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ABSTRACT. We give an algorithm for solving stochastic parity games with almost-sure winning
conditions onlossy channel systems, under the constraint that both players are restricted to finite-
memory strategies. First, we describe a general framework,where we consider the class of 21

2-player
games with almost-sure parity winning conditions on possibly infinite game graphs, assuming that
the game contains afinite attractor. An attractor is a set of states (not necessarily absorbing)that is
almost surely re-visited regardless of the players’ decisions. We present a scheme that characterizes
the set of winning states for each player. Then, we instantiate this scheme to obtain an algorithm for
stochastic game lossy channel systems.

1. INTRODUCTION

Background. 2-player games can be used to model the interaction of a controller (player 0) who
makes choices in a reactive system, and a malicious adversary (player 1) who represents an attacker.
To model randomness in the system (e.g., unreliability; randomized algorithms), a third player
‘random’ is defined who makes choices according to a predefined probability distribution. The
resulting stochastic game is called a 21

2-player game in the terminology of [CJH03]. The choices
of the players induce a run of the system, and the winning conditions of the game are expressed in
terms of predicates on runs.

Most classic work on algorithms for stochastic games has focused on finite-state systems (e.g.,
[Sha53, Con92, dAHK98, CJH03]), but more recently several classes of infinite-state systems have
been considered as well. Stochastic games on infinite-stateprobabilistic recursive systems (i.e.,
probabilistic pushdown automata with unbounded stacks) were studied in [EY05, EY08, EWY08].
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A different (and incomparable) class of infinite-state systems are channel systems, which use un-
bounded communication buffers instead of unbounded recursion.

Channel Systemsconsist of nondeterministic finite-state machines that communicate by asyn-
chronous message passing via unbounded FIFO communicationchannels. They are also known
as communicating finite-state machines (CFSM) [BZ83]. Channel Systems are a very expressive
model that can encode the behavior of Turing machines, by storing the content of an unbounded tape
in a channel [BZ83]. Therefore, all verification questions are undecidable on Channel Systems.

A Lossy Channel System (LCS)[AJ93, Fin94] consists of finite-state machines that communi-
cate by asynchronous message passing via unboundedunreliable(i.e., lossy) FIFO communication
channels, i.e., messages can spontaneously disappear fromchannels. The original motivation for
LCS is to capture the behavior of communication protocols which are designed to operate correctly
even if the communication medium is unreliable (i.e., if messages can be lost). Additionally (and
quite unexpectedly at the time), the lossiness assumption makes safety/reachability and termination
decidable [AJ93, Fin94], albeit of non-primitive recursive complexity [Sch02]. However, other im-
portant verification problems are still undecidable for LCS, e.g., recurrent reachability (i.e., Büchi
properties), boundedness, and behavioural equivalences [AJ96, Sch01, May03].

A Probabilistic Lossy Channel System (PLCS)[BS03, AR03] is a probabilistic variant of LCS
where, in each computation step, each message can be lost independently with a given probability.
This solves two limitations of LCS. First, from a modelling viewpoint, probabilistic losses are more
realistic than the overly pessimistic setting of LCS where all messages can always be lost at any
time. Second, in PLCS almost-sure recurrent reachability properties become decidable (unlike for
LCS) [BS03, AR03]. Several algorithms for symbolic model checking of PLCS have been presented
[ABRS05, Rab03]. The only reason why certain questions are decidable for LCS/PLCS is that the
message loss induces a quasi-order on the configurations, which has the properties of a simulation.
Similarly to Turing machines and CFSM, one can encode many classes of infinite-state probabilistic
transition systems into a PLCS. Some examples are:

• Queuing systems where waiting customers in a queue drop out with a certain probability in ev-
ery time interval. This is similar to the well-studied classof queuing systems with impatient
customers which practicereneging, i.e., drop out of a queue after a given maximal waiting time;
see [WLJ10] section II.B. Like in some works cited in [WLJ10], the maximal waiting time in
our model is exponentially distributed. In basic PLCS, unlike in [WLJ10], this exponential dis-
tribution does not depend on the current number of waiting customers. However, an extension
of PLCS with this feature would still be analyzable in our framework (except in the pathological
case where a high number of waiting customers increases the customers patience exponentially,
because such a system would not necessarily have a so-calledfinite attractor; see below).

• Probabilistic resource trading games with probabilistically fluctuating prices. The given stores of
resources are encoded by counters (i.e., channels), which exhibit a probabilistic decline (due to
storage costs, decay, corrosion, obsolescence, etc).

• Systems modelling operation cost/reward, which is stored in counters/channels, but probabilisti-
cally discounted/decaying over time.

• Systems which are periodically restarted (though not necessarily by a deterministic schedule),
due to, e.g., energy depletion or maintenance work.

Due to this wide applicability of PLCS, we focus on this modelin this paper. However, our main re-
sults are formulated in more general terms referring to infinite Markov chains with a finite attractor;
see below.
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Previous work. In [BBS07], a non-deterministic extension of PLCS was introduced where one
player controls transitions in the control graph and message losses are fully probabilistic. This yields
a Markov decision process (i.e., a 11

2-player game) on the infinite graphs induced by PLCS. It was
shown in [BBS07] that 112-player games withalmost-surerepeated reachability (Büchi) objectives
are decidable and pure memoryless determined.

In [AHdA+08], 21
2-player games on PLCS are considered, where the players control transi-

tions in the control graph and message losses are probabilistic. Almost-sure Büchi objectives are
decidable for this class, and pure memoryless strategies suffice for both players[AHdA+08]. Gener-
alized Büchi objectives are also decidable, and finite-memory strategies suffice for the player, while
memoryless strategies suffice for the opponent [BS13].

On the other hand, 112-player games on PLCS withpositive probabilityBüchi objectives, i.e.,
almost-sure co-Büchi objectives from the (here passive) opponent’s point of view, can require infi-
nite memory to win and are also undecidable [BBS07]. However, if the player is restricted to finite-
memory strategies, 112-player games with positive probabilityparity objectives(even the more gen-
eralStreett objectives) become decidable and memoryless strategies suffice for theplayer [BBS07].
Note that the finite-memory case and the infinite-memory one are a priori incomparable problems,
and neither subsumes the other. Cf. Section 6.

Non-stochastic (2-player) parity games on infinite graphs were studied in [Zie98], where it is
shown that such games are determined, and that both players possess winning memoryless strategies
in their respective winning sets. Furthermore, a scheme forcomputing the winning sets and winning
strategies is given. Stochastic games (21

2-player games) with parity conditions onfinite graphs are
known to be memoryless determined and effectively solvable[dAH00, CJH03, CdAH06].

Our contribution. We give an algorithm to decide almost-sureparity games for probabilistic lossy
channel systems in the case where the players are restrictedto finite memory strategies. We do
that in two steps. First, we give our result in general terms (Section 4): We consider the class
of 21

2-player games with almost-sure parity wining conditions onpossibly infinite game graphs,
under the assumption that the game contains afinite attractor. An attractor is a setA of states such
that, regardless of the strategies used by the players, the probability measure of the runs which
visit A infinitely often is one.1 Note that this means neither thatA is absorbing, nor that every run
must visitA. We present a general scheme characterizing the set of winning states for each player.
The scheme is a generalization of the well-known scheme for non-stochastic games in [Zie98]. In
fact, the constructions are equivalent in the case that no probabilistic states are present. We show
correctness of the scheme for games where each player is restricted to a finite-memory strategy.
The correctness proof here is more involved than in the non-stochastic case of [Zie98]; we rely on
the existence of a finite attractor and the restriction of theplayers to use finite-memory strategies.
Furthermore, we show that if a player is winning against all finite-memory strategies of the other
player then he can win using amemorylessstrategy.

In the second step (Section 5), we show that the scheme can be instantiated for lossy channel
systems. The above two steps yield an algorithm to decide parity games in the case when the
players are restricted to finite memory strategies. If the players are allowed infinite memory, then
the problem is undecidable already for 11

2-player games with co-Büchi objectives (a special case
of 2-color parity objectives) [BBS07]. Note that even if theplayers are restricted to finite memory
strategies, such a strategy (even a memoryless one) on an infinite game graph is still an infinite

1 In the game community (e.g., [Zie98]) the wordattractor is used to denote what we call aforce setin Section 3. In
the infinite-state systems community (e.g., [ABRS05, AHM07]), the word is used in the same way as we use it in this
paper.
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object. Thus, unlike for finite game graphs, one cannot solvea game by just guessing strategies and
then checking if they are winning. Instead, we show how to effectively compute a finite, symbolic
representation of the (possibly infinite) set of winning states for each player as a regular language
(Section 5.2), and a finite description of winning strategies (Section 5.3).

