
�� �������	�
� ��
�
��� �
� ���	���

��	� �����	� �	�	� ������

��������������	
����

��������� ���

	��
����� ���
�����������

���� ������
���

� ���

�
�����
� ���� �����
���� ���������
����

���

�������
�����������������
� �� �������� �����

���

�	
��� ����

��������� �� 	�
������ �

�

��������

���� �� � ���������� �� �� ����� �� �����������
������� ��� ������� ����
������� ����� �
����� �� ������ �������� ������� �� ��� ��������� ����� ������

� ��� ������������ ��� ���
��������� ���
�� ��� �� ����� ��������
���!
���� ��� ������� ���� ������� ����� �
�����

� ��� �����������
 ������� ����� �������� ��� �������� �"���������
���������

� ��� ������������ ��� ���
��������� ���
�� ��� �� �������� ��������
�"���������� ������� ������� ���� ������� ����� �
�����

���� ���������� ������ ���� � ����� ������� ������ #$� %���������� &���!
���� ��� 	������ ���� ������� 	���� 	
����'� ����� ����� � ������� ��������
���� ��� ���(���� ���� ������ ���
�
��� ���� ������� ��� ��������

���	�
� �� ����� �� ���� ���� ������ ����!���������� ���� �������� ��� ����
�������� ���� ��� ������� �

����� �� �� ������������� �� ������� ��� ���������
�� �� ��������

���
�
��� ������ � ���) *��� ��� ����� �� ��������+ ������� ��������
���� �� ������������ *�� �������� � ������ ��� ������� ����+� ��� �����

�
��� ������� ,�-�.�/�0�1�2
�22 ��� 2� ��� ��� ��� ���� ������� �� ������
���� �� �������������

3�� �� ���� ��� ���� ����������� ��� ��� �������� ���� �

��� �� ���
������� ���
��� �� ���� ������� ��� �������� 2�� ��� 2
 �

����� �������
*�� ������ ���� �������+ �� �� ������������� ��� ����� �������� ,41 ���
224�, ��� ����

��� ���
�
��� ��� �������� ���� ������
 ���� �� ������������ ��� �������
������ �� ��� ����� �� �������� ��� �� ���
��� 2 *��� ������� ���
���+�

���
�
� �
�	��	�

2� $� %���������� &������� ��� 	������ ���� ������� 	���� 	
�����
*��� ������� �� �� ����+

�� ������� �����	�
��	���
*�������
������ �� �� ������������+�

,� 5���� 6������� 7���� %����� 8������� 	������� *6��������� �������+�
���

�	�� 5���� 6������� 7���� %����� 8������� 	������� *7���
������� ���� ��� ���
����
������+

-� 9���������� &������� �� 9��������� 6��
��������

.� $� ��� %���������� �� :�������� &��������

)�
���������	� �� ����� �������� ��	� 	�� �������� ����� ��

*�������
������ �� �� ������������+�

/� ;������� :�����������!���� <"���������� ���� ������!	���� &��������

0� =��� :����������� ������� ������!	���� 	������ ��� :&8 �� ������
:&& �� ;�������� �� &��������� ����

1� $� ��� 6��
�� ��� �� :����������� &������� ��� &������� 8�������

2
� $� ��� 6��
�� ��� �� :����������� &������� ��� :���� &������� &��!
������

22� 	��������� &������� ���� 	��
�� &������ 8�������

2�� 8�������� %���������� �� >�������� &��������� ���� ��� ������� &�!
�������

�� �������	�
� ��
�
��� �
� ���	��� ��	�

�����	� �	�	� ������

������� ����

���������� �	
������� �
���
��
������������������������� ��������

��������������������� ��� !"�
��#$""% ��������� �������

&����' ��� ��� ��� 	���� ��(' ��� ��� ��� 	�	�

��

������

����������
����
����

������� �����

����������
����
������
��

�

���������)��� �� � ����� ������� �	 ���� �	 �� ���* �� ����+
�����
�������� 	�� ������� ���� ��+���� ����� ���
�� ,� ������ ���
����� �������
�� ��� 	�������� ����� �����'

�)�� ��
��������� ���
������������
�����(��� �	 �����
��
*���
�������� 	�� ������� ���� ��+���� ����� ���
��

�)�� ������������ ������� �����
��
*��� ��� �������
 �-�������
�

��
*���

�)�� ��
��������� ���
������������
�����(��� �	
��
*��� �������

�-�������
�� ������� ������� ���� ��+���� ����� ���
��

,� ����� �� ��*� �� ������ �� ����������� �� ��� ���* 	��� ���� �	
����� �������� ���
�������� �	 �� ��� ���* ���� �� �� ���� 	�
�)��
����� �������� .������ "�/ ��� "%0 ���� ��� �������
�������� �� ��
������������ ��� �(���
���� ���*��

� �������� �	
���
	� ������������� �������

	�
�� ��
���
 ���������
�
�
������ ��� ����
���������
� ����������
 ����
���
��� ���� ��� �
�������
�� ���������� �������� ������ ����
� ���� ���
 �
����
����� ���� ��
 ����
 ���� �� ��� �������� �� ��

 ��������� ��� ���

 �����
 ���
��������
��� �� ���� �� ����� ����������
 ����
���� ���
� ���� ����������
� ���
�
���������� ������ ���

 ��
����� ������� ���� �
�
���
� ��
� �������
� �������
�����
�� ��� ������� ���� �
���
��� �������
 ��
�� ����

�
 ���������� ����
���� ����� ��

 ��������
�� �
���
��� ��������
!� ������� ���� �
���
���
���� ����������
�"� ���
���� �� ��#���!� �� �����
����
� �� �

 ������

��� ��������	�
�

��� �������� ������� ����
� ��
����� ������
� �
�
���! ������� �����	�	
� ����
��
����� �������� ������ �����
���� �������
� ������ �
� ����� ���� �������
� ���
�
�����
� ����� ���
���
�� ���� ������ �����
�� ��� �
���
��
� ����
���� �� �����

$

������� �� ����
 �� ��� ��

���
� ����
��� �%����
�
���� �� ��
����� ��� ����
�
��� �%����
�
��� ���� �	�	�	���	�� �
� ���
�� �	�	�	���	�� &��
'() ���� ���
�����

��������

�
���	�
� �� �
� ���	
� � 	� � ����	�� ��	����� 	������� ���	
�� �
� ����
���
���
�����
 ��
����
 �

�
�� 	� ������ �� �

�
� � 	� �	�
�� � * � ��� � * � �
�

�
� �

� ��
�
� ���

��

� � �
� �
�� �� � � +,�� �
�� ��� � �� � �	���� �����	
� �
���

������ �
� ��
������� 	� � ���" ������
����
 	� �
������ ��� ! � � �
�� �
�

����� � � ���� 	� �
�
� �� �
�� �
��� 	� �

�
� � � ���� ��� � �! � � ��� 	� �

�
� � �

�
�� �
��� 	� �
�
� �� ���� ��� � �! � �� �
������ ��� ��� ���"
� ������
���

��	���� � � � � 	� �
��� 	� � ���� �	�	�!���	
� �����	�� �
��� "��
�� �	�	�!���	
�
	� ������ �	�	����� �	�

�
� 	������
�

�
�� �
������ ��� ��� ����
�
� ������
���

��	���� � � � � 	� �
��� 	� � ���
�� �	�	�!���	
� �����	�� �
���

-�����
����
 �%����
�
�� ��
 �
�� �� ��������� �� �	�	�!���	
� ����� &	��('�
���(.) ������
 ��� �
������ /
� �
����� ��� 0�����"��1� ����� �� ����� ���� ���
����
 ��������� ���
�� ������
��� ���
� ��� ����� �
����� ��� 0����
���1� ����� ��
��������� ����� +
 ����� ���
� �� ��� ���� ��� �����"�� ������� �
� ������� �
�
�������� �
 �����
� ��� ����
��� ���� ������� ���� ���� �
� ������� ��� ����
�����
 �
 ��� ����� ������� ������
� �������� ���� ������
 �
���
�
 � ������
� �

��� ���� �� ���" ������
����
!� +� �
� �
���� ��

�� ���� ���
 ��� ����� �
����
��
�� ��� ����
��� ��
� ����� �
�
��� ����� ��� ��������� ��� ������
�� �# ���
����
��� ��� � ��

�
� �������� �
�
�
�������
�� �# ��� �����"�� ��� � ��

�
�
���������

��� ��
�
�� �
���	
 ���	
��

��
� �
����� �� ������� ���� ���� ���
 ������� �� ����� ������� �
� ����
� ��

�� ��������� �
 ��� �����
��� �� ��
���� ����	�� �������� ���� ��� ���
 ���
��
�
 ���������

2�� ��� * ��� 	�
� � � �� �
� #
��� * ���
� �� �� � � �� �� ���3��
� ���
���
� �
�
���
���� �� ���	
�� �
� ��
���� �
�������� ����������
�� ��� �
��� �� ������� ��
����
�$�����	
�� � �� ���
�� �� � 44* � �
 � ��� � ���� �����
 � #
��� �
� � �� �
������
 ��
���
� ���� ��
���� ��� ����� ���������
� +
�������
�� 0�1 �� � ��%��
���

����������
 �
� 0�1 �� � ����

�
 ����������
� �� ��
�� �����
����� ������

���������
� ��
���� �� ���!��!��� �
���!���� ����� �� ����
 �� ��� ��

���
�

���4 0�1 �
� 0�1 ��� ������������ 0�1 �� ������������ �
� 0�1 �� � �
�� ��� 0�1 �
�
0�1�

5 ��
���� ����	�� ������ 6�	! �������� �� �������� �� � �
��� ��� � �� �!���

����� ���� ��� ���� �
�
� � � ����� ��� � �� � 	* � �
� � � ��� � #
��� �!

�
� ��� �! ��
��� ��� ���� �� ������� ��
���
�� �
� �����
� ����� ��� ���� �

��� ��
�� �� �� ����������
�
��� ���� ����� ���� ��� �
���!� ���� ������� �������
������� ���
�� � �
�%�� ���
�����
 ������ ����� ������ ��� ������� ���������
�
���� #
��� �!� ��� �! �� ��� ��� ��
���
�� ��� ���
�����
� ��� �������
�� �� �
�
� ��� ��

���
� �
����
�� ��
�� �������� ���� 0�1 �� �����������!4

7

 �
�
� � ! � �

�
�
� �

�
�
� ��

���
�
� ����

�
�
� ��

���
�
� ����

�� ����
� ���
������
 �
�
� � �� �
���
�� �� ���� �
 � ���
���� ���� ���������

�� ��� ���� � �� ����
���� ���� � �� �
�
� � ��� ���� � � �����

8������ ����
����� �� ������� ������� ������� ��
 �� �����
�� �� ������
� ����
���
 ����������
� �
 ��� ���� �� ��� ��
��� �� ������� ����� ����������
�� �� ����
���
� ��� �
����� � �
� � �� ��%!���	�� �
� �������� ���������
�� �������� �� �

������� ���������
� ����� ��
�� ��
���
 ��� 0�1 �
� ��� 0�1 ��������� ����������
��
�� �
�� ��� 0�1 �� ��
��� ��� ��� �� ������� ��
���
���

PDA (S,S) PN (P,P)

BPA (1,S)

FS (1,1)

BPP (1,P)

PAN (P,G)PAD (S,G)

PRS (G,G)

PA (1,G)

	
�� ��)�� &1��2�����
��

��� ��������� �� ������� ������� ������� �� �����
��� �
 9��� $: ��� ����������
�
��� �������� �� � ���� ���!� ����� � �
� � ��� ��� �
����� �� ���������
� �����
��
 ������ �
 ���
������
� �
� ��� ��������
� ���� �� ��
��� ����������
��

��
� �� ����� ���!�6�	 ��������
� �� ����
� "
��
 ����
�
�"� 6����
����
�������
 ���������� ��
��������� ��������� �
� �������

$� 5 $� $!�6�	 �� � �
��������� ������� ����� ������� ��
���
� ��������
��
�� � ����� �
� ��� ����� ����� �� ���
��� �� �#
��� �!�� ����� �
���������
������ ��
 �� �
����� �� � $� $!�6�	�

7� $� �!�6�	 ��� �%����
�
� �� ��
��������� ��������� �
�� ��

�� ;-���� 6���
���� 5
����� -65!<! &-�(=� ���(=)� ���� ��� ���
�����
 ������� ����������
���� >�������
����
 ���� >,9! ��
��������� �������� �
 ����� �

�
����
���� ���������
� ��� ����������

.

.� +� �� ���� �� ��� ���� �������
 �������� ��
 �� �
����� �� � ����
���
�� �� �!�6�	 ���� �� ���� ��� ��
���
�� �
 ���
��� ���� �� ��
��!� ?���
��
 &?��(7) ������ ���� �
� �
���������� �� �!�6�	 ��
 �� �����
��� �� �
�������
 ��������
 6@5!� �
 ��� ��
�� ���� ��� ���
�����
 ������� ���
���������� �� �� ���
���
�
� �� ������� ���� �� �!�6�	 ��� �%����
�
� ��
�������
 ���������� ��� ��������� ��������� �� �������
 ���������

A� �� � !�6�	 ��� �%����
�
� �� 6����
���� ����� ��
���
� ��������
�� �� �
�
��� �
 ���
�� �
� ���
����� �� �������
��� �� � ��
���
� �
 � ����
��������
�� �� ���
����� �� ��"�
� �
 ���� �
���� ���� �� ������� �� ���"
���� �
����� �� ����� ����
� ������������� �� ����

�
 ����������
� �����
��
� �
 � ��������
�� �� � ���
�����
 �
 ���
���

B� $� � !�6�	 ��� �%����
�
� �� �����
������
�����
���� ��� ����
��� �� 6����

��� ����� ����� ���
�����
 ��� �����
� �
� �
��� �
 ��� ������ &-�(=� ���(=)�
���� �
��� �� 6����
��� �� �%����
�
� �� &��	� ������� �
������ �& �
&?��(.)�

C� $� �!�6�	 ��� �%����
�
� �� 65����������� � ������� �
����� ���� ��%��
�
���
 �
� ����

�
 ����������
� ���
� �����
������
 ���� ����� &-D'B) ��
������� ������� �������!�

=� ���!�6�	 ��� ��

�� �'(��
������ �
 ��������� +� �� � �����
 ��
���
�
�E����
 �� 6����
��� �
� 65���������� �
� �� �� ������
� ���� ��
���
 ���

���� �� ���� ����� 65, ��
 �������� �

 ?����"��7
�
������ ���
� 6����

��� ��

��!�

'� ���!�6�	 ��� � �����
 ��
���
�E����
 �� �������
 ��������� �
� 65�
���������� ���� ��� ��

�� �) 65 F 6@! �
 ��������

(� ��� ���� ��
���
 ���� �� ���!�6�	 ���� ����
� ��

�� 6�	!� 6�	 ����
���
 �
�������� �
 ��������� ���� ������� �

 ��� ��������
� ��
���
��
�
������

+� ��� �
�� ����
 �
 �������� ���� 6�	 ��� �%����
�
� �� ����
� 5? �������
�������� ����
� ���� ����
�� >���
� ������� ������� ��� ������� ������� ����
�

� ����
� ������ ����� ����� ������� ���� ������
��� ���� ���
� �������
� �����
��� �����������
� >���
� 5? ������� ������� ��� ����
� ������� ������� �

����� ���� ��
 ��
���
 �
 ����������� �
� ����������� ���������! G�������

����

� ����
� 5? ������� ������� ���
�� ���� �� ��������
���
�� ���
�����

�������� ��
�� ����� ������� ��
�� ���
����

�
��
���
�� ���� ������ �����
��

��� ��� ���
 ����
�� ����� 6�	 �
 �������� ��� ��� ��

���
��

�

�
� �� �������� �������� �������� 	� �� �	�������	
� �����!��
�
� *"(
	�����
� 	� ���	�� �	�
 ������� �
 �	�	�!���	
� �%!	��������

���� ���
� ���� �

 ����
����� �� 6�	 �
 ��� ��������� ��� ��#���
� ���� ����
����� ������ ������
����
� +� ����� �� �
 ��� ���� �
���� �
��� �� � ������ �
�� ���

��� ������ �
� �� ������
� ���� ���������� ����� �� � ������� �
 ��� ������ �
���
���� ��
�� ������
�� �� �
� ������� �
 ���
���� �
���!� ,��� ���� ���� �������
����
�� ����� ���� ��
�
����� �%����
�
��� ��
��� ����� -65 �
� �������

�������� ���� �������� ��� �
��� �� ��
���������
�
�������

A

�

�
� �� �������� �������� �������� 	� �� �	�������	
� �����!��
�
� ����
��	�	�� ��
���� �
� *" 	� ���	������

��� �
������� ���� ������� ���� ����
�� ���� � ��������
 �� �
����� ��������
���
����
�� ��� ���� 6����
��� &���'A) �
� �������
 ��������� +� ���� ��� �����
���� ��� ��������
��� ����
�� ��� �
����� "
��
 �� �� �������
� ��� ����� �
�����
�� ��������

� �	
�� �������� ���� ��
 �	��� ����

/
� �� ��� ���� �������
� �
� ���� ����
� "
��
 ����
� �
 ��� 6�	����������
��� 6�6!�6�	� ����� ��� �%����
�
� �� ������ �������
 ������� ���� ������
 85		! �� 6����
���� +
 ������ ��� ��������
��� �� ������
 ����
 ����"�
�
����
��� ��� 85		 �
� ���� ��
���� ����
� ��� ���
 ��������

5
 �������
� ��
���� �
 ���� ��
���� �� ���
����
 �� �
��	����� +� ��� ����
���
�� �� ����
 �����
������
 ������� �
��
���
� ���

�
�� ��� ���
 �����
�
���
���� �������

�
 �������� ����� ��� ������� �� �
��������� ��������� ����
�����
����� �������
���� �������

�
� ��#���! �� �
���
���
�
���� �����

���� �������

�
� ��� �
��
���
�� ������� ���� ��
 ���
��
����
�
��� ���������
	�
��
����

�
�
����! �������

�
 ������� ��� ����
���������
� ���������
�
�
���� �� ���� �� ���������� �� ������
 ����� &-G(=)� G�������
���� �������

�

������� ���
�� ����
���������
� ��
�� ��������
��� �
� ���� �����������������
��� �������
� ��� ���� &5H(.� ?9+(C� 5-H(')�

+� �
� ��������� ���� ��� ����� �� ��� �������� �
 ��� �����
������
 ���

�
�
��� ��
������ �

� �����
������ �
� ������ ���
 �
� �����
�
���� 85		� ��

���� ���
��� �����
�� �� �
� �

��� ����� ��� E���!� G���
����
��� ���
� ����
��� ��
�� �
 � 6����
�� �
��� �� ���
��� ��
 ���
��
����
� �������� �� �
� �����

,����
 85		�
���� 85		 �
�
���� ���
��� �����
�� ��� ���� ��#���
� ����
���� ����� ������ ��� ��������
��� �� ����
 ����"�
� ����
��� ������� /
�
�����
� �� ��� ��������
��� �� ����
 ����"�
� ���� ��� �������

���� �9 �
������
� �� ����������
�����
���� ?�2!: ��� 	��������
 .�$!�

�

�
� "� ������
+
��� �
���	�� �	�
 �
� ����
��� �
�	� ,- 	� ���	����� �
� �
��� .�"" ��� �
���
�
!���� ���
	���� �!� !����	����� �
� �
���� .�""�

G������� ��� ��#���
� �������

����� ��� ��������
 ��
 �� ��������� �� ��� ��
�

���
� ������� ������

�

�
� #� ������
+
��� �
���	�� �	�
 �
� ����
��� �
�	� /�/ 	� ���	����� �
� �
���� .�"" ���
�
��� .�""� �!� !����	����� �
� �
��� �
!���� ���
	����

��� ����
��� ����
�� �
 ������ ��� ���� �����
�� �
� %���� ����
���
!� ����
��
���
 ���� ���� ����������
����� ���
 3��� �9 �
� 2�2� ��� ��� ��������

B

����� ��� 3��� ������
 ����� �� ����� ����
�� ���� �

������� ��� ��#���
�� ������

85		 �
�
���� ���
��� �����
���

	��� ���
 ���� ��
���
 ����
�� ����� ��� ��������
��� �� ������� ����
��� ���

���� ���
��� �����
�� ���� ���
 �������� �
 ������$��

�

�
� %� ������$�
����	���	
� 	� ���	����� �
� �����	� �
��� �
!���� ���
	����

�

�
� &� ������$�
0�	������ ����	���	
� �	���� ����	���	
� �
� ����� 	��!�� 	� !����	����� �
� ���
�����
� �
��� �
!���� ���
	����

�

�
� �� ������$�
&
!�������� 	� !����	����� �
� ��� �����
� �
��� �
!���� ���
	����

����� �
��������
��� ����
�� ���
���� ���
��� �����
�� ���� ��
� ���
������
��
��
�� ��� �
���
��
� ���
���
� �� ���� ��
���
� 9�� �����
�� ��� �
��������
��� ��
��� ���
���
��� ����
�� ��� ����� 6����
��� 6����
��� ���� ������
 ����������
���� ��
 ����� � �
��� �� E���� ���
�� ���� ��� E���! ��

��� �� � ����

��� ����
����� ����
��� ���� �� ������� ����� 6����
��� ��������
� �� � ������
 ���� ��

���� ���
��� �����
� ������$��

����� ��� ����� ���
������
� �
 ��� ���� �� ����������E�� ����������
 ����
����
+
 � ����������E�� ����������
 ����
�� �
� ����� �� ���� ��� �������
��� �� �
���
� ������
� �
�
���! �
��� �� ��������
�� 3��� � ��
�
� �
���
��� 5
 �����
�
�� � �����
������

�����" � �! ���� �
 ���������
����� � �� �����
�
�� ���
��
��!� ��� ��

���
� ������� ����� ��

��� ���� ��� ����
�� �

���� ���
���
�����
��! ����� ���� ����
���
��� ����
��� ��� �
�������
� ��� ����������E��
��������

�

�
� !� ������$�
� ���������	1�� ���	����	
� ��
���� 	� !����	����� 	� 	� ���	���� �
� �
��
�	��
�
��	�	
���

2� 3� ��� ���
�� �� �(�����(�
!���� �
��� �
!���� ���
	�� ��
� �
�� �
��	����
�����	
�� 	� �!�
 � ��� �
�� � �! �
�����
��� �
 �
� 	�	�	�� �
���!���	
�
�	�
 � 	�
�� �
!���� ��� I 	� �
�
�
����

4� 3� ��� �
��� �
� �
� �$	������
� �� 	���	�� �!��

��� ����
�%�� �� ������� ' �� ���� �
 �'(���� �� ���� ��� �
��������
���
�� ��� ����
��� ����
�� ��� ��������� �����
������
 �������
�� ����� ��� ����
���� �� � �
�����
�������
� �����
�����
� �
��������� ���������� ��� ��
�� ���
�����
������
 ��� �� ��

���4

$� ��� ��������� ��
 �����
����� ������
� �� ��
����"��
7� /
� ������� ��
 ��������� � �������� ����� �� �������� ���������
�! �� �

����� �
 $ ����������

C

����� ������� ��
� �� �������� �� � ������� ��
 ���
�� ��� �
���
�
 ������ �����
�
 ���
 ���
�� ���� �����
� �� ��
 ������� �
� ��� �� ������ �� ��������� ���
��
�� ��� �����
������
 ��� ���
�� �
����
��
�
� ���� ���
����� � �� ����
������ �
 ��� ������� +� �
� ��
������ ��������� ���� � �
���
�
 ������ ���
 �
�
��
��������
 �� ��� ��������� �������
 ���� � ��������� ��
 �� ��������� ��
� ���
� ������ � � � ���! ����� �� �� ���
����� �� ��������� �
 ����� � �
�
��

����� * �� ����� ���� �� ��
 �� ���
 �� ��� ��
��
� �� � ���
��� ����� ��
���
��� �� �� 5 ��������� ��
 ����� �

 ��������� �
 � ������
 ����� �� ���
�� ��
�
����� ������ ���� ��
 �� ���� �� ����� ���� � ����
���� ���������
��� ���
���
�� E���� ,��� �������� ����
� ���� ��� E��� �� ������
�� ��� ����
�� �� ���� �
��������� �������
 �����
���� ����� ��� �����
����� � �� ��������� ��� ������
�����
����! �� �
�������
�� ������� �� �������� ��� ��
�����
� �� ������� ' ���

����
��� ��
����
 ���� ���� �� ������
����
���!� ���� �

 ����
��� �����������
�"�
����� ���������
� �
 ��� �������

����� ?�2 &?�'$� ���(A)! �
� 2�2
�
����
���� �������

���� &6
�==)!� ��� �
�������
� �� ��

�

�

�
� �� �'(����
��� �	������ ��
����� �
� ���������	1�� ��
������ �
��!�	���	
� ��
�
�
�� ���
!����	������

+
 ��� ���� ���� ����
�� ����
�� ��
 �� ������ ��� ����������E�� ����
��� �����
������� ���� ���
��� ��#���� ����"�� ����

+� ����
� ��
���� �������� ����
�� �

 ����������
 ����
��� ��� ����������E��
������� ��� �
�������
�� ��
� ������ ����
��� ��� ���

 �������
� ��� �������
����E�� �������� 9�� �����
�� �� ��� ���
 ����
 �
 �'(���� ���� ���� ������
����
��� ��� ����������E�� ��������� �����
������
 �������
� ��
 �� ��
���
�� � �������
� ���"����� ��������
��� �
�
���� ���
� � �������� ��������
���
�
�
���� ��

�� ������
� �� �#������!�

� �	
�� �������� ���� ��� ��� 	��� �	��� !" ��

�������������� "	��#���

"�� �
$
�)
�*��+ ��	 '(

��� �������

���� �9 �� � ����
�� ���
�����
 ������
� �� ����������
�����

���� &?�'$� ���(A)� +
����� �� ��� ��
���
 ;�
��
< �������� �� ?�2 �� ��� ���
�������� �9� ����� ,- � ���
� ;����� �� � �������
� ����� ����� � ��
��<�

+� ��� ���
 ����
 �
 ������� ���� ����
 ����"�
� ���� ��� �������

���� �9
�� �������
� ��� ��
� ���� �
����� �� �
�
��������� ������� ���
 ��� ���� �����
���
���
������ �������

������ ��� ���� �������
� ����
� �� ������� �� ���
��

���
�4

�

�
� ��� ������� �������� �������� 	� �� �	�������	
� �����!��
�
� �
��� �
���	�� ��
���� �
� �
� ����
��� �
�	� ,- ��� �
� ��
���� �����
�
 ���!(*" ����
 ������ �)� 	� ���	������

=

	�
�� ����
 ����"�
� 6����
��� ���� �9 ��� �
����� "
��
 �� �� �
�������
�
&���(=)� ���� ����
� �����
����� ��� ������ �� ��������
��� �� �9 ����
 ����"�
�
�
 ��� 6�	����������� ,��� ���� ����
 ����"�
� ���� ����� ���
���
������ ����
����

�����
�"� ?�2 �� ����
 ����
��
�� �� �

� �������
� ��� ����
� ��%��
���

�������
�"� �������
 ��������!� ��� �
�������
� ��� ������� ���� ��
���

����

�
���
�"� -66� 6����
���� 65 �� 65@! &���(=)�

��

��� ����� �� �����

��� �	���

� �	�	�

��� �	���

��� �������� �����

��� �����

�� �	���

	
��
�)�� ������ �	 ��� ��
��������� �	 ������
��
*��� ���� ��� �������� ����
 3�

��� ����� �� ������� $I ��� �������! �� ��
� �� � ���
��� ��
��������
� +� ���
������� �������� ��� �����
� ���
 � �
��� ����� �� ���� �� ��
��������� ���������
��� ���
��� ����� �
� ���
� ����� � �
���
����� �� ������ ��� ����
����� �� ���
���
������
��������
 �� ���� ���� "������ ����
�
���
 ��� �����
�� ��
����
�
����� �!� �
������ ���� ����
 ����"�
� ����
�� �� �

� "
��
 �� �� " �#, �
����� 9�� ��� ����
��� �� $�6!�6�	 -66!� ����
 ����"�
� ���� �9 �� "
��

�� �� " �#, �����
��� �����&� ����!�� 6������
 �������� 	�	!�6�	!
��� �
�� � ����
��� �� 65@ 	�>!�6�	!� ����
 ����"�
� �������
 ��������
���� �9 �� �
�� " �#, �����
��� &��
II)�

9�� 65���������� $�>!�6�	!� �
����� ����
��� �� 65@� � %���� ��#���
� ����

����"�
� �
������� ���
���� ���
 ����
 �� 2����E �
� 	��
����
�
 &2	(')� �����
�
������� ���� ������������� �� �������
� �
�
��� ���� �� �������
� ��
������
���
� �� 65����������� G������� ��� ����
����� �� ����� �
������� �� ��� ����
�� ���� �� ��� ���
��� ��
��������
� �
�� �������
� �� 2����E �
� 	��
����
�
�
����� �
������� ��

�� �� ��
���
�E�� �� ��� ��

 �
��� �� 65@�����������

'

"��) ����	
���	�� (
�����

+� ��� ���
 ����
 �
 �,-���� ���� ��� ����
�� ����� ��� ��������
��� �� ����

����"�
� ����
��� ���� ���
���� �9 ��
 �� ���� �� ���� ��� ��������
��� ��
������
 ������
����
 ����
���� +
 �,-���� ��� ��������
��� �� ������
����
�
�"�
�%����
�
��� ������
 �
�
��������� ��������� �
� �
��������� �
�� ��� ��������
��� ���������
 �� ���� ��� �
��
��� �������� �� � ������� �� ����
 ���� �� �������
 �� � �
��������� ������!� ��� � 0���
1 ���
���
�����
 ��
 ��
���
 �����
�
��
����� ��� ����
���

� �
�
��������� ����� ���
����� ��#���!� ��� ��� �� �����

����������
 �� �� ����" �� ��� �
��������� �����������
 �
� ��� �
�
��������� ���
�
���
�����
 ��� ����
����

� �%����
�
� ����� ������
��!�

+� ��� ���
�� ��� ���� ����� �� � ��

�����
 ������
 ����"�
� �� ����
� �� ���"!
������
����
 �%����
�
�� �
� ����
 ����"�
�� ��� ��� �����

�� �
�������	��	�
�
��!���� 5 �������������� �����
� ��� � �
��������� ������ � ������ ����
� ��
���" ������
����
! ��������� ���� ������ ����
���
� ����
� ����
� �� ���"
������
����
!� +
 ��� ��

���
� �� �

� ��
����� ���" ������
����
� ��
�� ����
�
������
����
 �� � ������
 ���� �� ��� 5 �������������� �����
� �� �� � �
���������
������ � ��� ��� �������� ���� ��� �
� ��
���
 ���
�����
 ������ � ����� �
��
 �� �
�
���! �� ����

� � � �� � �* ��

���������� �
� ��
 ������ ��� �%����
�
�� ����
�� � � � �� � ����
 ����"�
�
����
��� ��� %������
 ���� �� �
� ���! �
� ��
 ��
������ � �������������� ����
��
� ��� � ����
 �
��������� ������� +� ��� �
����� ���
 "
��
 ���� �
� ��

��
������ �������������� �����
�� �
 ��� ����
 ����
��
�� &	+(A)� ��� ����
��
���� ���� ��� ���� ����
��
�� ����
 ����"�
� �� �
�������
� ��� �� ��
� �
�����
�� �
�
��������� ��������

+
 �,-���� �� ��� ����
 ���� �
� ��
 �#������
� ��
������ �������������� ����
��
�� ���
 �
 ��� ����
� �������

���� �9�

�

�
� ��� �,-����
-
� ����� ��	��(����� ������ �
�� ��� �����	���� �
����!�� � �
�������	��	�
�
��!�� �� ������� ���� �	�	�!���	
��� �
��� �� 	� � �
��!�� 	� �
� ����
���
�
�	� ,-�

-� �����
�
� ���� ������� ���� ������� $I� �
� ���������
� ���� ��� ��

���
�
����
��

�

�
� ��� �,-����
5��� �	�	�	���	��
� � �)(��
���� ��� �"�6�(*"� ��� � ��	��(����� ������ 	�
���	������

	���
�� �������� ��

�� ��� ����� �
����� �� ������� ���� � �������
� �9�����

����"�
� ����
��� �����
���� ���
��� �����
�� ��� ������� .!�

(

$ �������� !%#�&������ ��������

+
 ��� ���� �� �����
 ����������
� ���� �� ���� �������
� ����
��� �%����
�
���
��� ����
� �
� ���" ������
����
 �%����
�
�� ��� 	�����
 $!� �
� ����
����

�%����
�
�� ���� �� ���
�� �
������
� ��� ���
����
 �� ����
����
 ��������!�

��� ����� ���� �����
 ����
��� ����� ����
��� �%����
�
�� ����"�
� ����
�
�
��������� ������� ��� ��� ��

���
�4

���������	� 	
�	����
� �������������� ��� ������������ ��������

.��	���
/ 5 ����������
 �� �
 �
�
��������� ������ � �
� � �
��������� ������
� �

0�
�	�
�/ 5�� � �
� � ����
�
� ������
��J���"
� ������
��J����
����
 �%�����

�
� K

�������	 ����������

.��	���
/ 5 ����������
 �� �
 �
�
��������� ������ ��
0�
�	�
�/ @��� ����� ����� � �
��������� ������ � ���� � �
� � ��� ����
�
�

������
��J���"
� ������
��J����
����
 �%����
�
� K

���������	� 	
�	����
� ��
 �������� �������

.��	���
/ 5 ����������
 �� ��� �
�
��������� ������� � �
� ��
0�
�	�
�/ 5�� � �
� � ����
�
� ������
��J���"
� ������
��J����
����
 �%�����

�
� K

#��)
�1����+ .����	
2�	�	
 ��$ (���	
2�	�	
 ���	
��

5� ����
 �
 	��������
 .�7� ���� ����� �� ��� ���� ����
�� �%����
�
�� ����"�
�
� �� �
�
��������� �
� �
��������� ������� ������ ���" ������
����
! ��
 ��
������� �� � ����
 ����"�
� ����
�� ���� ���
���� �9 ��� ��� �
�
���������
������� G������� ��� ����
����� �� ��� �
�������� �
� �����
� �
 ���� ��� �� ���
��
 �

��������
� ����� 	�����
�E�� �
�������� ��
 ���� ���� ������ ����
�����
���
��� 9�� �����
�� ���
� ����
 ����"�
� ��
��������� ��������� -65! ����
�9 �� " �#, �����
���� ���" ������
����� �� -65 �
� �
��������� ������� ��
��
�
����
 �-������

�

�
� �"� �-�����
5��� �	�	�	���	��
� & � ��� ��	��(����� ������� 	� ���	����� 	� �
���
�	��
�	���

5 ����
�� ������� ��� � ����
��� �� -66 ��� �
�� ���
 ����
 �
 �-������
,����� -66 ��� ��� ����
��� �� -66� ��� ����� ���� ����� �������
� �����
����� �� � �����
���
� ����������
�

�

�
� �#� �-�����
5��� �	�	�	���	��
� �
���� & ��� ��	��(����� ������� 	� ���	����� 	� �
��(
�
�	�� �	���

$I

9�� ��
���
 -66 ��� ����� ����
����� �� ���� ����
�� �� ���

 ���
� G������� ��
�� "
��
 �� �� �������
� �
 ��
�
����
 ����� �-������

+� ��� ���
 ����
 �
 �������� ���� ��� ��
�
����
 �
�������� ��� -65 ��
��
����� ���� �� ��
���
 �������
 ���������

�

�
� �%� ��������
5��� �	�	�	���	��
� �!�
�
�� �!�
���� �	�
 � �����	� ����� �$�� ��	��(�����
������ ��	�

��� 7 �������� 	� " �#,(
����

��� ���� ����
�� ��� ����
� ������
����� �� �
�� " �#, ������ ��� �����
��������� �������
� ��� ���� �
��������� �������!�

�

�
� �&� ��������
"��
�� �	�	�	���	��
� �!�
�
�� �!�
���� �	�
 ��	��(����� ������� 	� " �#,(

���� 8
������ �
� ��%!	��� �	�� 	�
��� �
���
�	�� 	� �
� �	1�
� �
� �!�
�
��
�!�
���
� ��� �$�
����	�� 	� �
� �	1�
� �
� ��	��(����� �������

8��� ����
�
�� � " �#, ����� ���
� ��� ����� ��� ����
��� ��� ���
 ����

�
 �-������ 	� ���� ��� �
���� " �#, �����
����

#�� �
���	�� (���	
�
��

5
������ ����� ��� ��
� ����
�� ����� ��� ��������
��� �
� ����
����� �� ��� ���
��
��� �
���
��� ����
�� ��� ������� ������� �
����� �
� ����
��� �%����
�
���!�
��� ������� �� �

� ������

� �
���� ����� ��
� ���
 %������
� �����
� G��� �� ��

�

� ��
���
 ���� �� ��� ���� �������
� ����
��� 9�� � ���� ��
���
 ��������
��� �������� ������� -����� -����� H�
L��� �
� �����E� ������ ����
����
��� �
���
��� �� 6����
��� �� �������
� �
� ,9 " �#, �����! ��� ����
�
������
����
� ��� �
�������
� ��� ���" ������
����
 &H�(C)� -��"���� ?����
 �
�
	��#�
 ������ ���� ����
��� �
���
��� �� -65 �� �������
� ��� ����
� ������
��
���
 &-?	(C)�

@�������
��� �� ����
��� �
���
��� �� �������
 �������� �� �
 ���
 %������
�
��� ��� ��

���
�
���� ���
� ��� ���
 ����
 �
 ���������

�

�
� ��� ��������
"�����	� ��	������
� �!�
�
�� �!�
���� ������ ���
�� �
� ����� �	�	�!���	
�
	� " �#,(
����

��� "
��

���� ���
�� ��� -���� 6���

�
 6�������� -66! ���
�� �� ���� ��
����� ��� ��
���
 6����
����

�

�
� �!� ��������
"�����	� ��	������
� &��	� ������� �
������ �& � 	� �
(�
(
��� ������
���
�� �	�	�!���	
� ��� ��

�
(
��� ������ ���� �	�	�!���	
��

$$

8��� ����
�
�� ���� �����
���� ���
�� ��� -���� 6���

�
 6�������� ���� ���

�������� �� " �#, �� H��� 	��� �
 &	��I7)� G������� ��� ������ �
 &	��I7) ���
��
� �� ��� ����
�%��� ���� �������� ��������

����� ��� �

� ��� ����
�� ����� ����
��� �
���
��� ������ ����
����
 �%����
�
�
��� +� �� �
�������
� ��� 6����
��� &H�(B) �
� ��� 65���������� �-����
-������

�

�
� ��� �-���� -�����
"�����	� ��	������
� �(��
������ ������ �	�!���	
� �%!	������� 	� !����	������

#�")
�1����+ .����	
2�	�	
 ���	
��

���
� ����
����
 ��������J�%����
�
�� �� �
�������
� ������
 �

 �
����� �� �
�
����
����� ������� �
 ��� 6�	���������� �-���� -������ ���� ������
����
 �����

��� ��� �������
�� 9�� �����
�� �� �� "
��
 ���� ����
� ������
����
 �%����
�
�
�� �� �������
� ��� -���� 6���

�
 6�������� -66! &?G�(.)� ��
���������
��������� -65! &-?	(B)�
����� 65���������� &GH(() �
� ���
 �������
 ���
������ &	M('� 	��I$)� G������� ����
� ������
����� �� 6����
��� �� �
�������
�
&H�
(A)�!

5
����
� ����� ����
����� ���
�� ��� "
��
 ��� ��� �������
� ����
� ������
�
����
 ����
���� ��� � ���
���� ���
�� ��� "
��
�

�

�
� ��� ��������
"��
�� �	�	�	���	��
� &��	� ������� �
������ �& � 	� �
(�
(
����

���� ����
����� ���
� ��� ���� ����
�
� ���
 �������� �� " �#, �� 	��� �

&	��I7)�

5
����� ���� ����
� ����
� �
 �-����� �������� ��� �
����� �����
����� " �#,

���� ���
� ��� ����
� ������
����� �� �������
 ���������

�

�
� ��� �-�����
"��
�� �	�	�	���	��
� �!�
�
�� �!�
���� 	� ,9 �3+,(
����

N

�"� ��� ����
� ������
������ ����
���
� �� "
��
 ����� ��� ��������
��� �� ���"
������
����� ������
 �
�
��������� �������� ��� "
��

���� ���
�� ��� ����
�
������
����� ����� ����� �� ������� ��� ��� ��������
��� �� ���� ���" ������
����

����
��� �� ���
�

' (��������� ������ �������

���
� ��
� "
��
 �
����� �� �
�
��������� ������� ��� �
 ��� 6�	�����������
����� ��� �
�� ���� �������
� �
�� ������� ���
�"�� �����
����! 9+9/����

�

������� ��� &-G(=� 5-H(')!�

5
����� ������� �
��� ������� ��� 6�	���������� ��� ��� �����

�� -65 OO!�
���������� ���� ���� ���
 ���
�� �
 ��3���� �� �
 ����
���
 �� -65� ���

$7

�
������
 ��� ���� ��� �� ��

���� ?�
��������� ��������� -65! ���� ���
 ���� ���
����P�� �
�
���� �
 ��������� ���������� ���� ���
������
� �
 ������E�
� ����
��
��� &�D(()� G������� -65 ��
 �

� ����
 ��� �����
 ��

�
� ��������� ��
��������� �����������
�� ��� ���� �� ������ ������
 ����� ���������� � ����
���
�� ����
 ��

�� -65 OO! ��� ���
 �
��������� ���� ��
 ����

�� �

�
��������� ����
��
����� ��� �
�� ��� �����
� �� �
 �
����� ��������� �� � ����
�����
�� ��������� ���� ��������� ��
 �� ������ ����
�� ��
�����
� ���������
� �

6��������� ����������� ����
�� �
� ���� ���������� ����
 ��
 ���

 �� �
�
�E��
����������

�� /
� ��
 ��� �
�����
��� �����
�� �� �������� ���� �� �������
�
��
��������
� �� -65 OO!� ��� ��� ��� �� ��� ���� �����
�� �������
�����
 ��
���� �� ������ �� ������� ��� ���� �� ���������� �
� ������������ �� ����
 �������
���� ��
 �� ���� �� ������ ������������������

�

�
� ��� ��3����
�
�
��� ��
� ���
� �!�����
���
� � ���
� & ��OO�(�
���!���	
�� �����	���
�� � 2(#+ ��� �� �����	���� �
����!�����

�

�
� �"� ��3����
�
� ��� ����
� ���������
���
� � ���!��� ���
� & ��OO�(�
���!���	
�� ���
�� �����	���� �
����!����� 8
������ �
� ���
� � ���
� & ��OO�(�
���!���	
��
�����	��� �� � 2(#+ ����
� �� ����������� �� � 2(#+ 	� ������� ���
�� ��
!����	����� �������
	� ��
�����

����� ����
�� ���� ���
 ���� �
 ��3���� �� ����
 ����" -65 OO!����������
���� �
���� ��

�� +	2�

) �	���#��	�

+
 ��
�
����
 �� ��
 �� ���� ����� ��� ��� ����������
 �� ������� ���� �
�
���
����� ������� ���� ����� ��� ���� ������ �
�������� ���
 �������

4 9�� ����
 ����"�
� �
�
��������� �������� ��� ������� �� �
����� ��
�����
�
�
���� ��� ��������
��� �
� ����
����� �� ���� ����
 ����"�
� ����
��� ���
�
�
��������� ������� �� "
��
 ��
���� ��� ����� �
����� �� ��������� �
 ���
6�	����������!� ��� �����
�
� ���
 %������
� ���� ��� ��� ��

���
�4

� ��� ����� ����
����� �� ��� ��������
��� ����
�� ��� ��
���
 6����
����
� ��� ����� ����
����� �� ��� �9�����
 ����"�
� ����
�� ��� 65�����������

5
����� ���� �
�������
� ���
 %������
 �
 ���� ���� ��� �� ����� ������ � ��
��

����
 �
������� ��� ����
 ����"�
� �
��������� ������� ���� ��� ��

 ����

����
��
��� G������� ���� ��
�� ���

� � ����
�� ����� �
�
��������� ��������

4 +
 ��� ���� �� ����
��� �%����
�
�� ����"�
�� ��� ������� ��
�� �� ����
����
� ?���"�
� ����
��� �%����
�
�� �� �
 �
�
��������� �
� � �
��������� ����

��� �� ���

 ��� ������
�������� ���� �� ���� ����� ��� ��������
��� �
�
����
����� �� ���� �� ����� ����
��� �� "
��
� ��� �� ������� $$ �
�
����� ����
���

$.

