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Abstract—For animal locomotion analysis, biological experts
have to evaluate an immense amount of recorded image data. The
time-consuming annotation of important anatomical landmarks
has to be done in every single recorded image to analyze different
gaits or types of movement. In this paper, we introduce a method
to reduce this effort by automating the annotation process with
a minimum level of expert interaction. In contrast to recent
approaches based on Augmented Active Appearance Models, our
approach can deal with tracking single anatomical landmarks in
non-cyclic locomotion sequences. Additionally, our approach is
independent of anatomical knowledge. We evaluate our method
on a variety of datasets and show that we achieve a performance
comparable to that of biological experts.

I. INTRODUCTION

Locomotion analysis is of great importance for zoologists,
motion scientists, or in the domain of humanoid robotics
to conduct profound investigations about different gaits and
types of movement. In some cases, special video recording
procedures are required for such studies. For a detailed under-
standing of bone movements, X-ray acquisition systems are
used and applied to animals to see the inner bones of the
locomotor system. A C-arm X-ray acquisition system with
two perpendicular detectors providing a top view (dorsoventral
view) and a side view (lateral view) image is used to provide
an all-round-view around the entire locomotor system. In
order to guarantee a detailed biological evaluation, a high
spatial and temporal image resolution (1250 × 1250 pixels
at 1000 FPS) is essential for acquisition, while a locomotion
sequence has up to 2000 frames. The resulting immense
amount of data incurs considerable expenses in terms of the
evaluation for the biological experts, which have to manually
annotate anatomical important points, so-called landmarks, in
the individual recorded frames [15], [2], [14]. An automation
of this task is of great interest to biologists to avoid the
time-consuming manual annotation. In Figure 1, a recorded
frame of the two different views with annotated corresponding
landmarks is illustrated.
Motivated by the time-consuming task of manual annotation,
we propose an automatic anatomical landmark localization
approach for animal locomotion data by exploiting CNN layer
activations as features for a landmark regression problem. In
contrast to other recent approaches, we show in our experi-
ments that we can deal with all available non-cyclic locomo-
tion sequences, which was only evaluable for a small amount

11

2

2
3

3

4

4

5

5

66
7

8
9

7

8
9

1011

12

13

14
15

13
14

15

10

11

12

16

16

Fig. 1: The birds running on a track are recorded by a C-arm
X-ray acquisition system providing a top view (left) and a side
view (right). For a detailed understanding of the locomotion
on ground, biological experts have to analyze anatomical
landmarks of every single frame.

of sequences with the state-of-the-art approach. Opposed to
cyclic locomotion sequences, where the animals are walking
on a barrier-free treadmill, in non-cylic locomotion sequences
the animals are running across a track with obstacles on it.
In addition, our approach requires not more training data than
existing state-of-the-art methods.
The remainder of the paper is structured as follows. A brief
overview of related work is given in Section II. In Section III
we introduce our automated landmark localization approach,
followed by several experiments in Section IV. Finally, Section
V concludes the paper with a short discussion.

II. RELATED WORK

For motion analysis Haase and Denzler [8] apply Active
Appearance Models [4] to X-ray animal locomotion datasets
for tracking anatomical landmarks. Their results show that the
generative model fits suitably using only a small amount of
training data for AAM training. Unfortunately, standard AAMs
show weaknesses with respect to certain landmark subsets,
especially for landmark subsets of the lower limb system of
the animals. An extension of their approach [11] to multi-
view AAMs only shows a further improvement of the tracking
performance of the animals torso landmark subsets compared
to the single view AAM.
Motivated by the shortcomings, two more extensions [10], [14]
lead to a holistic model with different constraints, especially



for the lower limb landmarks. The various constraints support
the multi-view AAM during the landmark fitting. However, the
anatomical landmark tracking of the probabilistic Augmented
AAM is limited to cyclic locomotion sequences of birds
running completely inside the scene.
In contrast, we suggest a framework for anatomical landmark
regression which can deal with X-ray video sequences for
cyclic and non-cyclic locomotion even if not the whole bird
is visible in the sequence. Hence, it is possible to track
single landmarks as they enter the scene until they disappear.
Furthermore, our regression framework does not depend on
application-specific or anatomical knowledge, but it is possible
to use context knowledge for improving the tracking results.

III. METHOD

This section describes the automatic landmark localization
technique. While the first sub-section deals with the deep
feature representation of the input image, the second sub-
section explains the landmark regression task using these
powerful features.