2. PRELIMINARIES

Notation. LetO andN denote the set of ordinal resp. natural numbers. Withα, β, andγ we denote
arbitrary ordinals, while withλ we denote limit ordinals. We usef : X → Y to denote thatf is a
total function fromX toY, and usef : X ⇀Y to denote thatf is a partial function fromX toY. We
write f (x) = ⊥ to denote thatf is undefined onx, and definedom( f ) := {x : f (x) 6=⊥}. We say
that f is anextensionof g if g(x) = f (x) wheneverg(x) 6=⊥. ForX′ ⊆ X, we usef |X′ to denote the
restriction of f to X′. We will sometimes need to pick an arbitrary element from a set. To simplify
the exposition, we letselect(X) denote an arbitrary but fixed element of the nonempty setX.

A probability distributionon a countable setX is a functionf : X → [0,1] such that∑x∈X f (x) =
1. For a setX, we useX∗ andXω to denote the sets of finite and infinite words overX, respectively.
The empty word is denoted byε.

Games.A game(of rank n) is a tupleG = (S,S0,S1,SR,−→,P,Col) defined as follows.S is a set of
states, partitioned into the pairwise disjoint sets ofrandom states SR, statesS0 of Player 0, and states
S1 of Player 1.−→⊆ S×S is thetransition relation. We writes−→s′ to denote that(s,s′) ∈ −→.
We assume that for eachs there is at least one and at most countably manys′ with s−→s′. The
probability function P: SR×S→ [0,1] satisfies both∀s∈ SR.∀s′ ∈ S.(P(s,s′)> 0 ⇐⇒ s−→s′) and
∀s∈SR.∑s′∈SP(s,s′) = 1. (The sum is well-defined since we assumed that the number ofsuccessors
of any state is at most countable.) Thecoloring functionis defined asCol : S→ {0, . . . ,n}, where
Col(s) is called thecolor of states.

Let Q ⊆ S be a set of states. We useG
¬ Q := S−Q to denote thecomplementof Q. Define

[Q]0 := Q∩S0, [Q]1 := Q∩S1, [Q]0,1 := [Q]0∪ [Q]1, and[Q]R := Q∩SR. Forn∈N and∼∈ {=,≤},
let [Q]Col∼n := {s∈ Q : Col(s)∼ n} denote the sets of states inQ with color∼ n.

A run ρ in G is an infinite sequences0s1 · · · of states s.t.si−→si+1 for all i ≥ 0; ρ(i) denotes
si . A path π is a finite sequences0 · · ·sn of states s.t.si−→si+1 for all i : 0≤ i < n. We say thatρ
(or π) visits sif s= si for somei. For anyQ⊆ S, we useΠQ to denote the set of paths that end in
some state inQ. Intuitively, the choices of the players and the resolutionof randomness induce a
run s0s1 · · · , starting in some initial states0 ∈ S; statesi+1 is chosen as a successor ofsi , and this
choice is made by Player 0 ifsi ∈ S0, by Player 1 ifsi ∈ S1, and it is chosen randomly according to
the probability distributionP(si , ·) if si ∈ SR.

Strategies.For x∈ {0,1}, a strategy for Playerx prescribes the next move, given the current prefix
of the run. Formally, astrategyof Playerx is a partial functionf x : ΠSx ⇀ Ss.t. sn−→ f x(s0 · · ·sn)
if f x(s0 · · ·sn) is defined. The strategyf x prescribes for Playerx the next move, given the current
prefix of the run. A runρ = s0s1 · · · is said to beconsistentwith a strategyf x of Playerx if si+1 =
f x(s0s1 · · ·si) wheneverf x(s0s1 · · ·si) 6= ⊥. We say thatρ is inducedby (s, f x, f 1−x) if s0 = s and
ρ is consistent with bothf x and f 1−x. We useRuns(G ,s, f x, f 1−x) to denote the set of runs inG
induced by(s, f x, f 1−x). We say thatf x is total if it is defined for everyπ ∈ ΠSx.

A strategy f x of Playerx is memorylessif the next state only depends on the current state and
not on the previous history of the run, i.e., for any paths0 · · ·sn ∈ ΠSx, we havef x(s0 · · ·sn) = f x(sn).

A finite-memory strategyupdates a finite memory each time a transition is taken, and the next
state depends only on the current state and memory. Formally, we define amemory structurefor
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Playerx as a quadrupleM = (M,m0,τ,µ) satisfying the following properties. The nonempty set
M is called thememoryandm0 ∈ M is the initial memory configuration. For a current memory
configurationm and a current states, the next state is given byτ : Sx×M → S, wheres−→τ(s,m).
The next memory configuration is given byµ : S×M →M. We extendµ to paths byµ(ε,m) =mand
µ(s0 · · ·sn,m) = µ(sn,µ(s0 · · ·sn−1,m)). The total strategystratM : ΠSx → S induced byM is given
by stratM (s0 · · ·sn) := τ(sn,µ(s0 · · ·sn−1,m0)). A total strategy f x is said to havefinite memory
if there is a memory structureM = (M,m0,τ,µ) whereM is finite and f x = stratM . Consider
a run ρ = s0s1 · · · ∈ Runs(G ,s, f x, f 1−x) where f 1−x is induced byM . We say thatρ visits the
configuration(s,m) if there is ani such thatsi = sandµ(s0s1 · · ·si−1,m0) = m.

We useFx
all(G), Fx

finite(G), andFx
/0 (G) to denote the set ofall, finite-memory, andmemoryless

strategies respectively of Playerx in G . Note that memoryless strategies and strategies in general
can be partial, whereas for simplicity we only define total finite-memory strategies.

Probability Measures.We use the standard definition of probability measures for a set of runs
[Bil86]. First, we define the measure for total strategies, and then we extend it to general (partial)
strategies. Consider a gameG = (S,S0,S1,SR,−→,P,Col), an initial states, and total strategies
f x and f 1−x of Playersx and 1−x. Let Ωs = sSω denote the set of all infinite sequences of states
starting froms. For a measurable setR⊆Ωs, we definePG ,s, f x, f 1−x(R) to be the probability measure
of R under the strategiesf x, f 1−x. This measure is well-defined [Bil86]. For (partial) strategies f x

and f 1−x of Playersx and 1−x, ∼ ∈ {<,≤,=,≥,>}, a real numberc∈ [0,1], and any measurable
setR ⊆ Ωs, we definePG ,s, f x, f 1−x(R) ∼ c iff PG ,s,gx,g1−x(R) ∼ c for all total strategiesgx andg1−x

that are extensions off x resp. f 1−x.

Winning Conditions. The winner of the game is determined by a predicate on infiniteruns. We
assume familiarity with the syntax and semantics of the temporal logicCTL∗ (see, e.g., [CGP99]).
Formulas are interpreted on the structure(S,−→). We useJϕKs to denote the set of runs starting
from s that satisfy theCTL∗ path-formulaϕ. This set is measurable [Var85], and we just write
PG ,s, f x, f 1−x(ϕ)∼ c instead ofPG ,s, f x, f 1−x(JϕKs)∼ c.

We will consider games withparity winning conditions, whereby Player 1 wins if the largest
color that occurs infinitely often in the infinite run is odd, and Player 0 wins if it is even. Thus, the
winning condition for Playerx can be expressed inCTL∗ as

x-Parity :=
∨

i∈{0,...,n}∧(i mod 2)=x

(✷✸[S]Col=i ∧✸✷[S]Col≤i) .

Winning Sets.For a strategyf x of Playerx, and a setF1−x of strategies of Player 1−x, we define

Wx( f x
,F1−x)(G ,ϕ∼c) := {s : ∀ f 1−x ∈ F1−x

. f 1−x is total =⇒ PG ,s, f x, f 1−x(ϕ)∼ c}

If there is a strategyf x such thats∈ Wx( f x,F1−x)(G ,ϕ∼c), then we say thats is a winning state
for Playerx in G wrt. ϕ∼c (and f x is winning at s), provided that Player 1−x is restricted to
strategies inF1−x. Sometimes, when the parametersG , s, F1−x, ϕ, and∼ c are known, we will
not mention them and may simply say that “s is a winning state” or that “f x is a winning strategy”,
etc. If s∈ Wx( f x,F1−x)(G ,ϕ=1), then we say that Playerx wins from s almost surely (a.s.). If
s∈Wx( f x,F1−x)(G ,ϕ>0), then we say that Playerx wins froms with positive probability (w.p.p.).

We also defineVx( f x,F1−x)(G ,ϕ) := {s : ∀ f 1−x ∈ F1−x. Runs(G ,s, f x, f 1−x)⊆ JϕKs}. If s∈
Vx( f x,F1−x)(G ,ϕ), then we say that Playerx surelywins from s. Notice that any strategy that is
surely winning from a states is also winning fromsa.s., and any strategy that is winning a.s. is also
winning w.p.p., i.e.,Vx( f x,F1−x)(G ,ϕ) ⊆Wx( f x,F1−x)(G ,ϕ=1)⊆Wx( f x,F1−x)(G ,ϕ>0).
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Determinacy and Solvability.A game is calleddeterminedwrt. an objectiveϕ∼c and two sets
F0,F1 of strategies of Player 0, resp. Player 1, if, for every states, Playerx has a strategyf x ∈ Fx

that is winning against all strategiesg ∈ F1−x of the opponent, i.e.,s∈ Wx( f x,F1−x)(G ,condx),
where cond0 = ϕ∼c and cond1 = ϕ 6∼c. By solvinga determined game, we mean giving an algorithm
to compute symbolic representations of the sets of states which are winning for either player and a
symbolic representation of the corresponding winning strategies.

