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Abstract
We study countably infinite Markov decision processes (MDPs) with real-valued transition rewards.
Every infinite run induces the following sequences of payoffs: 1. Point payoff (the sequence of directly
seen transition rewards), 2. Total payoff (the sequence of the sums of all rewards so far), and 3.
Mean payoff. For each payoff type, the objective is to maximize the probability that the lim inf is
non-negative. We establish the complete picture of the strategy complexity of these objectives, i.e.,
how much memory is necessary and sufficient for ε-optimal (resp. optimal) strategies. Some cases
can be won with memoryless deterministic strategies, while others require a step counter, a reward
counter, or both.
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1 Introduction

Background. Markov decision processes (MDPs) are a standard model for dynamic systems
that exhibit both stochastic and controlled behavior [18]. Applications include control
theory [5, 1], operations research and finance [2, 6, 20], artificial intelligence and machine
learning [23, 21], and formal verification [9, 3].

An MDP is a directed graph where states are either random or controlled. In a random
state the next state is chosen according to a fixed probability distribution. In a controlled
state the controller can choose a distribution over all possible successor states. By fixing
a strategy for the controller (and an initial state), one obtains a probability space of runs
of the MDP. The goal of the controller is to optimize the expected value of some objective
function on the runs. The type of strategy necessary to achieve an ε-optimal (resp. optimal)
value for a given objective is called its strategy complexity.
Transition rewards and liminf objectives. MDPs are given a reward structure by
assigning a real-valued (resp. integer or rational) reward to each transition. Every run then
induces an infinite sequence of seen transition rewards r0r1r2 . . . . We consider the lim inf of
this sequence, as well as two other important derived sequences.
1. The point payoff considers the lim inf of the sequence r0r1r2 . . . directly.
2. The total payoff considers the lim inf of the sequence

{∑n−1
i=0 ri

}
n∈N

, i.e., the sum of all
rewards seen so far.

3. The mean payoff considers the lim inf of the sequence
{

1
n

∑n−1
i=0 ri

}
n∈N

, i.e., the mean of
all rewards seen so far in an expanding prefix of the run.

For each of the three cases above, the lim inf threshold objective is to maximize the probability
that the lim inf of the respective type of sequence is ≥ 0.
Our contribution. We establish the strategy complexity of all the lim inf threshold
objectives above for countably infinite MDPs. (For the simpler case of finite MDPs, see the
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2 Strategy Complexity of Mean/Total/Point Payoff Objectives in Countable MDPs

paragraph on related work below.) We show the amount and type of memory that is sufficient
for ε-optimal strategies (and optimal strategies, where they exist), and corresponding lower
bounds in the sense of Remark 1. This is not only the distinction between memoryless, finite
memory and infinite memory, but the type of infinite memory that is necessary and sufficient.
A step counter is an integer counter that merely counts the number of steps in the run (i.e.,
like a discrete clock), while a reward counter is a variable that records the sum of all rewards
seen so far. (The reward counter has the same type as the transition rewards in the MDP,
i.e., integers, rationals or reals.) While these use infinite memory, it is a very restricted
form, since this memory is not directly controlled by the player. Strategies using only a step
counter are also called Markov strategies [18].

Some of the lim inf objectives can be attained by memoryless deterministic (MD) strategies,
while others require (in the sense of Remark 1) a step counter, a reward counter, or both. It
depends on the type of objective (point, total, or mean payoff) and on whether the MDP is
finitely or infinitely branching. For clarity of presentation, our counterexamples use large
transition rewards and high degrees of branching. However, the lower bounds hold even for
just binary branching MDPs with transition rewards in {−1, 0, 1}; cf. Appendix E.

For our objectives, the strategy complexities of ε-optimal and optimal strategies (where
they exist) coincide, but the proofs are different. Table 1 shows the results for all combinations.

Point payoff Total payoff Mean payoff
ε-optimal, infinitely branching SC 17, 32 SC+RC 17, 9, 34 SC+RC 15, 8, 33
optimal, infinitely branching SC 17, 35 SC+RC 14, 17, 35 SC+RC 13, 16, 35
ε-optimal, finitely branching MD 27 RC 9, 30 SC+RC 15, 8, 33
optimal, finitely branching MD 31 RC 14, 31 SC+RC 13, 16, 35

Table 1 Strategy complexity of ε-optimal/optimal strategies for point, total and mean payoff
objectives in infinitely/finitely branching MDPs. MD stands for memoryless deterministic, SC for
step counter, RC for reward counter and SC+RC for both. All strategies are deterministic and
randomization does not help. For each result, we list the numbers of the theorems that show the
upper and lower bounds on the strategy complexity. The lower bounds hold in the sense of Remark 1,
but work for integer rewards. The upper bounds hold even for real-valued rewards.

Some complex new proof techniques are developed to show these results. E.g., the
examples showing the lower bound in cases where both a step counter and a reward counter
are required use a finely tuned tradeoff between different risks that can be managed with
both counters, but not with just one counter plus arbitrary finite memory. The strategies
showing the upper bounds need to take into account convergence effects, e.g., the sequence
of point rewards −1/2, −1/3, −1/4, . . . does satisfy lim inf ≥ 0, i.e., one cannot assume that
rewards are integers.

Due to space constraints, we sketch some proofs in the main body. Full proofs can be
found in the Appendix.
Related work. Mean payoff objectives for finite MDPs have been widely studied; cf. survey
in [8]. There exist optimal MD strategies for lim inf mean payoff (which are also optimal
for lim sup mean payoff since the transition rewards are bounded), and the associated
computational problems can be solved in polynomial time [8, 18]. Similarly, see [7] for a survey
on lim sup and lim inf point payoff objectives in finite stochastic games and MDPs, where
there also exist optimal MD strategies, and the more recent paper by Flesch, Predtetchinski
and Sudderth [11] on simplifying optimal strategies.

All this does not carry over to countably infinite MDPs. Optimal strategies need not exist
(not even for much simpler objectives), (ε-)optimal strategies can require infinite memory,
and computational problems are not defined in general, since a countable MDP need not
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be finitely presented [16]. Moreover, attainment for lim inf mean payoff need not coincide
with attainment for lim sup mean payoff, even for very simple examples. E.g., consider the
acyclic infinite graph with transitions sn → sn+1 for all n ∈ N with reward (−1)n2n in the
n-th step, which yields a lim inf mean payoff of −∞ and a lim sup mean payoff of +∞.

Mean payoff objectives for countably infinite MDPs have been considered in [18, Section
8.10], e.g., [18, Example 8.10.2] (adapted in Figure 4) shows that there are no optimal
MD (memoryless deterministic) strategies for lim inf/lim sup mean payoff. [19, Counter-
example 1.3] shows that there are not even ε-optimal memoryless randomized strategies for
lim inf/lim sup mean payoff. (We show much stronger lower/upper bounds; cf. Table 1.)

Sudderth [22] considered an objective on countable MDPs that is related to our point payoff
threshold objective. However, instead of maximizing the probability that the lim inf/lim sup
is non-negative, it asks to maximize the expectation of the lim inf/lim sup point payoffs, which
is a different problem (e.g., it can tolerate a high probability of a negative lim inf/lim sup
if the remaining cases have a huge positive lim inf/lim sup). Hill & Pestien [12] showed
the existence of good randomized Markov strategies for the lim sup of the expected average
reward up-to step n for growing n, and for the expected lim inf of the point payoffs.

2 Preliminaries

Markov decision processes. A probability distribution over a countable set S is a function
f : S → [0, 1] with

∑
s∈S f(s) = 1. We write D(S) for the set of all probability distributions

over S. A Markov decision process (MDP) M = (S, S2, S#, −→, P, r) consists of a countable
set S of states, which is partitioned into a set S2 of controlled states and a set S# of random
states, a transition relation −→ ⊆ S × S, and a probability function P : S# → D(S). We
write s−→s′ if (s, s′) ∈ −→, and refer to s′ as a successor of s. We assume that every state
has at least one successor. The probability function P assigns to each random state s ∈ S#

a probability distribution P (s) over its (non-empty) set of successor states. A sink in M is a
subset T ⊆ S closed under the −→ relation, that is, s ∈ T and s−→s′ implies that s′ ∈ T .

An MDP is acyclic if the underlying directed graph (S, −→) is acyclic, i.e., there is no
directed cycle. It is finitely branching if every state has finitely many successors and infinitely
branching otherwise. An MDP without controlled states (S2 = ∅) is called a Markov chain.

In order to specify our mean/total/point payoff objectives (see below), we define a function
r : S × S → R that assigns numeric rewards to transitions.
Strategies and Probability Measures. A run ρ is an infinite sequence of states and
transitions s0e0s1e1 · · · such that ei = (si, si+1) ∈ −→ for all i ∈ N. Let Runss0

M be the set
of all runs from s0 in the MDP M. A partial run is a finite prefix of a run, pRunss0

M is the
set of all partial runs from s0 and pRunsM the set of partial runs from any state.

We write ρs(i) def= si for the i-th state along ρ and ρe(i) def= ei for the i-th transition
along ρ. We sometimes write runs as s0s1 · · · , leaving the transitions implicit. We say that a
(partial) run ρ visits s if s = ρs(i) for some i, and that ρ starts in s if s = ρs(0).

A strategy is a function σ : pRunsM ·S2 → D(S) that assigns to partial runs ρs, where
s ∈ S2, a distribution over the successors {s′ ∈ S | s−→s′}. The set of all strategies in
M is denoted by ΣM (we omit the subscript and write Σ if M is clear from the context).
A (partial) run s0e0s1e1 · · · is consistent with a strategy σ if for all i either si ∈ S2 and
σ(s0e0s1e1 · · · si)(si+1) > 0, or si ∈ S# and P (si)(si+1) > 0.

An MDP M = (S, S2, S#, −→, P, r), an initial state s0 ∈ S, and a strategy σ induce a
probability space in which the outcomes are runs starting in s0 and with measure PM,s0,σ

defined as follows. It is first defined on cylinders s0e0s1e1 . . . snRunssn

M: if s0e0s1e1 . . . sn
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is not a partial run consistent with σ then PM,s0,σ(s0e0s1e1 . . . snRunssn

M) def= 0. Other-
wise, PM,s0,σ(s0e0s1e1 . . . snRunssn

M) def=
∏n−1

i=0 σ̄(s0e0s1 . . . si)(si+1), where σ̄ is the map that
extends σ by σ̄(ws) = P (s) for all partial runs ws ∈ pRunsM ·S#. By Carathéodory’s
theorem [4], this extends uniquely to a probability measure PM,s0,σ on the Borel σ-algebra
F of subsets of Runss0

M. Elements of F , i.e., measurable sets of runs, are called events or
objectives here. For X ∈ F we will write X

def= Runss0
M \ X ∈ F for its complement and

EM,s0,σ for the expectation wrt. PM,s0,σ. We drop the indices if possible without ambiguity.
Objectives. We consider objectives that are determined by a predicate on infinite runs. We
assume familiarity with the syntax and semantics of the temporal logic LTL [10]. Formulas
are interpreted on the structure (S, −→). We use JφKs to denote the set of runs starting
from s that satisfy the LTL formula φ, which is a measurable set [24]. We also write JφK
for
⋃

s∈SJφKs. Where it does not cause confusion we will identify φ and JφK and just write
PM,s,σ(φ) instead of PM,s,σ(JφKs). The reachability objective of eventually visiting a set of
states X can be expressed by JFXK def= {ρ | ∃i. ρs(i) ∈ X}. Reaching X within at most k steps
is expressed by JF≤kXK def= {ρ | ∃i ≤ k. ρs(i) ∈ X}. The definitions for eventually visiting
certain transitions are analogous. The operator G (always) is defined as ¬F¬. So the safety
objective of avoiding X is expressed by G¬X.

The PP lim inf≥0 objective is to maximize the probability that the lim inf of the point payoffs
(the immediate transition rewards) is ≥ 0, i.e., PP lim inf≥0

def= {ρ | lim infn∈N r(ρe(n)) ≥ 0}.
The TP lim inf≥0 objective is to maximize the probability that the lim inf of the total
payoff (the sum of the transition rewards seen so far) is ≥ 0, i.e., TP lim inf≥0

def= {ρ |
lim infn∈N

∑n−1
j=0 r(ρe(j)) ≥ 0}.

The MP lim inf≥0 objective is to maximize the probability that the lim inf of the mean
payoff is ≥ 0, i.e., MP lim inf≥0

def= {ρ | lim infn∈N
1
n

∑n−1
j=0 r(ρe(j)) ≥ 0}.

An objective φ is called tail in M if for every run ρ′ρ in M with some finite prefix ρ′ we
have ρ′ρ ∈ JφK ⇔ ρ ∈ JφK. An objective is called a tail objective if it is tail in every MDP.
PP lim inf≥0 and MP lim inf≥0 are tail objectives, but TP lim inf≥0 is not. Also PP lim inf≥0 is
more general than co-Büchi. (The special case of integer transition rewards coincides with
co-Büchi, since rewards ≤ −1 and accepting states can be encoded into each other.)

