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1. Introduction and motivations 
 
 A most challenging subject in real scene visual analysis is coping with an abrupt change in the 
environmental conditions. For instance, if the light decreases just when an intruder comes, any surveillance 
vision system based on background modelling would fail. This kind of failures can be avoided and 
theoretically the solution is well known: it consists in delivering more information to the system, either with 
a pre-recorded background model in the second condition or with a concurrent approach insensitive to light 
changes. In any case, the system needs a run-time analysis of the environmental conditions and their 
temporal alteration in order to control the active modules. 

Increasing the number of modules in a system introduces new problems: how to organise the overall 
processing, how to integrate data coming from different knowledge sources (e.g. visual modules), how to 
inhibit the activity of redundant modules in order to optimize the limited computational resources for real-
time. In this paper, we regard a vision system as a multi logical-sensor system, each visual operator acting as 
an independent data source.  

Here we advocate for the replacement of image processing with less computationally expensive 
control, based on information stemming from context. Our aims are: i) to reduce the number of cases of 
critical failure, ii) to increase adaptability to changing conditions, iii) to pursue an economy of means. 

By context of a scene we mean the set of assumptions to be made or denied on a scene. We 
distinguish between environmental (“present”) and temporal context (“past”). Environmental covers scene 
illumination, discrimination between a static and a dynamic scene, etc. Temporal covers inefficiency due to 
progressive overload, tracking triggered after detection, etc. We further develop hereafter a computation 
saving sub-sampled analysis of the video stream in image regions that keep steady over a period of time. 

Basic ingredients for the exploiting context in that sense are i) calculations to assess reliability of 
each visual operator in the current situation, ii) an evolving model of the world, and iii) a back-projection of 
the model onto the present frame. Research has been performed in controlling the structure of a vision 
system or in monitoring the algorithm at run, both by distributing the control separately in every module 
[1][2], and by centralising it in a single fusion module [3]. Here we investigate the latter option.  
 
2. Contextual switching in detection modules 
 

We are currently working on some improvements to the traditional outline of a vision system shown 
in Fig.1: a detector block generates candidate regions of the image to be further processed, while a validation 
block classifies the target. Each block may contain more than one module, either in a parallel configuration, 
or in a mutually exclusive relation (a sort of switch between concurrent modules). At the end of the 
detection/validation chain lays a module dedicated to updating the world model, based on tracking, given the 
past information and results from the current frame.  

 



Fig.1  
 

A first improvement consists in controlling the structure of the signal analysis chain by switching 
between two different detection operators according to the environmental situation. This strategy stems from 
the consideration that any vision operator depends on some hypothesis on the scene to be fully effective. If 
these assumptions fall, the module critically fails. Traditional fusion schemes (e.g. consensus voting, 
Bayesian reasoning, etc) could be used, but they would be valid only if the majority of the integrated 
modules do not fail. On the other hand, the robustness of a system can be increased by providing means of 
detecting a critical failure of a module, and by excluding it until its normal working conditions are restored. 
The check may be done either on some parameters of a module’s output after elaboration, or on the prior 
hypothesis mentioned above, or both. In our work, we aim at introducing a logical block called context 
controller. The controller block checks the operative conditions of the main detection module D1, and if they 
are not correct, switches to the second detector D2.  
 To investigate the problem, we treat two simplified applications. The first one is the visual 
surveillance of an indoor scene with a stationary colour camera. The aim here is detecting human intruders. 
We use a background subtraction operator as the main detection module D1 and a frame difference operator 
as D2 (refer to figure 2). Background subtraction is more reliable and extracts denser motion information. On 
the other hand, frame differencing always detects movement and does not need any initialisation or 
background model. In the validation step, we currently implement just a loose skin colour sensor (V1) that 
seeks for circular skin regions on top of the detected candidate. Contextual switching takes place whenever 
the controller marks a global change in the scene. At that point, the stored background model is 
acknowledged as inadequate and the control of the detection step is passed onto the frame difference module, 
which needs just one frame from the temporal context to function correctly. When enough static frames have 
been acquired to instantiate a new background model, control switches back from D2 to D1. Context analysis 
is performed by detecting changes in a pre-attentive filter computing the mean RGB value over a 10x10 
pixels square in a regular grid. The system switches from D1 to D2 if the total number K of altered elements 
in this “alert grid” breaks a threshold Kth, and if a fraction B th of K presents an unbalanced shift in the 
normalised luminance component (R+G+B)/(255*3). Thus, the detection of a contextual switch in this 
application depends on three thresholds (one to detect an alteration in a single element, one is Kth, one is B th). 
The optimal threshold values strictly depend again on the environmental context: camera position, maximum 
apparent target size, entity of lighting change that invalidates the background model in D1, total area of 
image regions that can be interested by such a change are all elements playing a role in determining these 
values. By specifying them by hand at system set up, a human operator practically transfers its capability of 
perceiving a change into a numerical representation that can be also discriminated by a computer.  