Attractors. A set A ⊆ S is said to be anattractor if, for each states∈ S and strategiesf 0, f 1 of
Player 0 resp. Player 1, it is the case thatPG ,s, f 0, f 1(✸A) = 1. In other words, regardless of where
we start a run and regardless of the strategies used by the players, we will reach a state inside the
attractor a.s.. It is straightforward to see that this also implies thatPG ,s, f 0, f 1(✷✸A) = 1, i.e., the
attractor will be visited infinitely often a.s.

Transition Systems.Consider strategiesf x ∈ Fx
/0 and f 1−x ∈ F1−x

finite of Playerx resp. Player 1−x,

where f x is memoryless andf 1−x is finite-memory. Suppose thatf 1−x is induced by memory
structureM = (M,m0,τ,µ). We define thetransition systemT induced byG , f 1−x, f x to be the pair
(SM , ) whereSM =S×M, and ⊆SM ×SM such that(s1,m1) (s2,m2) if m2 = µ(s1,m1), and
one of the following three conditions is satisfied: (i)s1 ∈ Sx and eithers2 = f x(s1) or f x(s1) = ⊥,
(ii) s1 ∈ S1−x ands2 = τ(s1,m1), or (iii) s1 ∈ SR andP(s1,s2)> 0.

Consider the directed acyclic graph (DAG) of maximal strongly connected components (SCCs)
of the transition systemT . An SCC is called abottom SCC (BSCC)if no other SCC is reachable
from it. Observe that the existence of BSCCs is not guaranteed in an infinite transition system.
However, ifG contains a finite attractorA andM is finite thenT contains at least one BSCC, and in
fact each BSCC contains at least one element(sA,m) with sA ∈ A. In particular, for any states∈ S,
any runρ ∈ Runs(G ,s, f x, f 1−x) will visit a configuration(sA,m) infinitely often a.s. wheresA ∈ A
and(sA,m) ∈ B for some BSCCB.

3. REACHABILITY

In this section we present some concepts related to checkingreachability objectives in games. First,
we define basic notions. Then we recall a standard scheme (described e.g. in [Zie98]) for checking
reachability winning conditions, and state some of its properties that we use in the later sections. In
this section, we do not use the finite attractor property, nordo we restrict the class of strategies in
any way. Below, fix a gameG = (S,S0,S1,SR,−→,P,Col).

Reachability Properties.Fix a states∈Sand sets of statesQ,Q′ ⊆S. LetPostG (s) := {s′ : s−→s′}
denote the set ofsuccessorsof s. Extend it to sets of states byPostG (Q) :=

⋃
s∈QPostG (s). Note

that for any given states∈ SR, P(s, ·) is a probability distribution overPostG (s). Let PreG (s) :=
{s′ : s′−→s} denote the set ofpredecessorsof s, and extend it to sets of states as above. We define
P̃reG (Q) :=G

¬ PreG

(

G
¬ Q

)

, i.e., it denotes the set of states whose successorsall belong toQ. We say
thatQ is sink-freeif PostG (s)∩Q 6= /0 for all s∈ Q, andclosableif it is sink-free andPostG (s)⊆ Q
for all s∈ [Q]R. If Q is closable then each state in[Q]0,1 has at least one successor inQ, and all the
successors of states in[Q]R are inQ.

For x ∈ {0,1}, we say thatQ is anx-trap if it is closable andPostG (s) ⊆ Q for all s∈ [Q]x.
Notice thatS is both a 0-trap and a 1-trap, and in particular it is both sink-free and closable. The
following lemma states that, starting from a state inside a set of statesQ that is a trap for one player,
the other player can surely keep the run insideQ.
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Lemma 3.1. If Q is a (1−x)-trap, then there exists a memoryless strategy fx ∈ Fx
/0 (G) for Player x

such that Q⊆Vx( f x,F1−x
all (G))(G ,✷Q).

Proof. We define a memoryless strategyf x of Playerx that is surely winning from any states∈ Q,
i.e., Q ⊆ Vx( f x,F1−x

all (G))(G ,✷Q). For a states∈ [Q]x, we definef x(s) = select(PostG (s)∩Q).
This is well-defined sinceQ is a (1−x)-trap. We can now show that any run that starts from a
states∈ Q and that is consistent withf x will surely remain insideQ. Let f 1−x be any strategy of
Player 1−x, and lets0s1 . . . ∈ Runs(G ,s, f x, f 1−x). We show, by induction oni, thatsi ∈ Q for all
i ≥ 0. The base case is clear sinces0 = s∈ Q. For i > 1, we consider three cases depending onsi :

• si ∈ [S]x. By the induction hypothesis we know thatsi ∈Q, and hence by definition off x we know
thatsi+1 = f x(si) ∈ Q.

• si ∈ [S]1−x. By the induction hypothesis we know thatsi ∈ Q, and hencesi+1 ∈ Q sinceQ is a
(1−x)-trap.

• si ∈ [S]R. By the induction hypothesis we know thatsi ∈Q, and hencesi+1 ∈Q sinceQ is closable.

Scheme.Given a setTarget ⊆ S, we give a scheme for computing a partitioning ofS into two
setsForcex(G ,Target) andAvoid1−x(G ,Target) s.t. 1) Playerx has a memoryless strategy on
Forcex(G ,Target) to force the game toTarget w.p.p., and 2) Player 1−x has a memoryless strat-
egy onAvoid1−x(G ,Target) to surely avoidTarget. The scheme and its correctness is adapted
from [Zie98] to the stochastic setting.

First, we characterize the states that are winning for Player x, by defining an increasing set of
states each of which consists of winning states for Playerx, as follows:

R 0 := Target

R α+1 := R α ∪ [PreG (R α)]
R∪ [PreG (R α)]

x∪ [P̃reG (R α)]
1−x

R λ :=
⋃

α<λ
R α (for λ a limit ordinal)

Clearly, the sequence is non-decreasing, i.e.,R α ⊆ R β when α ≤ β, and since the sequence is
bounded byS, it converges at some (possibly infinite) ordinal. We state this as a lemma:

Lemma 3.2. There is aγ ∈O such thatR γ =
⋃

α∈O R α.

Let γ be the smallest ordinal s.t.R γ = R γ+1 (it exists by the lemma above). We define

Forcex(G ,Target) := R γ

Avoid1−x(G ,Target) := G
¬ R γ

Lemma 3.3. Avoid1−x(G ,Target) is an x-trap.

Proof. Recall thatAvoid1−x(G ,Target) =G
¬ R γ andR γ+1 ⊆ R γ. First, we prove thatG¬ R γ is sink-

free. There are two cases to consider:

• s∈ [G
¬ R γ]

x∪ [G
¬ R γ]

R. First, PostG (s) ⊆ G
¬ R γ. Indeed, if not, we would havePostG (s)∩R γ 6=

/0, and thuss∈ R γ+1 ⊆ R γ, which is a contradiction. Second, sinceS is sink-free, we have
PostG (s) 6= /0, and thusPostG (s)∩ G

¬ R γ 6= /0.

• s∈ [G
¬ R γ]

1−x. We clearly havePostG (s)∩ G
¬ R γ 6= /0, otherwisePostG (s) ⊆ R γ, and thuss∈

R γ+1 ⊆ R γ, which is a contradiction.
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Second, when proving sink-freeness above, we showed thatPostG (s) ⊆ G
¬ R γ for any s∈ [G

¬ R γ]
R

which means thatG¬ R γ is closable. Finally, we also showed thatPostG (s)⊆ G
¬ R γ for anys∈ [G

¬ R γ]
x,

which means thatG¬ R γ is anx-trap, thus concluding the proof.

The following lemma shows correctness of the construction.In fact, it shows that a winning
player also has a memoryless strategy which is winning against an arbitrary opponent.

Lemma 3.4. There are memoryless strategies forcex(G ,Target) ∈ Fx
/0 (G) for Player x and

avoid1−x(G ,Target) ∈ F1−x
/0 (G) for Player1−x s.t.

Forcex(G ,Target)⊆Wx(forcex(G ,Target),F1−x
all (G))(G ,✸Target>0)

Avoid1−x(G ,Target)⊆V1−x(avoid1−x(G ,Target),Fx
all(G))(G ,✷(G

¬ Target))

Proof. Let R = Forcex(G ,Target). To prove the first claim, we define a memoryless strategyf x of
Playerx that is winning fromR . For anys∈ [R ]x, let α be the unique ordinal s.t.s∈ [R α+1\R α]

x.
Then, we definef x(s) := select(PostG (s)∩ R α). We show thatf x forces the run to the target
setTarget w.p.p. against an arbitrary opponent. Fix a strategyf 1−x for Player 1−x. We show
thatPG ,s, f x, f 1−x(✸Target) > 0 by transfinite induction. Ifs∈ R 0, then the claim follows trivially.
If s∈ R α+1, then eithers∈ R α in which case the claim holds by the induction hypothesis, or
s∈ R α+1\R α. In the latter case, there are three sub-cases:

• s∈ [R α+1\R α]
x. By definition of f x, we know thatf x(s) = s′ for somes′ ∈R α. By the induction

hypothesis,PG ,s′, f 0, f 1(✸Target)> 0, and hencePG ,s, f 0, f 1(✸Target)> 0.
• s∈ [R α+1\R α]

1−x. Lets′ be the successor ofschosen byf 1−x. By definition ofR α+1, we know
thats′ ∈ R α. Then, the proof follows as in the previous case.