Strategy Classes. Strategies are in general randomized (R) in the sense that they take
values in D(S). A strategy σ is deterministic (D) if σ(ρ) is a Dirac distribution for all ρ.
General strategies can be history dependent (H), while others are restricted by the size or
type of memory they use, see below. We consider certain classes of strategies:

A strategy σ is memoryless (M) (also called positional) if it can be implemented with a
memory of size 1. We may view M-strategies as functions σ : S2 → D(S).
A strategy σ is finite memory (F) if there exists a finite memory M implementing σ.
Hence FR stands for finite memory randomized.
A step counter strategy bases decisions only on the current state and the number of steps
taken so far, i.e., it uses an unbounded integer counter that gets incremented by 1 in
every step. Such strategies are also called Markov strategies [18].
k-bit Markov strategies use k extra bits of general purpose memory in addition to a step
counter [15].
A reward counter strategy uses infinite memory, but only in the form of a counter that
always contains the sum of all transition rewards seen to far.
A step counter + reward counter strategy uses both a step counter and a reward counter.
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See Appendix A for a formal definition how strategies use memory. Step counters and reward
counters are very restricted forms of memory, since the memory update is not directly under
the control of the player. These counters merely record an aspect of the partial run.
Optimal and ε-optimal Strategies. Given an objective φ, the value of state s in an
MDP M, denoted by valM,φ(s), is the supremum probability of achieving φ. Formally,
valM,φ(s) def= supσ∈Σ PM,s,σ(φ) where Σ is the set of all strategies. For ε ≥ 0 and state s ∈ S,
we say that a strategy is ε-optimal from s if PM,s,σ(φ) ≥ valM,φ(s)−ε. A 0-optimal strategy
is called optimal. An optimal strategy is almost-surely winning if valM,φ(s) = 1. Considering
an MD strategy as a function σ : S2 → S and ε ≥ 0, σ is uniformly ε-optimal (resp. uniformly
optimal) if it is ε-optimal (resp. optimal) from every s ∈ S.

▶ Remark 1. To establish an upper bound X on the strategy complexity of an objective φ in
countable MDPs, it suffices to prove that there always exist good (ε-optimal, resp. optimal)
strategies in class X (e.g., MD, MR, FD, FR, etc.) for objective φ.

Lower bounds on the strategy complexity of an objective φ can only be established in the
sense of proving that good strategies for φ do not exist in some classes Y , Z, etc. Classes of
strategies that use different types of restricted infinite memory are generally not comparable,
e.g., step counter strategies are incomparable to reward counter strategies. In particular,
there is no weakest type of infinite memory with restricted use. Therefore statements like
“good strategies for objective φ require at least a step counter” are always relative to the
considered alternative strategy classes. In this paper, we only consider the strategy classes of
memoryless, finite memory, step counter, reward counter and combinations thereof. Thus,
when we write in Table 1 that an objective requires a step counter (SC), it just means that a
reward counter (RC) plus finite memory is not sufficient.

For our upper bounds, we use deterministic strategies. Moreover, we show that allowing
randomization does not help to reduce the strategy complexity, in the sense of Remark 1.

3 When is a step counter not sufficient?

In this section we will prove that strategies with a step counter plus arbitrary finite memory
are not sufficient for ε-optimal strategies for MP lim inf≥0 or TP lim inf≥0. We will construct
an acyclic MDP where the step counter is implicit in the state such that ε-optimal strategies
for MP lim inf≥0 and TP lim inf≥0 still require infinite memory.

3.1 Epsilon-optimal strategies
We construct an acyclic MDP M in which the step counter is implicit in the state as follows.

The system consists of a sequence of gadgets. Figure 1 depicts a typical building block in
this system. The system consists of these gadgets chained together as illustrated in Figure 2,
starting with n sufficiently high at n = N∗. In the controlled choice, there is a small chance
in all but the top choice of falling into a ⊥ state. These ⊥ states are abbreviations for an
infinite chain of states with −1 reward on the transitions and are thus losing. The intuition
behind the construction is that there is a random transition with branching degree k(n) + 1.
Then, the only way to win, in the controlled states, is to play the i-th choice if one arrived
from the i-th choice. Thus intuitively, to remember what this choice was, one requires at
least k(n) + 1 memory modes. That is to say, the one and only way to win is to mimic, and
mimicry requires memory.
▶ Remark 2. M is acyclic, finitely branching and for every state s ∈ S, ∃ns ∈ N such that
every path from s0 to s has length ns. That is to say the step counter is implicit in the state.
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sn cn sn+1

⊥

δk(n)(n
) +k(n)m

n

δj(n) +jmn

δ1(n) +mn

δ0(n) +0

−k(n)m
n

−0

ε0(n)

ε1(n)

−mn

−jm
n

εj(n)

Figure 1 A typical building block with k(n) + 1 choices, first random then controlled. The
number of choices k(n) + 1 grows unboundedly with n. This is the n-th building block of the MDP
in Figure 2. The δi(n) and εi(n) are probabilities depending on n and the ±imn are transition
rewards. We index the successor states of sn and cn from 0 to k(n) to match the indexing of the δ’s
and ε’s such that the bottom state is indexed with 0 and the top state with k(n).

Additionally, the number of transitions in each gadget now grows unboundedly with n

according to the function k(n). Consequently, we will show that the number of memory
modes required to play correctly grows above every finite bound. This will imply that no
finite amount of memory suffices for ε-optimal strategies.
Notation: All logarithms are assumed to be in base e.

log1n
def= logn, logi+1n

def= log(login)

δ0(n) def= 1
logn

, δi(n) def= 1
logi+1n

, δk(n)(n) def= 1 −
k(n)−1∑

j=0
δj(n)

ε0(n) def= 1
nlogn

, εi+1(n) def= εi(n)
logi+2n

, i.e. εi(n) = 1
n · logn · log2n · · · logi+1n

, εk(n)(n) def= 0

Tower(0) def= e0 = 1, Tower(i + 1) def= eTower(i), Ni
def= Tower(i)

▶ Lemma 3. The family of series
∑

n>Nj
δj(n) · εi(n) is divergent for all i, j ∈ N, i < j.

Additionally, the related family of series
∑

n>Ni
δi(n) · εi(n) is convergent for all i ∈ N.

Proof. These are direct consequences of Cauchy’s Condensation Test. ◀

▶ Definition 4. We define k(n), the rate at which the number of transitions grows. We
define k(n) in terms of fast growing functions g, Tower and h defined for i ≥ 1 as follows:

g(i) def= min
{

N :
(∑

n>N

δi−1(n)εi−1(n)
)

≤ 2−i

}
, h(1) def= 2

h(i + 1) def=

max

g(i + 1), Tower(i + 2), min

m + 1 ∈ N :
m∑

n=h(i)

εi−1(n) ≥ 1



 .



R. Mayr and E. Munday 7

s0 B1 B2 B3 B4 B5

+0 +1 +2 +3

−1 −1 −1 −1
4 steps

Figure 2 The buildings blocks from Figure 1 represented by black boxes are chained together (n
increases as you go to the right). The chain of white boxes allows to skip arbitrarily long prefixes
while preserving path length. The positive rewards from the white states to the black boxes reimburse
the lost reward accumulated until then. The −1 rewards between white states ensure that skipping
gadgets forever is losing.

Note that function g is well defined by Lemma 3, and h(i + 1) is well defined since for
all i,

∑∞
n=h(i) εi−1(n) diverges to infinity. k(n) is a slow growing unbounded step function

defined in terms of h as k(n) def= h−1(n). The Tower function features in the definition to
ensure that the transition probabilities are always well defined. g and h are used to smooth
the proofs of Lemma 6 and Claim 39 respectively. Notation: N∗ def= min{n ∈ N : k(n) = 1}.
This is intuitively the first natural number for which the construction is well defined.

The reward mn which appears in the n-th gadget is defined such that it outweighs any
possible reward accumulated up to that point in previous gadgets. As such we define mn

def=
2k(n)

∑n−1
i=N∗ mi, with mN∗

def= 1 and where k(n) is the branching degree.

To simplify the notation, the state s0 in our theorem statements refers to sN∗ .

▶ Lemma 5. For k(n) ≥ 1, the transition probabilities in the gadgets are well defined.

▶ Lemma 6. For every ε > 0, there exists a strategy σε with PM,s0,σε
(MP lim inf≥0) ≥ 1 − ε

that cannot fail unless it hits a ⊥ state. Formally, PM,s0,σε(MP lim inf≥0 ∧ G(¬ ⊥)) =
PM,s0,σε

(G(¬ ⊥)) ≥ 1 − ε. So in particular, valM,MPlim inf≥0(s0) = 1.

Proof sketch. (Full proof in Appendix B.) We define a strategy σ which in cn always mimics
the choice in sn. Playing according to σ, the only way to lose is by dropping into the ⊥ state.
This is because by mimicking, the player finishes each gadget with a reward of 0. From s0,
the probability of surviving while playing in all the gadgets is

∏
n≥N∗

1 −
k(n)−1∑

j=0
δj(n) · εj(n)

 > 0.

Hence the player has a non zero chance of winning when playing σ.
When playing with the ability to skip gadgets, as illustrated in Figure 2, all runs not

visiting a ⊥ state are winning since the total reward never dips below 0. We then consider the
strategy σε which plays like σ after skipping forwards by sufficiently many gadgets (starting
at n ≫ N∗). Its probability of satisfying MP lim inf≥0 corresponds to a tail of the above
product, which can be made arbitrarily close to 1 (and thus ≥ 1 − ε) by Proposition 37.
Thus the strategies σε for arbitrarily small ε > 0 witness that valM,MPlim inf≥0(s0) = 1. ◀
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▶ Lemma 7. For any FR strategy σ, almost surely either the mean payoff dips below −1
infinitely often, or the run hits a ⊥ state, i.e. PM,σ,s0(MP lim inf≥0) = 0.

Proof sketch. (Full proof in Appendix B.) Let σ be some FR strategy with k memory modes.
We prove a lower bound en on the probability of a local error (reaching a ⊥ state, or seeing
a mean payoff ≤ −1) in the current n-th gadget. This lower bound en holds regardless of
events in past gadgets, regardless of the memory mode of σ upon entering the n-th gadget,
and cannot be improved by σ randomizing its memory updates.

The main idea is that, once k(n) > k + 1 (which holds for n ≥ N ′ sufficiently large) by
the Pigeonhole Principle there will always be a memory mode confusing at least two different
branches i(n), j(n) ̸= k(n) of the previous random choice at state sn. This confusion yields a
probability ≥ en of reaching a ⊥ state or seeing a mean payoff ≤ −1, regardless of events
in past gadgets and regardless of the memory upon entering the n-th gadget. We show
that

∑
n≥N ′ en is a divergent series. Thus, by Proposition 36,

∏
n≥N ′(1 − en) = 0. Hence,

PM,σ,s0(MP lim inf≥0) ≤
∏

n≥N ′(1 − en) = 0. ◀

Lemma 6 and Lemma 7 yield the following theorem.

▶ Theorem 8. There exists a countable, finitely branching and acyclic MDP M whose step
counter is implicit in the state for which valM,MPlim inf≥0(s0) = 1 and any FR strategy σ

is such that PM,s0,σ(MP lim inf≥0) = 0. In particular, there are no ε-optimal k-bit Markov
strategies for any k ∈ N and any ε < 1 for MP lim inf≥0 in countable MDPs.

All of the above results/proofs also hold for TP lim inf≥0, giving us the following theorem.

▶ Theorem 9. There exists a countable, finitely branching and acyclic MDP M whose step
counter is implicit in the state for which valM,TPlim inf≥0(s0) = 1 and any FR strategy σ

is such that PM,s0,σ(TP lim inf≥0) = 0. In particular, there are no ε-optimal k-bit Markov
strategies for any k ∈ N and any ε < 1 for TP lim inf≥0 in countable MDPs.

3.2 Optimal strategies
Even for acyclic MDPs with the step counter implicit in the state, optimal (and even almost
sure winning) strategies for MP lim inf≥0 require infinite memory. To prove this, we consider a
variant of the MDP from the previous section which has been augmented to include restarts
from the ⊥ states. For the rest of the section, M is the MDP constructed in Figure 3.
▶ Remark 10. M is acyclic, finitely branching and the step counter is implicit in the state.
We now refer to the rows of Figure 3 as gadgets, i.e., a gadget is a single instance of Figure 2
where the ⊥ states lead to the next row.

▶ Lemma 11. There exists a strategy σ such that PM,σ,s0(MP lim inf≥0) = 1.

Proof sketch. (Full proof in Appendix B.) Recall the strategy σ1/2 defined in Lemma 6
which achieves at least 1/2 in each gadget that it is played in. We then construct the almost
surely winning strategy σ by concatenating σ1/2 strategies in the sense that σ plays just like
σ1/2 in each gadget from each gadget’s start state.