The second sample application concerns detecting pedestrians crossing the street from a moving 
grey-level camera mounted on-board a car. Here, D1 is an optical flow operator selecting image regions that 
present a distinct horizontal component. The module dramatically fails when the car turns, for then all the 
image moves horizontally. D2 is a filter similar to a Moravec interest operator, which in practice shows a 
high response when many vertical edges are present in a region. Certainly this feature is less characteristic of 
a crossing pedestrian than a marked horizontal movement, but as it works under no particular assumption, it 
can perform the detection step even if the optical flow fails. V1 is a vertical symmetry module [4] that 
checks the candidate areas. In a complete robot system, if the vehicle turns, the controller could receive this 
contextual information from ego-sensors like wheel inclination and vehicle velocity. In our case, no such 
sensors are available, so we rely only on image analysis to infer module failure. The context controller 

Validation 
Modules 

Model of the World 
(tracking, prediction) 

Context 
Controller 

Task specifications 
and parameters 

Detection 
Modules  

Output  
Module  

D1 

Module  
D2 

Module  
V1 

Contextual 
switcher 

Input  
Image 

Input  
Image 



integrates a pre-attentive filter organised in a regular grid as mentioned above. It stores the mode of the grey-
level histogram. The mode is less sensitive to region variations than the mean value. This helps in 
understanding if the car is following the road or is performing a turn: in the latter case, a number of squares 
N on one image side move their mode from a value typical of the street colour to a different one. Moreover, 
the configuration of the active squares becomes asymmetric with respect to the image central axis. The 
switching mechanism is alerted if N and a parameter estimating the asymmetry break a threshold. Compared 
to the application in video surveillance, here the optimal thresholds are more sensitive to the different test 
sequences and must be set by hand each time. An ego-sensor would probably  prove a better choice.  
 At present, only the surveillance system updates a tracker (acting as model of the world). A simple 
frame-to-frame one-step matching follows the target and feeds its predictions back to the controller in the 
form of a binary prediction grid where elements are set to 1 if changes are expected in their region. A 
Boolean subtraction between the prediction grid and the alert grid detailed above actually accounts for 
global change detection to contextual switching. 
 
3. Activation map 
 

A second improvement is the introduction of an activation map in every detection module. The 
image is divided into a square grid, and operators perform computations only in those elements marked as 
active in the map. This mechanism allows for a distributed sub-sampling of the video sequence. The idea is 
that if the context in a sub-region of the scene does not change over time, no computational effort is likely to 
be spent on it because the contained information is already available from previous analysis. 

Each element is given two integers describing its state: an attention threshold and a charge. 
Moreover, the last computed value of the feature in that element is stored. The charge decays from frame to 
frame, for instance linearly, until it falls under the attention threshold for that element. The operator then 
extracts a new value of its corresponding feature in the element region and checks the distance according to a 
suitable metric from the value in the memory. The currently tested control policy is as follows: if a change in 
the feature value is detected, the attention threshold is raised to the top level, otherwise it decreases. And in 
both cases, the charge is raised back to the top level (see Fig.2). 

Every element thus updates its values asynchronously from others, maybe in different frames. Of 
course, this sub-sampling lowers the computational burden at a given frame and speeds up the process. 
Conversely, it also ties the system reaction to incoming information available only during the next activity 
cycle of the element. The system may even loose this piece of information if it disappears before onset (see 
Fig.3). In order to avoid such limitations, the pre-attentive filter run by the context controller (see section 3) 
acts as a guardian: as soon as a change is detected, the controller raises the attention thresholds of the 
corresponding elements in the activation maps of the detectors so that the new frame be immediately 
processed locally. 
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4. Preliminary results  
 
 As to video surveillance, the output of the background subtraction D1 in normal operation conditions 
is shown in Fig. 4(a) and 4(b). Fig. 4(c) and 4(c) display the system output when D2 is operative after a 
lighting change (room light switched off). 
  
Fig.4 
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 Fig. 5(a) and 5(b) show the response of module D1 (optical flow) and D2 (Moravec interest), 
respectively, from a frame of a turning car in the experiment of pedestrian detection mentioned in section 2. 
As the vehicle is turning, D1 is inactive and the output of the detection step is the one of Fig. 5(b). Fig. 5(c) 
displays the system output after validation. 
 The same responses are shown in figures 5(e)-(g) as an example of the vehicle proceeding straight. 
Here candidate generation is based on the output of D1, displayed in Fig. 5(e).  
 Some problems are shown below. Fig. 5(d) depicts the output of D1 in a frame where small lateral 
movements were not detected by the context controller and switch to D2 was not performed. The vertical 
symmetry module, used alone in the validation step, produces errors like in Fig. 5(h). 
 
Fig. 5 
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