• s∈ [R α+1 \R α]
R. By definition of R α+1, there is as′ ∈ R α such thatP(s,s′) > 0. By the

induction hypothesis,PG ,s, f 0, f 1(✸Target)≥ PG ,s′, f 0, f 1(✸Target) ·P(s,s′)> 0.

Finally, if s∈ R λ for a limit ordinal λ, thens∈ R α for someα < λ, and the claim follows by the
induction hypothesis.

From Lemma 3.3 and Lemma 3.1 it follows that there is a strategy f 1−x for Player 1−x such
thatAvoid1−x(G ,Target)⊆V1−x( f 1−x,Fx

all)(G ,✷(Avoid1−x(G ,Target))). The second claim fol-
lows then from the fact thatTarget∩Avoid1−x(G ,Target) = /0.

4. PARITY CONDITIONS

We describe a scheme for solving stochastic parity games with almost-sure winning conditions on
infinite graphs, under the conditions that the game has a finite attractor (as defined in Section 2), and
that the players are restricted to finite-memory strategies.

We define a sequence of functionsC0,C1, . . . EachCn takes a single argument, a game of rank
at mostn, and it returns the set of states where Playerx wins a.s., withx= n mod 2. In other words,
the player that has the same parity as colorn wins a.s. inCn(G). We provide a memoryless strategy
that is winning a.s. for Playerx in Cn(G) against any finite-memory strategy of Player 1−x, and a
memoryless strategy that is winning w.p.p. for Player 1−x in G

¬ Cn(G) against any finite-memory
strategy of Playerx.

The scheme is by induction onn and is related to [Zie98]. In the rest of the section, we make
use of the following notion of sub-game. For a closableG

¬ Q, we define thesub-gameG ⊖Q :=
(Q′, [Q′]0, [Q′]1, [Q′]R,−→′,P′,Col′), whereQ′ :=G

¬ Q is the new set of states,−→′ := −→∩ (Q′×
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gameG
⋃

β<α Yβ
1−x

XαS\Xα

gameG ⊖Xα [G
¬ Xα]

Col=nx
ZαS\Xα \Zα

gameG ⊖Xα ⊖Zα
G⊖Xα⊖Zα

¬ Cn−1(G ⊖Xα ⊖Zα) Cn−1(G ⊖Xα ⊖Zα)

FIGURE 1. The construction of the various sets involved in the inductive step. The
grey area isYα.

Q′), P′ := P|([Q′]R×Q′), Col′ := Col|Q′. Notice thatP′(s) is a probability distribution for any
s∈ [Q′]R sinceQ′ is closable. We useG ⊖Q1⊖Q2 to denote(G ⊖Q1)⊖Q2.

For the base case, letC0(G) := S for any gameG of rank 0. Indeed, from any configuration
Player 0 trivially wins a.s. (even surely) because there is only color 0.

For n≥ 1, letG be a game of rankn. In the following, let

x= n mod 2.

Cn(G) is defined with the help of two auxiliary transfinite sequences of sets of states{Xα}α∈O and
{Yα}α∈O. The construction ensures thatX0 ⊆ Y0 ⊆ X1 ⊆ Y1 ⊆ ·· · , and that the states ofXα,Yα
are winning w.p.p. for Player 1−x. We use strong induction, i.e., to constructXα we assume that
Xβ has been constructed for allβ < α, and it suffices to state one unified inductive step rather than
distinguishing between base case, successor ordinals and non-zero limit ordinals. In the (unified)
inductive step, we have already constructedXβ andYβ for all β < α. Our construction ofXα andYα
is in three steps (cf. Figure 1):

(1) Xα is the set of states where Player 1−x can force the run to visit
⋃

β<α Yβ w.p.p.
(2) Find a set of states where Player 1−x wins w.p.p. in the sub-gameG ⊖Xα.
(3) TakeYα to be the union ofXα and the set constructed in step 2.

We next show how to find the winning states in the sub-gameG ⊖Xα in step 2. We first compute
the set of states where Playerx can force the play inG ⊖Xα to reach a state with colorn w.p.p.We
call this setZα. The sub-gameG ⊖Xα ⊖Zα does not contain any states of colorn. Therefore, this
game can be completely solved, using the already constructed functionCn−1(G ⊖Xα ⊖Zα). The
resulting winning set is winning a.s. inG ⊖Xα ⊖Zα, hence it is winning w.p.p.We will prove that
the states where Player 1−x wins w.p.p. inG ⊖Xα⊖Zα are winning w.p.p. also inG . We thus take
Yα as the union ofXα andCn−1(G ⊖Xα ⊖Zα).
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We define the sequences formally:

Xα := Force1−x(G ,
⋃

β<α Yβ)

Zα := Forcex(G ⊖Xα, [
G
¬ Xα]

Col=n)

Yα := Xα ∪Cn−1(G ⊖Xα ⊖Zα)

Notice that the sub-gamesG ⊖Xα andG ⊖Xα ⊖Zα are well-defined, sinceG¬ Xα is closable inG
(by Lemma 3.3), andG⊖Xα

¬ Zα is closable inG ⊖Xα.
By the definition, forα ≤ β we getYα ⊆ Xβ ⊆ Yβ. As in Lemma 3.2, we can prove that this

sequence converges:

Lemma 4.1. There exists aγ ∈O such thatXγ = Yγ =
⋃

α∈O Yα.

Let γ be the least ordinal s.t.Xγ+1 = Xγ (which exists by the lemma above). We define

Cn(G) :=G
¬ Xγ (4.1)

The following lemma shows the correctness of the construction. Recall that we assume thatG is of
rankn and that it contains a finite attractor.

Lemma 4.2. There are memoryless strategies fx
c ∈ Fx

/0 (G) for Player x and f1−x
c ∈ F1−x

/0 (G) for
Player1−x such that the following two properties hold:

Cn(G) ⊆ Wx( f x
c ,F

1−x
finite(G))(G ,x-Parity=1) (4.2)

G
¬ Cn(G) ⊆ W1−x( f 1−x

c ,Fx
finite(G))(G ,(1−x)-Parity>0) (4.3)

Proof. Using induction onn, we define the strategiesf x
c , f 1−x

c , and prove that the strategies are
indeed winning.

Construction of f x
c . For n≥ 1, recall thatγ is the least ordinal s.t.Xγ+1 = Xγ (as defined above),

and defineXγ :=G
¬ Xγ andZγ :=G

¬ Zγ. By definition,Cn(G) = Xγ. For a states∈ Xγ, we definef x
c (s)

depending on the membership ofs in one of the following three partitions ofXγ:

(1) s∈ Xγ∩Zγ. DefineG ′ := G ⊖Xγ⊖Zγ. By the definition ofγ, we have thatXγ+1\Xγ = /0. By the
construction ofYα we have, for an arbitraryα, thatCn−1(G ⊖Xα ⊖Zα) = Yα \Xα, and by the
construction ofXα+1, we have thatYα \Xα ⊆ Xα+1\Xα. By combining these facts, we obtain
Cn−1(G

′)⊆ Xγ+1\Xγ = /0. SinceG ⊖Xγ ⊖Zγ does not contain any states of colorn (or higher),
it follows by the induction hypothesis that there is a memoryless strategyf1 ∈ Fx

/0 (G
′) such that

G ′

¬ Cn−1(G
′) ⊆ Wx( f1,F

1−x
finite(G

′))(G ′,x-Parity>0). We definef x
c (s) := f1(s). (Later, we will

prove that in factf1 is winning a.s.)
(2) s∈ Xγ ∩ [Zγ]

Col<n. Define f x
c (s) := forcex(G ⊖Xγ, [Zγ]

Col=n)(s).
(3) s∈ Xγ∩ [Zγ]

Col=n. Lemma 3.3 showsPostG (s)∩Xγ 6= /0. Define f x
c (s) := select(PostG (s)∩Xγ).