Since σ achieves at least 1/2 in every gadget that it sees, with probability 1, runs generated
by σ restart only finitely many times. The intuition is then that a run restarting finitely many
times must spend an infinite tail in some final gadget. Since σ mimics in every controlled state,
not restarting anymore directly implies that the total payoff is eventually always ≥ 0. Hence
all runs generated by σ and restarting only finitely many times satisfy MP lim inf≥0. Therefore
all but a nullset of runs generated by σ are winning, i.e. PM,s0,σ(MP lim inf≥0) = 1. ◀
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s0 i i + 1 i + 2

i + 1 i + 2 i + 3

ri,1 ri+1,1 ri+2,1

−mi+2

+
m

i+
2

−mi+3

+
m

i+
3

−mi+4

Figure 3 Each row represents a copy of the MDP depicted in Figure 2. Each white circle labeled
with a number i represents the correspondingly numbered gadget (like in Figure 1) from that MDP.
Now, instead of the bottom states in each gadget leading to an infinite losing chain, they lead to a
restart state ri,j which leads to a fresh copy of the MDP (in the next row). Each restart incurs a
penalty guaranteeing that the mean payoff dips below −1 before refunding it and continuing on in
the next copy of the MDP. The states ri,j are labeled such that the j indicates that if a run sees
this state, then it is the jth restart. The i indicates that the run entered the restart state from the
ith gadget of the current copy of the MDP. The black states are dummy states inserted in order to
preserve path length throughout.

▶ Lemma 12. For any FR strategy σ, PM,σ,s0(MP lim inf≥0) = 0.

Proof sketch. (Full proof in Appendix B.) Let σ be any FR strategy. We partition the runs
generated by σ into runs restarting infinitely often, and those restarting only finitely many
times. Any runs restarting infinitely often are losing by construction. Those runs restarting
only finitely many times, once in the gadget they spend an infinite tail in, let the mean payoff
dip below −1 infinitely many times with probability 1 by Lemma 7. Hence we have that
PM,σ,s0(MP lim inf≥0) = 0. ◀

From Lemma 11 and Lemma 12 we obtain the following theorem.

▶ Theorem 13. There exists a countable, finitely branching and acyclic MDP M whose
step counter is implicit in the state for which s0 is almost surely winning MP lim inf≥0, i.e.,
∃σ̂ PM,s0,σ̂(MP lim inf≥0) = 1, but every FR strategy σ is such that PM,s0,σ(MP lim inf≥0) = 0.
In particular, almost sure winning strategies, when they exist, cannot be chosen k-bit Markov
for any k ∈ N for countable MDPs.

All of the above results/proofs also hold for TP lim inf≥0, giving us the following theorem.

▶ Theorem 14. There exists a countable, finitely branching and acyclic MDP M whose
step counter is implicit in the state for which s0 is almost surely winning TP lim inf≥0, i.e.,
∃σ̂ PM,s0,σ̂(TP lim inf≥0) = 1, but every FR strategy σ is such that PM,s0,σ(TP lim inf≥0) = 0.
In particular, almost sure winning strategies, when they exist, cannot be chosen k-bit Markov
for any k ∈ N for countable MDPs.
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4 When is a reward counter not sufficient?

In this part we show that a reward counter plus arbitrary finite memory does not suffice for
(ε-)optimal strategies for MP lim inf≥0, even if the MDP is finitely branching.

The same lower bound holds for TP lim inf≥0/PP lim inf≥0, but only in infinitely branching
MDPs. The finitely branching case is different for TP lim inf≥0/PP lim inf≥0; cf. Section 5.

The techniques used to prove these results are similar to those in Section 3 and proofs
can be found in Appendix C.

▶ Theorem 15. There exists a countable, finitely branching, acyclic MDP MRI with initial
state (s0, 0) with the total reward implicit in the state such that

valMRI,MPlim inf≥0((s0, 0)) = 1,
for all FR strategies σ, we have PMRI,(s0,0),σ(MP lim inf≥0) = 0.

▶ Theorem 16. There exists a countable, finitely branching and acyclic MDP MRestart
whose total reward is implicit in the state for which valM,MPlim inf≥0(s0) = 1 and any FR
strategy σ is such that PMRestart,s0,σ(MP lim inf≥0) = 0.

▶ Theorem 17. There exists an infinitely branching MDP M as in Figure 7 with reward
implicit in the state and initial state s such that

every FR strategy σ is such that PM,s,σ(TP lim inf≥0) = 0 and PM,s,σ(PP lim inf≥0) = 0
there exists an HD strategy σ s.t. PM,s,σ(TP lim inf≥0) = 1 and PM,s,σ(PP lim inf≥0) = 1.

Hence, optimal (and even almost-surely winning) strategies and ε-optimal strategies for
TP lim inf≥0 and PP lim inf≥0 require infinite memory beyond a reward counter.

▶ Remark 18. The MDPs from Section 3 and Section 4 show that good strategies for
MP lim inf≥0 require at least (in the sense of Remark 1) a reward counter and a step counter,
respectively. There does, of course, exist a single MDP where good strategies for MP lim inf≥0
require at least both a step counter and a reward counter. We construct such an MDP by
‘gluing’ the two different MDPs together via an initial random state which points to each
with probability 1/2.

5 Upper bounds

We establish upper bounds on the strategy complexity of lim inf threshold objectives for mean
payoff, total payoff and point payoff. It is noteworthy that once the reward structure of an
MDP has been encoded into the states, then these threshold objectives take on a qualitative
flavor not dissimilar to Safety or co-Büchi (cf. [16]). Indeed, if the transition rewards are
restricted to integer values, then TP lim inf≥0 boils down to eventually avoiding all transitions
with negative reward (since negative rewards would be ≤ −1). This is a co-Büchi objective.
However, if the rewards are not restricted to integers, then the picture is not so simple.

For finitely branching MDPs, we show that there exist ε-optimal MD strategies for
PP lim inf≥0. In turn, this yields the requisite upper bound for finitely branching TP lim inf≥0,
i.e., using just a reward counter.

For infinitely branching MDPs, a step counter suffices in order to achieve PP lim inf≥0
ε-optimally. Then, by encoding the total reward into the states, this will also give us SC+RC
upper bounds for MP lim inf≥0 as well as infinitely branching TP lim inf≥0 (i.e., using both a
step counter and a reward counter).

First we show how to encode the total reward level into the state in a given MDP.
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▶ Remark 19. Given an MDP M and initial state s0, we can construct an MDP R(M) with
initial state (s0, 0) and with the reward counter implicit in the state such that strategies in
R(M) can be translated back to M with an extra reward counter; cf. Definition 45 for a
formal definition.

By labeling transitions in R(M) with the state encoded total reward of the target state,
we ensure that the point rewards in R(M) correspond exactly to the total rewards in M.

▶ Lemma 20. Let M be an MDP with initial state s0. Then given an MD (resp. Markov)
strategy σ′ in R(M) attaining c ∈ [0, 1] for PP lim inf≥0 from (s0, 0), there exists a strategy σ

attaining c for TP lim inf≥0 in M from s0 which uses the same memory as σ′ plus a reward
counter.

▶ Remark 21. Given an MDP M and initial state s0, we can construct an acyclic MDP
S(M) with initial state (s0, 0) and with the step counter implicit in the state such that MD
strategies in S(M) can be translated back to M with the use of a step counter to yield
deterministic Markov strategies in M; cf. [15, Lemma 4].

▶ Remark 22. In order to tackle the mean payoff objective MP lim inf≥0 on M, we define a new
acyclic MDP A(M) which encodes both the step counter and the average reward into the
state. However, since we want the point rewards in A(M) to coincide with the mean payoff
in the original MDP M, the transition rewards in A(M) are given as the encoded rewards
divided by the step counter (unlike in R(M)); cf. Definition 46 for a formal definition.

▶ Lemma 23. Let M be an MDP with initial state s0. Then given an MD strategy σ′ in
A(M) attaining c ∈ [0, 1] for PP lim inf≥0 from (s0, 0, 0), there exists a strategy σ attaining c

for MP lim inf≥0 in M from s0 which uses just a reward counter and a step counter.

Proof. The proof is very similar to that of Lemma 20. ◀

▶ Lemma 24. ([15, Lemma 23]) For every acyclic MDP with a safety objective and every
ε > 0, there exists an MD strategy that is uniformly ε-optimal.

▶ Theorem 25. ([13, Theorem 7]) Let M = (S, S2, S#, −→, P, r) be a countable MDP,
and let φ be an event that is tail in M. Suppose for every s ∈ S there exist ε-optimal MD
strategies for φ. Then:
1. There exist uniform ε-optimal MD strategies for φ.
2. There exists a single MD strategy that is optimal from every state that has an optimal

strategy.

5.1 Finitely Branching Case

In order to prove the main result of this section, we use the following result on the Transience
objective, which is the set of runs that do not visit any state infinitely often. Given an MDP
M = (S, S2, S#, −→, P, r), Transience def=

∧
s∈S FG¬s.

▶ Theorem 26. ([13, Theorem 8]) In every countable MDP there exist uniform ε-optimal
MD strategies for Transience.

▶ Theorem 27. Consider a finitely branching MDP M = (S, S2, S#, −→, P, r) with initial
state s0 and a PP lim inf≥0 objective. Then there exist ε-optimal MD strategies.
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Proof. Let ε > 0. We begin by partitioning the state space into two sets, Ssafe and S \ Ssafe.
The set Ssafe is the subset of states which is surely winning for the safety objective of
only using transitions with non-negative rewards (i.e., never using transitions with negative
rewards at all). Since M is finitely branching, there exists a uniformly optimal MD strategy
σsafe for this safety objective [18, 16].

We construct a new MDP M′ by modifying M. We create a gadget Gsafe composed
of a sequence of new controlled states x0, x1, x2, . . . where all transitions xi → xi+1 have
reward 0. Hence any run entering Gsafe is winning for PP lim inf≥0. We insert Gsafe into M by
replacing all incoming transitions to Ssafe with transitions that lead to x0. The idea behind
this construction is that when playing in M, once you hit a state in Ssafe, you can win surely
by playing an optimal MD strategy for safety. So we replace Ssafe with the surely winning
gadget Gsafe. Thus

valM,PPlim inf≥0(s0) = valM′,PPlim inf≥0(s0) (1)

and if an ε-optimal MD strategy exists in M, then there exists a corresponding one in M′,
and vice-versa.

We now consider a general (not necessarily MD) ε-optimal strategy σ for PP lim inf≥0 from
s0 on M′, i.e.,

PM′,s0,σ(PP lim inf≥0) ≥ valM′,PPlim inf≥0(s0) − ε. (2)

Define the safety objective Safetyi which is the objective of never seeing any point rewards
< −2−i. This then allows us to characterize PP lim inf≥0 in terms of safety objectives.

PP lim inf≥0 =
⋂
i∈N

F(Safetyi). (3)

Now we define the safety objective Safetyk
i

def= F≤k(Safetyi) to attain Safetyi within at
most k steps. This allows us to write

F(Safetyi) =
⋃
k∈N

Safetyk
i . (4)

By continuity of measures from above we get

0 = PM′,s0,σ

(
F(Safetyi) ∩

⋂
k∈N

Safetyk
i

)
= lim

k→∞
PM′,s0,σ

(
F(Safetyi) ∩ Safetyk

i

)
.

Hence for every i ∈ N and εi
def= ε · 2−i there exists ni such that

PM′,s0,σ

(
F(Safetyi) ∩ Safetyni

i

)
≤ εi. (5)

Now we can show the following claim (proof in Appendix D.1).

▷ Claim 28.

PM′,s0,σ

(⋂
i∈N

Safetyni
i

)
≥ valM′,PPlim inf≥0(s0) − 2ε.

Since M′ does not have an implicit step counter, we use the following construction to
approximate one. We define the distance d(s) from s0 to a state s as the length of the
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shortest path from s0 to s. Let Bubblen(s0) def= {s ∈ S | d(s) ≤ n} be those states that can
be reached within n steps from s0. Since M′ is finitely branching, Bubblen(s0) is finite for
every fixed n. Let

Badi
def= {t ∈−→M′ | t = s −→M′ s′, s /∈ Bubbleni

(s0) and r(t) < −2−i}

be the set of transitions originating outside Bubbleni(s0) whose reward is too negative. Thus
a run from s0 that satisfies Safetyni

i cannot use any transition in Badi, since (by definition
of Bubbleni(s0)) they would come after the ni-th step.

Now we create a new state ⊥ whose only outgoing transition is a self loop with reward −1.
We transform M′ into M′′ by re-directing all transitions in Badi to the new target state ⊥
for every i. Notice that any run visiting ⊥ must be losing for PP lim inf≥0 due to the negative
reward on the self loop, but it must also be losing for Transience because of the self loop.

We now show that the change from M′ to M′′ has decreased the value of s0 for PP lim inf≥0
by at most 2ε, i.e.,

valM′′,PPlim inf≥0(s0) ≥ valM′,PPlim inf≥0(s0) − 2ε. (6)

Equation (6) follows from the following steps.

valM′′,PPlim inf≥0(s0) ≥ PM′′,s0,σ

(⋂
i∈N

Safetyni
i

)

= PM′,s0,σ

(⋂
i∈N

Safetyni
i

)
by def. of M′′

≥ valM′,PPlim inf≥0(s0) − 2ε by Claim 28

In the next step (proof in Appendix D.1) we argue that under every strategy σ′′ from s0
in M′′ the attainment for PP lim inf≥0 and Transience coincide, i.e.,

▷ Claim 29.