A. Deep Feature Adjustment

In tasks where little training data is available, it is in most
cases not possible to train a CNN for the desired task. Instead,
a pre-trained CNN can be exploited for feature extraction from
the early layers’ activations [6], where afterwards these fea-
tures can be used for training models using other classification
or regression methods like Support Vector Machines [5] or
Random Forests [3].
These activation features are called deep features or CNN
features. In our landmark localization approach, we use an
AlexNet architecture [13] trained on the ImageNet LSVRC-
2012 dataset [16] for classifying 1000 different objects from
everyday life to extract these features. To make the deep
features more representative for our X-ray recorded image
data, we use a domain adaption technique called fine-tuning
[7] before. The parameters of several layers of the pre-trained
AlexNet model are used as initial parameters of a new model
with the same architecture. Afterwards, the CNN is trained for
an auxiliary task for which more data of the same image type
is available. Finally, the features are more suitable for images
from the target image domain.

B. Multi-view Landmark Regression

After extracting the deep features of the L training images
(both images of lateral and dorsoventral view) from one
of the CNN layers, a linear model for regression can be
trained jointly with the training landmark positions. The L
training image sets are propagated sequentially through the
fine-tuned pose classification CNN. Afterwards, the extracted
deep features of both views are concatenated. As linear model
we train an ε-SV regression [17]. The linear regression model
uses the given training data (x1, y1), ...(xL, yL) ⊂ X × R4,
where xi denotes the concatenated deep features with X = Rd
and yi a landmark position of the dorsoventral and lateral
view. The goal of this regression task is to find a hyperplane

f(x) = 〈w, x〉 + b with maximum deviation of ε from the
target values yi for all training data. Given the fact that the
vector w is perpendicular to the hyperplane f(x), we only
need to minimize the norm of w, i.e. ||w||2 = 〈w,w〉. When
working with real data in most cases it is not possible to
find a decent solution for this convex optimization problem
based on potential outliers. Using slack variables ξi and ξ∗i ,
such infeasible conditions can be handled. We formulate the
problem like [17]:

argmin
w,b,ξi,ξ∗i

1

2
||w||2 + C

L∑
i=1

(ξi + ξ∗i )

s.t.


yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(1)

where C > 0 is a constant.
For every landmark position pair of the dorsoventral and
lateral view yi = (yd1i , y

d2
i , y

l1
i , y

l2
i ) we train a single regressor

model. Hence, it is possible to track single landmarks through
the whole scene without relying on other landmarks, in con-
trast to other methods [8], [11], [10].

IV. EXPERIMENTS

In the following section, we evaluate the performance of
our anatomical landmark localization approach using the intro-
duced deep feature regression. For our landmark localization
experiments, we used 39 bird locomotion sequences with
non-cyclic movements of quails running across a track with
obstacles on it. The birds have to overcome either a step
up (a step of 2.5 Centimeter) or step down (holes of 1
Centimeter, 2.5 Centimeter and 5 Centimeter). While running,
the quails were recorded by a high-speed X-ray acquisition
system at 1000 Hz and a resolution of 1250 × 1250 pixels.
Additionally, the acquisition system records from two different
views, the dorsoventral view from above and the lateral view
from the side. In Section IV-A we propose a feature adjustment
technique to make the features for our landmark regression
approach more representative. Afterwards, results of our multi-
view landmark localization approach are shown in Section
IV-B, followed by a 3D reconstruction [12] of the landmarks
in Section IV-C.

A. Bipedal Locomotion Pose Quantization

X-ray recorded images are very different in appearance from
natural images. We assume that extracted deep features of
such low-contrast gray value images are not representative
enough, due to the different image domain the CNN is
trained on. Hence, we define an auxiliary task to guarantee a
domain shift to our input data. For that, we fine-tune the pre-
trained Alexnet CNN for bird pose classification. The deep
features extracted from that fine-tuned model provide more
representative features of our input data compared to deep
features from the original AlexNet model. To define bird poses
we use one element of Active Appearance Models (AAMs)
[4]. The first parameter of the shape component of an AAM,
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Fig. 2: With the first parameter of the shape component of
an Active Appearance Model we can obtain the cyclicality of
the cyclic locomotion datasets, which we can use to quantize
bipedal locomotion poses.

computed by Principle Component Analysis (PCA), captures
the largest landmark shape variance of the training data and
influences the pose of the walking bird. To compute the shape
models of single sequences, we use 2508 available frames of
cyclic datasets with annotated landmarks [10] of both views.
For every cyclic sequence we trained a multi-view shape model
using 15 annotated frames. Afterwards, the first parameter of
the shape component is extracted. In Figure 2, the locomotion
cyclicality of a chosen cyclic dataset is shown. Based on the
parameter value, frames are quantized into different numbers
of pose classes. The CNN models are trained together with
images of the dorsoventral view and lateral view. The results of
the pose classification of different numbers of quantized pose
classes (4,10,25,50,100 and 200 classes) show a decreasing
accuracy with the increasing number of quantized pose classes.
In the next sub-section we want to investigate how suitable the
different trained models are for feature extraction.