Correctness of f x
c . Let f 1−x ∈ F1−x

finite(G) be a finite-memory strategy for Player 1−x. We show that
PG ,s, f x

c , f 1−x(x-Parity) = 1 for any states∈ Cn(G).
First, we give a straightforward proof that any runs0s1 · · · ∈ Runs(G ,s, f x

c , f 1−x) will always
stay insideXγ, i.e.,si ∈Xγ for all i ≥ 0. We use induction oni. The base case follows froms0 = s∈Xγ.
For the induction step, we assume thatsi ∈ Xγ, and show thatsi+1 ∈ Xγ. We consider the following
cases:

• si ∈ [Xγ]
1−x∪ [Xγ]

R. The result follows sinceXγ is a (1−x)-trap inG (by Lemma 3.3).
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• si ∈ [Xγ ∩Zγ]
x. We know thatsi+1 = f1(si). Since f1 ∈ Fx

/0 (G ⊖Xγ ⊖Zγ) it follows that si+1 ∈

Xγ ∩Zγ, and in particularsi+1 ∈ Xγ.
• si ∈ [Xγ ∩ [Zγ]

Col<n]x. We know thatsi+1 = forcex(G ⊖Xγ, [Zγ]
Col=n)(si). The result follows by

the fact thatforcex(G ⊖Xγ, [Zγ]
Col=n) is a strategy inG ⊖Xγ.

• si ∈ [Xγ ∩ [Zγ]
Col=n]x. We havesi+1 ∈ PostG (si)∩Xγ, and in particularsi+1 ∈ Xγ.

We now prove the main claim. This is where we need the assumption of finite attractor and finite-
memory strategies. Let us again consider a runρ ∈ Runs(G ,s, f x

c , f 1−x). We show thatρ is a.s.
winning for Playerx with respect tox-Parity in G . Let f 1−x be induced by a memory structure
M = (M,m0,τ,µ). Let T be the transition system induced byG , f x

c , and f 1−x. As explained in
Section 2,ρ will a.s. visit a configuration(sA,m) ∈ B for some BSCCB in T . Since there exists a
finite attractor, each state that occurs inB will a.s. be visited infinitely often byρ. Let nmax be the
maximal color occurring among the states ofB. There are two possible cases:

• nmax= n. Since each state inG has color at mostn, Playerx will a.s. win.
• nmax< n. This implies that{sB : (sB,m) ∈ B} ⊆ Zγ, and hence Playerx uses the strategyf1 to win

the game inG ⊖Xγ⊖Zγ w.p.p.Then, either (i)nmax mod 2= x in which case all states insideB are
almost sure winning for Playerx; or (ii) nmax mod 2= 1−x in which case all states insideB are
almost sure losing for Playerx. The result follows from the fact that case (ii) gives a contradiction
since all states inG ⊖Xγ ⊖Zγ (including those inB) are winning for Playerx w.p.p.

Construction of f 1−x
c . We define a strategyf 1−x

c such that, for allα, the following inclusion holds:
Xα ⊆ Yα ⊆W1−x( f 1−x

c ,Fx
finite(G))(G ,(1−x)-Parity>0). The result then follows from the definition

of Cn(G). The inclusionXα ⊆ Yα holds by the definition ofYα. For any states∈G
¬ Cn(G), we

define f 1−x
c (s) as follows. Letα be the smallest ordinal such thats∈ Yα. Such anα exists by the

well-ordering of ordinals and sinceG¬ Cn(G) =
⋃

β∈O Xβ =
⋃

β∈O Yβ. Now there are two cases:

• s∈ Xα \
⋃

β<α Yβ. Define f 1−x
c (s) := f1(s) := force1−x(G ,

⋃
β<α Yβ)(s).

• s∈ Cn−1(G ⊖ Xα ⊖ Zα). By the induction hypothesis (onn), there is a memoryless strategy
f2 ∈ F1−x

/0 (G ⊖Xα ⊖Zα) of Player 1−x such thats∈W1−x( f2,Fx
finite(G ⊖Xα ⊖Zα))(G ⊖Xα ⊖

Zα,(1−x)-Parity=1). Define f 1−x
c (s) := f2(s).

Correctness of f 1−x
c . Let f x ∈ Fx

finite(G) be a finite-memory strategy for Playerx. We now use in-
duction onα to show thatPG ,s, f 1−x

c , f x((1−x)-Parity)> 0 for any states∈ Yα. There are three cases:

(1) If s∈
⋃

β<α Yβ, thens∈ Yβ for someβ < α and the result follows by the induction hypothesis
on β.

(2) If s∈ Xα \
⋃

β<α Yβ, then we know that Player 1−x can usef1 to force the game w.p.p. to⋃
β<α Yβ from which she wins w.p.p.

(3) If s∈ Cn−1(G ⊖Xα ⊖Zα), then Player 1−x usesf2. There are now two sub-cases: either (i)
there is a run fromsconsistent withf x and f 1−x

c that reachesXα; or (ii) there is no such run.
In sub-case (i), the run reachesXα w.p.p. Then, by cases 1 and 2, Player 1−x wins w.p.p.
In sub-case (ii), all runs stay forever outsideXα. So the game is in effect played onG ⊖Xα.

Notice then that any run froms that is consistent withf x and f 1−x
c stays forever inG ⊖Xα⊖Zα.

The reason is that (by Lemma 3.3)G⊖Xα
¬ Zα is anx-trap inG ⊖Xα. Since all runs remain inside

G ⊖Xα ⊖Zα, Player 1−x wins w.p.p. (even a.s.) wrt.(1−x)-Parity using f2.
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The following theorem follows immediately from the previous lemmas.

Theorem 4.3. Stochastic parity games with almost sure winning conditions on infinite graphs are
memoryless determined, provided there exists a finite attractor and the players are restricted to
finite-memory strategies.

Remark. We can compute both the a.s. winning set and the w.p.p. winning set for both players as
follows. Letnmax be the maximal color occurring in the game. Then:

• Playerx wins a.s. inCnmax(G) and w.p.p. inG
¬ Cnmax+1(G);

• Player 1−x wins a.s. inCnmax+1(G) and w.p.p. inG
¬ Cnmax(G).

5. APPLICATION TO LOSSY CHANNEL SYSTEMS

5.1. Lossy channel systems.A lossy channel system (LCS)is a finite-state machine equipped with
a finite number of unbounded fifo channels (queues) [AJ93]. The system islossy in the sense
that, before and after a transition, an arbitrary number of messages may be lost from the channels.
We considerstochastic game-LCS (SG-LCS): each individual message is lost independently with
probability λ in every step, whereλ > 0 is a parameter of the system. The set of control states is
partitioned into states belonging to Player 0 and 1. The player who owns the current control state
chooses an enabled outgoing transition.

Formally, a SG-LCS of rankn is a tupleL = (S,S0,S1,C,M,T,λ,Col) whereS is a finite set of
control statespartitioned into control statesS0,S1 of Player 0 and 1;C is a finite set ofchannels, M
is a finite set called themessage alphabet, T is a set oftransitions, 0< λ < 1 is theloss rate, and
Col : S→ {0, . . . ,n} is thecoloring function. Each transitiont ∈ T is of the forms

op
−→s′, where

s,s′ ∈ S andop is one of the following three forms:c!m (send messagem ∈ M in channelc ∈ C), c?m
(receive messagem from channelc), or nop (do not modify the channels).

The SG-LCSL induces a gameG = (S,S0,S1,SR,−→,P,Col), whereS= S× (M∗)C×{0,1}.
That is, each state in the game (also called aconfiguration) consists of a control state, a function
that assigns a finite word over the message alphabet to each channel, and one of the symbols 0 or
1. States where the last symbol is 0 are random:SR = S× (M∗)C ×{0}. The other states belong
to a player according to the control state:Sx = Sx× (M∗)C×{1}. Transitions out of states of the
form s= (s,x,1) model transitions inT leaving control states. On the other hand, transitions leav-
ing configurations of the forms= (s,x,0) model message losses. More precisely, transitions are
defined as follows:

• If s= (s,x,1),s′ = (s′,x′,0) ∈ S, then we haves−→s′ iff s
op
−→s′ is a transition inT and (i) if

op= nop, thenx = x′; (ii) if op= c!m, thenxc= w andx′ = x[c 7→ w ·m] (iii) if op= c?m, then
xc = m ·w andx′ = x[c 7→ w], where the notationx[c 7→ w] represents the channel assignment
which is the same asx except that it mapsc to the wordw∈ M∗.

• To model message losses, we introduce the subword ordering� on words:x� y iff x is a word
obtained by removing zero or more messages from arbitrary positions ofy. This is extended to
channel contentsx,x′ ∈ (M∗)C by x � x′ iff x(c)� x′(c) for all channelsc ∈ C, and to configura-
tions s= (s,x, i),s′ = (s′,x′, i′) ∈ S by s� s′ iff s = s′, x � x′, andi = i′. For anys= (s,x,0)
and anyx′ � x, there is a transitions−→(s,x′,1). The probability of random transitions is given
by P((s,x,0),(s,x′,1)) = a·λc−b · (1−λ)c, wherea is the number of ways to obtainx′ by losing
messages inx, b is the total number of messages in all channels ofx, andc is the total number of
messages in all channels ofx′ (see [ABRS05] for details).
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Every configuration of the form(s,x,0) has at least one successor, namely(s,x,1). If a config-
uration (s,x,1) does not have successors according to the rules above, then we add a transition
(s,x,1)−→(s,x,0), to ensure that the induced game is sink-free.

Finally, for a configurations= (s,x, i), we defineCol(s) := Col(s). Notice that the graph of
the game is bipartite, in the sense that a configuration inSR has only transitions to configurations in
[S]0,1, and vice versa.