∀σ′′. PM′′,s0,σ′′(PP lim inf≥0) = PM′′,s0,σ′′(Transience).

By Theorem 26, there exists a uniformly ε-optimal MD strategy σ̂ from s0 for Transience
in M′′, i.e.,

PM′′,s0,σ̂(Transience) ≥ valM′′,Transience(s0) − ε. (7)

We construct an MD strategy σ∗ in M which plays like σsafe in Ssafe and plays like σ̂

everywhere else.

PM,s0,σ∗(PP lim inf≥0) = PM′,s0,σ̂(PP lim inf≥0) def. of σ∗ and σsafe

≥ PM′′,s0,σ̂(PP lim inf≥0) new losing sink in M′′

= PM′′,s0,σ̂(Transience) by Claim 29
≥ valM′′,Transience(s0) − ε by (7)
= valM′′,PPlim inf≥0(s0) − ε by Claim 29
≥ valM′,PPlim inf≥0(s0) − 2ε − ε by (6)
= valM,PPlim inf≥0(s0) − 3ε by (1)

Hence σ∗ is a 3ε-optimal MD strategy for PP lim inf≥0 from s0 in M as required. ◀
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▶ Corollary 30. Given a finitely branching MDP M, there exist ε-optimal strategies for
TP lim inf≥0 which use just a reward counter.

Proof. By Theorem 27 and Lemma 20. ◀

▶ Corollary 31. Given a finitely branching MDP M and initial state s0, optimal strategies,
where they exist,

for PP lim inf≥0 can be chosen MD.
for TP lim inf≥0 can be chosen with just a reward counter.

Proof. Since PP lim inf≥0 is tail, the first claim follows from Theorem 27 and Theorem 25.
Towards the second claim, we place ourselves in R(M) where TP lim inf≥0 is tail. Moreover,

in R(M) the objectives TP lim inf≥0 and PP lim inf≥0 coincide. Thus we can apply Theorem 27
to obtain ε-optimal MD strategies for TP lim inf≥0 from every state of R(M). From Theorem 25
we obtain a single MD strategy that is optimal from every state of R(M) that has an optimal
strategy. By Lemma 20 we can translate this MD strategy on R(M) back to a strategy on
M with just a reward counter. ◀

5.2 Infinitely Branching Case
For infinitely branching MDPs, ε-optimal strategies for PP lim inf≥0 require more memory
than in the finitely branching case. However, the proofs are similar to those in Section 5.1
and can be found in Appendix D.2.

▶ Theorem 32. Consider an MDP M with initial state s0 and a PP lim inf≥0 objective. For
every ε > 0 there exist

ε-optimal MD strategies in S(M).
ε-optimal deterministic Markov strategies in M.

▶ Corollary 33. Given an MDP M and initial state s0, there exist ε-optimal strategies σ

for MP lim inf≥0 which use just a step counter and a reward counter.

▶ Corollary 34. Given an MDP M with initial state s0,
there exist ε-optimal MD strategies for TP lim inf≥0 in S(R(M)),
there exist ε-optimal strategies for TP lim inf≥0 which use a step counter and a reward
counter.

▶ Corollary 35. Given an MDP M and initial state s0, optimal strategies, where they exist,
for PP lim inf≥0 can be chosen with just a step counter.
for MP lim inf≥0 and TP lim inf≥0 can be chosen with just a reward counter and a step
counter.

6 Conclusion and Outlook

We have established matching lower and upper bounds on the strategy complexity of lim inf
threshold objectives for point, total and mean payoff on countably infinite MDPs; cf. Table 1.

The upper bounds hold not only for integer transition rewards, but also for rationals or
reals, provided that the reward counter (in those cases where one is required) is of the same
type. The lower bounds hold even for integer transition rewards, since all our counterexamples
are of this form.



R. Mayr and E. Munday 15

Directions for future work include the corresponding questions for lim sup threshold
objectives. While the lim inf point payoff objective generalizes co-Büchi (see Section 2), the
lim sup point payoff objective generalizes Büchi. Thus the lower bounds for lim sup point
payoff are at least as high as the lower bounds for Büchi objectives [14, 15].
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A Introduction to Strategy Complexity

A simple example.

s1 s2 s3 s4 sk
−1 −1 −1

−1 −1
2 −1

3 −1
4 − 1

k

Figure 4 Adapted from [18, Example 8.10.2]. While there is no optimal MD (memoryless
deterministic) strategy, the following strategy is optimal for lim inf/lim sup mean payoff: Loop
exp(exp(k)) many times in state sk for all k. In this particular example, this can be implemented
with either just a step counter or just a reward counter, but in general both are needed; cf. Table 1.

Memory and strategies.
We formalize the amount of memory needed to implement strategies. Let M be a countable

set of memory modes, and let τ : M × S → D(M × S) be a function that meets the following
two conditions: for all modes m ∈ M,

for all controlled states s ∈ S2, the distribution τ(m, s) is over M × {s′ | s−→s′}.
for all random states s ∈ S#, and s′ ∈ S, we have

∑
m′∈M τ(m, s)(m′, s′) = P (s)(s′).

The function τ together with an initial memory mode m0 induce a strategy στ as follows.
Consider the Markov chain with the set M × S of states and the probability function τ . A
sequence ρ = s0 · · · si corresponds to a set H(ρ) = {(m0, s0) · · · (mi, si) | m0, . . . , mi ∈ M} of
runs in this Markov chain. Each ρs ∈ s0S∗S2 induces a probability distribution µρs ∈ D(M),
the probability of being in state (m, s) conditioned on having taken some partial run
from H(ρs). We define στ such that στ (ρs)(s′) =

∑
m,m′∈M µρs(m)τ(m, s)(m′, s′) for all

ρs ∈ S∗S2 and all s′ ∈ S.
We say that a strategy σ can be implemented with memory M if there exist m0 ∈ M and

τ such that στ = σ.
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B Missing proofs from Section 3

▶ Lemma 5. For k(n) ≥ 1, the transition probabilities in the gadgets are well defined.

Proof. Recall that Tower(i) is i repeated exponentials. Thus, log(Tower(i))=Tower(i − 1).
When checking whether probabilities in a given gadget are well defined, first we choose

a gadget. The choice of gadget gives us a branching degree k(n) + 1 which in turn lower
bounds the value of n in that gadget. So for a branching degree of k(n) + 1, we have n lower
bounded by Tower(k(n) + 1) by definition of k(n).

We need to show that
∑k(n)−1

i=0 δi(n) ≤ 1. Indeed, we have that:

k(n)−1∑
i=0

δi(n) ≤
k(n)−1∑

i=0

1
logi+1(Tower(k(n) + 1)) =

k(n)∑
i=1

1
Tower(i) <

k(n)∑
i=1

1
ei

<

k(n)∑
i=1

1
2i

< 1.

Hence, for k(n) ≥ 1, the transition probabilities are well defined, i.e. δ0(n), δ1(n), ..., δk(n)(n)
do indeed sum to 1. ◀

▶ Proposition 36. Given an infinite sequence of real numbers an with 0 ≤ an ≤ 1, we have
∞∏

n=1
(1 − an) > 0 ⇔

∞∑
n=1

an < ∞.

Proof. In the case where an does not converge to zero, the property is trivial. In the case
where an → 0, it is shown by taking the logarithm of the product and using the limit
comparison test as follows.

Taking the logarithm of the product gives the series
∞∑

n=1
ln(1 − an)

whose convergence (to a finite number ≤ 0) is equivalent to the positivity of the product. It
is also equivalent to the convergence (to a number ≥ 0) of its negation

∑∞
n=1 − ln(1 − an).

But observe that (by L’Hôpital’s rule)

lim
x→0

− ln(1 − x)
x

= 1.

Since an → 0 we have

lim
n→∞

− ln(1 − an)
an

= 1.

By the limit comparison test, the series
∑∞

n=1 − ln(1 − an) converges if and only if the series∑∞
n=1 an converges. ◀

▶ Proposition 37. Given an infinite sequence of real numbers an with 0 ≤ an ≤ 1,
∞∏

n=1
an > 0 ⇒ ∀ε > 0 ∃N.

∞∏
n=N

an ≥ (1 − ε).

Proof. Since
∏∞

n=1 an > 0, by taking the logarithm we obtain
∑∞

n=1 ln(an) > −∞. Thus
for every δ > 0 there exists an N s.t.

∑∞
n=N ln(an) ≥ −δ. By exponentiation we obtain∏∞

n=N an ≥ exp(−δ). By picking δ = − ln(1 − ε) the result follows. ◀
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▶ Lemma 6. For every ε > 0, there exists a strategy σε with PM,s0,σε(MP lim inf≥0) ≥ 1 − ε

that cannot fail unless it hits a ⊥ state. Formally, PM,s0,σε
(MP lim inf≥0 ∧ G(¬ ⊥)) =

PM,s0,σε
(G(¬ ⊥)) ≥ 1 − ε. So in particular, valM,MPlim inf≥0(s0) = 1.

Proof. We define a strategy σ which in cn always mimics the choice in sn. We first prove
that playing this way gives us a positive chance of winning. Then we show that there are
strategies σε that attain 1 − ε from s0 without hitting a ⊥ state. This implies in particular
that valM,MPlim inf≥0(s0) = 1.

Playing according to σ, the only way to lose is by dropping into the ⊥ state. This is
because by mimicking, the player finishes each gadget with a reward of 0. In the n-th gadget,
the chance of reaching the ⊥ state is

∑k(n)−1
j=0 δj(n) · εj(n). Thus, the probability of surviving

while playing in all the gadgets is

∏
n≥N∗

1 −
k(n)−1∑

j=0
δj(n) · εj(n)

 .

However, by Proposition 36, this product is strictly greater than 0 if and only if the sum

∑
n≥N∗

k(n)−1∑
i=0

δi(n)εi(n)


is finite. With some rearranging exploiting the definition of k(n) we see that this is indeed
the case:

∑
n≥N∗

k(n)−1∑
i=0

δi(n)εi(n)


≤
∑
i≥1

 ∞∑
n=g(i)

δi−1(n)εi−1(n)

 by definition of k(n)

≤
∑
i≥1

2−i by definition of g(n)

≤1

Hence the player has a non zero chance of winning.
When playing with the ability to skip gadgets, as illustrated in Figure 2, all runs

not visiting a ⊥ state are winning since the total reward never dips below 0. Hence
PM,s0,σε

(MP lim inf≥0 ∧ ¬ ⊥) = PM,s0,σε
(¬ ⊥). Thus the idea is to skip an arbitrarily long

prefix of gadgets to push the chance of winning ε close to 1 by pushing the chance of visiting
a ⊥ state ε close to 0. From the N -th state, for N ≥ N∗, the chance of winning is

∏
n≥N

1 −
k(n)−1∑

j=0
δj(n) · εj(n)

 > 0

By Proposition 37 this can be made arbitrarily close to 1 by choosing N sufficiently large.
Let Nε

def= min
{

N ∈ N |
∏

n≥N

(
1 −

∑k(n)−1
j=0 δj(n) · εj(n)

)
≥ 1 − ε

}
. Now define the

strategy σε to be the strategy that plays like σ after skipping forwards by Nε gadgets. Thus,
by definition σε attains 1 − ε for all ε > 0.

Thus, by playing σε for an arbitrarily small ε the chance of winning must be arbitrarily
close to 1. Hence, valM,MPlim inf≥0(s0) = 1. ◀
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▶ Lemma 38. For any sequence {αn}, where αn ∈ [0, 1] for all n, and any functions
i(n), j(n) : N → N with i(n), j(n) ∈ {0, 1, ..., k(n) − 1}, i(n) < j(n) for all n, the following
sum diverges:

∞∑
n=k−1(2)

(
δj(n)(n)(αnεj(n)(n) + (1 − αn)εi(n)(n)) + δi(n)(n)(αn + (1 − αn)εi(n)(n))

)
. (8)

Proof. We can narrow our focus by noticing that

∞∑
n=k−1(2)

(
δj(n)(n)(αnεj(n)(n) + (1 − αn)εi(n)(n)) + δi(n)(n)(αn + (1 − αn)εi(n)(n))

)

=
∞∑

n=k−1(2)

αnδj(n)(n)εj(n)(n) + (1 − αn)δi(n)εi(n)(n) Convergent by def. of δi(n), εi(n)

+
∞∑

n=k−1(2)

(1 − αn)δj(n)εi(n)(n) + αnδi(n)(n)

Hence the divergence of (8) depends only on the divergence of
∑∞

n=k−1(2)(1−αn)δj(n)εi(n)(n)+
αnδi(n)(n). No matter how the sequence {αn} behaves, for every n we have that either
αn ≥ 1/2 or 1 − αn ≥ 1/2. Hence for every n it is the case that

(1 − αn)δj(n)(n)εi(n)(n) + αnδi(n)(n) ≥ 1
2δj(n)(n)εi(n)(n)

or

≥ 1
2δi(n)(n)

Define the function f as follows:

f(n) =


1
2δi(n)(n) if αn ≥ 1/2

1
2δj(n)(n)εi(n)(n) otherwise

Hence no matter how {αn} behaves, we have that

∞∑
n=k−1(2)

(
δj(n)(n)(αnεj(n)(n)+(1−αn)εi(n)(n))+δi(n)(n)(αn+(1−αn)εi(n)(n))

)
≥

∞∑
n=k−1(2)

f(n).