B. Landmark Regression

We apply our landmark localization method of Section
IV-B to 39 non-cyclic locomotion sequences containing 36348
frame sets (dorsoventral and lateral view) where 8088 frames
are annotated. For training we use 15 labeled frames per
sequence, like the state-of-the-art methods. The rest of the an-
notated frames of the sequence are for validation. As an initial
investigation we evaluate the features of the CNNs trained to
classify a different number of quantized bird locomotion poses.
We trained with the different features of AlexNet’s conv5-
layer single landmark regressors. In Figure 3 we combined the
localization errors of the results for the single CNN models
for both views. It can be clearly seen that the number of pose
classes has little influence on the quality of the features for
regression. A closer look reveals that the model performs best
with 10 pose classes which we use for further experiments.
On average we obtain an Euclidean error of 10 pixels, which
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Fig. 3: The comparison of the CNN models trained to classify
different numbers of quantized bird locomotion poses shows,
that the regression quality among the models shows only
little improvement of the model trained for 10 quantized
pose classes. The horizontal line should indicate the smallest
quantile.

is comparable to the average error of human experts [9].
In another experiment we investigate the influence of the
different layers from which we extract the deep features. In
Figure 4 the landmark regression performance of three selected
layers (conv4, conv5 and fc6) of the fine-tuned AlexNet can be
seen. As can be seen, location information is lost in the fully-
connected layer, while the convolutional layers retain it. It is
also noticeable that the regression of the dorsoventral view has
a better performance than the results of the lateral view. From
the biological expert’s point of view, however, this is the more
difficult view when annotating.
As a final experiment we want to compare our landmark local-
ization approach to the state-of-the-art method, the Augmented
Active Appearance Models (AAAM) [10]. We found 6 non-
cyclic locomotion datasets with which it was possible to train
AAAM models for each sequence to compare the two different
approaches. Both are trained with 15 annotated training frames
together with both views. Figure 5 shows the view-combined
results of the comparison between both approaches. It is
clearly evident, that the deep feature regression outperforms
the AAAM approach.
In further experiments we want to investigate influences of
different sampling methods and feature dimension reduction
to our results. Furthermore, we want analyze the lower bound
of required training frames.

C. 3D Reconstruction

Recent analysis of animal locomotion uses 3D landmark
information to make a better statement [1]. To exploit the
multi-view sequence recordings, initially, images of a cubic
calibration pattern for X-ray acquisition are also recorded.
This enables a calibration of the recording system according
to Hartley and Zisserman [12]. Concerning our four different
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Fig. 4: Using activations of the convolutional layers (here
conv4 and conv5) as features of the CNN model shows
that they are better suited for landmark localization than the
activations of the fully-connected layers (here fc6), as they still
contain position information.
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Fig. 5: We compared the Euclidean landmark error of our
landmark localization approach (CNNRegr) with Augmented
Active Appearance Models (AAAM) [10] using 6 non-cyclic
animal locomotion datasets.

experiment setups based on the different obstacle types, the
calibration is estimated four times. On average, we obtain a
re-projection error (of the calibration pattern cube) of 0.25
Millimeters for the dorsoventral view and an error of 0.48
Millimeters in average for the lateral view. In further experi-
ments we want analyze the reconstruction performance even
if ground truth data is available.

V. CONCLUSION

In this paper, we introduced an anatomical landmark lo-
calization method based on regression models using deep
features which are adjusted to the target image domain of
low-contrast X-ray images. In our experiments we showed

that we outperform state-of-the-art methods by evaluating on
non-cyclic datasets and we achieve a comparable performance
as biological experts when annotating manually. We also
showed that the convolutional layers are better suited for
landmark regression than the fully-connected layer behind
them, because they have retained the location information.
Finally, to exploit the multi-view sequence recordings, the
localized 2D landmarks of the two different views can be
reconstructed to 3D landmark points for a better evaluation
by the biological experts.
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