We say that a set of channel contentsX ⊆ (M∗)C is regular if it is a finite union of sets of
the formY ⊆ (M∗)C whereY(c) is a regular subset ofM∗ for everyc ∈ C (this coincides with the
notion of recognisable subset of(M∗)C; cf. [Ber79]). We extend the notion of regularity to a set of
configurationsP⊆Sby saying thatP is regular iff, for every control states ∈ S andi ∈ {0,1}, there
exists a regular set of channel contentsXs,i ⊆ (M∗)C s.t. P= {(s,x, i) : s ∈ S, i ∈ {0,1},x ∈ Xs,i}.

In the qualitativeparity game problemfor SG-LCS, we want to characterize the sets of config-
urations where Playerx can force thex-Parity condition to hold a.s., for both players.

5.2. From scheme to algorithm. We transform the scheme of Section 4 into an algorithm for de-
ciding the a.s. parity game problem for SG-LCS. Consider an SG-LCSL = (S,S0,S1,C,M,T,λ,Col)
and the induced gameG = (S,S0,S1,SR,−→,P,Col) of some rankn. Furthermore, assume that the
players are restricted to finite-memory strategies. We showthe following.

Theorem 5.1. The sets of winning configurations for Players0 and1 are effectively computable as
regular sets of configurations. Furthermore, from each configuration, memoryless strategies suffice
for the winning player.

In the statement of the theorem, “effectively” means that a finite description of the regular sets
of winning configurations is computable. We give the proof inseveral steps. First, we show that
the game induced by an SG-LCS contains a finite attractor (Lemma 5.2). Then, we show that the
scheme in Section 3 for computing winning configurations wrt. reachability objectives is guaranteed
to terminate (Lemma 5.4). Furthermore, we show that the scheme in Section 4 for computing
winning configurations wrt. a.s. parity objectives is guaranteed to terminate (Lemma 5.7). Notice
that Lemmas 5.4 and 5.7 imply that for SG-LCS our transfinite constructions stabilize belowω (the
first infinite ordinal). Finally, we show that each step in theabove two schemes can be performed
using standard operations on regular languages (Lemmas 5.11 and 5.12).

Finite attractor. In [ABRS05] it was shown that any Markov chain induced by a Probabilistic LCS
contains a finite attractor. The proof can be carried over in astraightforward manner to the current
setting. More precisely, the finite attractor is given byA= (S×εεε×{0,1}) whereεεε(c) = ε for each
c ∈ C. In other words,A is given by the set of configurations in which all channels areempty. The
proof relies on the observation that if the number of messages in some channel is sufficiently large,
it is more likely that the number of messages decreases than that it increases in the next step. This
gives the following.

Lemma 5.2. G contains a finite attractor.

Termination of Reachability Scheme.For a set of configurationsQ ⊆ S, we define theupward
closureof Q by Q↑:= {s : ∃s′ ∈ Q.s′ � s}. A setU ⊆ Q ⊆ S is said to beQ-upward-closed(or
Q-u.c. for short) if (U ↑)∩Q=U . We say thatU is upward closedif it is S-u.c.

Lemma 5.3. If Q0 ⊆ Q1 ⊆ ·· · , and for all i it holds that Qi ⊆ Q and Qi is Q-u.c., then there is an
j ∈ N such that Qi = Q j for all i ≥ j.



14 P. A. ABDULLA, C. CLEMENTE, R. MAYR, AND S. SANDBERG

Proof. By Higman’s lemma [Hig52], there is aj ∈N s.t. Qi ↑= Q j ↑ for all i ≥ j. Hence,Qi ↑ ∩Q=
Q j ↑ ∩Q for all i ≥ j. Since allQi areQ-u.c.,Qi ↑ ∩Q= Qi for all i ≥ j. SoQi = Q j for all i ≥ j.

Now, we can show termination of the reachability scheme.

Lemma 5.4. There exists a finite j∈ N such thatR i = R j for all i ≥ j.

Proof. First, we show that[R i \ Target]
R is (G

¬ Target)-u.c. for all i ∈ N. We use induction on
i. For i = 0 the result is trivial sinceR i \ Target = /0. For i > 0, suppose thats= (s,x,0) ∈
[R i ]

R\ Target. This means thats−→(s,x′,1) ∈ R i−1 for somex′ � x, and hences′−→(s,x′,1)
for all s′ s.t. s� s′.

By Lemma 5.3, there is aj ′ ∈N such that[R i]
R\Target= [R j ′ ]

R\Target for all i ≥ j ′. Since
R i ⊇ Target for all i ≥ 0 it follows that[R i]

R = [R j ′ ]
R for all i ≥ j ′.

Since the graph ofG is bipartite (as explained in Section 5.1),[PreG (R i)]
x = [PreG

(

[R i]
R
)

]x

and[P̃reG (R i)]
1−x = [P̃reG

(

[R i ]
R
)

]1−x. Since[R i ]
R= [R j ′ ]

R for all i ≥ j ′, we have[PreG (R i)]
x =

[PreG

(

[R ]Rj ′
)

]x ⊆ R j ′+1 and [P̃reG (R i)]
1−x = [P̃reG

(

[R ]Rj ′
)

]1−x ⊆ R j ′+1. It then follows that

R i = R j for all i ≥ j := j ′+1.

Termination of Parity Scheme.We prove that the scheme from Section 4 terminates under the
condition that the reachability sets are computable and that there exists a finite attractor. This suf-
fices since, by the part above, the reachability scheme terminates, thus yielding computability of the
reachability set. However, here we prove termination of theparity scheme with no further assump-
tion on the reachability sets other than their computability.

We first prove two immediate auxiliary lemmas.

Lemma 5.5. A closable set intersects every attractor.

Proof. In any closable set, the players can choose strategies that force the game to remain in the set
surely. The lemma now follows since an attractor is visited almost surely by any run, and this would
be impossible if the attractor did not have any element in theset.

Lemma 5.6. Cn(G) is a (1−x)-trap.

Proof. C0(G) is trivially a (1−x)-trap. Fori ≥ 1, the result follows immediately from the definition
of Cn(G) in Eq 4.1 as the complement of a force set (by Lemma 3.3).

Lemma 5.7. There is a finite j∈ N such thatXi = X j for all i ≥ j.

Proof. We will prove the claim by showing thatCn−1(G ⊖Xi ⊖Zi) in the definition ofYi contains
an element from the attractor, and that theCn−1(G ⊖Xi ⊖Zi) sets constructed in different stepsi
are disjoint. First,Cn−1(G ⊖Xi ⊖Zi) is anx-trap by Lemma 5.6. Hence it is closable, and therefore
Lemma 5.5 implies that it contains an element from the attractor. Second, by the definition of
the⊖ operator,Xi andG ⊖Xi ⊖Zi are disjoint. SinceCn−1(G ⊖Xi ⊖Zi) ⊆ S\Xi \Zi , it follows
that Yi is thedisjoint union of Xi andCn−1(G ⊖Xi ⊖Zi). Then, the definition ofXi implies that
Cn−1(G ⊖Xi ⊖Zi) ⊆ Yi \

⋃
j<i Y j . Hence, if j 6= i, Cn−1(G ⊖Xi ⊖Zi) andCn−1(G ⊖X j ⊖Z j) are

disjoint. Since allCn−1(G ⊖Xi ⊖Zi) sets are disjoint, and each of them contains at least one element
of the attractor, and the attractor is finite, the algorithm terminates in at most|A| steps.
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Computability. Regular languages of configurations are effectively closedunder the operations
of upward-closure, predecessor, set-theoretic union, intersection, and complement [ABD08]. For
completeness, we show these properties below.

Lemma 5.8. If P is a regular set of configurations, then its upward-closure P↑ is effectively regular.

Proof. A regular setP of configurations is by definition of the form

P= {(s,x, i) : s ∈ S, i ∈ {0,1},x ∈ Xs,i}

where theXs,i’s are regular sets of channel contents. It thus suffices to show that X ↑:= {x :
∃x′ ∈ X.x′ � x} is an effectively regular set of channel contents whenX is a regular set of chan-
nel contents. By definition,X is a finite union of sets of the formY ⊆ (M∗)C with Y(c) regular for
everyc∈ C. Let X↑ be the union of theY↑, where, for everyc∈ C, a finite automaton recognizing
Y↑ (c) is obtained from a finite automaton recognizingY(c) by adding a self-loop labeled withM
on every state thereof.

Lemma 5.9. If P,Q are regular sets of configurations, then P∪Q, P∩Q, and S\P are effectively
regular sets of configurations.

Proof. The proof is very similar to the one in the previous lemma, by exploiting the fact that regular
languages are closed under the operations of union, intersection, and complement.

Lemma 5.10. If P is a regular set of configurations, then PreG (P) is an effectively regular set of
configurations.

