of
the starting position and direction. Therefore, each swim bout
is transformed by a rigid transformation with the effect that it
starts in the origin and is headed to the right, as shown in Fig 3.
The k-means method subsequently produces K = 15 (defined
empirically) groups that can be used for classification of swim
bouts.

V. EXPERIMENTS AND RESULTS

The data set used in this paper contains three experiments
on Amphetamine, two on Apomorphine and one control exper-
iment.

Drug experiments were conducted on 10 days post fertiliza-
tion (dpf) zebrafish larvae which were first placed in the wells
and video recorded for 5 minutes, then drugs or placebo were
injected in the wells followed by recording of videos for 50
or 60 minutes. In order to study the effects induced by various
doses, the 48 larvae where split into 4 equally populated groups:
a control group and low, medium and high dose groups.

Similarly, the control experiment was conducted on 10 dpf
zebrafish larvae by recording for 60 minutes but without any
interference in any subgroup of larvae.

A subset of the data is visualized in Fig 4 by plotting the
distributions of swim bout classifications over time (bottom
row) and on average (top row). The time-dependent plots are
created by splitting up time into a number of non-overlapping
intervals of length 150 seconds. The distribution of swim bout
classifications is computed for all swim bouts in each such
interval. To increase readability of the figure, a subset of 5
swim bout classes has been selected for plotting. Here, only the
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Fig. 3. Swim bouts and classification thereof. (A) shows the trajectories of 20 randomly selected swim bouts, with class numbers printed next to them. (B)
shows the trajectories of the swim bouts from (A) after normalization and resampling (see Section IV-B). The element-wise logarithm of the density image of
the full set of normalized and resampled trajectories is presented in (C), with the mean trajectories from (D) superimposed. (D) and (E) shows the (x, y) and
(x, t) coordinates, respectively, of the mean trajectories (see Section IV-B). Note that the scale of (B), (C) and (D) are equal and the other scales are different.
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Fig. 4. Distribution of bout class observations. The top row shows the time-average distributions of bout classifications in each experiment (see Section V). In
the bottom row, bout class distributions are plotted in 150s non-overlapping time bins. The bars in the top row that are visualized over time in the bottom row
have different colors, while the rest of the bars are black. In addition, the selected classes have a marker below their respective bars that is the same as in the
time-dependent plot. The dotted lines denote the time during which drugs are induced. Note that the classes and their numbers are the same as in Fig 3, but the
colors are in general not the same.

data generated by the 48 larvae in the control experiment, the
36 larvae given the highest dose (10µM ) of Amphetamine, and
the 24 larvae given the highest dose (50µM ) of Apomorphine,
is presented.

VI. DISCUSSION

The preliminary data presented in Fig 4 clearly shows that
the proposed method is able to show the difference in behavior
induced by Apomorphine and Amphetamine in the zebrafish
larvae. For example, the Amphetamine-treated larvae tends to
increasingly favor shorter movements (class 1). Furthermore,
it is shown that there is a time-dependency in the induced
drug effects, for example the sharp rightwards turn (class 8)
is not very common in the pre-drug control time interval but
is observed a lot more for a period directly after inducing
Apomorphine.
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