� 9�� ����"�
� ����
��� �
���
���� �

� ������
 ����
�� ��� "
��
� +
 ����
����
��� ��� "
��
 ����� �
�
���� ����
����� ���
�� ����
 ��
��
������

� 9�� ����"�
� ����
��� �%����
�
��� ������ ���" ������
����
! ������

��� �
�
��������� �������� ��� ��������
��� �� ���� ����
��� �� "
��
�
G������� ��� ����� ����������
�
 ����
����� �� ���� �� ����� ����
���
�� ���
�

� 8���
���
� �� ��� "
��
 ����� ����"�
� ���" ������
����
 �%����
�
��
������
 ��� �
�
��������� �������� ������ ��� � ���
���� ���
��� ���
����
�� �� ���� ���� ����� �� ��%���� ����
�%��� �� ���� ���� �
�
���
�
���
���
� ������� ��� "
��
 ������� ��� ����
� ������
����
 ��
��
����� ���� �� ���" ������
����
�

��� ������ �� ���� �������� ���� ����� �� ��%���� �#���� �
 ��� ��������
�� 9�����
�
� ��
 ����
�� ������� �� ��
�� ��� ���
 %������
� ��
���
�� ������ 	���
�
�� �
� ������� ���
 ���� �������
�
�� �
� ����
� ����
�� �Æ���
� �����
�
��������� ����
�%��� ��� ��� ����������
 �� �
�
��������� ��������
�"�� �����
����
������
 �������� ����� ��
�� �����
��� � ��
����
 �
 ����� ����� ��� ����
��
 %���"
� �
� ��
����
� ��� ���� ����
��� ���� ������

*�
�������

4�56$78 & �������� � 5���99���� ��� 5 6������ :������;� �������� �	 �������
���� ���������� ����� ��	�
������� ,� ���� ������� 	
���
� 	
�
����
����� ���������
� �	������ �<
� "=/#� "$$7

4�6$>8 & ������� ��� 5 6������ ?���	���� &������� ���� ����������
�������
,� ��	���� ,333� "$$>

45
�$!8 : 5��*���� �
��
��� ��� 5 ���@�� �� ���������� ������������ ��
�����
���
����� 	�� ���������
����(��	��� ���
����� ,� ��	��� � ������ A �	
�!	� �������� ?������ "$$!

45
�$A8 : 5��*���� �
��
��� ��� 5 ���@�� 5�����������
������� ��� ��� ����

��� ��(����� ,� � B�������� ��� ? �������� �������� "�
������#$
�
	%!	&'��(� ������ """$ �	 �!	� �������� ?������ "$$A

453$#8 : 5��*��� ��� 6 3����C� B��� ��+���� �������)*����
��� !
��$ �� +��,

������* 	
�
���� ������� �)!+	��� !� "$$#

452$#8 � 5���99��� ��� & 2�������� �������
 ���
�������� �������� �	 �,�:�

������ ������� ���� ���������� ���� �	
��+��������� ,� "�
��
�
�	��"��-� ������ "/!A �	 �!	�� "$$#

452B%"8 � 5���99���� & 2��������� ��� 1 B��� ��������
 ����+
����� �	 ���

������ ���
������ ���� ��� ������� ��������� ,� "�
��
� ��� .(�� ��,
�������
��* �/�

$���
� �����������* �
������
�$
� 	
�
���� �������
���	� .����� ������ /">A �	 �!	� �������� ?������ /%%"

45�7!8 6 � 5������� ��� 6 D ���� ������� �	
������
����� ���
����� ����
������
���� +��
������* 	
�
���� ������� �+	��� >#'##E"/"� "$7!

45B$$8 � 5���99��� ��� 1 B��� B����
��
*��� ����� ��
��� �������� �������
,� "�
��
� �+�	����� ������ "!A> �	 �!	� �������� ?������ "$$$

4
��$/8 �
��
�� :� ��� ������� ����
���� �	 ���+(��������� 0
����*
� +��
,
������* 	
�
���� �������� "%A'A"E7A� "$$/

$A

4
37"8 3 B
���*� ��� 3 � 3������ ������ ��� ��������� �	 ���
�����C�����
�*������� ����� ����
���� ���� �������� ����
 ������ ">" �	 �!	�� �����
!/E#"� "$7"

4
�,$A8 �
F�
F�� � ���*��� ��� � & ,��� ����������
������� ��� 3����� �� ?���	�
)��� &��	�
�
������� ���
�����
� ��� 	
�
�����
�� "/=."0'/%E>"� "$$A

4
2B$>8 �
����������� G 2����	���� ��� � B����� 5����������� �-�������
� ��
��
������ 	�� 5���
 &������� &��
����� ,� 3 5���� ������� "�
������#$
�
	%!	&' ��� ������ #"! �	 �!	� �������� ?������ "$$>

4
��$>8 �
���������� 1�����2�*��/ ��� 1��
�

$���
� �� "�
��$$ �*#�2��$ &��
������� 3�������� ����������� "$$>

43�B$$8 6 3����C�� � ���*��� ��� 1 B��� :� ��� ����+
����� �	 �����
��� ����
��
��� ,� "�
��
� ��	���� ,333� "$$$

43�$$8 6 3����C� ��� 6 ����� �� �����������������
 ������
� �� ��������
��
����� �����;�� �������� ,� "�
��
� �
���	����� ������ "!#7 �	 �!	��
����� "=E>% �������� ?������ "$$$

43��$=8 3 � 3������)������� ��� ����� ����
 ,� 6 ��� �������� �������
3���2

4
� +��
������* 	
�
���� ������� 5 �
*��� 67 �%'��� �%1,
)�� �!1 �)��!+�	� 3�������� "$$=

43��$#8 6 3����C� ��
��������� �	 �����
��
*��� 	�� ��+����������
��
������
������� ���� ���
�������� >='7!E"%#� "$$#

426$$8 G 2����	��� ��� B 6����� 5����������� �-�������
� �� ��
������ 	��
������ ���
��� ������� ,� "�
��
� �	��"���� ������ "A== �	 �!	�
�������� ?������ "$$$

46��$=8 & 6��H
�� ��
��������� -�������� 	�� ������������ �	 &���� ���� ��� ���� ���
����� �������� ,� "�
������#$
� �+�	���8� ������ ##! �	 �!	� ��������
?������ "$$=

463$A8 & 6��H
�� ��� 6 3����C� ��
����� +�������� �	 &���� ���� �� �� �������
������ ,� � B���� ��	 ��� 2���� ��� 5 B������ �������� "�
������#$
�
�	��"��(� ������ "%$$ �	 �!	� �������� ?������ "$$A

46�B%"8 & 6��H
��� � ��H
���� ��� 1 B��� ��
����� ���������������*� �-�����
���
�� ���� +���������� ���
����� +��
������* 	
�
���� �������� /!7'=%$E
=>>� /%%"

46B$!8 & 6��H
�� ��� � B�����
��
*��� ������� ���������� �	 &���� ���� ,� ,����
��� ��� �
��� � ����*�� �������� "�
������#$
� 	%!	&'�� � ������ $A/
�	 �!	� �������� ?������ "$$!

4�B$$8 � ��H
��� ��� 1 B��� ���������� �������� �� ������ ���
��� ��������
,� "�
��
� �	��"���� ������ "A== �	 �!	� �������� ?������ "$$$

4�B%/�8 � ��H
��� ��� 1 B��� :� ���
�����(��� �	 �������
 �-�������
�� 	��
�������� �������� ��� 5&� ,� "�
��
� ��	� .��.� ������ /=/%� �����
=>>E==! �������� ?������ /%%/

4�B%/�8 � ��H
��� ��� 1 B��� ���������� �������� ���� ������ ���
��� ��������
���
�����
� ��� 	
�
�����
�� "#>./0'"7=E"$7� /%%/

4�B%/
8 � ��H
��� ��� 1 B��� D��* ������������ ������� +���������� ������� ���
5&� �� ������ 5&& �� ��
������ �� ���������� ���� +��
������* 	
�
����
�������� /#%'AA#E#%%� /%%/

4��$78 � �����C ��� &� �
���������)�� ������� ��������� �� &�����
����� ,�
"�
��
� 	%!	&'���� ������ "=AA �	 �!	� �������� ?������ "$$7

4B��7=8 3 B��� �� ��������� 	�� ��� ������� &���� ��� ���
�������� ������� ����
0
����*
� 	
�
����#� ">'=="E=A%� "$7=

$B

4B��$A8 1 B��� D��* ������������ ��� �����
��
*��� 	�� 5���
 &������� &���

����� ,� �
������
�$
� �
��9��� +����
*
#/ ��� +��
������* 	
�
����
������� ���+:+	���(�� ������ ""7% �	 �!	� �������� ?������ "$$A

4B��$#�8 1 B���
�������� &���� ���� ��� &�����
����� ,� B����� ����� ���
)�*����� ,��� �������� ���������
��* �/�

$���
� +��
������* �$
���$
�
	
�
���� �
��9��� �+�	���-�� ������ "/7" �	 �!	� �������� ?������
"$$#

4B��$#�8 1 B��� B����
��
*��� &�����
����� ,� ���������
��* 	
��������
�
	
��������/ +��
�/ �	%!	&'��-�� ������ "/=> �	 �!	� �������� ?���
���� "$$#

4B��$#
8 1 B���)������ ������� 	�� &�����
����� ,� � �����
��� �������
���*/��� +�2*���; ��� '�*���� ����
�$ �+�6�)�&<��-�� ������ "//# �	
�!�� �������� ?������ "$$#

4B��$78 1 B��� 1�����2�*��/ ��� 	
�
*�;��/
� �
��* 	���4��# "�
2*��$ �
�
�������,����� �/$���$ &�� �������)��BI��
���� "$$7

4B��%%�8 1 B��� :� ���
�����(��� �	 ������������ �������� 	�� 5���
 &�������
&��
����� ,� "�
��
� �	��" .���� ������ "7!> �	 �!	� �������� ?������
/%%%

4B��%%�8 1 B��� :� ���
�����(��� �	 ������������ �������� 	�� �������� ���
������ ,� "�
��
� ���" +	� .���� ������ "7#/ �	 �!	� �������� ?������
/%%%

4B��%%
8 1 B��� &��
��� ������� ������� ���
�����
� ��� 	
�
�����
��
"!A."0'/A=E/7A� /%%%

4B��%%�8 1 B��� ����
������ �������� �� ����������
����������� ,� "�
��
�
��+�! .���� ������ "##A �	 �!	� �������� ?������ /%%% 6������ �������
�� ������ ��)
�

4B��%"8 1 B��� ��
��������� �	 �����
��
*��� ���� ��� �������� ����
 3� +��,

������* 	
�
���� �������� /!A'>"EA/� /%%"

4B��7$8 1 B����� 	
���������
� ��� 	
��������/ &�����
� 2���� "7
4&��##8 � &�����)�� �������� ����
 �	 �������� ,� �%	��-- ,333� "$##
4�F$78 � �F���C������ ��
��������� �	 ������������ �-�������
� 	�� �-��������

������ �	 +���� ���������� ,� "�
��
� �%	���� ,333� "$$7
4�,$=8 5 ���@�� ��� � ,��F��	��F�����
����
�������
 	������� 	�� ���
����� ����

��������
� ���
�����
� ��� 	
�
�����
�� ""%."0'"=$E"A>� "$$=
4���%/8 6 ���� ������ ������������ ��� ���������� �	 ����
 �������� ���
����� ��

&�&�
3����� ,� "�
��
� �+�	� .��.� ������ //7! �	 �!	�� �����
!>!E!=A �������� ?������ /%%/

4���$78
 ��������)�� 9��� �	 ������������ ,� "�
��
� ��	����� ������ "=!% �	
�!	�� ����� "=/E"!" �������� ?������ "$$7

4���%"8
 �������� ��
��������� �	 �&�� �-�������
� +��
������* 	
�
���� ���,
����� /!!'"E>"� /%%"

4)��$>8 D)����� :� ��� 3����	��
������IJ��F� ���� �� ��������
��
�������
�
���
� ,� "�
��
� +�"�%�+���� ������ AA7 �	 �!	�� ����� !!$E!A7
�������� ?������ "$$>

4D��%%8 , D���*����
C B����
��
*���
)� ���������� �	 �������� �������
,� �
������
�$
� �
��9��� +����
*
#/ ��� +��
������* 	
�
���� �������
���+:+	� .����� ������ "$#= �	 �!	�� ����� "/#E">7 �������� ?������
/%%%

$C

Process Rewrite Systems

Richard Mayr

Institut f�ur Informatik� Technische Universit�at M�unchen�
Arcisstr� ��� D������ M�unchen� Germany	

e�mail
 mayrri�informatik�tu�muenchen�de
fax
 ���
��� ���������������

Web
 http���www��informatik�tu�muenchen�de��mayrri

Abstract

Many formal models for in�nite�state concurrent systems are equiv�

alent to special classes of rewrite systems� We classify these models

by their expressiveness and de�ne a hierarchy of classes of rewrite

systems� We show that this hierarchy is strict with respect to bisim�

ulation equivalence�

The most general and most expressive class of systems in this hi�

erarchy is called Process Rewrite Systems �PRS�� They subsume Petri
nets� PA�Processes and pushdown processes and are strictly more ex�

pressive than any of these� Intuitively� PRS can be seen as an extension

of Petri nets by subroutines that can return a value to their caller� We

show that the reachability problem is decidable for PRS� It is even

decidable if there is a reachable state that satis�es certain properties

that can be encoded in a simple logic� Thus PRS are more expressive

than Petri nets� but not Turing�powerful�

�

� Introduction

Petri nets and process algebras are two kinds of formalisms used to build
abstract models of concurrent systems� These abstract models are used for
veri�cation� because they are normally smaller and more easily handled than
full programs� Formal models should be simple enough to allow automated
veri�cation� or at least computer�assisted veri�cation� On the other hand
they should be as expressive as possible� so that most aspects of real programs
can be modeled�

Many di�erent formalisms have been proposed for the description of in�nite�
state concurrent systems� Among the most common are Petri nets� Basic
Parallel Processes
BPP�� context�free processes
BPA� and pushdown pro�
cesses� BPP are equivalent to communication�free nets� the subclass of Petri
nets where every transition has exactly one place in its preset� PA�Processes
�BK��� Kuc� May��b� are the smallest common generalization of BPP and
BPA� PA�processes� pushdown processes and Petri nets are mutually incom�
parable�

We present a uni�ed view of all these formalisms by showing that they can
be seen as special subclasses of rewrite systems� Such uni�ed representations
have already been used by Stirling� Caucal and Moller �Cau��� Mol���� but
only for purely sequential or purely parallel systems� Here we generalize this
to systems with both sequential and parallel composition�

Basically� the rewriting formalism is �rst order pre�x�rewrite systems on pro�
cess terms without substitution and modulo commutativity and associativity
of parallel composition and associativity of sequential composition� The most
general class of these systems will be called Process Rewrite Systems �PRS��
All the previously mentioned formalisms can be seen as special cases of PRS�
and PRS is strictly more general
see Theorem ������ Intuitively� PRS can
be seen as an extension of Petri nets by subroutines that can return a value
to their caller� As PRS is a very expressive model� model checking with
any temporal logic
except Hennessy�Milner logic� is undecidable for it
see
Section ��� However� we show that the reachability problem is decidable for
PRS� The interesting point here is that PRS is strictly more general than
Petri nets� but still not Turing�powerful�

The rest of the paper is structured as follows� In Section � we de�ne process
terms and the rewriting formalism� We describe a hierarchy of subclasses of
it� which we call the PRS�hierarchy� Section � explains the intuition for the

�

various classes in the PRS�hierarchy� In Section � we show that the PRS�
hierarchy is strict with respect to bisimulation� In Section � we show that the
reachability problem is decidable for PRS� Section � generalizes this result to
reachability of certain classes of states that are described by state formulae�
The paper closes with a section that summarizes the results�

� Terms and Rewrite Systems

Many classes of concurrent systems can be described by a
possibly in�nite�
set of process terms� representing the states� and a �nite set of rewrite rules
describing the dynamics of the system�

De�nition ��� Let Act � fa� b� � � �g be a countably in�nite set of atomic
actions and Const � f��X� Y� Z� � � �g a countably in�nite set of process con�
stants� The process terms that describe the states of the system have the
following form

t

� � j X j t��t� j t�kt�

where � is the empty term� X � Const is a process constant
used as an
atomic process in this context�� �k� means parallel composition and ���
means sequential composition� Parallel composition is associative and com�
mutative� Sequential composition is associative� Let T be the set of process
terms�

Convention �� We always work with equivalence classes of terms modulo
commutativity and associativity of parallel composition and modulo asso�
ciativity of sequential composition� Also we de�ne that ��t � t � t�� and
tk� � t�

Convention �� We de�ned that sequential composition is associative� How�
ever� when we look at terms we think of it as left�associative� So when we
say that a term t has the form t��t�� then we mean that t� is either a single
constant or a parallel composition of process terms�

The size of a process term is de�ned as the number of occurrences of constants
in it plus the number of occurrences of operators in it�

size
��
� �

size
X�
� �

size
t��t��
� size
t�� � size
t�� � �

size
t�kt��
� size
t�� � size
t�� � �

�

For a term t the set Const
t� is the set of constants that occur in t�

Const
��
� �

Const
X�
� fXg

Const
t��t��
� Const
t�� � Const
t��

Const
t�kt��
� Const
t�� � Const
t��

The dynamics of the system is described by a �nite set of rules � of the form

t�

a
� t�� where t� and t� are process terms and a � Act is an atomic action�

The �nite set of rules � induces a
possibly in�nite� labeled transition system
with relations

a
� with a � Act� For every a � Act� the transition relation

a
�

is the smallest relation that satis�es the following inference rules�

t�
a
� t�� � �

t�
a
� t�

t�
a
� t��

t�kt�
a
� t��kt�

t�
a
� t��

t��t�
a
� t���t�

where t�� t�� t
�
�� t

�
� are process terms� Note that parallel composition is com�

mutative and thus the inference rule for parallel composition also holds with
t� and t� exchanged�

Since � is �nite� the generated LTS is �nitely branching�
For some classes
of systems
e�g� Petri nets� the branching�degree is bounded by a constant
that depends on �� For other classes
e�g� PA� the branching�degree is �nite
at every state� but it can get arbitrarily high�� Also every single � uses only
a �nite subset Const
��
�

S
�t�

a
�t����

Const
t�� � Const
t��� of constants

and only a �nite subset Act
��
�
S
�t�

a
�t����

fag of atomic actions� Thus

for every � only �nitely many of the generated transition relations
ai� for

ai � Act are nonempty�
Those for which ai � Act
���� Still the generated
transition system can be in�nite�
Consider the analogy
 Every labeled Petri
net has only �nitely many transitions and uses only �nitely many di�erent
atomic actions� but the state space can be in�nite�� The relation

a
� is gen�

eralized to sequences of actions in the standard way� Sequences are denoted
by ��

Remark ��� There is no operator ��� for nondeterministic choice in the
process terms� because this is encoded in the set of rules �� There can be
several rules with the same term on the left hand side� It is also possible that
several rules are applicable at di�erent places in a term� The rule that is
applied and the position where it is applied are chosen nondeterministically�

�

Also there is no such thing as action pre	xes in the process terms� The atomic
actions are introduced by the rules�

Many common models of systems �t into this scheme� In the following we
characterize subclasses of rewrite systems� The expressiveness of a class
depends on what kind of terms are allowed on the left hand side and right
hand side of the rewrite rules in ��

De�nition ��� �Classes of process terms�
We distinguish four classes of process terms

� Terms consisting of a single process constant like X�

S Terms consisting of a single constant or a sequential composition of process
constants like X�Y�Z�

P Terms consisting of a single constant or a parallel composition of process
constants like XkY kZ�

G General process terms with arbitrary sequential and parallel composition
like
X�
Y kZ��kW �

Also let � � S� P�G� but � �� �� It is easy to see the relations between these
classes of process terms
 � � S� � � P � S � G and P � G� S and P are
incomparable and S � P � � � f�g�

We characterize classes of process rewrite systems
PRS� by the classes of
terms allowed on the left hand sides and the right hand sides of rewrite rules�

De�nition ��� �PRS�
Let �� � � f�� S� P�Gg� A
�� ���PRS is a �nite set of rules � where for every
rewrite rule
l

a
� r� � � the term l is in the class � and l �� � and the term

r is in the class �
and can be ��� The initial state is given as a term t� � ��
A
G�G��PRS is simply called PRS�

Remark ��	 W�l�o�g� it can be assumed that the initial state t� of a PRS is
a single constant� There are only 	nitely many terms t�� � � � � tn s�t� t�

ai� ti�
If t� is not a single constant then we can achieve this by introducing a new
constant X� and new rules X�

ai� ti and declaring X� to be the initial state�

�

�� ���PRS where � is more general than � or incomparable to �
for example
� � G and � � S� do not make any sense� This is because the terms that are
introduced by the right side of rules must later be matched by the left sides
of other rules� So in a
G� S��PRS the rules that contain parallel composition
on the left hand side will never be used
assuming that the initial state is a
single constant�� Thus one may as well use a
S� S��PRS� So we restrict our
attention to
�� ���PRS with � � ��

Figure � shows a graphical description of the hierarchy of
�� ���PRS�

Many of these
�� ���PRS correspond to widely known models like Petri nets�
pushdown processes� context�free processes and others�

�� A
�� ���PRS is a �nite�state system� Every process constant corre�
sponds to a state and the state space is bounded by jConst
��j� Every
�nite�state system can be encoded as a
�� ���PRS�

��
�� S��PRS are equivalent to context�free processes
also called �Basic
Process Algebra
BPA��� �BE��� Esp���� They are transition systems
associated with Greibach normal form
GNF� context�free grammars
in which only left�most derivations are permitted�

�� It is easy to see that pushdown automata can be encoded as a sub�
class of
S� S��PRS
with at most two constants on the left side of
rules�� Caucal �Cau��� showed that any unrestricted
S� S��PRS can
be presented as a pushdown automaton
PDA�� in the sense that the
transition systems are isomorphic up to the labeling of states� Thus

S� S��PRS are equivalent to pushdown processes� the processes de�
scribed by pushdown automata�

��
P� P ��PRS are equivalent to Petri nets� Every constant corresponds
to a place in the net and the number of occurrences of a constant
in a term corresponds to the number of tokens in this place� This is
because we work with classes of terms modulo commutativity of parallel
composition� Every rule in � corresponds to a transition in the net�

��
�� P ��PRS are equivalent to communication�free nets� the subclass of
Petri nets where every transition has exactly one place in its preset
�BE��� Esp���� This class of Petri nets is equivalent to Basic Parallel
Processes �BPP� �Chr����

�

Pushdown (S,S)

PAN (P,G)

Finite-State Systems (1,1)

PRS (G,G)

PAD (S,G)

Processes PA (1,G) Petri Nets (P,P)

BPP (1,P)BPA (1,S)

Figure �
 The PRS�hierarchy�

�

��
�� G��PRS are equivalent to PA�processes� a process algebra with se�
quential and parallel composition� but no communication
see �BK���
May��b� Kuc���

��
P�G��PRS are called PAN�processes in �May��a�� It is the smallest
common generalization of Petri nets and PA�processes and it is strictly
more general than both of them
e�g� PAN can describe all Chomsky��
languages while Petri nets cannot��

��
S�G��PRS are the smallest common generalization of pushdown pro�
cesses and PA�processes� They are called PAD
PA � PD� in �May����

�� The most general case is
G�G��PRS
here simply called PRS�� PRS
have been introduced in �May��c�� They subsume all the previously
mentioned classes�

� The Intuition

In this section we explain the general intuition for the de�nition of
�� ���
PRS� i�e� what does it mean that parallel�sequential�arbitrary composition
is allowed in terms on the left�right hand sides of rules�

If parallel composition is allowed on the right hand side of rules� then there
can be rules of the form t

a
� t�kt�� This means that it is possible to create

processes that run in parallel� The rule can be interpreted that� by action
a� the process t becomes the process t� and spawns o� the process t� or vice
versa�

If sequential composition is allowed on the right hand side of rules� then
there are rules of the form t

a
� t��t�� The interpretation is that process t

calls a subroutine t� and becomes process t�� It resumes its execution when
the subroutine t� terminates�

If arbitrary sequential and parallel composition is allowed on the right hand
side of rules then both parallelism and subroutines are possible�

If parallel composition is allowed on the left hand side of rules� then there
are rules of the form t�kt�

a
� t� This can be interpreted as synchroniza�

tion�communication of the parallel processes t� and t�� This is because this
action can only occur if both t� and t� change in a certain de�ned way�

�

If sequential composition is allowed on the left hand side of rules� then there
can be rules of the form t���t�

a
� t� and t����t�

a
� t��� The intuition is that a

process t called a subroutine t� and became process t� by a rule t
a
� t��t��

The subroutine may in its computation reach a state t�� or t
��
�� Now one of

these rules is applicable� This means that the result of the computation of
the subroutine a�ects the behavior of the caller when it becomes active again�
since the caller can become t� or t��� The interpretation is that the subroutine
returns a value to the caller when it terminates�

If arbitrary sequential and parallel composition is allowed on the left hand
sides of rules then both synchronization and returning of values by sub�
routines are possible� It will be shown in Section � that rules with nested
sequential and parallel composition
on the left side or the right side� do not
increase the expressiveness� It su�ces to have systems of rules where every
single rules only contains either sequential or parallel composition�

� The PRS�Hierarchy is Strict

The question arises if this hierarchy of
�� ���PRS is strict� For the de�
scription of languages this is not the case� because for example context�free
processes
BPA� and pushdown processes
PDA� both describe exactly the
Chomsky�� languages� However� the hierarchy is strict with respect to bisim�
ulation equivalence� Bisimulation equivalence �Mil��� is a �ner equivalence
than language equivalence� It is de�ned as follows

De�nition ��� A binary relation R over the states of a labeled transition
system is a bisimulation iff

	
s�� s�� � R 	a � Act�
s�
a
� s��
 �s�

a
� s��� s

�
�Rs

�
�� �

s�
a
� s��
 �s�

a
� s��� s

�
�Rs

�
��

Two states s� and s� are bisimilar i� there is a bisimulation R such that
s�Rs�� This de�nition can be extended to states in di�erent transition sys�
tems by putting them �side by side� and considering them as a single transi�
tion system� It is easy to see that there always exists a largest bisimulation
which is an equivalence relation� It is called bisimulation equivalence or
bisimilarity and it is denoted by ��

�

De�nition ��� A class of processes A is more general than a class of pro�
cesses B with respect to bisimulation i� the following two conditions are
satis�ed

�� For every B�process there is a semantically equivalent A�process

	t � B� �t� � A� t� � t

�� There is an A�process that is not bisimilar to any B�process

�t � A� 	t� � B� t �� t�

It has already been established in �BCS��� Mol��� that the classes of �nite�
state systems� BPP� BPA� pushdown systems� PA and Petri nets are all
di�erent with respect to bisimulation� For PAD� PAN and PRS this remains
to be shown�

The proof has two parts
 First we show that there is a pushdown process
that is not bisimilar to any PAN�process� Then we show that there is a Petri
net that is not bisimilar to any PAD�process�

De�nition ��� Consider the following pushdown system

U�X
a
� U�A�X U�A

a
� U�A�A U�A

b
� U�B�A

U�X
b
� U�B�X U�B

b
� U�B�B U�B

a
� U�A�B

U�X
c
� V�X U�A

c
� V�A U�B

c
� V�B

U�X
d
� W�X U�A

d
� W�A U�B

d
� W�B

V�A
a
� V V�B

b
� V V�X

e
� V

W�A
a
� W W�B

b
� W W�X

f
� W

with the initial state U�X� The execution sequences of this system are as
follows
 First it does a sequence of actions in fa� bg� and then one of two
things

�� A �c�� the sequence in reverse and �nally a �e��

�� A �d�� the sequence in reverse and �nally a �f��

Now we show that this pushdown system is not bisimilar to any PAN�process�
First we need several de�nitions and lemmas�

��

De�nition ��� Let t be an arbitrary process and � a sequence of actions�
The runs of t are its computations of maximal length� We de�ne that
only
t� �� is true i� the following conditions are satis�ed

 All runs of t are �nite�

 All these runs do the sequence of actions ��

Lemma ��	 �Dickson
s Lemma �Dic����
Given an in	nite sequence of vectors M��M��M�� � � � in IN

k there are i � j
s�t� Mi �Mj �� taken componentwise��

Remember that P is the class of process terms that contain only parallel
composition	 see Def� ����

Lemma ��
 For every PAN � there is a sequence � � fa� bg� s�t� no � � P
satis	es any of the following two conditions

Cond�
�� ��� ��c� �
c
� �c � only
�c� �e�

Cond�
�� ��� ��d� �
d
� �d � only
�d� �f �

Proof We assume the contrary and derive a contradiction� So we assume
that there is a PAN � s�t� for every �i
� aib
i � IN� there is an �i � P s�t�
Cond�
�i� �

i� or Cond�
�i� �
i��

There must be an in�nite subsequence of ��� ��� � � � where Cond�
�i� �
i� is

always satis�ed or an in�nite subsequence of ��� ��� � � � where Cond�
�i� �
i�

is always satis�ed� W�r� we assume that there is an in�nite subsequence
where Cond�
�i� �

i� is always satis�ed� Now we only regard this in�nite
subsequence� Since � is �nite� there are only �nitely many di�erent rules in
� that are marked with the action c� Let
t�

c
� t���� � � � �
tn

c
� t�n� be those

rules�
Note that ti � P for every i� because � is a PAN� However� t�i need
not be in P �� It follows that one of these rules must be used in�nitely often
to obtain �i

c from �i� Let this rule be
tk
c
� t�k� for some k � f�� � � � � ng�

Thus there is an in�nite subsequence of the sequence ��� ��� � � � where only
this rule is used to obtain �i

c from �i� Now we consider only this in�nite
subsequence�

We regard the sequence �i of the � that satisfy Cond�� Const
�� is �nite
and �i � P � Moreover� all �i only contain constants from the �nite set

��

Const
��� Thus we can apply Dickson�s Lemma� By Dickson�s Lemma
there are j� j � � IN s�t� j � � j and �j�

� �j
this means �j�

� �jk� for some
� � P ��

For both �j and �j�

the rule
tk
c
� t�k� is used to obtain �

j
c� �

j�

c � Thus �
j �

tkk	 for some 	 � P and �j
c � t�kk	� Also we have �

j�

� �jk� � tkk	k� and
�j�

c � t�kk	k� � �j
ck�� By Cond� we have only
�

j
c� �je� and only
�j�

c � �j�e��
However� �j�

c also enables the sequence �je� This is a contradiction�

Lemma ��� For every PAN � there is a sequence � fA�Bg� s�t� no pro�
cess term t �w�r�t� �� is bisimilar to the pushdown system U� �X of Def�
���

Proof We assume the contrary and derive a contradiction� Assume that
there is a PAN � s�t� for every sequence � fA�Bg� there is a term t
 �
s�t� t
 � � U� �X� For every let t
 � be the smallest term that has this
property�

For any sequence � fA�Bg� let �
 � be the sequence of actions a and b
that is obtained by converting to lowercase letters�

It follows from the de�nition of bisimulation that no process that has only
�nite computations can be bisimilar to a process that has an in�nite compu�
tation� Thus by Def� ��� it follows that for every sequence � fA�Bg� and
every state t
 � the following properties hold

C There is a state tc
 � s�t� t
 �
c
� tc
 � and tc
 � � V� �X and thus

only
tc
 �� �
 �e��

D There is a state td
 � s�t� t
 �
d
� td
 � and td
 � � W� �X and thus

only
td
 �� �
 �f��

For every t
 � the action c disables the action d and vice versa� Thus the
actions c and d must both occur in the same subterm � of t
 � and � � P �

This is because in a PAN no single action can change two separate subterms�
For example in the term
t��t��kt�
where t�� t� and t� are not �� no single
action can change both t� and t��� Let � be the maximal parallel subterm of
t
 � where the actions c or d occur� This means that � is part of a subterm of
the form ��� or �k
��	�� but not of the form �k� for some � � P � It follows
that � cannot immediately synchronize with the rest of the term t
 ��

We have that �
c
� �c and �

d
� �d� Let t
 ��� � ��� be the term that one

gets by replacing this one particular � in t
 � by ���
Not every subterm

��

� is replaced by �� !� This means that tc
 � � t
 ��� � �c� and td
 � �
t
 ���� �d��

Without restriction we now assume that begins with A
the other case is
symmetric�� Then t
 �c
t
 �d� must enable action a� but not action b� We
show that the action a must be enabled by a subterm of t
 �c
t
 �d� that is
di�erent from �c
�d�� We assume the contrary and derive a contradiction�
In this case the rest of t
 �c
t
 �d�� without �c
�d�� enables neither a nor b�
It follows that the rest of t
 �c
t
 �d� cannot do action a or b before �c
�d�
terminates� If �c
�d� does not terminate then by Lemma ��� the conditions
C and D cannot be satis�ed for some � a contradiction� If �c
�d� does
terminate then for some su�xes ��� ��� of �
 � we get only
t
 ���� ��� ��e�
and only
t
 ���� ��� ���f�� Again this is a contradiction�

Thus the action a must be enabled at a subterm of t
 �c
t
 �d� that is

di�erent from �c
�d�� As we have t
 � � U� �X and U� �X
b
� U�B� �X

there must be a t� s�t� t
b
� t� and t� � U�B� �X� This action b must occur in

�� because the rest of t
 � cannot do b� Thus �
b
� �� and t� � t
 ���� ����

We have U�B� �X
c
� V�B� �X� As the rest of t�
without ��� cannot do

action c we get ��
c
� ��� and t
 ��� � ���� � V�B� �X� However now the

rest of the term t
 ��� � ����
without ���� can do action a� but V�B� �X
cannot� Thus t
 ���� ���� �� V�B� �X and we have a contradiction�

Lemma ��� The pushdown system U�X of Def�
�� is not bisimilar to any
PAN � with initial state t��

Proof We assume the contrary and derive a contradiction� Assume that
there is a PAN � with initial state t� s�t� t� � U�X� Let be the sequence
from Lemma ����
Note that depends on ��� The process U�X can reach
the state U� �X� Thus t� must be able to reach a state t s�t� t � U� �X� By
Lemma ��� such a term t does not exist� a contradiction�

It follows directly that the pushdown system from Def� ��� is not bisimilar
to any PA�process either� However� as PAD and PRS subsume pushdown
processes� it is a PAD and PRS�process� Thus PAD is strictly more general
then PA and PRS is strictly more general than PAN� PAD subsumes BPP
and BPP is incomparable to pushdown systems� Thus PAD is also more
general than pushdown processes� Now we show that there is a Petri net
that is not bisimilar to any PAD�process�

��

De�nition ��� Consider the following Petri net
given as a
P� P ��PRS��

X
g
� XkAkB X

c
� Y Y kA

a
� Y Y kB

b
� Y

XkA
d
� Z XkB

d
� Z Y kA

d
� Z Y kB

d
� Z

The initial state is XkAkB�

Lemma ���� If there is a PAD�process that is bisimilar to the state XkAkB
of the Petri net of Def�
��� then there is also a pushdown process that is
bisimilar to XkAkB�

Proof Let � be a PAD and Q the initial state s�t� Q � XkAkB� W�r� we can
assume that Q is a single constant
see Def� ����� We construct a pushdown
process
an
S� S��PRS� �� that is also bisimilar to XkAkB�

First we show that in every reachable state of � of the form
t�kt���t�
t� can
be �� t� or t� must be deadlocked�

Assume that there is a state
t�kt���t� that is reachable from Q� Then a state
M must be reachable from XkAkB s�t�
t�kt���t� �M � There are two cases

�� If M is deadlocked then t� and t� must be deadlocked�

�� If M is not deadlocked then there is an M � s�t� M
d
� M � and M � is

deadlocked� By the de�nition of PAD a single action d can only change
t� or t�� but not both� Thus either t� or t� must be deadlocked�

Thus if parallel composition occurs in a state that is reachable from Q� then
all but one part of it must be deadlocked� Since Q is a single constant�
parallel composition can only be introduced by PAD�rules� If such a rule
has the form
u

x
� u�ku�� � � for some action x� then u� or u� must be

deadlocked� W�r� let u� be deadlocked� However� the term u��t for some term
t is not necessarily deadlocked� Thus in �� we replace the rule
u

x
� u�ku��

by the rule u
x
� u��u�� The new system is equivalent up to bisimulation�
We

assume w�r� that u� cannot in"uence u�� This means that there is no rule in
�� whose left hand side is v��v� where v� is a nonempty su�x of u� and v� is
a nonempty pre�x of u�� This can be achieved by renaming of constants in
u� and �

� if necessary��

The other case where parallel composition occurs in a rule in � is when a
rule has the form u

x
� u��
u�ku���u�� where u� or u� can be �� There are two

cases

��

�� If u� can terminate then the term
u�ku�� can become active� Therefore
u� or u� must be deadlocked� W�r� let u� be deadlocked� Then in
�� we replace this rule by the rule u

x
� u��u��u��u�� Note that u�

is deadlocked� but u��u� is not necessarily deadlocked�
We assume
w�r� that u� cannot in"uence u� and u� cannot in"uence u�� This can
be achieved by renaming of constants in u� and u� and �

� if necessary��

�� If u� cannot terminate then in �
� we replace this rule by the equivalent

rule u
x
� u��

Thus we get a new system �� that is equivalent to � up to bisimulation�
but �� does not contain parallel composition� Thus� if the preconditions are
satis�ed� the
S� S��PRS �� with initial state Q is bisimilar to XkAkB� This
is the pushdown process that we are looking for�

De�nition ���� Let � be a
�� ���PRS for �� � � f�� S� P�Gg and t� the
initial state� The language generated by this system is the set of all sequences
� s�t� �t� t�

�
� t and t is deadlocked�

Lemma ���� If a process t is bisimilar to a pushdown process then the lan�
guage generated by t is a context�free language�

Proof Directly from Def� ��� and the de�nition of pushdown processes�

Lemma ���� The Petri net of Def�
�� is not bisimilar to any PAD�process�

Proof We assume the contrary and derive a contradiction� If there is a PAD�
process that is bisimilar to the Petri net of Def� ���� then by Lemma ����
there is a pushdown process that is bisimilar to this Petri net� Then by
Lemma ���� the Petri net of Def� ��� generates a context�free language L�
By the de�nition of this Petri net L is

fgmc� j m � � � � � fa� bg� � #a� � m � � � #b� � m � �g �

fgmd j m � �g ����
��g

mc�d j
m � � � � � fa� bg� �

#a� � m � � � #b� � m� � � #a� �#b� � �m� �

���
��

It follows that L � g�ca�b� � fgmcam��bm�� jm � �g� By applying the
pumping lemma for context�free languages �HU��� it is easy to show that L
is not context�free� Thus we have a contradiction�

��

It follows that PAD and PAN are incomparable and PRS is strictly more
general than PAD� By combining these results with the other results above
we get the following theorem�

Theorem ���� The PRS�hierarchy is strict with respect to bisimulation�

� The Reachability Problem

In this section we show that the reachability problem is decidable for PRS�
Thus PRS are not Turing�powerful�

Reachability

Instance� A PRS � with initial state t� and a given state t�
Question� Is the state t reachable from t� � Formally
 Is there a sequence

of actions � s�t� t�
�
� t �

For Petri nets reachability is decidable and EXPSPACE �hard �May��� Lip����
Here we show that reachability is decidable for PRS by reducing the problem
to the reachability problem for Petri nets� As the atomic actions are not
important for reachability� we�ll ignore them for the rest of this section and
write just t� � t� instead of t�

a
� t��

We prove the decidability of reachability in two steps� First we show that it
su�ces to decide the problem for a special class of PRS� the PRS in transitive
normal form
see below�� Then we solve the problem for this subclass of PRS�

De�nition 	�� For a PRS � and process terms t� t� � T we de�ne

t �� t�
�
 ��� t
�
� t�

where � is a sequence of applications of rules in �� If � is �xed� then we
just write t � t��

� is in normal form i� all rules in � are in normal form� A rule is in normal
form if it has one of the following two forms

Par�Rule X�kX� � Y or X � Y�kY� or X � Y �

Seq�Rule X��X� � Y or X � Y��Y� or X � Y �

��

where X� Y�Xi� Yi are process constants and Y can be ��

The only rules that are both seq�rules and par�rules are of the form X � Y �
The following relations ��

par and �
�
seq are technicalities used in the proofs�

t ��
par t

�
�
 ��� t
�
� t� and all rules used in � are par�rules from �

t ��
seq t

�
�
 ��� t
�
� t� and all rules used in � are seq�rules from �

A PRS � is in transitive normal form i� it is in normal form and for all
X� Y � Const

X �� Y

X � Y � � �

Proposition 	�� Let � be a PRS in transitive normal form and t�� t� pro�
cess terms that do not contain the operator for sequential composition� It is
decidable if t� ��

par t��

Proof This follows directly from the decidability of the reachability problem
for Petri nets �May����

The reachability problem for PRS is reducible to the reachability problem
for PRS in normal form�

Lemma 	�� Let � be a PRS and t�� t� � T �

Then a PRS �� in normal form and terms t�� and t�� can be e�ectively con�
structed s�t� ��� t�� and t�� use only constants from the 	nite set V � �with
Const
�� � V � � Const� and t� �

� t� �
 t�� �
��

t���

Proof For any rule
u� � u�� in � let

norm
u� � u��
� size
u�� � size
u��

Let ki be the number of rules
u� � u�� in � that are not in normal form and
norm
u� � u�� � i� Let n be the maximal i s�t� ki �� ��
n exists because �
is �nite�� We de�ne Norm
��
�
kn� kn��� � � � � k��� These norms are ordered
lexicographically� � is in normal form i� Norm
�� �
�� � � � � ��� Now we
describe a procedure that transforms � into a new PRS �� and terms t�� t�
into t��� t

�
� s�t� Norm
�

�� �lex Norm
�� and t� �� t� �
 t�� �
��

t���

��

Remember that sequential composition is left�associative� This means that
the term X�Y�Z is
X�Y ��Z� It has the subterms X� Y � Z and X�Y � but not
Y�Z� However� the term X�
Y kZ� has a subterm Y kZ�

If Norm
�� ��
�� � � � � �� then there is a rule in � that is not in normal form�
Take a non�constant subterm t of this rule and replace every subterm t in
� and in t� and t� by a new constant X� Then add two rules X � t and
t� X� This yields a new set of rules �� and t�� and t

�
�� By the de�nition of

Norm and size we get Norm
��� �lex Norm
��� The constant X serves as
an abbreviation for the term t� There are only two problems

�� A rule is applicable to a subterm of t� but not to X� For example
t � Y�Z�W and there is a rule Y�Z � V � In this case the rule X � t
must be applied �rst� So the term X can be rewritten to V�W in two
steps�

�� During the rewriting a subterm t is created� However� the rule that con�
tains t as a subterm on the left side is no longer applicable� because the
subterm t has been replaced by X� For example let t � Y kZ� the initial
state is
WkZ��W and there are rules W � Y and
Y kZ��W � V �
By the above algorithm the rule
Y kZ��W � V has been transformed
into X�W � V and rules X � Y kZ and Y kZ � X have been added�
The initial state
WkZ��W can be rewritten to
Y kZ��W � but now the
changed rule X�W � V is not applicable� However� by applying the
new rule Y kZ � X �rst we get X�W and can �nally rewrite the term
to V �

Thus we get
t� �

� t� �
 t�� �
��

t��

By repeating this algorithm we �nally get a set of rules ��� and terms t��� and
t��� s�t� Norm
�

��� �
�� � � � � �� and

t� �
� t� �
 t��� �

���

t���

��� is in normal form�

The following lemma will be used to prove the correctness of the algorithm
in Lemma ����

��

Lemma 	�� Let � be a PRS in normal form� If there are constants X� Y
s�t� X �� Y and
X � Y � �� �� then there are also constants X �� Y � with

X � � Y �� �� � and X � ��

par Y
� or X � ��

seq Y
��

Proof It follows from the preconditions that we can choose a pair of con�
stants X �� Y � s�t�
X � � Y �� �� � and X � �

� Y � for a sequence � of minimal
length� More precisely the length of � is minimal over the choice of X �� Y �

and ��

Now we show that X � ��
par Y

� or X � ��
seq Y

�� We do this by assuming the
contrary and deriving a contradiction� We say that a rule is trivial if it
has the form
X �� � Y ���� We assume that � contains both seq�rules and
par�rules that are nontrivial� There are two cases

�� The last nontrivial rule in � is a par�rule� If a seq�rule Z� � Z��Z�

occurs in � then there is a subsequence �� of � and a constant Z�

s�t� Z��Z�
��

� Z�� This contradicts the minimality of the length of ��

�� The last nontrivial rule in � is a seq�rule� This seq�rule must have the
form Z��Z� � Z� The �rst nontrivial par�rule that occurs in � must
have the form Z � � Z �

�kZ
�
�� Then there is a subsequence �

� of � and

a constant Z �� s�t� Z � ��

� Z ��� This contradicts the minimality of the
length of ��

Thus � consists either only of applications of par�rules
and thus X � ��
par Y

��
or only of seq�rules
and thus X � ��

seq Y
���

Lemma 	�	 Let � be a PRS in normal form� Then a PRS �� in transitive
normal form can be e�ectively constructed s�t�

	t�� t� � T � t� �
��

t� �
 t� �
� t�

Proof It su�ces to �nd all pairs of constants X� Y s�t� X �� Y and to add
the rules
X � Y � to �� By Lemma ��� it su�ces to check X ��

par Y and
X ��

seq Y � This is decidable because of Proposition ��� and the decidability of
the reachability problem for pushdown processes
see �BEM����� Lemma ���
basically says that while there are new rules to add we can �nd at least one
to add�

The algorithm is as follows

��

��
� �	 "ag
� true	
While "ag do
"ag
� false	
For every pair of constants X� Y with
X � Y � �� �� do
If X ���

par Y or X ���

seq Y then
��
� �� �
X � Y �	 "ag
� true� �	
od	

od	

Theorem 	�
 The reachability problem is decidable for PRS� The complex�
ity is polynomially equivalent to reachability for Petri nets�

Proof Let � be a PRS and t�� t� � T � The question is if t� �� t��

We construct a new PRS �� by adding new constants X� and X� and rules
X� � t� and t� � X�� It follows that t� �� t� � X� ���

X�� Then we
use Lemma ��� and transform �� into a PRS ��� in normal form� Normally
the terms X�� X� would also change in this transformation� but since they
are single constants they stay the same� This procedure adds at most �k
new rules� where k is the number of non�constant strict subterms of rules
in �� Thus k � O
n�� and size
��� is polynomial in size
��� We get
t� �

� t� � X� �
���

X�� Then we use Lemma ��� to transform ��� into a
PRS ���� in transitive normal form� It follows that t� �� t� � X� �����

X��
Since jConst
��j � O
n� there are O
n�� pairs of constants� Thus the
algorithm of Lemma ��� uses O
n�� instances of the reachability problem for
Petri nets and for pushdown processes in every instance of the loop� The
loop is done at most O
n�� times� Thus it uses at most O
n�� instances of
the reachability problem for Petri nets and pushdown processes� Since ����

is in transitive normal form we have

t� �
� t� � X� �

����

X� �
X� � X�� � �
���

The condition
X� � X�� � ���� is trivial to check�

The reachability problem for pushdown processes is polynomial �BEM����
The algorithm for PRS uses only polynomially many instances of Petri net
reachability� Since PRS are more general than Petri nets� it follows that
reachability for PRS is polynomially equivalent to Petri net reachability�

��

� The Reachable Property Problem

In the previous section the problem was if one given state is reachable� Here
we consider the question if there is a reachable state that has certain proper�
ties� We call this problem the reachable property problem� Unlike for reach�
ability� the atomic actions are important for this problem� Properties are
described by state formulae that have the following syntax

$
� a j �$ j $� � $� j $� � $�

The denotation ��$�� of a state formula $ is a
possibly in�nite� set of process
terms�

��a��
� ft j �t�� t
a
� t�g

���$��
� T � ��$��

��$� � $���
� ��$��� � ��$���

��$� � $���
� ��$��� � ��$���

To simplify the notation we use sets of actions� Let A
� fa�� � � � � akg � Act�

��A��
� ��a��� � � � � � ��ak��

���A��
� ���a��� � � � � � ���ak��

By transformation to disjunctive normal form every state�formula $ can be
written as
A� � �B�� � � � � �
An � �Bn�� where Ai� Bi � Act �

We consider the question if there is a reachable state that satis�es a given
state formula� To express this problem� we de�ne another operator�

���$��
� ft j ��� t�� t
�
� t� � ��$��g

Note that state�formulae do not contain the operator �� Let t � T be a
process term� For t � ��$�� we also write t j� $�

Reachable property problem

Instance� A PRS � with initial state t� and a state�formula $�
Question� t� j� �$ �

We prove the decidability of the reachable property problem for PRS in two
steps� First we show that it su�ces to solve the problem for PRS in transitive
normal form�

��

Lemma
�� Let � be a PRS that uses only constants from the 	nite set
Const
�� � Const� and let t� � T be a process term�

Then a PRS �� in normal form and a term t�� can be e�ectively constructed
s�t� for every state formula $� t� j� �$ with respect to � i� t�� j� �$ with
respect to ���

Proof We use the same algorithm to transform � and t as in Lemma ����
The new rules that are added are labeled with the new
silent� action
 � that
doesn�t occur in $�

The only problem that remains is that if a subterm t is replaced by a new
constantX� thenX does not enable the same actions as t� Thus� for example�
the new system might satisfy a formula �
�a�� although the original doesn�t�

The solution is as follows
 Compute the set of actions fb�� � � � � bmg that are

enabled by the term t in w�r�t� �� Then add new rules X
b�� X� � � �� X

bm� X�
This must be done after every step where a subterm a replaced by a constant�

Then the new system ��� t�� satis�es exactly the same formulae �$ as the
old one�

Lemma
�� Let � be a PRS in normal form� Then a PRS �� in transitive
normal form can be e�ectively constructed s�t� for every term t and every
state�formula $� t j� $ w�r�t � i� t j� $ w�r�t ���

Proof We use the same algorithm as in Lemma ���� The only di�erence is
that we label the newly added rules with the special
silent� action
 that
does not occur in any state�formula�

Remark
�� By Lemma ��� and Lemma ��� it follows that it su�ces to
solve the reachable property problem for PRS in transitive normal form� Let
there be a PRS � in transitive normal form with initial state t� and $ a
state�formula� The problem is if t� j� �$� As $ can be transformed into
disjunctive normal form and

t j� �
$� � $�� �
 t j� �
$�� � t j� �
$��

it su�ces to show decidability for formulae of the form �
A � �B�� where
A�B � Act�

��

The following de�nition and lemma by Jan%car �Jan��� are used to show the
e�ectiveness of the procedures check and check � that are used to show the
decidability of the reachable property problem�

De�nition
�� For a given Petri net N the set LN of formulae is de�ned as
follows

 There is one variable M that stands for a marking of the net�

 A term is either

� a term M
p� where p is a place� or

� a constant c � IN� or

� of the form t� � t��

 A formula is either

� an atomic formula t� � t� or t� � t�� where t�� t� are terms� or

� of the form f�&f� where f�� f� are formulae�

For a concrete markingM � f
M� denotes the instance of f with thisM � The
semantics is natural�

Lemma
�	 ��Jan����
For a Petri net N with initial markingM� it is decidable if there is a reachable
marking M s�t� f
M��

De�nition
�
 Let C � Const and t � P � Let h be a function s�t� h
C� t�
is true i� t contains only constants from C and false otherwise�

Let � be a PRS in transitive normal form� X � Const and let A�A�� B be
�nite sets of actions� Let j be a mapping j
 �A �� �Const �

check
X� j� A�� B� i� there exists a t � P s�t� X ��
par t and

t � t�kk�C��A�tc� � t� j�
A� � �B� �
�

C��A

h
j
C�� tc�

and the additional constraint that t � Const
 t� � ��

check �
X�A�B� i� there exists a t � P s�t� X ��
par t and t �� Const and

t j�
A � �B�

��

Lemma
�� The functions check and check � are decidable�

Proof Directly from Lemma ���� because par�rules correspond to Petri net
transitions�

De�nition
�� The function snd returns the nesting�depth of sequential
composition in a process term�

snd
��
� �

snd
X�
� �

snd
t�kt��
� max
snd
t��� snd
t���

snd
t��t��
� max
snd
t�� � �� snd
t���

De�nition
�� Let � be a PRS in transitive normal form� X � Const �
n � IN and A�B �nite sets of actions�

Let reach
X� n�A�B� be true i� there exists a term t s�t� t �� Const � X �� t�
t j�
A��B� and the nesting�depth of sequential composition in t is at most
n� i�e� snd
t� � n�

The function reachseq is de�ned like reach� except that the �rst rule applied
to X must be a seq�rule of the form X

a
� Y�Z and Z is never changed

afterwards�
This implies that reachseq is only de�ned for n � ���

Now we describe recursive algorithms for reach and reachseq�

� reach
X� n�A�B�
� case n � �

� return
check �
X�A�B��	
� case n � �

� for every mapping j
 �A ��� �Const and every A� � A

� if A� �
�

C��A � j�C� �	�

C � A then

� if check
X� j� A�� B� then

� if
�

C��A

	

 �
X��j�C�

reachseq
X �� n� C�B�

�
A then return
true�	

� return
false�	

The function reachseq is only de�ned for arguments n � ��

��

� reachseq
X� n�A�B�
� for every X � Y�Z
� if reach
Y� n� �� A� B� then return
true�	
� for every Y � W
� if W�Z j�
A � �B� then return
true�	
� return
false�	

Remark� Note that seq�rules of the form X�Y � Z
sequential composition
on the left side� are almost never used in the algorithm� The only exception
is in line � of the function reachseq where they might be needed to enable
some action in A� The reason why they are not used anywhere else is because
they are not needed since � is in transitive normal form�

Lemma
��� The above algorithms are correct and e�ective implementa�
tions of the functions reach and reachseq�

Proof By induction on n�

Base case� For reach the base case is n � �� The correctness follows imme�
diately from the de�nition of the function check � and Lemma ���� Note
that no seq�rules are used� because � is in transitive normal form�

For reachseq the base case is n � �� By de�nition the �rst rule applica�
tion must have the form X � Y�Z
as in line ��� Line � deals with the
case that Y alone develops into some term t � P that satis�es A��B
and Z does not play a role� However� t must not be a single constant�
because otherwise it might be able to interact with Z via a seq�rule�
The function reach is called with argument n � � and just calls the
function check � which guarantees that t is not a single constant� In
line ��� we consider the case that Y is rewritten to a single constant
W
possibly Y itself� s�t� W�Z j�
A � �B�� Since � is in transitive
normal norm the condition in line � is trivial to check
 either W � Y
or
Y � W � � �� Line � is there to deal with the case that some
seq�rule of the form W�Z

a
� Z � is needed to enable some action a in A�

Step� In the function reach we split the set of actions A into subsets� The
special subset A� are the actions that should become enabled after ap�
plying only par�rules to X� The other subsets of actions are assigned

��

sets of constants by the function j� These constants require further ap�
plication of seq�rules� By the function check we test for the reachability
of a state t with

t � t�kk�C��A�tc� � t� j�
A� � �B� �
�

C��A

h
j
C�� tc�

and the additional constraint that t � Const
 t� � ��

The constants in the terms tc require further applications of seq�rules�
The additional constraint ensures that at least one tc is not � or t

� is not
a constant� This ensures that the reachable state that �nally satis�es

A � �B� is not a constant�
The applications of seq�rules in reachseq
always yield non�constant terms��

Now for the correctness of reachseq
 By de�nition the �rst rule applica�
tion must have the form X � Y�Z
as in line ��� Line � deals with the
case that Y alone develops into some term t � P that satis�es A��B
and Z does not play a role� However� t must not be a single constant�
because otherwise it might be able to interact with Z via a seq�rule�
The function reach guarantees this and by induction hypothesis the
correctness follows� In line ��� we consider the case that Y is rewritten
to a single constant W
possibly Y itself� s�t� W�Z j�
A��B�� Since
� is in transitive normal norm the condition in line � is trivial to check

either W � Y or
Y � W � � �� Line � is there is deal with the case
that some seq�rule of the form W�Z

a
� Z � is needed to enable some

action a in A�

Now we show that it su�ces to consider terms with bounded nesting�depth
of sequential composition�

Lemma
��� Let � be a PRS in transitive normal form� X � Const
��
and A�B � Act
���

Then X j� �
A � �B� i� there is a term t s�t� X �� t� t j�
A � �B� and
snd
t� � jAj � jConst
��j�

Proof X is transformed into t by applying rewrite rules from �� The
nesting�depth of sequential composition is only increased when a seq�rule of
the form Z � Z ��Z �� is applied to some constant Z which is a subterm of
an intermediate term� In the end Z should be rewritten to a subterm t�

��

of of t that satis�es a part of the formula
A � �B�� Thus this subterm
Z is required to satisfy �
A� � �B� for some A� � A� Let a chain be a
sequence of applications of rewrite rules s�t� every rule rewrites at least part
of the term which was introduced by the previous one� Consider a chain
and the sequence of constants Zi in it to which seq�rules are applied and
the sequence of formulae �
A�

i � �B� that the Zi are required to satisfy�
These subsets A�

i can never get bigger in a chain� Furthermore� if they get
smaller they must be subsets of previous ones� Therefore in any chain at
most jAj di�erent formulae �
A�

i ��B� must be satis�ed by constants Zi to
which seq�rules are applied� We can assume that in any chain no constant
to
which a seq�rule is applied� appears twice with the same formula� because
this means that a constant has been rewritten to a term containing this
constant without making any progress in the formula� It follows that any
chain contains at most jAj � jConst
��j applications of seq�rules� because
there are only jConst
��j di�erent constants� Thus we get snd
t� � jAj �
jConst
��j�

Theorem
��� The reachable property problem is decidable for PRS�

Proof An instance is given by a PRS �� an initial state t� and a state�
formula $� The question is if t� j� �$� Without restriction we can assume
that t� is a single constant X�
Otherwise just add a rule X

�
� t��� By

Lemma ��� and Lemma ��� the problem can be reduced to a problem for
PRS in transitive normal form� By Remark ��� the problem can be reduced
to problems for formulae of the form �
A � �B�� If X j� �
A � �B� then
there are two cases

�� X can reach a term Y � Const s�t� Y j�
A ��B�� This can be easily
checked� because � is in transitive normal form� For every constant
Y � Const check if
X � Y � � � and Y j�
A � �B�� Also check if
X j�
A � �B��

�� X can reach a term t �� Const s�t� t j�
A��B�� By Lemma ���� there
is such a t with snd
t� � jAj � jConst
��j� Thus the condition can be
checked by computing reach
X� jAj�jConst
��j� A� B�� By Lemma ����
this can be done with the algorithms given above�

X j� �
A � �B� i� one of those checks yields a positive answer�

��

Remark
��� This result can also be used to decide deadlock�freedom� Let
� be a PRS with initial state t� and Act
�� the �	nite�� set of actions used
in �� A deadlock is reachable i� t� j� �
�Act
���� Thus the system is
deadlock�free i� t� �j� �
�Act
����

� Conclusion

The algorithms for the reachability problem and the reachable property prob�
lem for PRS rely on the reachability problem for Petri nets� which has a high
complexity
EXPSPACE �hard �May��� Lip����� So it might seem that they
are not applicable in practice because of their very high complexity� However�
there are three arguments in their favor

�� In many examples the system is not very large and the structure of the
Petri nets that are contained in them is often simple�

�� In a large PRS there may be many Petri nets as substructures� but
often each of these Petri nets is quite small� These Petri nets are either
not connected with each other at all� or their in"uence on each other
is very limited� Thus they yield small subproblems that can be solved
in acceptable time�

�� Finally� the reachability problem for Petri nets has been studied for
many years and ways of dealing with it have been developed� There
are semi�decision procedures that give yes�no�don�t know answers in
acceptable time �CH��� Mur��� ME���� These algorithms mostly use
constraints to represent sets of states and approximate the behavior of
the system�

Therefore the algorithms of Section � and Section � can still be useful in
practice to verify systems that are modeled with PRS�

Process Rewrite Systems
PRS� is a very expressive model of in�nite�state
concurrent systems that subsumes PAN� PAD� Petri nets� PA�processes�
pushdown processes� BPP and BPA� PRS extends Petri nets by introducing
an operator for sequential composition� This can be seen as the possibility
to call subroutines� The calling of subroutines is already possible in PAN�
processes� However� there is a major di�erence
 In PAN subroutines that
terminate have no e�ect on their caller� while in PRS subroutines can return

��

a value to the caller when they terminate� This is an important aspect in
modeling real programs� Thus PRS�processes can be used to model systems
that exceed the bounds of the expressiveness of Petri nets and PAN�

PRS is a very general model for concurrent systems� Thus model checking
with many temporal logics
EF� CTL� LTL� linear time ��calculus� modal
��calculus� is undecidable for it� This is because EF is undecidable for Petri
nets �Esp��� BE���� CTL is undecidable for BPP �EK��� and LTL and the
linear time ��calculus are undecidable for PA�processes �BH���� However�
PRS is not Turing powerful� since reachability is still decidable�

Finally� it should be noted that PRS are
roughly� equivalent to ground
AC rewrite systems
i�e� rewrite systems without substitution� but with an
associative and commutative operator�� The general idea is that e�g� a
ground AC term Z
X � Y �
where ��� is the associative and commutative
operator� corresponds to a PRS�term
XkY ��Z and vice versa�

Acknowledgments� I thank Micha�el Rusinowitch and Javier Esparza for
helpful discussions and three anonymous referees for their detailed comments�

References

�BCS��� O� Burkart� D� Caucal� and B� Ste�en� Bisimulation collapse and
the process taxonomy� In U� Montanari and V� Sassone� editors�
Proceedings of CONCUR���� volume ���� of LNCS� Springer Ver�
lag� �����

�BE��� O� Burkart and J� Esparza� More in�nite results� Electronic Notes
in Theoretical Computer Science �ENTCS�� �� �����

�BEM��� A� Bouajjani� J� Esparza� and O� Maler� Reachability analysis of
pushdown automata
 application to model checking� In Interna�
tional Conference on Concurrency Theory �CONCUR����� volume
���� of LNCS� Springer Verlag� �����

�BH��� A� Bouajjani and P� Habermehl� Constrained properties� semilin�
ear systems� and Petri nets� In Ugo Montanari and Vladimiro Sas�
sone� editors� Proceedings of CONCUR���� volume ���� of LNCS�
Springer Verlag� �����

��

�BK��� J� A� Bergstra and J�W� Klop� Algebra of communicating processes
with abstraction� Theoretical Computer Science �TCS�� ��
��'����
�����

�Cau��� D� Caucal� On the regular structure of pre�x rewriting� Journal
of Theoretical Computer Science� ���
��'��� �����

�CH��� P� Cousot and N� Halbwachs� Automatic discovery of linear re�
straints among variables of a program� In �th ACM Symposium
on Principles of Programming Languages� ACM�Press� �����

�Chr��� S� Christensen� Decidability and Decomposition in Process Alge�
bras� PhD thesis� Edinburgh University� �����

�Dic��� L�E� Dickson� Finiteness of the odd perfect and primitive abundant
numbers with distinct factors� American Journal of Mathematics�
��
���'���� �����

�EK��� J� Esparza and A� Kiehn� On the model checking problem for
branching time logics and Basic Parallel Processes� In CAV����
volume ��� of LNCS� pages ���'���� Springer Verlag� �����

�Esp��� J� Esparza� Decidability of model checking for in�nite�state con�
current systems� Acta Informatica� ��
��'���� �����

�HU��� J�E� Hopcroft and J�D� Ullman� Introduction to Automata Theory�
Languages and Computation� Addison Wesley� �����

�Jan��� P� Jan%car� Decidability of a temporal logic problem for Petri nets�
Theoretical Comuter Science� ��
��'��� �����

�Kuc� A� Ku%cera� Regularity is decidable for normed PA processes in
polynomial time� In Foundations of Software Technology and The�
oretical Computer Science �FST�TCS����� volume ���� of LNCS�
Springer Verlag� �����

�Lip��� R� Lipton� The reachability problem requires exponential space�
Technical Report ��� Department of Computer Science� Yale Uni�
versity� January �����

�May��� E� Mayr� An algorithm for the general Petri net reachability prob�
lem� SIAM Journal of Computing� ��
���'���� �����

��

�May��a� R� Mayr� Combining Petri nets and PA�processes� In Martin Abadi
and Takayasu Ito� editors� International Symposium on Theoretical
Aspects of Computer Software �TACS����� volume ���� of LNCS�
Springer Verlag� �����

�May��b� R� Mayr� Model checking PA�processes� In International Con�
ference on Concurrency Theory �CONCUR����� volume ���� of
LNCS� Springer Verlag� �����

�May��c� R� Mayr� Process rewrite systems� Electronic Notes in Theoretical
Computer Science �ENTCS�� �� ����� Proceedings of Expressive�
ness in Concurrency
EXPRESS�����

�May��� R� Mayr� Decidability and Complexity of Model Checking Problems
for In	nite�State Systems� PhD thesis� TU�M�unchen� �����

�ME��� S� Melzer and J� Esparza� Checking system properties via integer
programming� In H�R� Nielson� editor� Proc� of ESOP���� vol�
ume ���� of Lecture Notes in Computer Science� pages ���'����
Springer Verlag� �����

�Mil��� R� Milner� Communication and Concurrency� Prentice Hall� �����

�Mol��� F� Moller� In�nite results� In Ugo Montanari and Vladimiro Sas�
sone� editors� Proceedings of CONCUR���� volume ���� of LNCS�
Springer Verlag� �����

�Mur��� T� Murata� Petri nets
 Properties� analysis und applications� Proc�
of the IEEE� ��
��
���'���� �����

��

Model Checking Lossy Vector Addition Systems

Ahmed Bouajjani � ��� Richard Mayr�� ���

Abstract� Lossy VASS �vector addition systems with states� are de�ned
as a subclass of VASS in analogy to lossy FIFO�channel systems� They
can be used to model concurrent systems with unreliable communication�
We analyze the decidability of model checking problems for lossy systems
and several branching�time and linear�time temporal logics� We present an
almost complete picture of the decidability of model checking for normal
VASS� lossy VASS and lossy VASS with test for zero�

� Introduction

VASS�s �vector addition systems with states� can model communicating systems
through unbounded unordered bu�ers� and hence they can be seen as abstractions
of �fo�channels systems� when the ordering between messages in the channels is
not relevant but only their number� Communicating systems are often analyzed
under the assumption that they communicate through unreliable channels� Hence�
we consider lossy models of communicating systems� i�e� models where messages
can be lost� Recent works are about lossy unbounded �fo�channels systems �AJ	
�
AJ	�� CFI	��� The reachability problem is decidable for these models� which
implies the decidability of the veri�cation problem for safety properties� However�
liveness properties cannot be checked for lossy �fo�channel systems� unless for
very special ones like single eventualities� In particular� it is impossible to model
check lossy channel systems under fairness conditions� Here we study veri�cation
problems for VASS and VASS with inhibitor arcs �counter machines� under the
assumption of lossiness� i�e� the contents of a place
counter can spontaneously
get lower at any time�

Using the approach introduced in �CFI	�� ACJT	��� it can be shown very easily
that the set pre��S� of predecessors of any set of con�gurations S is e�ectively
constructible for lossy VASS even with inhibitor arcs� and that this set can be
represented by simple linear constraints �SC for short�� where integer variables
can be compared only with constants� Moreover� for lossy VASS� the set post��S�
of successors is SC de�nable and e�ectively constructible� but interestingly� for
lossy VASS with inhibitor arcs these sets are not constructible although they are
SC de�nable�

Local model checking� or simply model checking� consists in deciding whether a
given con�guration of a system satis�es a given formula of a temporal logic� and
global model checking consists in constructing the set of all con�gurations that
satisfy a given formula� We address these problems for a variety of linear�time
and branching�time properties� We express these properties in a temporal logic�
called AL �Automata Logic�� which is based on automata on �nite and in�nite
sequences to specify path properties �in the spirit of ETL�� and the use of path
�

Verimag� Centre Equation� � avenue de Vignate� ��	
� Gi�eres� France�
�� Institut f
ur Informatik� TU�M
unchen� Arcisstr� �
� D������ M
unchen� Germany�
��� Ahmed�Bouajjani�imag�fr� mayrri�informatik�tu�muenchen�de

quanti�ers to express branching�time properties �like in ECTL� �Tho�	��� The
basic state predicates in this logic are SC constraints�
Our main positive result is that for lossy VASS� the global model checking is
decidable for the logic �AL with only upward closed constraints� and dually for
�AL with downward closed constraints ��AL and �AL are the universal and ex�
istential positive fragments of AL� They subsume respectively the corresponding
well�known fragments �CTL� and �CTL� �GL	�� of the logic CTL��� When only
in�nite paths are considered our decidability result also holds for normal VASS�
A corollary is that linear�time properties on �nite and in�nite paths �on in�nite
paths only� are decidable for lossy VASS �normal VASS�� We can even construct
the set of all the con�gurations satisfying these properties� This generalizes the
result in �Esp	�� where only model checking is considered� Notice also that �AL
is strictly more expressive than all linear�time temporal logics�
These decidability results break down if we relax any of the restrictions� model
checking becomes undecidable if we consider �AL or �AL formulae with both
downward and upward closed constraints� or if we consider lossy VASS with
inhibitor arcs� Also� even if we use only propositional constraints in the logic
�i�e�� only constraints on control locations� the use of negation must be restricted�
model checking is undecidable for CTL and lossy VASS� However� it is decidable
for the fragments EF and EG of CTL even for lossy VASS with inhibitor arcs� but
surprisingly� global model checking is undecidable for EG and lossy VASS �while
it is decidable for EF and lossy VASS with inhibitor arcs�� As a side e�ect we
obtain that normal VASS �Petri nets� and lossy VASS with inhibitor arcs �lossy
counter machines� are incomparable�
The missing proofs can be found in the full version of the paper�

� Vector Addition Systems with States

De�nition �� A n�dim VASS S is a tuple ���X � Q� �� where � is a set of action
labels� X is a set of variables such that jX j � n� Q is a �nite set of control states�
� is a �nite set of transitions of the form �q�� a��� q�� where a � �� � � ZZn�

A con�guration of S is a pair hq� �ui where q � Q and �u � INn� Let C�S� be the
set of con�gurations of S� Given a con�guration s � hq� �ui� we let State�s� � q
and Val�s� � �u�

We de�ne a transition relation �� on con�gurations as follows� hq�� �u�i
a
��

hq�� �u�i i� �� � �q�� a��� q�� � �� �u� � �u� � �� Let post� �hq�� �u�i� �resp�
pre� �hq�� �u�i�� denote the con�guration hq�� �u�i �resp� hq�� �u�i�� i�e�� the immedi�
ate successor �resp� predecessor� of hq�� �u�i �resp� hq�� �u�i� by the transition � �
Then� we let post �resp� pre� denote the union of the post� �s �resp� pre� �s� for all

the transitions � � �� In other words� post�hq� �ui� � fhq�� �u�i � �a � �� hq� �ui
a
��

hq�� �u�ig� and pre�hq� �ui� � fhq�� �u�i � �a � �� hq�� �u�i
a
�� hq� �uig� Let post� and

pre� be the re�exive�transitive closures of post and pre �
Given a con�guration s� a run of the system S starting from s is a �nite or in�nite
sequence s�a�s�a� � � � sn such that s � s� and� for every i � �� si

ai�� si��� We
denote by Runf �s�S� �resp� Run��s�S�� the set of �nite �resp� in�nite� runs of
S starting from s�

A lossy VASS is de�ned as a VASS with a weak transition relation �� on
con�gurations� We de�ne the relation �� as follows� hq�� �u�i

a
�� hq�� �u�i i�

��u��� �u
�
� � INn� �u� � �u��� hq�� �u

�
�i

a
�� hq�� �u��i� and �u�� � �u��

The weak transition relation induces corresponding notions of runs� successor
and predecessor functions de�ned by considering the weak transition relation
�� instead of ���

De�nition �� We order vectors of natural numbers by �u�� � � � � un� � �v�� � � � � vn�
i� �i � f�� � � � � ng� ui � vi�
Given a set S � INn� we denote by min�S� the set of minimal elements of S
w�r�t� the relation ��
Let S � INn� Then� S is upward �resp� downward� closed i� ��u � INn� �u � S �
���v � INn� �v � �u �resp� �v � �u� � �v � S�� Given a set S � INn� we denote by S	
�resp� S
� the upward �resp� downward� closure of S� i�e�� the smallest upward
�resp� downward� closed set which contains S�

Lemma�� Every set S � INn has a �nite number of minimal elements� A set
is upward closed if and only if S � min�S�	� The union and the intersection of
two upward �resp� downward� closed sets is an upward �resp� downward� closed
set� The complement of an upward closed set is downward closed and vice�versa�

De�nition � Simple constraints� upward�downward closed constraints�
Let X � fx�� � � � � xng be a set of variables ranging over IN �

�� A simple constraint over X � SC for short� is any boolean combination of
constraints of the form x � c where x � X and c � IN � f�g�

�� An upward closed �resp� downward closed� constraint over X � UC �resp� DC�
for short� is any positive boolean combination of constraints of the form x � c
�resp� x � c� where x � X and c � IN � f�g�

Constraints are interpreted in the standard way as a subset of INn �� is the usual
ordering and � is the strict inequality�� Given a simple constraint �� we let �����
denote the set of vectors in INn satisfying �� Notice that the constraints x � �
and x � � correspond to
 and that x � � and x �� correspond to IN �

De�nition �� A set S is SC �resp� UC� DC� de�nable if there exists an SC �resp�
UC� DC� � such that S � ������

De�nition 	 Normal forms�
�� A canonical product is a constraint of the form �	 � �x � �u�
�� A canonical upward closed product is a constraint of the form �	 � �x�

� A canonical downward closed product is a constraint of the form �x � �u�

where �	 � INn and �u � �IN � f�g�n�
A SC �resp� UC� DC� in normal form is either
� or a �nite disjunction of canonical
�resp� canonical upward closed� canonical downward closed� products�

Lemma
� Every SC �resp� UC� DC� is equivalent to a SC �UC� DC� in normal
form�

Proposition�� SC de�nable sets are closed under boolean operations� and UC
de�nable sets as well as DC de�nable sets are closed under union and intersection�
The complement of a UC de�nable set is a DC de�nable set and vice�versa� A
subset of INn is UC de�nable �resp� DC de�nable� if and only if it is an upward
�resp� downward� closed set� A set is SC de�nable if and only if it is a boolean
combination of upward closed sets�

Let S � ���X � Q� �� be a n�dim VASS with Q � fq�� � � � � qmg� Then� every set of
con�gurations of S is de�ned as a union C � fq�g� S� � � � � � fqmg� Sm where
the Si�s are sets of n�dim vectors of natural numbers� The set of con�gurations
C is SC �resp� UC� DC� de�nable if all the Si�s are SC �resp� UC� DC� de�nable�
We represent SC de�nable sets by simple constraints in normal form coupled
with control states� From now on� we consider a canonical product to be a pair
of the form hq� �	 � �x � �ui where q � Q� A simple constraint is either
 or a �nite
disjunction of canonical products� We use SC�Q�X � �resp� UC�Q�X �� DC�Q�X ��
to denote the set of simple constraints �resp� upward closed� downward closed
constraints�� We omit the parameters Q and X when they are known from the
context�

� Computing Successors and Predecessors

Lemma�� The class SC is e�ectively closed under the operations post and pre
for any lossy VASS�s�

Proof� These operations are distributive w�r�t� union� Hence� it su�ces to con�
sider separately each transition � � �q� a��� q�� and perform them on canonical
products�

�� post� �hq� �	 � �x � �ui� � hq�� �x � �u��i�

�� pre� �hq�� �	 � �x � �ui� � hq� ��	��� u�� � �xi�

where ��u��v � INn� �u u �v is the vector such that �i � f�� � � � � ng� ��u u �v�i �
max�ui� vi�� ut

Notice that for lossy VASS�s� the pre image of any set of con�gurations is upward
closed and its post image is downward closed� This also holds for pre� and post��

Theorem�
� For every n�dim lossy VASS S� and every n�dim SC set S� the set
pre��S� is UC de�nable and e�ectively constructible�

Proof� Since the set pre��S� is upward closed� by Proposition � we deduce that
it is UC de�nable� The construction of this set is similar to the one given in
�CFI	�� ACJT	�� for lossy channel systems� ut

Theorem��� For every n�dim lossy VASS S� and every n�dim SC set S� the set
post��S� is DC de�nable and e�ectively constructible�

Proof� Since post��S� is downward closed� by Proposition � we deduce that
post��S� is DC de�nable� This set can be constructed using the Karp�Miller
algorithm for the construction of the coverability graph �KM�	�� ut

� Automata and Automata Logic

We use �nite automata to express properties of computations� These automata
are labeled on states and edges as well� State labels are associated with predicates
on the con�gurations of a given system and edge labels are associated with the
actions of the system�

De�nition ��� Let
 and � be two �nite alphabets� A labeled transition graph
over �
��� is a tuple G � �Q� qinit� �� �� where Q is a �nite set of states� qinit
is the initial state� � � Q �
 is a state labeling function� � � Q � � � Q is a
�nite set of labeled transitions� We write q

a
�� q� when �q� a� q�� � ��

Given a state q� a run of G starting from q is a �nite or in�nite sequence
q�a�q�a�q� � � � such that q� � q and �i � �� qi

ai�� qi���

De�nition �� Automata on �nite sequences� A �nite�state automaton over
�
��� on �nite sequences is a tuple Af � �Q� qinit� �� �� F � where �Q� qinit� �� ��
is a labeled transition graph over �
���� and F � Q is a set of �nal states�
A �nite sequence ��a���a� � � � �n �
��
�� is accepted by Af if there is a run
q�a�q�a� � � � qn of Af starting from qinit such that �i � f�� � � � � ng� ��qi� � �i�
and qn � F � Let L�Af � be the set of sequences in
��
�� accepted by Af �

De�nition �� B�uchi
�automata� A �nite�state B�uchi automaton over �
���
is a tuple A� � �Q� qinit� �� �� F � where �Q� qinit� �� �� is a labeled transition
graph over �
���� and F � Q is a set of repeating states� An in�nite sequence
��a���a� � � � �n � �
��� is accepted by A� if there is a run q�a�q�a� � � � of A�

starting from qinit such that �i � �� ��qi� � �i� and
�

� i � �� qi � F � We denote
by L�A�� the set of sequences in �
��� accepted by A��

De�nition �� Closed
�automata� A closed
�automaton is a B�uchi automa�
ton A�c � �Q� qinit� �� �� F � such that F � Q�

Remark� �Tho	�� B�uchi automata de�ne
�regular sets of in�nite sequences� They
are closed under boolean operations� Closed
�automata de�ne closed
�regular
sets in the Cantor topology �the class F in the Borel hierarchy�� They correspond
to the class of
�regular safety properties� Closed
�automata are closed under
intersection and union� but not under complementation�

We introduce an automata�based branching�time temporal logic called AL �Au�
tomata Logic�� This logic is de�ned in the spirit of the extended temporal logic
ETL and is an extension of ECTL� �Tho�	�� The logic AL is more expressive
than CTL and CTL�� and allows to express all ��regular linear�time properties
on �nite and in�nite computations�

De�nition �	 Automata Logic� Given a set of control states Q and a set of
variables X � we let F denote a subset of SC�Q�X �� and we let � range over
elements of F � Then� the set of AL�F� formulae is de�ned by the following
grammar�

� ��� � j �� j � � � j � � � j �Af ���� � � � � �m� j �Af ���� � � � � �m� j
�A����� � � � � �m� j �A����� � � � � �m�

where Af �resp� A�� is a �nite�state automaton on �nite �resp� in�nite� sequences
over �
 � f��� � � � � �mg� ��� We consider standard abbreviations like ��

De�nition �
� We use � to denote f or
� Let S � ���X � Q� �� be a n�dim
�lossy� VASS� We de�ne a satisfaction relation between con�gurations of S and
AL�F� as follows�

s j� �q� �� i� State�s� � q and V al�s� � �����

s j� �� i� s �j� �

s j� �� � �� i� s j� �� or s j� ��

s j� �� � �� i� s j� �� and s j� ��

s j� �A����� � � � � �m� i� �� � s�a� � � � � Run��s�S�� �� � �i�a� � � � � L�A���

j�j � j�j and �j� � � j � j�j� sj j� �ij

s j� �A����� � � � � �m� i� �� � s�a� � � � � Run��s�S�� �� � �i�a� � � � � L�A��

j�j � j�j and �j� � � j � j�j� sj j� �ij
For every formula �� let �����

S
�� fs � S j s j� �g�

De�nition �� Fragments of AL� �AL�F� is the fragment of AL that uses only
constraints from F � conjunction� disjunction and existential path quanti�cation�
�AL�F� is the fragment of AL that uses only constraints from F � conjunction�
disjunction and universal path quanti�cation� Let X be �some fragment of� the
logic AL� Then Xf �resp� X�� X�c� denote the fragment ofX where only automata
on �nite sequences �resp� B�uchi� closed
�automata� are used�

AL is a weaker logic than the modal ��calculus� but many widely known tem�
poral logics are fragments of AL� Every propositional linear�time property� in
particular LTL properties� can be expressed in AL� CTL� is a fragment of AL
since every path formula in CTL� corresponds to an LTL formula� Thus� CTL
is also a fragment of AL� Clearly� �AL and �AL subsume the positive universal
and existential fragments of CTL� denoted �CTL� and �CTL� �notice that LTL
is a fragment of �CTL���
We consider two fragments of CTL called EF and EG� The logic EF uses SC
predicates� boolean operators� the one�step next operator and the operator EF
which is de�ned by ��EF��� � pre��������� The logic EG is de�ned like EF� except
that the operator EF is replaced by the operator EG � which is de�ned as follows�
s j� EG� i� there exists a complete run that starts at s and always satis�es ��
By a complete run we mean either an in�nite run or a �nite run ending in a
deadlock� We use the subscripts f or
 to denote the fragments of these logics
obtained by interpreting their formulae on either �nite or in�nite paths only�
Then� it can be seen that EF � EFf � CTLf � CTL�f � ALf � It can also be
seen that EG� is a fragment of AL�c but EG is not �due to the �nite paths��

� Model Checking

De�nition �� Model checking and global model checking problems�

�� The model checking problem is if s � �����
S
for con�guration s and formula ��

�� The global model checking problem is whether for any formula � the set �����
S

is e�ectively constructible�

Lemma�
� Let S be a lossy VASS� Then for every formula � of the form
�Af ���� � � � � �m� where all the �i are SC� the set �����

S
is SC de�nable and ef�

fectively constructible�

Proof� By a generalized pre� construction �see Theorem ���� ut

Theorem��� The global model checking problem for lossy VASS and the logic
ALf is decidable�

Proof� By induction on the nesting�depth and Lemma ��� ut

The following results even hold for non�lossy VASS� The aim is to show decidabil�
ity of the global model checking problem for VASS and the logic �AL��UC�� We
de�ne a generalized notion of con�gurations of VASS which includes the symbol

� This symbol denotes arbitrarily high numbers of tokens on a place� It is used
as an abbreviation in the following way� hq� �
�
� � � � �
� xk��� � � � � xn�i j� � �
�� �n�� � � � � nk � IN� hq� �n�� n�� � � � � nk� xk��� � � � � xn�i j� �� �Of course the

can occur at any position� e�g� hq� �x�� x��
� x��
� x��i��

Lemma��� Let S be a VASS and � a formula of the form �A����� � � � � �m�
where all the �i are in UC� Let s be a generalized con�guration of S �i�e� it can
contain
�� It is decidable if s j� ��

Proof� �Sketch� First construct the Karp�Miller coverability graph �KM�	�� Then
check for the existence of cycles in this graph that have an overall positive e�ect
of the �red transitions� These cycles may contain the same node several times�
This check is done with the help of Parikh�s Theorem� The property holds i� such
a cycle with overall positive e�ect exists� because it can be repeated in�nitely
often� ut

Lemma��� Let S be a VASS and � a formula of the form �A����� � � � � �m�
where all the �i are in UC� The set �����

S
is UC de�nable and e�ectively con�

structible�

Proof� �����
S
is upward closed� because all �i are upward closed� Thus� it is char�

acterized by the �nite set of its minimal elements �see Lemma
�� To �nd the
minimal elements� we use a construction that was described by Valk and Jantzen
in �VJ���� The important point here is that we can use Lemma �� to check the
existence of con�gurations that satisfy �� For example� if hq� �
� x�� x��i j� � then
we can check if hq� �n�� x�� x��i j� � for n� � �� n� � �� n� � �� � � � until we �nd
the minimal n� s�t� hq� �n�� x�� x��i j� �� ut

Theorem��� The global model checking problem is decidable for VASS and the
logic �AL��UC��

Proof� By induction on the nesting�depth of the formula and Lemma �
� ut

Theorem��� The global model checking problem is decidable for lossy VASS and
the logic �AL�UC��

Proof� By induction on the nesting depth and Theorems �� and ��� ut

Theorem�	� The model checking problem for lossy VASS and AL�c is decidable�

Proof� By induction on the nesting�depth of the formula and an analysis of all
computations which is �nite by Dickson�s Lemma� ut

Theorem�
� Model checking lossy VASS with the logic EG is decidable�

Theorems �� and �� say that the model checking problem is decidable for a
lossy VASS and an EG�formula
 AL�c�formula �� However� in both cases the
set �����

S
is not e�ectively constructible �although it is SC de�nable�� If it were

constructible then Lemma �� could be used to decide model checking lossy VASS
with formulae of the form EFEG��� where � is a constraint in SC� However� this
problem has very recently been shown to be undecidable�

Proposition��� Model checking lossy VASS with formulae of the form EFEG���
where � is a constraint in SC is undecidable�

Proof� This is a corollary of a more general undecidability result for lossy BPP
�Basic Parallel Processes�� which follows �not immediately� from the result on
lossy counter machines in Proposition
� �see �May	���� ut

Remark� This undecidability result also implies undecidability of model checking
lossy VASS with the logic �AL�� One can encode properties of the form EFEG��
in �AL� in the following way� Let A� be an automaton with states q� q�� and
transitions q � q� q � q� and q� � q� which are labeled with any action� The
predicate true is assigned to q and the predicate � is assigned to q�� q is the initial
state and q� is the only repeating state� Let A�

� be an automaton with only one
state q which is the initial state and repeating and a transition q � q with any
action� The predicate � is assigned to q� Then for any lossy VASS s we have
s j� EFEG�� �� s j� A��true� �� � A�

�����

Lossy VASS can be extended with inhibitor arcs� This means introducing tran�
sitions that can only �re if some de�ned places are empty �i�e� they can test for
zero�� Thus lossy VASS with inhibitor arcs are equivalent to lossy counter ma�
chines� Normal VASS with inhibitor arcs are Turing�powerful� but lossy VASS
with inhibitor arcs are not�

Theorem��� For lossy VASS with inhibitor arcs
�� the global model checking problem is decidable for the logic ALf �

	� model checking is decidable for the logics AL�c and EG�

Inhibitor arcs can never keep a transition from �ring� because one can just loose
the tokens on the places that inhibit it� However� after such a transition has �red�
the number of tokens on the inhibiting places is �xed and known exactly� Such
a guarantee is impossible to achieve in lossy VASS without inhibitor arcs� Thus
not all results for lossy VASS carry over to lossy VASS with inhibitor arcs�

Proposition �
� Let S be a lossy VASS with inhibitor arcs� It is undecidable if
there exists an initial con�guration s s�t� there is an in�nite run of �s�S��

Proof� This is a corollary of a more general undecidability result for lossy counter
machines in �May	��� The main idea is that one can enforce that lossiness occurs
only �nitely often in the in�nite run� ut

Theorem��� Model checking lossy VASS with inhibitor arcs with the logic LTL
is undecidable�

Proof� We reduce the problem of Proposition
� to the model checking problem�
We construct a lossy VASS with inhibitor arcs S � that does the following� First
it guesses an arbitrary con�guration s of S doing only the atomic action a�
Then it simulates S on s doing only the atomic action b� Let A� be a B�uchi�

automaton with initial state q and repeating state q� and transitions q
a
� q� q

b
� q�

and q�
b
� q�� Let s� be the initial state of S �� We have reduced the question of

Proposition
� to the question if �s��S �� j� �A��true� true�� This question can be
expressed in LTL� ut

It follows immediately that model checking lossy VASS with inhibitor arcs with
AL��UC� is undecidable� It is interesting to compare this result with Proposi�
tion ��� For undecidability it su�ces to have either inhibitor arcs in the system
or downward closed constraints in the logic� One can be encoded in the other and
vice versa� The set post��s� is DC de�nable since it is downward closed� However�
it is not constructible for lossy VASS with inhibitor arcs �unlike for lossy VASS�
see Theorem ����

Theorem��� post��s� is not constructible for lossy VASS with inhibitor arcs�

Proof� Boundedness is undecidable for reset Petri nets �DFS	��� This result car�
ries over to lossy reset Petri nets� Lossy VASS with inhibitor arcs can simulate
lossy reset Petri nets� It follows that boundedness is undecidable for lossy VASS
with inhibitor arcs and thus post��s� is not constructible� ut

� Conclusion

We have established results for normal VASS and lossy VASS with inhibitor arcs
�lossy counter machines�� Interestingly� it turns out that these two models are
incomparable� Moreover� all the positive
negative results we obtained for lossy
VASS with inhibitor arcs are the same as for lossy �fo�channel systems� Note
that lossy �fo�channel systems can simulate lossy VASS with inhibitor arcs� but
only with some additional deadlocks�

The following table summarizes the results on the decidability of model check�
ing for VASS� lossy VASS with test for zero� lossy VASS and lossy �fo�channel
systems� By ���� we denote the fact that for any formula � the set ����� is SC
de�nable and e�ectively constructible �global model checking�� while ��� means
that only model checking is decidable� We denote by � that model checking is
undecidable� The symbol ��� denotes an open problem�

Logic VASS Lossy VASS�
 Lossy VASS Lossy FIFO

ALf
EF � �Esp	�� �� �� �AJ	
� �� �AJ	
�
�AL��UC��LTL ��
��Esp	�� � �� � �AJ	��
�AL�UC� � � �� � �AJ	��
AL�c
EG � �EK	�� � � �AJ	
� � �AJ	
�
�AL�
CTL � �EK	�� � � � �AJ	��

The results in this table are new� except where references are given� For normal
VASS and LTL� decidability of the model checking problem was known �Esp	���
but the construction of the set ����� is new� The results in �AJ	
� are just about
EF and EG formulae without nesting� not for the full logics ALf and AL�c�

Acknowledgment� We thank Peter Habermehl for interesting discussions�

References

�ACJT�	� P� Abdulla� K� Cerans� B� Jonsson� and Y�K� Tsay� General Decidability
Theorems for In�nite�state Systems� In LICS���� IEEE�
��	�

�AJ��� P� Abdulla and B� Jonsson� Verifying Programs with Unreliable Channels�
In LICS���� IEEE�
����

�AJ�	� P� Abdulla and B� Jonsson� Undecidable veri�cation problems for programs
with unreliable channels� Information and Computation�
���
���
����
��	�

�CFI�	� G�erard C�ec�e� Alain Finkel� and S� Purushothaman Iyer� Unreliable Channels
Are Easier to Verify Than Perfect Channels� Information and Computation�

���
������
�
��	�

�DFS��� C� Dufourd� A� Finkel� and Ph� Schnoebelen� Reset nets between decidability
and undecidability� In Proc� of ICALP���� volume
��� of LNCS� Springer
Verlag�
����

�EK��� J� Esparza and A� Kiehn� On the model checking problem for branching time
logics and Basic Parallel Processes� In CAV���� volume ��� of LNCS� pages
�����		� Springer Verlag�
����

�Esp��� J� Esparza� Decidability of model checking for in�nite�state concurrent sys�
tems� Acta Informatica� ������
���
����

�GL��� O� Grumberg and D� Long� Model Checking and Modular Veri�cation� ACM
Transactions on Programming Languages and Systems�
	�
����

�KM	�� R� Karp and R� Miller� Parallel program schemata� JCSS� ��
�	��
�May��� R� Mayr� Lossy counter machines� Technical Report TUM�I����� TU�

M
unchen� October
���� wwwbrauer�informatik�tu�muenchen�de��mayrri�
�Tho��� W� Thomas� Computation Tree Logic and Regular ��Languages� LNCS ����

����
�Tho��� W� Thomas� Automata on In�nite Objects� In Handbook of Theo� Comp�

Sci� Elsevier Sci� Pub��
����
�VJ��� R� Valk and M� Jantzen� The Residue of Vector Sets with Applications to

Decidability Problems in Petri Nets� Acta Informatica� �
�
����

��������� �	

 ���
����

����� �����	
� ��

� ������

���	�	�
 ��
���

����� ����		�
� �� ��
���� ������

��������

����� ���� ��	
���
������� ����	�� ���� ��
�	��
�	 �	��	�
�

���
�
�� �� ���� ��
�
���� �� ����� �����
�
��	� ����	��� �	�

� �	 ��	� �� ���	�
��
���	�� ����	�� ���� ���	��
��	
������

�

����� !	
�
��"	 ��	 �	
��
������ �� ���	�
�	
#��� $����	�� ��� �����

����	��
�� �	�	�
� ��
�
��������	
�� ���	
�����	 �	�$��
� ����
��

!	 $�	�	��
�
�����
��$�	�	 $�
���	 �� ��	 �	
��
������ �� ���	�

�	
#��� ��� ����
� ����% ����� ����
�� ����� ���� ���� �	�� ���

"	���

� ���������	��

������� ��� ����		� �
��	�� ��
���� �
���
	 ��������
� ������� ���� ����
������ �����
� ������	�� ��� ���� ���������� 	��� �
������� �	
���� �������

�
�������	�� ���� ���
� ��� ����	� ���� �
��	�
� �
�������� ������� ��
��� �
��	
� ����� ���� ����� �� ������	��� �
 ��� �
��	
� ����
� ������
�
������� ���� ������ ����� �
� ��
���� ���� �
��	� ��� �� �
�������� ��
!������	�� �����
� �
����� �������� ����� ����� �
 "��
 ��� �
������� ����
������
�
� �������
� ���� #���� ���� ��� ��		 !
���
� �
����� ����������
����$� ��� �
��	 �
����������# ������� ���
�#� ���
����� ��
������
��%���� ��� ����� ���� ��� �� ���� �� ���������
��
�
�
�������	� ��������
���� ���
������# ������� �����#�� �� ��� ������	� �� �
� ��	����� ���
�	�
����� ������� �����		�� �� ��
���� ��� ���� ���� �
����������# ������� ����
�� ���	�"�� ����� ��� �����!��
� ���� ���� �
��������� ���
�#� ����	��
��	� ������	�� &����� �� �� ������	 �
 �
������ ����� �
��	�
� �
����������#

�
�������� ������ ���	�
��� � 	
���� �� �
��	��� ����� �
������ ��	����

�����
��� ���� ������	�
 � !"#$����%��� &��
����� ��� '#���(� $����%��� ����	�)�
����������	

	��
��	����� �	����
������	������������������

'

�������� ���� �
��	� ����� �����#�� ��� �� 	
��� ������	 �
��� ���� ����
���
��� ������	� �
 ��� ���	����
� 	
��� ���
�����
�
�������	� �������
(�)*+� �)*,� -./*,0� ��� ���� ��
�� �� !������	�� ���� ��� ��������	���
!�
�	�� �� �������	� �
� ����� �
��	�� ����� ��!	��� ��� ��������	���
� ���
����
����
� !�
�	�� �
� ������ !�
!������� ��� ���� �	�
 ��
�� ����� ���
��
������	�� 	������� !�
!������ ����
� �� ������� �
� 	
���
�
�������	 ��������
��	��� �
� ���� �!����	
��� 	��� ���#	� �������	������ /� !������	��� �� �� ��!
��
���	� �
 �
��	 ����� 	
��� ������	 ������� ����� �������� �
�����
��� /� ����
!�!��� �� ����� ����
����
� !�
�	��� �
� ���� ��� ���� ���� �������
� ����
��
����� ��������� ����� ��� �����!��
�
� 	
�������� &��� 	
������� �����
���� ��� �
������
� � !	���1�
����� ��� �!
�����
��	� #�� 	
��� �� ��� �����

����� ����
����
� �� ��������		� �����
� ��������	��� ���	����� ���
��� �����
��
� �� ������� �� ������� #���� � ��� �
� �
�
#�����
��� �� �� !
����	� �

�%������	� �
������� ��� ��� �������
� �		 ��� !��������
�� ��� ��� ��� ��������

� �		 ��� �������
��� 2���# ��� �!!�
��� ����
����� �� (-./*,� �-) *,0� ��
��� �� ��
�� ���� ����	� ���� ��� ���� ���#�
� ��� ���
� �
�
#�����
��
�� �%������	� �
���������	� �
� 	
��� ���� ���� ���� �������
� ����� ��� ����
���� ��� ��� �� ��!�������� �� ���!	� 	����� �
��������� ��- �
� ��
���� �����
����#�� ������	�� ��� �� �
�!����
�	� ���� �
�������� 3
��
���� �� ��
�
���� �
� 	
��� ����� ��� ����� ���#�� ��� �- ��
���	� ��� �%������	� �
��
��������	�� ��� ����������#	�� �
� 	
��� ���� ���� �������
� ���� ����� ���� ���
�
� �
���������	� �	��
�#� ���� ��� �- ��
���	�� ��� ����� ���� ������
!�
!������ ��� 	����� ��� �� ������� �
� ���� ���� �
�� �������� ��� �
��
���� ��������	��� ���	����� ���	� ���� ���
�	� �� ������� ����# ��������
������ �
� 	
��� ���� ���� �������
� ���� ��Æ����� ��� ���
�!	��� �
�����
���	���� !�
������� �
�	� �� �!!	��� �
		
���# ��� �!!�
��� !�������� ��
(4566*7� 4&*7� �4)*80��

 ���� ��� ��9
� !���
� ��� !�!�� �
������ �
��	 �������#� 6� �
������
��
 �����
��
� ���� !�
�	��: ���	�
���� ����
����
� ���!	�
���� ����
����
����� �
������ �� �������# ������� � #���� �
�
#�����
�
� � ������ �����
��
� #���� �
���	�
� � ���!
��	 	
#��� ��� ����	�
���� ����
��� ����� �
������
�� �
���������# ��� ���
� �		 �
�
#�����
�� ���� ������� � #���� �
���	�� 6�
������� ����� !�
�	��� �
� � �������
� 	���������� ��� ��������#����� !�
!�
������� .
� ��� ����
� #�����	���� �� �;!���� ����� !�
!������ �� � ���!
��	
	
#��� ��		�� �< ����
���� <
#���� ����� �� �����
� ��� ���
� ���
����
�

���� ��� ��
���� ��������� �
 �!����� !��� !�
!������ ��� ��� �!����
� = <
(6
	8+0�� ��� ��� ���
� !��� ������
��� �
 �;!���� ��������#����� !�
!������
�	��� �� =- <� (-5>87� �
8*0�� �� ����� ����� !��������� �� ���� 	
#�� ���
�- �
����������

��� ���� !
������ ����	� �� ���� �
� 	
��� ����� ��� #	
��	 �
��	 �������# ��

?

�������	� �
� ��� 	
#�� ��< ����
�	� �!���� �	
��� �
���������� ��� ���		�
�
� ��< ���� �
������ �	
��� �
��������� ���< ��� ��< ��� ��� �������
��	 ��� �;��������	 !
������ ���#�����
� �<� ��� ������� ���!������	� ���
�
����!
����# ��		���
�� ���#����� �- <� ��� �- <� (5<*@0
� ��� 	
#��
- <��� �����		�� �� ��
� ���� ����
�	� ��
���� !���� ��� �
��������
��
��������	��� ����	� �	�
 �
	�� �
� �
���	 ����� � �
�
		���
� ����� ����	�� ��
����� ����� �� ��< �� ��� ���
���� �
 ��
�� !��� !�
!������� �		 ����#�	��
�����#�	��� 	���������� !�
!������
�
���� ��� ��
���� !���� �
� ��
����
!����
�	�� ��� �������	� �
� 	
��� ���� ��
���	 ������ ��� ���� �
���
�� ��� �
������� ��� ���
� �		 ��� �
�
#�����
�� ���������# ����� !�
!�������
 ��� #�����	�"�� ��� ����	� �
�������# ���� ��� ����#�	�� !�
!������ #����
�� (=�!*@0 �����
�	� �
��	 �������# �� �
��������� A
���� �	�
 ���� ��< ��
������	� �
�� �;!������� ���� �		 	���������� ���!
��	 	
#����

 ���� ����	�� ��� ����������# ����� ������� ���
���� ����
�� ����� ��������
��
��� ��� �� ��� �� ��
�� ����� �� � ������ � ����	���� � ������ �� ���� ��
� ��< �
���	� �
	��
� ��� B��������C ������ �� �� �	�
 �
	��
� ��� B�
��
�����C ������ �� .
� ��������� �� �� ����� ���� � �	
����
�
�������	 �������
�� ��� �������� �� �
 � ����
� � 	
��� ����� ��� ���� ����� ��� !�
!����
�� ��� ���������� ��
� ��� �������� �
��	� ��� �� �� �
	��� �� ��� ������
���� �� �
	��
� ���
��#���	 �
��	�

 ��� �� ��
� ���� ����� ��������	��� ����	�� ����� �
�� �� �� ��	�; ���
�
��� ���������
�� �� ����
� ��� ������ �
��	� ��� ��� 	
#��: �
��	 ������
��# ���
��� ���������	� �� �� �
������ ��<
� ��< �
���	�� ���� �
��
�
������ ��� �!���� �	
��� �
����������
� �� �� �
������ 	
��� ���� ����
�������
� ����� �	�
� ���� �� �� ���
�	� !�
!
����
��	 �
��������� �� ��� 	
#��
������
�	� �
���������
� �
���
	 	
����
��� ��� ���
� ��#���
� ���� �� ���
��������: �
��	 �������# �� ���������	� �
� - < ��� 	
��� ����� &
������
�� �� �������	� �
� ��� ���#����� =. ��� =5
� - < ���� �
� 	
��� ���� ����
�������
� ����� ��� ���!�����#	�� #	
��	 �
��	 �������# �� ���������	� �
� =5
��� 	
��� ���� ����	� �� �� �������	� �
� =. ��� 	
��� ���� ���� �������
�
������ 6� �	�

����� �� � ���� �%���
�
�� ����	�� ���� �
���	 ���� ������
����� ��� 	
��� ���� ���� �������
� ���� �	
��� �
����� ��������� ��� ��

���
�!����	� �
��	��

 �� ����
� ��� !�!�� ��
�#���"�� �� �
		
��: /� ��� ��;� �����
� �� ����		 ���
��
����
�
� ����� /� �����
� + �� ����
���� ���!	� �
��������� ��� ��
�
�
� ���� ��� �� ���� �
 ��!������ ����
� ���� �
�
#�����
��� /� �����
�
@� �� ��
� �
� ��� �������� ��� �
����� ��������	��� ����
� 	
��� ����
��� �� �%������	� �
�!���� �� �����
� ���!	� �
���������� /� �����
� D
�� ����		 ��� ��
����
��
� ���
����
�
���� ��� ��
���� ��������� �����
���� ��� ���� �� ��� ��
����
�
�
�� 	
#�� �<� /� �����
� D �� ����
����

+

��� 	
#�� �< ��� ��� ���#������ /� �����
� , �� #���
�� ����	�� �
�������#
�
��	 �������#
� 	
��� ���� ��� ��%����� ���#�����
� �<� /� �����
� 7�
�� �;����� �
� ����� ����	�� �;����
� ����� �
�� �� ��� ����
� 	
���
���� ���� �������
� ����� .���		�� �� #��� �
��	����# ������� ��� � ���	�
�������"��#
�� ����	�� �� �����
� 8�

 ������
��	�	�� ������� �	�� ������

��������� ��	 � ����
 ���� � �� 	 ����� �E	� 	
	 Æ� �����

� E �� 	 ��� �� 	����� �	�����

� � �� 	 ��� �� �	��	���� ���� ��	� �� � F ��

�
 �� 	 ����� ��� �� ������� ��	����

� Æ �� 	 ����� ��� �� ��	�������� �� ��� ���
 ���	 �	G	 ��� ����� � � E�
G �

��

� �������	����
� � �� � !��� 	�	 ��
 ����� � �
 ��� �� � ���� <�� ����
�� ��� ���
� �
�
#�����
��
� �� 5���� � �
�
#�����
� � F 	�	 ��
� �� 	��
� ������� F � ��� � ����� F ���

6� ��
�� � ��	������� ���	���� ��
� �
�
#�����
�� �� �
		
��: 	��	 ���

�
��

	��	 ���
 �% �� F ���	 �	G	 ��� � Æ� ��� F ��� H G� 6� 	�� ����� �	��	 ���
�
����!� ���� �	��	 ���
�� ���
�� ��� �
�
#�����
� 	��	 ���
 ����!� 	��	 ���
�� �����
��� ��������� �������
� ����!� !��������
��
� 	��	 ���
 ����!� 	��	 ���
� �� ���
��������
� � � ���� �� 	�� ���� ����!� ���� ���
�� ��� ���
�
� ��� ����� $�
����!� ���� $�� �
� �		 ��� ��������
�� � � Æ� /�
���� �
���� �����	�	 ��
� F

	��	 ���
 : �� � E� 	�	 ��

�
�� 	��	 ���
�� ��� ����	�	 ��
� F
	��	 ���
 : �� �

E� 	��	 ���

�
�� 	�	 ��
�� <�� ����� ��� ���� �� ��� ��I�;�������������� �	
�����

� ���� ��� ����

5���� � �
�
#�����
� �� � ���
� ��� ������ � �������# ��
� � �� �
����

� ��
���� �������� �������� � � � �� ���� ���� � F �� ���� �
� ����� � � J�
��

���� ����� 6� ���
�� �� ������	�� ����!� ������	��� ��� ���
�
����
����!� ��
����� ����
� � �������# ��
� ��

� ����� ���� �� ��
��� �� � ���� ���� � ��	
 ��	������� ���	���� F�
�
�
�
#�����
��� 6� ��
�� ��� ��	���
� F� �� �
		
��: 	��	 ���

�
F� 	��	 ���
 �%

�����	 ��
�
� � ��

�� ��� � ����� 	��	 ��
�
�

�
�� 	��	 ����
� ��� ��

�
� � ����

 �� ��
����
�
� ��� ���� ��������
� ��	���
� ������� �
����!
����# �
��
��

� ����� �������
� ��� !��������
� ������
�� ��
��� �;���	� �� �� ��� ����

� !������ ����$� �� �
��������# ��� ���� ��������
� ��	���
� F� �������
�
��� ��	���
� ���

@

� ���������	�� ���� �� ���������	���

���������
�	 ��� � ������ ��� ���	� �������� �� �	���	� ��
����� ��
������ ���� ���	���� �� ������� �� �	���	� ��
���� �� ��� ��	��	�� �	�� ���
�� F ���	 � � � 	 ��� 	�� �� F ���	 � � � 	 ��� �� ��� ������� �� ��� ����� ���� ��
�	�� �� � �� �! �� �
'	 � � � 	 ��� �� � ���

"���� 	 ��� � � ���� �� ������ �� ������ ��� ��� ��
���
	� ���
���� �� �
������ ��� ���	���� ��

��� � � ���� ���� � �� �!���� #����� �
������$ �	
��� �! ��� � ���� �� �
� � ���� � ���� �� � �� #����� �� � ��$ � �� � ��� "���� 	 ��� � � ���� ��
������ �� �� #����� ��$ ��� ���	�� #����� �����	��$ ������� �� �� ����� ���
�
	����� ���	�� #����� �����	��$ ������ ��� ����� ����	��� ��

����

�� %���� ��� � � ��� �	� 	 ����� ��
��� ��
���
	� ���
�����

����� <�� � � ��� ��� ��!!
�� ���� � ��� �� ��
���� ���
� ������	�
������ F
���	 ���	 � � ��� ���� �� K����
�$� 	����� ����� ��� ��
 ������� �
��� � ���� ���� ��� � ���� ����� �
��������� ��� ���� ���� ��� ��� ��� ��� �
��
������	 �	�������

����

�
 � ��� �� ���	�� ������ �� 	�� ���� �� � F ��������

����

�� �� ����� 	�� ��� ������������ �� ��� ���	�� #����� �����
�	��$ ������ ���� �� 	� ���	�� #����� �����	��$ ������ ���� �� ��
���
���
�� 	� ���	�� ������ ��� �� �����	�� ������ 	�� ���������	�

����� �� �����
� ���
� ��� ����������
� ��� ������	� <�� � �� � �
������
�	
��� ���� ��� 	�� � F ��� � �� ���� 	�� �� �
������ ��
 ����
�� �� � � ���
�� � ��� ���� ���� �� � ��� 6� ���� ���������	� �� � �� �������
�������� ������
�� �� � �� �� ���� �� �	�
 �� � ����� �� �� �
������ �	
���� ����� �
���������
��� ���� ���� �� � �� � ����������	 ��#����� �		
�� �
 ��
� ���� ���
�
�!	�����
� �� �!���� �	
��� ��� �� �
������ �	
����

���������
�� �������
����� ��� � F
��	 � � � 	 ��� �� 	 ��� �� �	��	����
�	����� ���� �� �

&� � ���!	� �
�������� ���� � � �' ��� ������ �� 	�� �����	� ��
���	����
�� ������	���� �� ��� ���
 � � � ����� � � � 	�� � � �� �
���

(� �� �!���� �	
��� #����� �
������ �	
���$ ������	��� ���� � �)'
#����� *'$ ��� ������ �� 	�� �������� �����	� ��
���	���� �� ������	����
�� ��� ���
 � � � #����� � � �$ ����� � � � 	�� � � �� �
���

D

-
��������� ��� �����!����� �� ��� �������� ��� �� � ������
� ��� �� ��
��� ����	
������# ��� � �� ��� ������ ������	����� 5���� � ���!	� �
��������
�� �� 	�� ((�00 ���
�� ��� ���
� ����
�� �� ��� ���������# �� A
���� ���� ���
�
��������� � � J ��� � � � �
����!
�� �
 � ��� ���� � � J ��� � � �
�
����!
�� �
 �� �

���������
�� � ��� � �� �' #�����)'� *'$ ����	��� �� ����� ������ 	�
�' #�����)'� *'$ � ���� ��	� � F ((�00�

���������
�� �����
� ������
&� � ���
����	 !�
���� �� 	 ������	��� �� ��� ���
 �� � �� � ���

(� � ���
����	 �!���� �	
��� !�
���� �� 	 ������	��� �� ��� ���
 �� � ���

+� � ���
����	 �
������ �	
��� !�
���� �� 	 ������	��� �� ��� ���
 �� � ���

����� �� � ��� 	�� �� � ��� �
�����

� �' #�����)'� *'$ �� �
���	 �
�� �� ������ �� �� 	 ����� ���,������� ��
�	�����	� #����� �	�����	� ���	�� ������� �	�����	� �����	�� ������$ �����
�����

����

�� %���� �' #�����)'� *'$ �� �-���	���� �� 	 �' #�����)'�
*'$ �� ���
	� ���
�

����

�� ��������� ������ �' ����	��� ���� 	�� ������ ����� �����	�
����	������ 	��)' ����	��� ���� 	� ���� 	� *' ����	��� ���� 	�� ������
����� ����� 	�� ������������� �� ��
���
��� ��)' ����	��� ��� �� 	
*' ����	��� ��� 	�� ���������	� � ������ �� ��� ��)' ����	��� #����� *'
����	���$ �� 	�� ���� �� �� �� 	� ���	�� #����� �����	��$ ������ ���� � ��� ��
�' ����	��� �� 	�� ���� �� �� �� 	 �����	� ��
���	���� �� ���	�� ������ �����

����� .
		