We know that both
∑∞

n=k−1(2)
1
2δj(n)(n)εi(n)(n) and

∑∞
n=k−1(2)

1
2δi(n)(n) diverge for all

i(n), j(n) ∈ {0, 1, ..., k(n) − 1}, i(n) < j(n), as shown in Claim 39.
Thus

∑∞
n=k−1(2)

1
2δj(n)(n)εi(n)(n) and

∑∞
n=k−1(2)

1
2δi(n)(n) must also diverge no matter

how i(n) and j(n) behave. As a result it must be the case that
∑∞

n=k−1(2) f(n) diverges.
Hence (8) must be divergent as desired as i(n) and j(n) vary for n ≥ k−1(2). ◀

▷ Claim 39. The sum
∑∞

n=k−1(2)
1
2δj(n)(n)εi(n)(n) diverges for all i(n), j(n) ∈ {0, 1, ..., k(n)−

1} with i(n) < j(n).
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Proof. This result is not immediate because the range of values the indexing functions i(n)
and j(n) can take grows with k(n) as n increases.

Under the assumption that i(n) < j(n) we have that δj(n)(n)εi(n)(n) ≥ δj(n)(n)εj(n)−1(n) ≥
δk(n)−1(n)εk(n)−2(n) = εk(n)−1(n). Thus it suffices to show that

∑∞
n=k−1(2) εk(n)−1(n) di-

verges:

∞∑
n=k−1(2)

εk(n)−1(n) =
∞∑

a=2

k−1(a+1)−1∑
n=k−1(a)

εa−1(n) splitting the sum up

=
∞∑

a=2

h(a+1)−1∑
n=h(a)

εa−1(n) k(n) = h−1(n)

≥
∞∑

a=2
1 definition of h(n)

Note that the definition of h(i) says exactly that a block of the form
∑h(a+1)−1

n=h(a) εa−1(n)

is at least 1. Hence
∑∞

n=k−1(2)
1
2δj(n)(n)εi(n)(n) diverges as required.

◀

▶ Lemma 7. For any FR strategy σ, almost surely either the mean payoff dips below −1
infinitely often, or the run hits a ⊥ state, i.e. PM,σ,s0(MP lim inf≥0) = 0.

Proof. Let σ be some FR strategy with k memory modes. Our MDP consists of a linear
sequence of gadgets (Figure 1) and is in particular acyclic. The n-th gadget is entered at
state sn and takes 4 steps. Locally in the n-th gadget there are 3 possible scenarios:
(1) The random transition picks some branch i at sn and the strategy then picks a branch

j > i at cn.
By the definition of the payoffs (multiples of mn; cf. Definition 4), this means that we see
a mean payoff ≤ −1, regardless of events in past gadgets. This is because the numbers
mn grow so quickly with n that even the combined maximal possible rewards of all past
gadgets are so small in comparison that they do not matter for the outcome in the n-th
gadget, i.e., rewards from past gadgets cannot help to avoid seeing a mean payoff ≤ −1
in the above scenario.

(2) We reach the losing sink ⊥ (and thus will keep seeing a mean payoff ≤ −1 forever). This
happens with probability εj(n) if the strategy picks some branch j at cn, regardless of
past events.

(3) All other cases.
As explained above, due to the definition of the rewards (Definition 4), events in past gadgets
do not make the difference between (1),(2),(3) in the current gadget. It just depends on the
choices of the strategy σ in the current gadget.

Let Badn be the event of seeing either of the two unfavorable outcomes (1) or (2) in the
n-th gadget. Let pn be the probability of Badn under strategy σ. Since σ has memory, the
probabilities pn are not necessarily independent. However, we show lower bounds en ≤ pn

that hold universally for every FR strategy σ with ≤ k memory modes and every n such
that k(n) > k + 1. The lower bound en will hold regardless of the memory mode of σ upon
entering the n-th gadget.
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Memory updates. First we show that σ randomizing its memory update after observing the
random transition from state sn does not help to reduce the probability of event Badn. I.e.,
we show that without restriction σ can update its memory deterministically after observing
the transition from state sn.

Once in the controlled state cn, the strategy σ can base its choice only on the current
state (always cn in the n-th gadget) and on the current memory mode. Thus, in state cn,
in each memory mode m, the strategy has to pick a distribution Dcn

m over the available
transitions from cn. By the finiteness of the number of memory modes of σ (just ≤ k by our
assumption above), for each possible reward level x (obtained in the step from the preceding
random transition) there is a best memory mode m(x) such that Dcn

m(x) is optimal (in the
sense of minimizing the probability of event Badn) for that particular reward level x. (In case
of a tie, just use an arbitrary tie break, e.g., some pre-defined linear order on the memory
modes.)

Therefore, upon witnessing a reward level x in the random transition from state sn, the
strategy σ can minimize the probability of event Badn by deterministically setting its memory
to m(x). Thus randomizing its memory update does not help to reduce the probability of
Badn, and we may assume without restriction that σ updates its memory deterministically.

(Note that the above argument only works because it is local to the current gadget where
we have a finite number of decisions (here just one), we have a finite number of memory
modes, and a one-dimensional criterion for local optimality (minimizing the probability
of event Badn). We do not claim that randomized memory updates are useless for every
strategy in every MDP and every objective.)
The lower bounds en. Now we consider an FR strategy σ that without restriction updates
its memory deterministically after each random choice (from state sn) in the n-th gadget. It
can still randomize its actions, however.

Let N ′ be the minimal number such that for all n ≥ N ′ we have k(n) > k + 1. In
particular, this implies N ′ ≥ k−1(2), and thus we can apply Lemma 38 later.

Once n ≥ N ′, then by the Pigeonhole Principle there will always be a memory mode
confusing at least two different transitions i(n), j(n) ̸= k(n) from state sn to cn. Note
that this holds regardless of the memory mode of σ upon entering the n-th gadget. (The
strategy might confuse many other scenarios, but just one confused pair i(n), j(n) ̸= k(n)
is enough for our lower bound.) Without loss of generality, let j(n) be larger of the two
confused transitions, i.e., i(n) < j(n). Let i(n) and j(n) be two functions taking values in
{0, 1, ..., k(n) − 1} where i(n) < j(n) for all n.

Confusing two transitions i(n) and j(n) from sn to cn (where without restriction i(n) <

j(n)), the strategy is in the same memory mode afterwards. However, it can still randomize
its choices in state cn. To prove our lower bound on the probability of Badn, it suffices to
consider the case where the strategy only randomizes over the outgoing transitions i(n) and
j(n) from state cn. This is because, by Claim 40, every other behavior would perform even
worse, in the sense of yielding a higher probability of Badn.

That is to say that the strategy picks the higher j(n)-th branch with some probability
αn and the lower i(n)-th branch with probability 1 − αn. (We leave the probabilities αn

unspecified here. Using Lemma 38, we’ll show that our result holds regardless of their values.)
The local chance of the event Badn is then lower bounded by

en
def= δj(n)(n)(αnεj(n)(n) + (1 − αn)εi(n)(n)) + δi(n)(n)(αn + (1 − αn)εi(n)(n)).

The term above just expresses a case distinction. In the first scenario, the random
transition chooses the j(n)-th branch (with probability δj(n)(n)) and then the strategy
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chooses the j(n)-th branch with probability αn and the lower i(n)-th branch with probability
1 − αn, and you obtain the respective chances of reaching the sink ⊥. In the second scenario,
the random transition chooses the i(n)-th branch (with probability δi(n)(n)). If the strategy
then chooses the higher j(n)-th branch (with probability αn) then we have outcome (1),
yielding a mean payoff ≤ −1. If the strategy chooses the i(n)-th branch (with probability
1 − αn) then we still have a chance of εi(n)(n) of reaching the sink.

Since, as shown above, randomized memory updates do not help to reduce the probability
of Badn, the lower bound en for deterministic updates carries over to the general case. Thus,
even for general randomized FR strategies σ with k memory modes, the probability of event
Badn in the n-th gadget (for n ≥ N ′) is lower bounded by en, regardless of the memory
mode m upon entering the gadget and regardless of events in past gadgets. We write σ[m]
for the strategy σ in memory mode m and obtain

∀n ≥ N ′. ∀m. PM,σ[m],sn
(Badn) ≥ en (9)

The final step. Let Bad def= ∪nBadn.
Since i(n), j(n) ̸= k(n) and N ′ ≥ k−1(2), we apply Lemma 38 to conclude that the series∑∞

n=N ′ en =
∑∞

n=N ′ δj(n)(n)(αnεj(n)(n) + (1 − αn)εi(n)(n)) + δi(n)(n)(αn + (1 − αn)εi(n)(n))
is divergent, regardless of the behavior of i(n), j(n) or the sequence {αn}.

Finally, we obtain

PM,σ,s0(MP lim inf≥0)
≤ PM,σ,s0(FG¬Bad) set inclusion

= PM,σ,s0

(⋃
l

F≤lG¬Bad
)

def. of F

= lim
l→∞

PM,σ,s0(F≤lG¬Bad) continuity of measures

≤ lim
l→∞

PM,σ,s0

 ⋂
n≥l/4

¬Badn

 4 steps per gadget

≤ lim
4N ′≤l→∞

∏
n≥l/4≥N ′

(max
m

PM,σ[m],sn
(¬Badn)) linear sequence of gadgets, finite memory,

and past events do not help to avoid Badn

≤ lim
4N ′≤l→∞

∏
n≥l/4≥N ′

(1 − en) by (9)

= lim
4N ′≤l→∞

0 divergence of
∞∑

n=N ′

en and Proposition 36

= 0

◀

▷ Claim 40. Assume that the transitions i(n) and j(n) (with i(n) < j(n)) leading to state
cn are confused in the memory of the strategy. Then we can assume without restriction
that the strategy only plays transitions i(n) and j(n) with nonzero probability from state cn,
since every other behavior yields a higher probability of the event Badn (cf. Figure 5).

Proof. When confusing transitions i(n) and j(n) with i(n) < j(n), the player’s choice of
transition from cn can be broken down into 5 distinct cases. The player can choose transition
x(n) as follows.
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sn cn sn+1⊥

δj(n)(n) +j(n)mn

δi(n)(n) +i(n)mn

αn
−j(n)mn

1 − αn −i(n)mn

εj(n)(n)

εi(n)(n)

Figure 5 When transitions i(n) and j(n) are confused in the player’s memory, the player’s choice
is at least as bad as the reduced play in this simplified gadget.

1. x(n) = i(n)
2. x(n) = j(n)
3. x(n) > j(n)
4. x(n) < i(n)
5. i(n) < x(n) < j(n)

Case 1 leads to a probability of Badn of δj(n)(n)εi(n)(n) + δi(n)(n)εi(n)(n).
Case 2 leads to a probability of Badn of δj(n)(n)εj(n)(n) + δi(n)(n).
Case 3 leads to a mean payoff ≤ −1 (and thus Badn) with probability 1. This is the

worst possible case.
Case 4 leads to a probability of Badn of δj(n)(n)εx(n)(n)+δi(n)(n)εx(n)(n) > δj(n)(n)εi(n)(n)+

δi(n)(n)εi(n)(n), i.e., this is worse than Case 1.
Case 5 leads to a probability of Badn of δj(n)(n)εx(n)(n) + δi(n)(n) > δj(n)(n)εj(n)(n) +

δi(n)(n), i.e., this is worse than Case 2.
Hence, without restriction we can assume that only cases 1 and 2 will get played with

positive probability, that is to say that in state cn the strategy will only randomize over the
outgoing transitions i(n) and j(n). ◀

▶ Lemma 11. There exists a strategy σ such that PM,σ,s0(MP lim inf≥0) = 1.

Proof. We will show that there exists a strategy σ that satisfies the mean payoff objective
with probability 1 from s0. Towards this objective we recall the strategy σ1/2 defined in
Lemma 6. In a given gadget of this MDP with restarts, playing σ1/2 in said gadget, there
is a probability of at most 1/2 of restarting in that gadget. We then construct strategy σ

by concatenating σ1/2 strategies in the sense that σ plays just like σ1/2 in each gadget from
each gadget’s start state.

Let R be the set of runs induced by σ from s0. We partition R into the sets Ri and R∞
of runs such that R = (

⋃∞
i=0 Ri) ∪ R∞. We define for i = 0

R0
def= {ρ ∈ R | ∀ℓ ∈ N. ¬F(rℓ,1)},

for i ≥ 1
Ri

def= {ρ ∈ R | ∃j ∈ N. F(rj,i) ∧ ∀ℓ ∈ N. ¬F(rℓ,i+1)}

and
R∞

def= {ρ ∈ R | ∀i ∈ N ∃j ∈ N. F(rj,i)}.
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That is to say for all i ∈ N, Ri is the set of runs in R that restart exactly i times and R∞ is
the set of runs in R that restart infinitely many times.