Proof. Let P be a regular set of configurations. By a case analysis on whichtransition is taken, we
can write

PreG (P) =
⋃

t∈T

PreG (P,t)∪PreR
G (P)

where

PreG

(

P,s
nop
−→s′

)

:= {(s,x,1) : (s′,x,0) ∈ P}

PreG

(

P,s
c!m
−→s′

)

:= {(s,x,1) : (s′,x′,0) ∈ P.x′(c) = w ·m,x= x[c 7→ w]}

PreG

(

P,s
c?m
−→s′

)

:= {(s,x,1) : (s′,x′,0) ∈ P.x= x′[c 7→ m ·x(c)]}

PreR
G (P) := {(s,x,0) : (s′,x′,1) ∈ P.x′ � x}= {(s,x′,0) : (s′,x′,1) ∈ P}↑

Then,PreG

(

P,s
nop
−→s′

)

is clearly effectively regular,PreG

(

P,s
c!m
−→s′

)

is regular, because regular

languages are effectively closed under (right) quotients,PreG

(

P,s
c?m
−→s′

)

is regular, because regu-

lar language are effectively closed under (left) concatenation with single symbols, andPreR
G (P) is

effectively regular by Lemma 5.8.

The lemmas above show that all operations used in computingForcex(G ,Target) effectively
preserve regularity. Thus we obtain the following lemma.

Lemma 5.11. If Target is regular, then Forcex(G ,Target) is effectively regular.

Lemma 5.12. For each n,Cn(G) is effectively regular.

Proof. The setS is regular, and henceC0(G) = S is effectively regular. The result forn> 0 follows
from Lemma 5.11 and from the fact that the rest of the operations used to buildCn(G) are those of
set complement and union.
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5.3. Construction of regular winning strategies. In this section, we show that the memoryless
winning strategies constructed in Theorem 5.1 can be finitely represented as a (finite) list of rules
with regular guards on the channel contents. This representation can be easily turned in a more low-
level one, e.g., a finite automaton with output reading the channel contents and outputting the rule
do be played next, but for the ease of presentation we have chosen a more high-level description.

Preliminaries. Let L = (S,S0,S1,C,M,T,λ,Col) be a SG-LCS. A(memoryless) regular SG-LCS

strategyf for Playerx is a finite list of guarded rules{si ,Xi
opi−→s′i}

n
i=1, where theguard Xi ⊆ (M∗)C

is a regular set of channel contents andsi
opi−→s′i is a transition inT s.t.si ∈ Sx and:

• If opi = c?m, everyx ∈ Xi hasm as the first symbol ofx(c).
• Guards for the same control state are disjoint; i.e., for each i, j, if si = s j thenXi ∩Xj = /0.

Thedomainof a regular SG-LCS strategyf is

dom(f) = {(s,x) : there exists a guarded rules,X
op
−→s′ ∈ f s.t.x ∈ X}

Intuitively, the rule(si,Xi
opi−→s′i) should be applied from control statesi if the channel contents

belong to the guardXi. Formally, letG = (S,S0,S1,SR,−→,P,Col) be the game induced byL .
The (partial, memoryless)induced strategyf of a regular SG-LCS strategyf is defined, for every
(s,x) ∈ dom(f), asf(s,x,1) = (s′i ,x

′,0), wheresi,Xi
op
−→s′i is the unique guarded rule inf such

thatsi = s andx ∈ Xi, andx′ is the unique channel contents s.t.(s,x,1)−→(s′,x′,0) in the game
G . If (s,x) 6∈ dom(f), thenf(s,x,1) =⊥.

Given two regular SG-LCS strategiesf0,f1 with disjoint domains, theirunion f0∪ f1 is the
regular SG-LCS strategy obtained by concatenating the lists of guarded rules off0 andf1.

Given two sets of configurationsQ,Q′ ⊆ S, a selection functionfrom Q to Q′ is any function
f : Q 7→ Q′ s.t., for every(s,x) ∈ Q,

f (s,x) ∈
(

PostG (s,x)∩Q′
)

In other words, a selection function picks a legal successorin Q′ for every configuration inQ.

Construction. The rest of this section is devoted to the construction of regular winning strategies
for both players, as summarised by the following theorem.

Theorem 5.13.Memoryless winning strategies for both players are effectively computable as regu-
lar SG-LCS strategies.

We begin by showing that, if the set of selection functions isnon-empty, then there are simple
selection functions induced byregular SG-LCS strategies.

Lemma 5.14.Let Q,Q′ ⊆S be two regular sets of configurations. If there exists a selection function
from Q to Q′, then there exists a regular SG-LCS strategyf s.t.f is a selection function from Q to Q′.

Proof. Let f be a selection function fromQ to Q′; in particular, the setPostG (s,x)∩Q′ is non-

empty for each(s,x) ∈ Q. Let T = {s0
op0−→s′0, . . . ,sk

opk−→s′k} be the finitely many transitions ofL .

For everyi ∈ {0, . . . ,k}, let Pi be the set of predecessors ofQ′ in Q via transitionsi
opi−→s′i, i.e.,

Pi = PreG

(

Q′
,si

opi−→s′i

)

∩Q= {(si ,x) ∈ Q : there exists(s′i,x
′) ∈ Q′ · (si,x)

opi−→(s′i,x
′)}

SinceQ,Q′ are regular,PreG

(

Q′,si
opi−→s′i

)

is regular (cf. Lemma 5.10), and thusPi is regular too.

Consider the sequence of (regular) setsQ0 = P0, and, for 0< i ≤ k, Qi = Pi \
⋃

0≤ j<i Q j , and let
Qi0, . . . ,Qih be the subsequence of non-empty sets. Then,{Qi0, . . . ,Qih} is a (regular) partition ofQ:
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The sets are disjoint by definition, and each(s,x) ∈ Q belongs to someQi j sincePostG (s,x)∩Q′ is

non-empty. Let{Xi0, . . . ,Xih} ⊆ 2(M
∗)C be the set of regular channel contents s.t., for 0≤ j ≤ h, Qi j

is of the form{(si j ,x) : x ∈ Xi j}. Let f be the following regular SG-LCS strategy:

{si0,Xi0

opi0−→s′i0, . . . ,sih,Xih

opih−→s′ih} (5.1)

By definition,f is a selection function fromQ to Q′.

In the next lemma, we show that regular SG-LCS strategies suffice to keep the game in regular
traps.

Lemma 5.15. If Q is a (1−x)-trap and regular, then there exists a regular SG-LCS strategy f for
Player x such that Q⊆Vx(f,F1−x

all (G))(G ,✷Q).

Proof. By Lemma 3.1, there exists a memoryless strategyf x for Playerx with the required prop-
erty. Moreover, by inspecting the proof of the lemma, we can see that f x is defined asf x(s) =
select(PostG (s)∩Q) for every configurations∈ [Q]x, i.e., f x is a selection function from[Q]x to
Q, and, in fact, any such selection function can be taken. By Lemma 5.14, there exists a regular
SG-LCS strategyf s.t. the induced strategyf is a selection function from[Q]x to Q.

The following lemma shows that there are regular SG-LCS strategies for the reachability and
safety objective (cf. Lemma 3.4).

Lemma 5.16. Let Target ⊆ S be a regular set of configurations. There exist regular SG-LCS
strategiesforcex(G ,Target) for Player x andavoid1−x(G ,Target) for Player1−x s.t.

Forcex(G ,Target)⊆Wx(forcex(G ,Target),F1−x
all (G))(G ,✸Target>0)

Avoid1−x(G ,Target)⊆V1−x(avoid1−x(G ,Target),Fx
all(G))(G ,✷(G

¬ Target))

Proof. We first show a regular SG-LCS strategy for Playerx for the reachability objective. Consider
the sequence of setsR 0,R 1, . . . constructed in Section 3. By Lemma 5.4, there existsj ∈ N s.t.
∀i > j, R i = R j . Moreover, sinceR i is built starting from the regular setTarget and according to
regularity-preserving operations (union, predecessor, and complement; cf. Lemmas 5.9 and 5.10),
R i is regular for every 0≤ i ≤ j. Consider the sequence of regular setsR0 = R 0 andRi = R i \R i−1
for every 0< i ≤ j. Recall the definition offorcex(G ,Target) in the proof of Lemma 3.4: For every
0< i ≤ j, forcex(G ,Target) was uniformly defined onRi as

forcex(G ,Target)(s) = select(PostG (s)∩R i−1).

Therefore, there exists a selection function fromRi to R i−1, for every 0< i ≤ j. Since theRi ’s
and R i ’s are regular, by Lemma 5.14, there exists a regular SG-LCS strategy fi with domainRi

inducing such a selection function. Since theRi ’s are disjoint, and since any selection function is
correct, take asforcex(G ,Target) the union strategyf0∪ ·· · ∪ f j . Since the actual choice of the
selection function is irrelevant, we conclude that

Forcex(G ,Target)⊆Wx(forcex(G ,Target),F1−x
all (G))(G ,✸Target>0)

We conclude the proof by providing the required regular SG-LCS strategy for Player 1−x for the
safety objective. By Lemma 3.3,Avoid1−x(G ,Target) is anx-trap. SinceAvoid1−x(G ,Target)
is regular, by Lemma 5.15 there exists a regular SG-LCS strategyavoid1−x(G ,Target) such that
Avoid1−x(G ,Target)⊆V1−x(avoid1−x(G ,Target),Fx

all(G))(G ,✷(G
¬ Target)).
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To conclude the proof of Theorem 5.13, we show that regular SG-LCS strategies suffice for the
parity objective (cf. Lemma 4.2).