We go on to define the sets of runs R≥i
def=
⋃∞

j=i Rj which are those runs which restart at
least i times. In particular note that R∞ =

⋂∞
i=0 R≥i and R≥i+1 ⊆ R≥i.

By construction, any run ρ ∈ R∞ is losing since the negative reward that is collected upon
restarting instantly brings the mean payoff below −1 by definition of mn. Thus restarting
infinitely many times translates directly into the mean payoff dropping below −1 infinitely
many times and thus a strictly negative lim inf mean payoff. As a result it must be the case
that R∞ ⊆ ¬MP lim inf≥0.

After every restart, the negative reward is reimbursed. Intuitively, going through finitely
many restarts does not damage the chances of winning. We now show that, except for a
nullset, the runs restarting only finitely many times satisfy the objective. Indeed, every run
with only finitely many restarts must spend an infinite tail in some final gadget in which it
does not restart. In this final gadget, the strategy plays just like σ1/2, which means that
it mimics the random choice in every controlled state. Since, by assumption, there are no
more restarts, we obtain PM,s0,σ(Ri) = PM,s0,σ(Ri ∧ ∀j ∈ N, G(¬rj,i+1)). We then apply
Lemma 6 to obtain that

PM,s0,σ(Ri) = PM,s0,σ(Ri ∧ ∀j ∈ N, G(¬rj,i+1)) = PM,s0,σ(Ri ∧ MP lim inf≥0). (10)

In other words, except for a nullset, the run restarting finitely often (here i times) satisfy
MP lim inf≥0. Furthermore, notice that from this observation, the sets Ri partition the set of
winning runs.

We show now that PM,s0,σ(R∞) = 0. We do so firstly by showing by induction that
PM,s0,σ(R≥i) ≤ 2−i for i ≥ 1, then applying the continuity of measures from above to obtain
that PM,s0,σ(R∞) = 0.

Our base case is i = 1. R, by definition of σ, is the set of runs induced by playing σ1/2
in every gadget. By Lemma 6 σ attains ≥ 1/2 in every gadget. Therefore in particular the
probability of a run leaving the first gadget is no more than 1/2, i.e. PM,s0,σ(R≥1) ≤ 1/2.

Now suppose that PM,s0,σ(R≥i) ≤ 2−i. After restarting at least i times, the probability
of a run restarting at least once more is still ≤ 1/2 since the strategy being played in every
gadget is σ1/2. Hence

PM,s0,σ(R≥i+1) ≤ PM,s0,σ(R≥i) · 1
2 ≤ 2−(i+1)

which is what we wanted.
Now we use the fact that R∞ =

⋂∞
i=0 R≥i and R≥i+1 ⊆ R≥i to apply continuity of

measures from above and obtain:

PM,s0,σ(R∞) = PM,s0,σ

( ∞⋂
i=0

R≥i

)
= lim

i→∞
PM,s0,σ(R≥i) ≤ lim

i→∞
2−i = 0.

Hence R∞ is a null set.
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We can now write down the following:

1 = PM,s0,σ(R)

=
( ∞∑

i=0
PM,s0,σ(Ri)

)
+ PM,s0,σ(R∞) by partition of R

=
( ∞∑

i=0
PM,s0,σ(Ri ∧ MP lim inf≥0)

)
+ PM,s0,σ(R∞) by Equation (10)

=
( ∞∑

i=0
PM,s0,σ(Ri ∧ MP lim inf≥0)

)
+ PM,s0,σ(R∞ ∧ MP lim inf≥0) by PM,s0,σ(R∞) = 0

= PM,s0,σ(MP lim inf≥0) by partition of MP lim inf≥0

Thus PM,s0,σ(R) = PM,s0,σ(MP lim inf≥0) = 1, i.e. σ wins almost surely. ◀

▶ Lemma 12. For any FR strategy σ, PM,σ,s0(MP lim inf≥0) = 0.

Proof. There are two ways to lose when playing in this MDP: either the mean payoff dips
below −1 infinitely often because the run takes infinitely many restarts, or the run only takes
finitely many restarts, but the mean payoff drops below −1 infinitely many times in the last
copy of the gadget that the run stays in. Recall that in Lemma 7 we showed that any FR
strategy with probability 1 either restarts or lets the mean payoff dip below −1 infinitely
often.

Let σ be any FR strategy and let R to be the set of runs induced by σ from s0. We
partition R into the sets Ri and R∞ of runs such that R = (

⋃∞
i=0 Ri) ∪ R∞. Where we

define for i = 0
R0

def= {ρ ∈ R | ∀ℓ ∈ N, ¬F(rℓ,1)},

for i ≥ 1
Ri

def= {ρ ∈ R | ∃j ∈ N, F(rj,i) ∧ ∀ℓ ∈ N, ¬F(rℓ,i+1)}

and
R∞

def= {ρ ∈ R | ∀i, ∃j F(rj,i)}.

That is to say for all i ∈ N, Ri is the set of runs in R that restart exactly i times and R∞ is
the set of runs in R that restart infinitely many times.

We go on to define the sets of runs R≥i
def=
⋃∞

j=i Rj which are those runs which restart at
least i times. In particular note that R∞ =

⋂∞
i=0 R≥i and R≥i+1 ⊆ R≥i.

Note that any run in R∞ is losing by construction. The negative reward that is collected
upon restarting instantly brings the mean payoff below −1 by definition of mn. Thus
restarting infinitely many times translates directly into the mean payoff dropping below
−1 infinitely many times. Thus R∞ ⊆ ¬MP lim inf≥0 and so it follows that PM,s0,σ(R∞) =
PM,s0,σ(R∞ ∧ ¬MP lim inf≥0). Since the sets Ri and R∞ partition R we have that:

PM,s0,σ(R) =
( ∞∑

i=0
PM,s0,σ(Ri)

)
+ PM,s0,σ(R∞).

It remains to show that every set Ri is almost surely losing, i.e. PM,s0,σ(Ri) = PM,s0,σ(Ri∧
¬MP lim inf≥0). Consider a run ρ ∈ Ri. By definition it restarts exactly i times. As a result,
it spends infinitely long in the i + 1st gadget. Because σ is an FR strategy, it must be the
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case that any substrategy σ∗ induced by σ that is played in a given gadget is also an FR
strategy. This allows us to apply Lemma 7 to obtain that

PM,s0,σ(Ri) = PM,s0,σ (Ri ∧ (¬MP lim inf≥0 ∨ ∃j ∈ N, F(rj,i+1))) . (11)

However, any run ρ ∈ Ri never sees any state rj,i+1 for any j by definition. Therefore it
follows that

PM,s0,σ (Ri ∧ (¬MP lim inf≥0 ∨ ∃j ∈ N, F(rj,i+1))) = PM,s0,σ (Ri ∧ (¬MP lim inf≥0))

Hence PM,s0,σ(Ri) = PM,s0,σ(Ri ∧ ¬MP lim inf≥0) as required.
As a result we have that

1 = PM,s0,σ(R)

=
( ∞∑

i=0
PM,s0,σ(Ri)

)
+ PM,s0,σ(R∞) by partition of R

=
( ∞∑

i=0
PM,s0,σ(Ri ∧ ¬MP lim inf≥0)

)
+ PM,s0,σ(R∞ ∧ ¬MP lim inf≥0) by Equation (11)

= PM,s0,σ(¬MP lim inf≥0) by partition of R

That is to say that for any FR strategy σ, PM,s0,σ(MP lim inf≥0) = 0. ◀
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Figure 6 All transition rewards are 0 unless specified. Recall that
∑

δi(n) · εi(n) is convergent
and

∑
δj(n) · εi(n) is divergent for all i, j with j > i. The negative reward incurred before falling

into the ⊥ state is reimbursed. We do not show it in the figure for readability. In the state before
sn+1, if the correct transition was chosen, the mean payoff is −1/n. If the incorrect transition was
chosen, then either the mean payoff is < −mn/n, or the risk of falling into ⊥ is too high.

C Missing proofs from Section 4

In this part we show that a reward counter plus arbitrary finite memory does not suffice for
(ε-)optimal strategies for MP lim inf≥0 or for infinitely branching TP lim inf≥0/PP lim inf≥0 in
countable MDPs.

First we consider MP lim inf≥0 by presenting an MDP adapted from Figure 1 that has the
current total reward implicit in the state and show that neither ε-optimal nor almost-sure
MP lim inf≥0 can be achieved by FR strategies (finite memory randomized).

We use the example from Figure 6. It is very similar to Figure 1, but differs in the
following ways.

The current total reward level is implicit in each state.
The step counter is no longer implicit in the state.
In the random choice, instead of changing the reward levels in each choice, it is the path
length that differs.
The definition of mn is different, it is now mn

def=
∑n−1

i=N∗ m
k(n)
i with mN∗

def= 1.

We construct a finitely branching acyclic MDP MRI (Reward Implicit) which has the
total reward implicit in the state. We do so by chaining together the gadgets from Figure 6
as is shown in Figure 2.

▶ Theorem 15. There exists a countable, finitely branching, acyclic MDP MRI with initial
state (s0, 0) with the total reward implicit in the state such that

valMRI,MPlim inf≥0((s0, 0)) = 1,
for all FR strategies σ, we have PMRI,(s0,0),σ(MP lim inf≥0) = 0.

Proof. This follows from Lemma 41 and Lemma 42. ◀

▶ Lemma 41. valMRI,MPlim inf≥0((s0, 0)) = 1.
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Figure 7 We present an infinitely branching MDP adapted from [16, Figure 3] and augmented
with a reward structure. All of the edges carry reward 0 except the edges entering t that carry
reward −1 and the edge from t to s carries reward +1. As a result, entering t necessarily brings
the total reward down to −1 before resetting it to 0. We use a reduction to co-Büchi to show that
infinite memory is required for almost-sure as well as ε-optimal strategies for TP lim inf≥0 as well as
PP lim inf≥0.

Proof. We define a strategy σ which, in cn always mimics the random choice in sn. Playing
according to σ, the only way to lose is by dropping into the bottom state. This is because by
mimicking, the mean payoff in each gadget is lower bounded by −1/n. The rest of the proof
is identical to Lemma 6. ◀

▶ Lemma 42. Any FR strategy σ in MRI is such that PMRI,s0,σ(MP lim inf≥0) = 0.

Proof. When playing with finitely many memory modes, there are two ways for a run in
MRI to lose. Either it falls into a losing sink, or it never falls into a sink but its mean
payoff is < −1. The proof that either of these occurs with probability 1 is the same as in
Lemma 7. ◀

Now we construct the MDP MRestart by chaining together the gadgets from Figure 6 in
the way shown in Figure 3.

▶ Theorem 16. There exists a countable, finitely branching and acyclic MDP MRestart
whose total reward is implicit in the state for which valM,MPlim inf≥0(s0) = 1 and any FR
strategy σ is such that PMRestart,s0,σ(MP lim inf≥0) = 0.

Proof. This follows from Lemma 43 and Lemma 44. ◀

▶ Lemma 43. There exists a strategy σ such that PMRestart,s0,σ(MP lim inf≥0) = 1.

Proof. The proof is identical to that of Lemma 11. ◀

▶ Lemma 44. For any FR strategy σ, PMRestart,s0,σ(MP lim inf≥0) = 0.

Proof. The proof is identical to that of Lemma 12. ◀

▶ Theorem 17. There exists an infinitely branching MDP M as in Figure 7 with reward
implicit in the state and initial state s such that

every FR strategy σ is such that PM,s,σ(TP lim inf≥0) = 0 and PM,s,σ(PP lim inf≥0) = 0
there exists an HD strategy σ s.t. PM,s,σ(TP lim inf≥0) = 1 and PM,s,σ(PP lim inf≥0) = 1.
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Hence, optimal (and even almost-surely winning) strategies and ε-optimal strategies for
TP lim inf≥0 and PP lim inf≥0 require infinite memory beyond a reward counter.

Proof. This follows directly from [16, Theorem 4] and the observation that in Figure 7,
TP lim inf≥0, PP lim inf≥0 and co-Büchi objectives coincide. ◀

Consequently, when the MDP M is infinitely branching and has the reward counter
implicit in the state, both TP lim inf≥0 and PP lim inf≥0 require at least a step counter.
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D Missing proofs from Section 5

▶ Definition 45. Let M be an MDP. From a given initial state s0, the reward level in each
state s ∈ S can be any of the countably many values r1, r2, . . . corresponding to the rewards
accumulated along all the possible paths leading to s from s0. We then construct the MDP
R(M) def= (S′, S′

2, S′
#, −→R(M), P ′) as follows:

The state space of R(M) is S′ def= {(s, r) | s ∈ S and r ∈ R is a reward level attainable at s}.
Note that S′ is countable. We write s′

0 for the initial state (s0, 0).
S′
2

def= {(s, r) ∈ S′ | s ∈ S2} and S′
#

def= S′ \ S′
2.