Lemma 5.17. There are regular SG-LCS strategiesfx
c for Player x andf1−x

c for Player1−x such
that

Cn(G) ⊆ Wx(fx
c,F

1−x
finite(G))(G ,x-Parity=1)

G
¬ Cn(G) ⊆ W1−x(f1−x

c ,Fx
finite(G))(G ,(1−x)-Parity>0)

Proof. We define regular SG-LCS strategiesfx
c for Playerx andf1−x

c for Player 1−x by induction
on n≥ 1. By inspecting the proof of Lemma 4.2, we note that winning strategies for both players
are constructed according to a case analysis on disjoint regular domains, for which winning regular
SG-LCS strategies exist either by induction hypothesis, orby Lemma 5.16 (for reachability). Recall
that, by Lemma 5.7, there existsi ∈ N s.t. X j = Xi for every j > i. Moreover, all the setsX j ,Y j ,Z j

involved in the construction are regular for every 0≤ j ≤ i since they are constructed starting from
regular sets and according to regularity-preserving operations (boolean operations, cf. Lemma 5.9;
force-sets, cf. Lemma 5.16).

Construction of fx
c. Define the two regular sets of configurationsX j :=G

¬ X j andZ j :=G
¬ Z j . By

definition,Cn(G) = X j . Following Lemma 4.2, we definefx
c(s) depending on the membership ofs

in one of the following three partitions ofX j :

{X j ∩Z j , X j ∩ [Z j ]
Col<n

, X j ∩ [Z j ]
Col=n}

In the first case, note thatG ⊖ X j ⊖ Z j does not contain any configurations of color≥ n (cf.
Lemma 4.2). Thus, by the induction hypothesis, there is a regular SG-LCS strategyf j for Playerx
in G ⊖X j ⊖Z j such that the induced strategy has domainX j ∩Z j . In the second case, letf2 be
the regular SG-LCS strategyforcex(G ⊖X j , [Z j ]

Col=n), for which the induced strategy has domain
X j ∩ [Z j ]

Col<n (it exists by Lemma 5.16). Finally, in the third case, the strategyselect(PostG (·)∩X j)

witnesses the existence of a selection function fromX j ∩ [Z j ]
Col=n to X j . Let f3 be a regular SG-

LCS strategy inducing a selection function fromX j ∩ [Z j ]
Col=n to X j (it exists by Lemma 5.14).

Then,fx
c is defined as the union of the three previously constructed strategies:

fx
c := f1∪f2∪f3

Since the actual choice of selection function is irrelevant, fx
c induces a correct strategy by the same

arguments as in the proof of Lemma 4.2, i.e.,Cn(G) ⊆ Wx(fx
c,F

1−x
finite(G))(G ,x-Parity=1).

Construction of f1−x
c . Recall thatG¬ Cn(G) = Y j = X j , and, for every 0≤ i ≤ j, Yi = Xi ∪Cn−1(G ⊖

Xi ⊖Zi). For every 1≤ i ≤ j, letf1
i be the regular SG-LCS strategyforce1−x(G ,Yi−1) with domain

Xi \Yi−1 (it exists by Lemma 5.16). By the induction hypothesis, there is also a regular SG-LCS
strategyf2

i such that the induced strategy has domainCn−1(G ⊖Xi ⊖Zi), which is winning a.s. for
Player 1−x on this domain. Then,f1−x

c is defined as

f1−x
c := f1

1∪f2
1∪ ·· ·∪f1

j ∪f2
j

By reasoning as in the proof of Lemma 4.2,f1−x
c induces a correct strategy, i.e.,G

¬ Cn(G) ⊆

W1−x(f1−x
c ,Fx

finite(G))(G ,(1−x)-Parity>0).
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FIGURE 2. Finite attractor requirement.

p : 0 q : 0 r : 1

c!1

nop

nop

c?1

nop

(A) W.p.p. winning condition

0 1 2

c!1
nop

c?1

nop

nop

(B) A.s. winning condition

FIGURE 3. Infinite memory helps Player 1.

6. CONCLUSIONS ANDDISCUSSION

We have presented a scheme for solving stochastic games witha.s. and w.p.p. parity winning con-
ditions under the two requirements that (i) the game contains a finite attractor and (ii) both players
are restricted to finite-memory strategies. We have shown that this class of games is memoryless
determined. The method is instantiated to prove decidability of a.s. and w.p.p. parity games induced
by lossy channel systems.

The two above requirements are both necessary for our method. To see why our scheme fails
if the game lacks afinite attractor , consider the game in Figure 2 (a variant of the Gambler’s ruin
problem). All states are random, i.e.,S0 = S1 = /0, andCol(s0) = 1 andCol(si) = 0 wheni > 0.
The probability to go right from any state is 0.7 and the probability to go left (or to make a self-loop
in s0) is 0.3. This game does not have any finite attractor. It can be shownthat the probability to
reachs0 infinitely often is 0 for all initial states. However, our construction will classify all states
as winning for Player 1. More precisely, the construction ofC1(G) converges after one iteration,
with Zα = SandXα = Yα = /0 for all α, andC1(G) = S. Intuitively, the problem is that even if the
force-set of{s0} (which is the entire set of states) is visited infinitely manytimes, the probability of
visiting {s0} infinitely often is still zero, since the probability of returning to{s0} gets smaller and
smaller. Such behavior is impossible in a game graph that contains a finite attractor.

Our scheme also fails when the players are not both restricted to finite-memory strategies.
Solving a game under a finite-memory restriction is a different problem from when arbitrary strate-
gies are allowed (not a sub-problem). In fact, it was shown in[BBS07] that for arbitrary strategies,
the problem is undecidable. We show two simple examples of stochastic games on LCSs where the
two problems yield different results (see also [BBS07]). Inone case, we show that infinite memory
is more powerful for Player 1 with a w.p.p. objective (cf. Figure 3a), while in the other case infinite
memory helps w.r.t. an a.s. objective (cf. Figure 3b). In both cases, Player 0 does not play in the
game, thus the memory allowed to her is irrelevant.
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First, we show that infinite memory is more powerful for w.p.p. objectives. In Figure 3a,
Player 1 plays on control statesp, q, and r. Player 1’s objective is to visit stater infinitely of-
ten w.p.p.. To ensure this, from statep Player 1 pumps up the channel to a sufficiently large size
k (which can be done a.s. for anyk given enough time), and then she goes to the risk stateq. If
each message can be lost independently with probability1

2, the probability that all messages are
lost, and thus that Player 1 is stuck forever inq, is 2−k. Otherwise, with probability 1−2−k Player
1 can visitr once, and then go back top. The strategy of Player 1 is to realise an infinite sequence
k0 < k1 < · · · s.t. the probability of visiting stater infinitely often, which is∏∞

i=0(1−2−ki ), can be
made strictly positive. Clearly, if Player 1 has infinite memory, then she can realize such a sequence
by distinguishing different visits to control statep and same channel contents. On the other side,
if Player 1 is restricted to finite memory, then either the game eventually stays forever inp (which
is losing), or the infinite sequencek0,k1, . . . is upper-bounded by some finiten, which makes the
infinite product above equal to 0. In both cases, Player 1 loses if she has only finite memory.

Notice that Player 1 wins not only w.p.p., but even limit-sure in this example. In other words, for
everyε > 0 there is an infinite-memory strategy s.t. the parity objective is satisfied with probability
≥ ε. We don’t know whether there are examples where a similar phenomenon can be reproduced
under finite-memory/memoryless strategies.

We now show that infinite memory is more powerful for a.s. objectives. An example similar
to the previous case can be given for the a.s. winning mode with a 3-color parity condition. In
Figure 3b, Player 1 controls states 0, 1, and 2, whose color equals their name. Thus, the objective of
Player 1 is to a.s. visit state 1 infinitely often and state 2 only finitely often. The strategy is similar
as in the previous example: Player 1 tries to pump up the channel in state 0, and then she goes to
the risk state 1. From here, with low probability all messages are lost, and the penalty is to visit
state 2 once. Otherwise, the game can go back directly to state 0 without visiting state 2. In both
cases, the game restarts afresh from state 0. An analysis as in the previous example shows that, if
Player 1 is restricted to finite memory, then the probabilityof visiting state 2 from state 1 can be
bounded from below. This implies that, whenever state 1 is visited infinitely often, then so is state
2 a.s., and so Player 1 is losing. On the other hand, there is aninfinite-memory strategy for Player 1
s.t. the probability of visiting state 2 forn times goes to 0 asn goes to infinity, which implies that
the probability of visiting state 2 only finitely often is 1.

As future work, we will consider extending our framework to (fragments of) probabilistic ex-
tensions of other models such as Petri nets and noisy Turing machines [AHM07].
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