The set of transitions in R(M) is

−→R(M)
def= { ((s, r), (s′, r′)) | (s, r), (s′, r′) ∈ S′,

s −→ s′ in M and r′ def= r + r(s → s′)}.

P ′ : S′
# → D(S′) is defined such that

P ′(s, r)(s′, r′) def=
{

P (s)(s′) if (s, r) −→R(M) (s′, r′)
0 otherwise

The reward for taking transition (s, r) −→ (s′, r′) is r′.

▶ Lemma 20. Let M be an MDP with initial state s0. Then given an MD (resp. Markov)
strategy σ′ in R(M) attaining c ∈ [0, 1] for PP lim inf≥0 from (s0, 0), there exists a strategy σ

attaining c for TP lim inf≥0 in M from s0 which uses the same memory as σ′ plus a reward
counter.

Proof. Let σ′ be an MD (resp. Markov) strategy in R(M) attaining c ∈ [0, 1] for PP lim inf≥0
from (s0, 0). We define a strategy σ on M from s0 that uses the same memory as σ′ plus
a reward counter. Then σ plays on M exactly like σ′ plays on R(M), keeping the reward
counter in its memory instead of in the state. I.e., at a given state s (and step counter value
m, in case σ′ was a Markov strategy) and reward level r, σ plays exactly as σ′ plays in state
(s, r) (and step counter value m, in case σ′ was a Markov strategy). By our construction of
R(M) and the definition of σ, the sequences of point rewards seen by σ′ in runs on R(M)
coincide with the sequences of total rewards seen by σ in runs in M. Hence we obtain
PR(M),(s0,0),σ′(PP lim inf≥0) = PM,s0,σ(TP lim inf≥0) as required. ◀

▶ Definition 46. Given an MDP M with initial state s0, we define the new MDP A(M).
From the initial state s0, the reward level in each state s ∈ S can be any of the countably
many values r1, r2, . . . corresponding to the rewards accumulated along all the possible paths
leading to s from s0.

We then construct A(M) def= (S′, S′
2, S′

#, −→A(M), P ′) as follows:
The state space of A(M) is

S′ def= {(s, n, r) | s ∈ S, n ∈ N and r ∈R is a reward level attainable at s at step n}

Note that S′ is countable. We write s′
0 for the initial state (s0, 0, 0) of A(M).

S′
2

def= {(s, n, r) ∈ S′ | s ∈ S2} and S′
#

def= S′ \ S′
2.

The set of transitions in A(M) is

−→A(M)
def= { ((s, n, r), (s′, n + 1, r′)) |

(s, n, r), (s′, n + 1, r′) ∈ S′,

s −→ s′ in M and r′ = r + r(s → s′)}.
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P ′ : S′
# → D(S′) is defined such that

P ′(s, n, r)(s′, n′, r′) def=
{

P (s)(s′) if (s, n, r)→A(M) (s′, n′, r′)
0 otherwise

The reward for taking transition (s, n, r) −→ (s′, n′, r′) is r′/n′.

D.1 Proofs from Section 5.1

In this section we consider finitely branching MDPs. We need the following technical lemma
that holds only for finitely branching MDPs.

▶ Lemma 47. Given a finitely branching countable MDP M, a subset T ⊆→ of the transitions
and a state s, we have

valM,¬FT (s) < 1 ⇒ ∃k ∈ N. valM,¬F≤kT (s) < 1

i.e., if it is impossible to completely avoid T then there is a bounded threshold k and a fixed
nonzero chance of seeing T within ≤ k steps, regardless of the strategy.

Proof. If suffices to show that ∀k ∈ N. valM,¬F≤kT (s) = 1 implies valM,¬FT (s) = 1. Since
M is finitely branching, the state s has only finitely many successors {s1, . . . , sn}.

Consider the case where s is a controlled state. If we had the property ∀1 ≤ i ≤ n ∃ki ∈
N. valM,¬F≤ki T (si) < 1 then we would have valM,¬F≤kT (s) < 1 for k = (max1≤i≤n ki) + 1
which contradicts our assumption. Thus there must exist an i ∈ {1, . . . , n} with ∀k ∈
N. valM,¬F≤kT (si) = 1. We define a strategy σ that chooses the successor state si when in
state s.

Similarly, if s is a random state, we must have ∀k ∈ N. valM,¬F≤kT (si) = 1 for all its
successors si.

By using our constructed strategy σ, we obtain PM,s,σ(¬FT ) = 1 and thus valM,¬FT (s) =
1 as required. ◀

▷ Claim 28.

PM′,s0,σ

(⋂
i∈N

Safetyni
i

)
≥ valM′,PPlim inf≥0(s0) − 2ε.
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Proof.

PM′,s0,σ

(⋂
i∈N

Safetyni
i

)

≥ PM′,s0,σ

(⋂
k∈N

F(Safetyk) ∩
⋂
i∈N

Safetyni
i

)

= PM′,s0,σ

((⋂
k∈N

F(Safetyk) ∩
⋂
i∈N

Safetyni
i

)
∪

(⋂
k∈N

F(Safetyk) ∩
⋂
k∈N

F(Safetyk)
))

= PM′,s0,σ

(⋂
k∈N

F(Safetyk) ∩

(⋂
i∈N

Safetyni
i ∪

⋂
k∈N

F(Safetyk)
))

= 1 − PM′,s0,σ

(⋂
k∈N

F(Safetyk) ∪

(⋂
i∈N

Safetyni
i ∩

⋂
k∈N

F(Safetyk)
))

≥ 1 − PM′,s0,σ

(⋂
k∈N

F(Safetyk)
)

− PM′,s0,σ

(⋂
i∈N

Safetyni
i ∩

⋂
k∈N

F(Safetyk)
)

= PM′,s0,σ (PP lim inf≥0) − PM′,s0,σ

(⋂
i∈N

Safetyni
i ∩

⋂
k∈N

F(Safetyk)
)

by (3)

≥ valM′,PPlim inf≥0(s0) − ε − PM′,s0,σ

(⋃
i∈N

Safetyni
i ∩

⋂
k∈N

F(Safetyk)
)

by (2)

≥ valM′,PPlim inf≥0(s0) − ε −
∑
i∈N

PM′,s0,σ

(
Safetyni

i ∩
⋂
k∈N

F(Safetyk)
)

≥ valM′,PPlim inf≥0(s0) − ε −
∑
i∈N

εi by (5)

= valM′,PPlim inf≥0(s0) − 2ε

◀

▷ Claim 29.

∀σ′′. PM′′,s0,σ′′(PP lim inf≥0) = PM′′,s0,σ′′(Transience).

Proof. First we show that

Transience ⊆ PP lim inf≥0 in M′′. (12)

Let ρ ∈ Transience be a transient run. Then ρ can never visit the state ⊥. Moreover, ρ

must eventually leave every finite set forever. In particular ρ must satisfy FG(¬Bubbleni
(s0))

for every i, since Bubbleni(s0) is finite, because M′′ is finitely branching. Thus ρ must either
fall into Gsafe, in which case it satisfies PP lim inf≥0, or for every i, ρ must eventually leave
Bubbleni

(s0) forever. By definition of Bubbleni
(s0) and M′′, the run ρ must eventually stop

seeing rewards < −2−i for every i. In this case ρ also satisfies PP lim inf≥0. Thus (12).
Secondly, we show that

∀σ′′. PM′′,s0,σ′′(PP lim inf≥0 ∩ Transience) = 0. (13)

i.e., except for a null-set, PP lim inf≥0 implies Transience in M′′.
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Let σ′′ be an arbitrary strategy from s0 in M′′ and R be the set of all runs induced by it.
For every s ∈ S, let Rs

def= {ρ ∈ R | ρ satisfies GF(s)} be the set of runs seeing state s infinitely
often. In particular, any run ρ ∈ Rs is not transient. Indeed, Transience =

⋃
s∈S Rs. We

want to show that for every state s ∈ S and strategy σ′′

PM′′,s0,σ′′(PP lim inf≥0 ∩ Rs) = 0. (14)

Since any runs seeing a state in Gsafe are transient, any Rs with s ∈ Gsafe must be empty.
Similarly, any run seeing ⊥ is losing for PP lim inf≥0 by construction. Hence we have (14) for
any state s where s =⊥ or s ∈ Gsafe.

Now consider Rs where s is neither in Gsafe nor ⊥. Let Tneg
def= {t ∈−→ | r(t) < 0} be

the subset of transitions with negative rewards in M′′.
We now show that valM′′,¬FTneg (s) < 1 by assuming the opposite and deriving a contra-

diction. Assume that valM′′,¬FTneg (s) = 1. The objective ¬FTneg is a safety objective. Thus,
since M′′ is finitely branching, there exists a strategy from s that surely avoids Tneg (always
pick an optimal move) [18, 16]. (This does not hold in infinitely branching MDPs where
optimal moves might not exist.) However, by construction of M′′, this implies that s ∈ Gsafe.
Contradiction. Thus valM′′,¬FTneg (s) < 1.

Since M′′ is finitely branching, we can apply Lemma 47 and obtain that there exists a
threshold ks such that valM′′,¬F≤ks Tneg (s) < 1. Therefore δs

def= 1 − valM′′,¬F≤ks Tneg (s) > 0.
Thus, under every strategy, upon visiting s there is a chance ≥ δs of seeing a transition
in Tneg within the next ≤ ks steps. Moreover, the subset T s

neg ⊆ Tneg of transitions that
can be reached in ≤ ks steps from s is finite, since M′′ is finitely branching. So the
maximum of the rewards in T s

neg is still negative, i.e., ℓs
def= max{r(t) | t ∈ T s

neg} < 0. Let
T≤ℓ

def= {t ∈−→ | r(t) ≤ ℓs} be the subset of transitions with rewards ≤ ℓs in M′′.
Thus, under every strategy, upon visiting s there is a chance ≥ δs of seeing a transition

in T≤ℓ within the next ≤ ks steps.

Define Ri
s

def= {ρ ∈ R | ρ sees s at least i times}, so we get Rs =
⋂

i∈N Ri
s. We obtain

sup
σ′′

PM′′,s0,σ′′(PP lim inf≥0 ∩ Rs)

≤ sup
σ′′

PM′′,s0,σ′′(FG¬T≤ℓ ∩ Rs) set inclusion

= sup
σ′′

lim
n→∞

PM′′,s0,σ′′(F≤nG¬T≤ℓ ∩ Rs) continuity of measures

≤ sup
σ′′′

PM′′,s,σ′′′(G¬T≤ℓ ∩ Rs) s visited after > n steps

= sup
σ′′′

PM′′,s,σ′′′(G¬T≤ℓ ∩
⋂
i∈N

Ri
s) def. of Ri

s

= sup
σ′′′

lim
i→∞

PM′′,s,σ′′′(G¬T≤ℓ ∩ Ri
s) continuity of measures

≤ lim
i→∞

(1 − δs)i = 0 by def. of Ri
s and δs

and thus (14).
From this we obtain PM′′,s0,σ′′(PP lim inf≥0 ∩ Transience) = PM′′,s0,σ′′(PP lim inf≥0 ∩⋃

s∈S Rs) ≤
∑

s∈S PM′′,s0,σ′′(PP lim inf≥0 ∩ Rs) = 0 and thus (13).
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From (12) and (13) we obtain that for every σ′′ we have

PM′′,s0,σ′′(PP lim inf≥0)
= PM′′,s0,σ′′(PP lim inf≥0 ∩ Transience) + PM′′,s0,σ′′(PP lim inf≥0 ∩ Transience)
= PM′′,s0,σ′′(Transience) + 0
= PM′′,s0,σ′′(Transience)

and thus Claim 29. ◀

D.2 Proofs from Section 5.2
In this section we consider infinitely branching MDPs. In the following theorem we show how
to obtain ε-optimal deterministic Markov strategies for PP lim inf≥0. We do this by deriving
ε-optimal MD strategies in S(M) via a reduction to a safety objective.

▶ Theorem 32. Consider an MDP M with initial state s0 and a PP lim inf≥0 objective. For
every ε > 0 there exist

ε-optimal MD strategies in S(M).
ε-optimal deterministic Markov strategies in M.

Proof. Let ε > 0. We work in S(M) by encoding the step counter into the states of M.
Thus S(M) is an acyclic MDP with implicit step counter and corresponding initial state
s′

0 = (s0, 0).
We consider a general (not necessarily MD) ε-optimal strategy σ for PP lim inf≥0 from s′

0
on S(M), i.e.,

PS(M),s′
0,σ(PP lim inf≥0) ≥ valS(M),PPlim inf≥0(s′

0) − ε. (15)

Define the safety objective Safetyi which is the objective of never seeing any point reward
< −2−i. This then allows us to characterize PP lim inf≥0 in terms of safety objectives.

PP lim inf≥0 =
⋂
i∈N

F(Safetyi) (16)

Now we define the safety objective Safetyk
i

def= F≤k(Safetyi) to attain Safetyi within at
most k steps. This allows us to write

F(Safetyi) =
⋃
k∈N

Safetyk
i . (17)

By continuity of measures from above we get

0 = PS(M),s′
0,σ

(
F(Safetyi) ∩

⋂
k∈N

Safetyk
i

)
= lim

k→∞
PS(M),s′

0,σ

(
F(Safetyi) ∩ Safetyk

i

)
.

Hence for every i ∈ N and εi
def= ε · 2−i there exists ni such that

PS(M),s′
0,σ

(
F(Safetyi) ∩ Safetyni

i

)
≤ εi. (18)

Now we can show the following claim.
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▷ Claim 48.

PS(M),s′
0,σ

(⋂
i∈N

Safetyni
i

)
≥ valS(M),PPlim inf≥0(s′

0) − 2ε.

Proof.

PS(M),s′
0,σ

(⋂
i∈N

Safetyni
i

)

≥ PS(M),s′
0,σ

(⋂
k∈N

F(Safetyk) ∩
⋂
i∈N

Safetyni
i

)

= PS(M),s′
0,σ

((⋂
k∈N

F(Safetyk) ∩
⋂
i∈N

Safetyni
i

)
∪

(⋂
k∈N

F(Safetyk) ∩
⋂
k∈N

F(Safetyk)
))

= PS(M),s′
0,σ

(⋂
k∈N

F(Safetyk) ∩

(⋂
i∈N

Safetyni
i ∪

⋂
k∈N

F(Safetyk)
))

= 1 − PS(M),s′
0,σ

(⋂
k∈N

F(Safetyk) ∪

(⋂
i∈N

Safetyni
i ∩

⋂
k∈N

F(Safetyk)
))

≥ 1 − PS(M),s′
0,σ

(⋂
k∈N

F(Safetyk)
)

− PS(M),s′
0,σ

(⋂
i∈N

Safetyni
i ∩

⋂
k∈N

F(Safetyk)
)

= PS(M),s′
0,σ (PP lim inf≥0) − PS(M),s′

0,σ

(⋂
i∈N

Safetyni
i ∩

⋂
k∈N

F(Safetyk)
)

by (16)

≥ valS(M),PPlim inf≥0(s′
0) − ε − PS(M),s′

0,σ

(⋃
i∈N

Safetyni
i ∩

⋂
k∈N

F(Safetyk)
)

by (15)

≥ valS(M),PPlim inf≥0(s′
0) − ε −

∑
i∈N

PS(M),s′
0,σ

(
Safetyni

i ∩
⋂
k∈N

F(Safetyk)
)

≥ valS(M),PPlim inf≥0(s′
0) − ε −

∑
i∈N

εi by (18)

= valS(M),PPlim inf≥0(s′
0) − 2ε

◀

Let φ
def=
⋂

i∈N Safetyni
i ⊆ PP lim inf≥0. It follows from Claim 48 that

valS(M),φ(s′
0) ≥ valS(M),PPlim inf≥0(s′

0) − 2ε. (19)

The objective φ is a safety objective on S(M). Therefore, since S(M) is acyclic, we can
apply Lemma 24 to obtain a uniformly ε-optimal MD strategy σ′ for φ. Thus

PS(M),s′
0,σ′(PP lim inf≥0)

≥ PS(M),s′
0,σ′(φ) set inclusion

≥ valS(M),φ(s′
0) − ε σ′ is ε-opt.

≥ valS(M),PPlim inf≥0(s′
0) − 3ε. by (19)

Thus σ′ is a 3ε-optimal MD strategy for PP lim inf≥0 in S(M).
By Remark 21 this then yields a 3ε-optimal Markov strategy for PP lim inf≥0 from s0 in

M, since runs in M and S(M) coincide wrt. PP lim inf≥0. ◀
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▶ Corollary 33. Given an MDP M and initial state s0, there exist ε-optimal strategies σ

for MP lim inf≥0 which use just a step counter and a reward counter.

Proof. We consider the encoded system A(M) in which both step counter and reward
counter are implicit in the state. Recall that the partial mean payoffs in M correspond
exactly to point rewards in A(M). Since A(M) has an encoded step counter, Theorem 32
gives us ε-optimal MD strategies for PP lim inf≥0 in A(M). Lemma 23 allows us to translate
these strategies back to M with a memory overhead of just a reward counter and a step
counter as required. ◀

▶ Corollary 34. Given an MDP M with initial state s0,
there exist ε-optimal MD strategies for TP lim inf≥0 in S(R(M)),
there exist ε-optimal strategies for TP lim inf≥0 which use a step counter and a reward
counter.

Proof. We consider the encoded system R(M) in which the reward counter is implicit in
the state. Recall that total rewards in M correspond exactly to point rewards in R(M).
We then apply Theorem 32 to R(M) to obtain ε-optimal MD strategies for PP lim inf≥0 in
S(R(M)). Remark 21 allows us to translate these MD strategies back to R(M) with a
memory overhead of just a step counter. Then we apply Lemma 20 to translate these Markov
strategies back to M with a memory overhead of just a reward counter. Hence ε-optimal
strategies for TP lim inf≥0 in M just use a step counter and a reward counter as required. ◀

▶ Remark 49. While ε-optimal strategies for mean payoff and total payoff (in infinitely
branching MDPs) have the same memory requirements, the step counter and the reward
counter do not arise in the same way. Both the step counter and reward counter used in
ε-optimal strategies for mean payoff arise from the construction of A(M). However, in the
case for total payoff, only the reward counter arises from the construction of R(M). The step
counter on the other hand arises from the Markov strategy needed for point payoff in R(M).

▶ Corollary 35. Given an MDP M and initial state s0, optimal strategies, where they exist,
for PP lim inf≥0 can be chosen with just a step counter.
for MP lim inf≥0 and TP lim inf≥0 can be chosen with just a reward counter and a step
counter.

Proof. To obtain the result for PP lim inf≥0, we work in S(M) and we apply Theorem 32
to obtain ε-optimal MD strategies from every state of S(M). Since PP lim inf≥0 is a tail
objective, Theorem 25 yields an MD strategy that is optimal from every state of S(M) that
has an optimal strategy. By Remark 21 we can translate this MD strategy on S(M) back to
a Markov strategy in M, which is optimal for PP lim inf≥0 from s0 (provided that s0 admits
any optimal strategy at all).

Consider the case for MP lim inf≥0. First we place ourselves in A(M) and apply Theorem 32
to obtain ε-optimal MD strategies from every state of A(M). From Theorem 25 we obtain a
single MD strategy that is optimal from every state of A(M) that has an optimal strategy.
By Lemma 23 we can translate this MD strategy on A(M) back to a strategy on M with
a step counter and a reward counter. Provided that s0 admits any optimal strategy at all,
we obtain an optimal strategy for MP lim inf≥0 from s0 that uses only a step counter and a
reward counter.

The case for TP lim inf≥0 is similar. We place ourselves in S(R(M)) and apply Corollary 34
to obtain ε-optimal MD strategies for TP lim inf≥0 from every state of S(R(M)). While
TP lim inf≥0 is not tail in M, it is tail in S(R(M)), and thus we can apply Theorem 25 to
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obtain a single MD strategy that is optimal from every state of S(R(M)) that has an optimal
strategy. The result then follows from Lemma 20 and Remark 21. ◀
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E Strengthening results

We show that the counterexamples presented in Section 3 can be modified s.t. all transition
rewards are either −1, 0, or +1 and the maximal degree of branching is 2. I.e., the hardness
does not depend on arbitrarily large rewards or degrees of branching.

Consider a new MDP M based on the MDP constructed in Figure 1 which now undergoes
the following changes. The rewards on transitions are now limited to −1, 0 or 1. To
compensate for the smaller rewards, in the n-th gadget, each transition bearing a reward
is replaced by k(n) · mn transitions as follows. If the original transition had reward j · mn

then that transition is replaced with j · mn transitions with reward 1, and (k(n) − j) · mn

transitions with reward 0. Symmetrically all negatively weighted transitions are similarly
replaced by transitions with rewards −1 and 0.

We further alter M by modifying Figure 1 such that the branching degree is bounded by
2. We do this by replacing the outgoing transitions in states sn and cn of each gadget by
binary trees with accordingly adjusted probabilities such that there is still a probability of
δi(n) of receiving reward i · mn in each gadget for i ∈ {0, 1, ..., k(n)}.

To adjust for the increased path lengths incurred by the modifications to each gadget, the
construction in Figure 2 is accordingly modified by padding each vertical column of white
states with extra transitions based on the number of transitions present in the matching
gadget. As a result, path length is preserved even when skipping gadgets. The construction
in Figure 3 is similarly modified.

This construction allows us to obtain the following properties.
▶ Remark 50. There exists a countable, acyclic MDP M, whose step counter is implicit
in the state, whose rewards on transitions are in {−1, 0, 1} and whose branching degree
is bounded by 2 for which valM,MPlim inf≥0(s0) = 1 and any FR strategy σ is such that
PM,s0,σ(MP lim inf≥0) = 0. In particular, there are no ε-optimal step counter plus finite
memory strategies for any ε < 1 for the MP lim inf≥0 objective for countable MDPs.

This follows from Lemma 6, Lemma 7 and the above construction.
▶ Remark 51. There exists a countable, acyclic MDP M, whose step counter is implicit
in the state, whose rewards on transitions are in {−1, 0, 1} and whose branching degree is
bounded by 2 for which s0 is almost surely winning and any FR strategy σ is such that
PM,s0,σ(MP lim inf≥0) = 0. In particular, almost sure winning strategies, when they exist,
cannot be chosen with a step counter plus finite memory for countable MDPs.

This follows from Lemma 11, Lemma 12 and the above construction.
▶ Remark 52. The two previous remarks also hold for the TP lim inf≥0 objective with no
modifications to their respective constructions or their proofs.
▶ Remark 53. The result from Lemma 7 holds even for strategies σ whose memory grows
unboundedly, but slower than k(n) − 1. That is to say that there exists a countable, acyclic
MDP M, whose step counter is implicit in the state such that valM,MPlim inf≥0(s0) = 1 and
any strategy σ with memory < k(n) − 1 is such that PM,σ,s0(MP lim inf≥0) = 0. The result
then follows since in every gadget at least one memory mode will confuse at least two states
i(n), j(n) : N → {0, 1, ..., k(n) − 1}.

The results from Section 4 can similarly be strengthened. Consider the construction
in Figure 6. In the random choice, the transition rewards are already all +1, so only the
branching degree needs to be adjusted by padding the choice with a binary tree as above. In
the controlled choice, the transitions carrying reward ±mi

n are replaced by mi
n transitions
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each bearing reward ±1 respectively. Therefore, the path lengths increase in the following way
in the n-th gadget. In sn and cn, the binary trees increase path length by up to ⌈lg(k(n)+1)⌉
(where lg is the logarithm to base 2) and after cn the path length increases by up to m

k(n)
n

twice.
Consider the scenario where the play took the i-th random choice and the player makes

the ‘best’ mistake where they choose transition i + 1. We show that, even in this best error
case (and thus in all other error cases), the newly added path lengths do still not help to
prevent seeing a mean payoff ≤ −1/2 in the n-th gadget. In this case, in the state between
cn and sn+1, the total payoff is −mi+1

n and the total number of steps taken by the play so
far is upper bounded by

βn
def=
(

n−1∑
i=N∗

2⌈lg(k(i) + 1)⌉ + 2m
k(i)
i

)
+ 2⌈lg(k(n) + 1)⌉ + mi

n + mi+1
n .

Recall that mn
def=
∑n−1

i=N∗ m
k(n)
i with mN∗

def= 1, and this is the definition of mn from
Appendix C which is different from the definition of mn in Section 3. Note that k(n) is very
slowly growing, so it follows that

βn ≤ 3mn + mi
n + mi+1

n ≤ 2mi+1
n .

That is to say that the mean payoff is ≤ −mi+1
n

2mi+1
n

= −1/2. As a result, in the case of a bad

aggressive decision, the mean payoff will still drop below −1/2 in this modified MDP (instead
of dropping below −1 in the original MDP). This is just as good to falsify MP lim inf≥0.

Thus we obtain the following two results.
▶ Remark 54. There exists a countable, acyclic MDP M, whose reward counter is implicit
in the state, whose rewards on transitions are in {−1, 0, 1} and whose branching degree
is bounded by 2 for which valM,MPlim inf≥0(s0) = 1 and any FR strategy σ is such that
PM,s0,σ(MP lim inf≥0) = 0. In particular, there are no ε-optimal step counter plus finite
memory strategies for any ε < 1 for the MP lim inf≥0 objective for countable MDPs.

This follows from Lemma 41, Lemma 42 and the above construction.
▶ Remark 55. There exists a countable, acyclic MDP M, whose reward counter is implicit
in the state, whose rewards on transitions are in {−1, 0, 1} and whose branching degree is
bounded by 2 for which s0 is almost surely winning and any FR strategy σ is such that
PM,s0,σ(MP lim inf≥0) = 0. In particular, almost sure winning strategies, when they exist,
cannot be chosen with a step counter plus finite memory for countable MDPs.

This follows from Lemma 43, Lemma 44 and the above construction.
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