�� ��
� <����� +�?� +�+� ��� +�@�

<�� � F �E	� 	
	 Æ� �� � ����� ���� ����
 F
��	 � � � 	 ���� ���� �����
���
� �
�
#�����
��
� � �� ��
��� �� � ���
� � F
�������� � ��
������
����� ��� ��$� ��� ����
� ����� ����
��
� ������	 �������� �� ���
�
�
�
#�����
�� � �� �- ����!� 2-� K-� ��
���	� �� �		 ��� ��$� ��� �- ����!�
2-� K-� ��
���	��

6� ��!������ �- ��
���	� ���� �� ���!	� �
��������� �� �
���	 �
�� �
�!	��
���� �
���
	 ������� .�
� �
�
�� �� �
������ � ���
����	 !�
���� �
 ��
� !���
� ��� �
�� 	�	 �� � �� � ��
 ����� � �
� � ���!	� �
�������� ��
������ �
� �
���� ���9�����
�
� ���
����	 !�
������ 6� �
������ ��� ����
�
������
� �� ��� �����
� �!���� �	
��� ��� �
������ �	
��� �
����������
6� ��� �-�
	� � ����!� 2-�
	� �� K-�
	� �� �
 ���
�� ��� ���
� ���!	�
�
��������� ����!� �!���� �	
���� �
������ �	
��� �
����������� 6�
���
��� !���������
 ��� � ���� ���� ��� ��
�� ��
� ��� �
���;��

,

� ������	�� ���������� ��� ������������

����������� ��	 �� ��	�� �' �� �!�������� ������ ����� ��� ����� ��� ���
��	����� ���� 	�� ��� ��� 	�� ����� ����.��

����� .����� �
���� ���� �����
!�����
�� ��� ������������ ������ ���
�
����9�����
��� &����� �� ��Æ��� �
 �
������ ��!�����	� ���� ��������
� � F
��	 �	G	 ��� ��� ��
� �
� �
 !���
�� ����
� ���
����	 !�
�����:

'� ����� �	�	 �� � �� � ��
� F 	��	 �� � ��HG
�

?� ���� �	�
�	 �� � �� � ��
� F 	�	 ����G� ��J � ��
�

����� ���	�� � ���� �� � �� �� ��� ����
� ���� ���� �� �
'	 � � � 	 ��� ��� � ���� F
������	 ����

A
���� ���� �
� 	
��� ����$�� ��� ��� ���#�
� ��� ���
� �
�
#�����
�� ��
�!���� �	
��� ��� ��� ���� ���#� �� �
������ �	
���� ��� �	�
 �
	�� �
�
���� ��� ������

!"����� ��� /�� ����� ����
 ����� ���� �� 	�� ����� ����
 �' ��� ��
��� ��� ������� ��)' ����	��� 	�� �!�������� ��������������

����� ����� ��� ��� ������� �� �!���� �	
���� �� ��
!
����
� +�* �� ������
���� �� �� 2- ��
���	�� �� �
��������
�
� ���� ��� �� ����	�� �
 ���
��
#���� �� (-./*,� �-) *,0 �
� 	
��� ������	 ��������

!"����� ��
 /�� ����� ����
 ����� ���� �� 	�� ����� ����
 �' ��� ��
��� ��� �������� �� *' ����	��� 	�� �!�������� ��������������

����� ����� �������� �� �
������ �	
���� �� ��
!
����
� +�* �� ������ ����
�������� �� K- ��
���	�� ��� ��� ��� �� �
��������� ����# ��� >��!�3�		��
�	#
����� �
� ��� �
��������
�
� ��� �
������	��� #��!��

�
������� ���
������� ���	�

/� ���� �����
� �� ��
�� ���
���� ���
���� �� ��� �
 �;!���� !�
!������

� �
�!�����
��� ���� ���
���� ��� ������ ��������� �;��!� ���� ���� ���
	���	��
� ������ ��� ��#�� �� ��		� ��� �� ������	 �� ��� �
���;�
� �!���
���
��
�� ����� ����� 	���	� ��� ���
������ ���� !���������
� ��� �
�
#�����
��
�
� #���� ������ ��� ��#� 	���	� ��� ���
������ ���� ��� ����
��
� ��� �������

7

��������� ��	 ��� L 	�� E �� ��� ����� 	���	����� � �	����� ��	�������
��	�� ���� �L	E� �� 	 ����� � F �
	 �����	M	 Æ� �����

�
 �� 	 ����� ��� �� ��	����

� ����� �� ��� �����	� ��	���

� M :
� L �� 	 ��	�� �	������ ���������

� Æ �
� E�
 �� 	 ����� ��� �� �	����� ��	���������

�� ����� �
�
�� �� ���� ��	 �	 ��� � Æ�

"���� 	 ��	�� �� 	 ��� �� � ��	����� ���
 � �� 	 ����� �� ������� ��-�����
���������� � � � ���� ��	� �� F � 	�� �� � J� ��

���� �����

��������� ��� �#$���
�
 �� ����� ��%$��&��� � ��������	�� 	���
	�
��� ���� �L	E� �� ����� ��-������ �� 	 ����� �� F �
	 �����	M	 Æ	 � �����
�
	 �����	M	 Æ� �� 	 �	����� ��	������� ��	�� ���� �L	E�� 	�� �
 �� 	
��� �� ��	� ��	���� � ����� ��-����� !���!��� � � � !� � L�EL�� �� ����!���
�� �� �� ����� �� 	 ��� �������� � � � �� �� �� ��	����� ���
 ����� ���� ��	�
�� �
J	 � � � 	 ��� M���� F !�� 	�� �� � � �� ������ �� "���� ��� ��� ��
��-������ �� L�EL�� 	������� �� �� �

��������� ��
 �'($&"� �)
$���
�
� � ��������	�� 01���� 	���
	��� ����
�L	E� �� 	 ����� �� F �
	 �����	M	 Æ	 � ����� �
	 �����	M	 Æ� �� 	 �	����� ��	��
������ ��	�� ���� �L	E�� 	�� �
 �� 	 ��� �� ����	���� ��	���� �� ����
���� ��-����� !���!��� � � � !� � �LE�� �� ����!��� �� �� �� ����� �� 	 ���
�������� � � � �� �� ��	����� ���
 ����� ���� ��	� �� � J� M���� F !�� 	��
�

� � � J� �� � � �� ������ �� "���� ��� ��� �� ��-������ �� �LE�
� 	�������

�� ���

��������� ��� ������* �)
$���
�
� � ������ ��	���
	��� �� 	 01����
	���
	��� ��	 F �
	 �����	M	 Æ	 � ���� ��	� F
�

+��
�, ��� 2 ��345 01���� 	���
	�	 ����� �������	� ���� �� ������� ���
-������� ��� 	�� ������ ����� �����	� ����	������ '����� ��	���
	�	 �����
������ �������	� ���� �� ��� '	���� �������� #��� ��	�� �� ��� 0���� �����
	����$� ��� ���������� �� ��� ��	�� �� �������	� �	���� ����������� '�����
��	���
	�	 	�� ������ ����� ������������ 	�� ������ ��� ��� ����� ��
����

���	�����

8

6� ����
���� �� ���
���������� ��������#����� ���!
��	 	
#�� ��		�� �<
����
���� <
#���� ��� 	
#�� �� ��
��� �� ��� �!����
� ��� �;������ ���!
�
��	 	
#�� = < (6
	8+0 ��� �� �� �;�����
�
� =- <� (-5>87� �
8*0 �����
�		
�� �
 �;!���� ���!
��	 !�
!������
� �	
���� ����$� ���
	���# ���!	� �
��
��������� �� 	
#�� �< �� �
�� �;!������� ���� ��� ��������#����� 	
#���
- < ��� - <�� ��� �		
�� �
 �;!���� �		 ����#�	�� 	���������� !�
!������

�
���� ��� ��
���� �
�!�����
���

��������� ��� �#$���
�
 ��-�&� "���� 	 ��� �� ������� ��	���
 	�� 	
��� �� �	��	���� � � �� ��� � ������ 	 ������ �� �'�
	� �� 	�� �� ��� # �	���
���� ���
���� �� � � ���� ��� ��� �� ��#�$ ���
��	� �� ������ �� ���
��������� ��	

	�6

$::F # � �$ � $ � $ � $ $ � ����$�	 � � � 	 $�� � ����$�	 � � � 	 $�� �
����$�	 � � � 	 $�� � ����$�	 � � � 	 $��

����� �� #����� ��$ �� 	 ��������	�� 	���
	��� �� ����� #����� �������$
��-������ ���� �L F
!�	 � � � 	 !��	E�� �� �������� ��	��	�� 	������	�����
��
� ��

��������� ��� �� ��� % �� ������ & �� �� ��� � F �E	� 	
	 Æ� �� 	 ����

#�����$ ����� �� ����� 	 �	����	����� ���	���� ������� �������	����� �� �
	�� ��#�$ 	� �������6

� �F ��	 �� �! �������� F � 	�� ' ����� � ((�00

� �F �$ �! � !�F $

� �F $� � $� �! � �F $� �� � �F $�

� �F $� $� �! � �F $� 	�� � �F $�

� �F ��
�$�	 � � � 	 $�� �! �(F ���� � � � � ���
��	��� �) F !���� � � � � "��
��

�)� F �(� 	�� ��� J � � � �(�� �� �F $��

� �F ��
�$�	 � � � 	 $�� �! �(F ���� � � � � ���
��	��� �) F !���� � � � � "��
�

�)� F �(� 	�� ��� J � � � �(�� �� �F $��

/�� ����� ���
��	 $� ��� (($00� :F
� � � � � �F $��

��������� ��� �.�
-����� �� #�� ���#�$ �� ��� ��	�
��� �� �� ��	�
���� ���� ������	���� ���
 � � ���,�������� ���,������� 	�� ���������	� �	��
-�	�����	����� ���#�$ �� ��� ��	�
��� �� �� ��	� ���� ���� ������	����
���
 � � ���,�������� ���,������� 	�� �������	� �	�� -�	�����	����� ��� *
�� #��
� ��	�
��� ��$ ��� ����� ��� ��� 7� #����� 7�� 7�	$ ������ ���
��	�
��� �� * ����� ���� 	���
	�	 �� ����� ��-������ #����� 01����� ������
��	���
	�	$ 	�� �����

*

�< �� � ������ 	
#�� ���� ��� �
��	 +���	��	��� ��� ���� ����	� ��
��
���!
��	 	
#��� ��� ���#�����
� �<� =���� !�
!
����
��	 	���������� !�
!�
����� �� !������	�� < < !�
!������� ��� �� �;!������ �� �����
� ���
����
(�68,� �
*J0 ��� ����� ���� ��� �� �;!������ �� �<� ���� �� �� ���� �

��� ���� - <� �� � ���#����
� �< ����� ����� !��� �
���	� �� - <� �
��
���!
��� �
 �� < < �
���	�� ���� - < �� �	�
 � ���#����
� �<� -	���	��
��< ��� ��< ������� ��� !
������ ��������	 ��� �;��������	 ���#�����
�
- <� ���
��� �- <� ��� �- <� ��
���� ���� < < �� � ���#����
� �- <���

6� �
������ ��
 ���#�����
� - < ��		�� =. ��� =5� �� 	
#�� =. ���� �-
!���������� �

	���
!����
��� ���
������! ��;�
!����
� ��� ���
!����
�
% ����� �� ��
��� �� ((, $00 F �����(($00�� ����� � �
�
#�����
� � �����
��
, $ �� ����� �� � �������	� �
�
#�����
� ��
� � ����� �����
�� $� ��
	
#�� =5 �� ��
��� 	��� =.� �;��!� ���� ���
!����
� % �� ��!	���� �� ���

!����
� %-� ����� �� ��
��� �� �
		
��: � �F %-$ �% ����� �;���� � �
�!	���
��� ���� ������ �� � ��� �	���� �����
�� $� 4� � �
�!	��� ��� �� ���� ������
�� ��
���� ���
� �
���� ��� �����# �� � ����	
���

6� ��� ��� �������!�� &
� � �
 ���
�� ��� ���#�����
� ����� 	
#���
�������
�� �����!�����# ����� �
���	��
� ������
����
� ��
���� !����
�	�� ���� ��
��� �� ���� ���� =. F =.� � - <� � - <�� � �<� � /� ��� �	�
 �� ����
���� =5� �� � ���#����
� �<�	 ��� =5 �� �
� ���� �
 ���
���� !������

.�#��� ' ��
�� ��� ��	���
����! ������� ������	 	
#���� �� ��� ������� ��

	
#��� ����� ���� ��� ��#��� 	
#�� �� ��� #��!� �� �
�� �;!��������

 !���" ����#	��

��������� ��	 �/�*�� &"�&,��-
�* -��0
� ��*�� &"�&,��-�

&� �� �
��	 �������# !�
�	�� ��� ����� 	 �������	���� � 	�� 	 ���
��	
$� ������� � � (($00��

(� �� #	
��	 �
��	 �������# !�
�	�� �� ������� ��� 	�� ���
��	 $ ���
��� (($00� �� �!�������� ��������������

����
 ��� ��� � �� 	 ����� ����� ��� ��� ����� ���
��	 $ �� ��� ���

��� �#�	 � � � 	 #�� ����� 	�� ��� #� 	�� �'� ��� ��� (($00� �� �' ����	��� 	��
�!�������� ��������������

����� .���� �� �
�!��� ��� !�
����
� � ��� �� ���
����� � ��� 	
���
���� � �� �		 ������ �� ���
���� �
���
	
� � � ���� ��� �
�� ��	 ��� ����� � ��
� ����� �� ���
���� �
���
	
� � ��� �� �� � ����� �� �� � �� ������	 ����� �� ���

'J

��� ���

��� ������� ����

��

����� �����
����

�� ��

���

����

���

��������

����

����

���

.�#��� ': �� ��	����� �;!������� !
���
� ������	 	
#����

!�
����
� ��� ������	 ������ �� � ��� �� � � ����� �� ���
���� �
���
	
� � � ��

��	 �% ��� !���
� �� �� �� ��
��	� ����	��	�� ���� ����� �� ���
���� �
���
	

� � � �� ����#��� ��� �
�������� #� ���� �� ����#��� �
 ��� �� �!���
� ��� =����
�
�������� #� �� �- ��
���	�� ��� ��� ���
�
��	 �
�
#�����
��
� � � ��� ��
������� �� � ���9�����
�
� ���
����	 !�
�����
� ��� �
�� 	��	��� � �� � ���
�
����� �� �� �
��	 �����
� � ��

.
� ����� 	��	��� � �� � ���
 �� �
�!��� � ���� ��
�� �
��� ��� 	���	�� ����

���
����	 !�
����� ���� 	��	��� � �� � ���
 �� ��� �

� �� ��� �
		
���# ���: .
�
����� �
�� � ���� ���
����	 !�
���� . �� �
�!��� ����. � ���� ���!��� �

� �� ����� � � �� 	
���� ���� �� � ���9�����
�
� �!���� �	
��� ���
����	 !�
������

''

.
� ����
� ����� �� �
�!��� ��� ����������
� ���� ��� #� ����#��� �
 ���
������� �����
� ���
���� �
���
	
� � �� ��� �� #�� � ���9�����
�
� ���
����	
!�
�����
� ��� �
�� 	�	�� � �� � ��
 ����� ��� �!!�� �
��� �� �� �� �
����
���
� �!!�� �
����)/�#�	 � � � 	 #�� ����
���� �� �
�� ���
����	 !�
����
�� #�	 � � � 	 #�� =���� ���	���
��
� � �� 	���	�� ����
��
� ��� ���
����	
!�
����� �� ���� ���9�����
�� 6� ��
! ��� �
��������
�
� � ������
� ���
���� ���� �� ���
����� � �
�� ������ ���� � ���
����	 !�
���� ���� �����
�� � !����
�� �
�� �� ��� ������ ��
�� ���
����	 !�
���� ��������� � 	��#��
���
� ������� �� ���
� ������
� ���
���� �
���
	
� � � ��
����� �	�
 �		
�!!�� �
���� ���� �� ���
����	 !�
����� �� ��� ���� ��� ��
� ���
���� ���
)/�#�	 � � � 	 #��� ��� �� K����
�$� <���� ��� ���� ���� ��
����� �������
�� �������		� ���
����� 	��#�� 	
��� �
���� ���� !����
��	� �� ��� �������

 ��� �� ���� ��� ���
�
� �		 ���
����	 !�
����� �� �		 ����� ����� ����� ���
���
������ �
���
	 �����
� � � ��� ��� �
�� ��	 ��� ����� �� �� �� ������	 �����
�� �� � 6� �
�!��� ��� !�
9����
�
� ���
��� �
�!
���� �
� ��� �
���
	
����� ��� ���� #�� ��� ������!��
�
� � ���
� ������
� �� ��� �� (($00� �

!"����� ��
 �� ����	�
���� ����
��� ������
 ��� ����� ���� 	�� ���
����� �"� �� �����	����

����� 4� �������
�
� ��� ������#���!��
�
!����
�� ��� �� ��� �
���	��
 �� ����	� �
		
�� ��
� �

	���
!�����
�� ��� <���� ,�?�

 �� �
		
���# ����	�� ���� �
	� �
� �
��	
��� ����� �� ��� �� �
 ��
�
��������	���
� ��� #	
��	 �
��	 �������# !�
�	�� �
� ���� ��� ��� 	
#��
��"��0��� 6� ��
�� � #�����	�"�� �
��
�
� �
�
#�����
��
� ���� �����
���	���� ��� ����
	 �� ��� ����
	 ���
��� ���������	� ��#� �������
�
�
����
� � !	���� /� �� ���� �� �� ����������
� �� ��� �
		
���# ���:

	�	 ��	 �	 � � � 	 �	 ����	 � � � 	 ���
 �F $:"
���	 � � � 	 �� � ��� 	�	 ���	 ��	 � � � 	 ��	 ����	 � � � 	 ���
 �F $

��� �
���� ��� � ���
���� �� ��� !
����
�� ��#� 	�	 ���	 ��	 �	 ��	 �	 ���
��

����
 ��� ��� � �� 	 ���� 	�� $ 	 ���
��	 �� ��� ���
 ����#�	 � � � 	 #��
����� 	�� ��� #� 	�� ��)'� ��� � �� 	 �����	��8�� �������	���� �� � #���� ��
�	� ����	�� �$� 9� �� �����	��� �� � �F $�

����� 6� �
�!��� ��� !�
����
� � ��� �� ��� #�� � ��� ���� �
�� ��

������
� ���
���� �
���
	
� � � ���� ��� �
�� ��	 ��� ����� � �� � �����
� ���

���� �
���
	
� � ��� �� �� � �����
� ��� ��	 �

�� �� ��!�����# �% �� �� ��!�����#
�� ��� /� �� ����#��� ��� �
�������� #� ���� �� ����#��� �
 �

�� �� ������	 �����
��
� � � �� ��� !�
����
� � ���� ��� ������	 ����� ��
� ���

'?

6� ������ �
� �� ��
���� ���
� � � ���� �����
�� ��� ����#��� �
�������� #� ��
����� ����� ��� ������ �
�� ��!�����# ����� ��
����	�
����� �� ������� �
�

����# ���� � ��� ��� �	���� ��##�� �� ��� ������	 ����� �� 	��#��� ������� �		
#� ��� �!���� �	
����

.���� �� �
�!��� ��� >��!�3�		�� �
������	��� #��!� (>3,*0
� � � ���� �

�
��� ��	� ��
�� �
��� ��� �
�������� ���� ������� ��� ����#��� �
�������� #��
4� K����
�$� <���� ���� #��!� ��
����� /� ����� �;���� �� ��
���� ����!���#
��� ���� ����� ���� �� �� ��
���� ���	�� ����!���# ��� ���� ������ �� � 4N�����
��!�����# �
�� �� ���� #��!�� ��� ��� �
����!
��� �
 � ���	�� !��� �� ���
�
������	��� #��!� ���� ������ ��� ���� �� � 4N�������!�����# �
�� ��� ���
��
����		 !
������ �%���
� �		
��� ��������
�� ��� ��� ���� �� ��!�����
��
����	�
�����

.
� ����� 4N�������!�����# �
�� � �� ��� �
������	��� #��!� �� �
�!��� �

���������� ���
���
� 1�
�
���� ��������� ���� ���� ��� 	���	�� ��������
�
#��!� �� ��� 	��#��� ���
�#	� �
������� ���#��!� �
�������# �� ��� ��� ������	
����� ��� ���
�	�
��	 ����� �� �� 6� 	���	 ����� ��� �� 1� ���� � ������
����
	 !��
 ����� !� �� ����#� �� �%��������
� G� �

� ���� ���������
��� �%���
� ��� ��������
� ���� ���
��� �� ��� ���! ��
�
�� �
�� �
 ���

����� <�� 2 �� ��� ������
� ������ �� 1��

 �� ��� �� �

�� � ���	�� !��� �� 1� ��
� �
�� � ���� �
 � ����� ��� ���

� �		 �%��������
��
� �		 ��������� ���� �� � �J� �A
�� ���� ��� �%��������
�

� �� ��� ���� �� ��������� � ����� �
���� � ������ ���� �� �� ��	��!	��� ��
��� ���� � ���	�� !��� ���� !
������
����		 �%��� �
����!
��� �
 � !
����	�
��
���� ����!���# ���
� ��� ������ � ��

����� � �� ��� ������	 ����� ��� ���
�	�
��	 ����� �� 1�� ����� �
�� �� "�1��
�
����!
��� �
 � ���	�� !��� ��
� � �
 �� .
� ��� �
�� 3� 	�� �3��� �� ���
������
�
����������
� !� �� 3� �� ������
� �� �
� �� ����� �� � �
��
3 � "�1�� ���� �

�����

�3���G� � �J

 ��� �� �������	�� ����� ��� ���
��3���	 � � � 	 �3���� � 3 � "�1��� �� ����	�����
�� ������$� ��
��� (���,,0� 6� ����� ���� �
�����
� �
� ����� 1�� ��� ��
���� � �F $ �� ���
�	� �� � !
������ 	����� �
�������
� �� �
����

����
 ��� ��� � �� 	 ���� 	�� $ 	 ���
��	 �� ��� ���
 ����#�	 � � � 	 #��
����� 	�� ��� #� 	�� ��)'� �� ��� (($00� ��)' ����	��� 	�� �!��������
��������������

����� �� ��� (($00� �� �!���� �	
���� ������� �		 #� ��� �!���� �	
����
 ���� ���� ��� �� ����������"�� �� ���
���� ���
� ��� ������	 �	������ ����

'+

<���� +�? ��� +�+��

�� ��� ������	 �	������� �� ��� � �
��������
�
���� ��� ��������� �� ��	� ���)���"�� �� (�)8D0� �� ��!
����� !
���
���� �� ���� �� ��� ��� <���� ,�@ �
 ����� ��� �;�������
� �
�
#�����
��
���� ������� $� .
� �;��!	�� �� 	�	 ��	 ��	 ���
 �F $ ���� �� ��� ����� ��
	�	 ���	 ��	 ���
 �F $ �
� �� F J� �� F '� �� F ?� � � � ����	 ��
�� ��� ������	
�� ���� 	�	 ���	 ��	 ���
 �F $�

!"����� ��� �� ����	�
���� ����
��� ������
 �� �����	��� ��� ���� 	��
��� ����� ��"��0���

����� 4� �������
�
� ��� ������#���!��
� ��� �
���	� ��� <���� ,�D�

!"����� ��� �� ����	�
���� ����
��� ������
 �� �����	��� ��� ����� ����
	�� ��� ����� ��"�0���

����� 4� �������
�
� ��� ������# ��!��
� ��� �
���	� ��� ��
��� ,�+
��� ��
��� ,�,�

!"����� ��� ��
���� ����
��� ������
 ��� ����� ���� 	�� ��� �����
�"�	 �� �����	����

����� <�� � �� � 	
��� ���� ��� $ � �"�	 �
���	�� <�� � �� �
�� �����
�
�� 6� ��
� ��������	���
� ��� ������
� � �F $ �� �������
�
� ��� ������#�
��!��
� ���
!����
� ���	 �� ��� �
���	�� �� ���� ���� ����� $ �
������
�

!����
� ���	 �� ������	� /� ��� #�����	 ���� �� ��� �

	���
!�����
��
�
 ������ ��� !�
�	�� �
 !�
�	���
� ��� �
�� � �F ���	�$�	 � � � 	 $�� �����
��� $� ���� � ���		�� ������#���!��� 6� �
�!��� ��� !�
����
� � ��� ��	

��� �
������� ��� ����
� �		 !
����	� �������
��
� � ���� ������� ��� ����#���
$�� �4� �������
� ��!
������ �� ��� ����� �� � �F $� �
� ��� ����� ��� ��
�
��������
�
� � ������ ��
!� ��
��
� ��� �
		
���# �
�����
�� �� �����
��:
�'� ���� �� �
 �������
� ���� �����
�� ��� ����#��� $�� �?� 6� ����� � �
��
���� ��� ���� �����
� ���
���� �
���
	� ��� � 	��#�� ������# ���� � !����
��
�
�� ���� � ����� ���

4� K����
�$� <���� ����� ������ ���
���� 	��#��� ����� ��� ���� ��
����	�
��������#� �� ��
���� ��� ��� �� �%������	� �
���������� ����� � �� 	
��� ���
�		 ������ �� ��	 ��� ��!�����# ������� �� ��
� ���� � �F ���	�$�	 � � � 	 $�� �%
�
�� ������
� ��� ���� ���������� �� �
�����
� ?�

!"����� ��� :���� ����
��� ����� ���� ���� ��� ����� %" �� �����	����

����� �� !�

� �� ���� ����	�� �
 ��� !�

�
� ��
��� ,�8� ��
�	�
��%������� ��� ����
�� �	�
 ��� �
 �
������
���� ���� ���� ��� �� � ����	
��
��� ���
������! ��;�
!����
�� ��� ��� ����	� �� ����� �
 ��� �
��������
�
�� ��
��� ,�8�

'@

 ��
���� ,�8 ��� ,�* ��� ���� ��� �
��	 �������# !�
�	�� �� �������	� �
�
� 	
��� ���� ��� �� =5��
���	�1 �"�	��
���	� $� &
������ �� �
�� �����
��� ��� (($00� �� �
� �%������	� �
���������	� ��	��
�#� �� �� �- ��
���	��� /� ��
���� �
���������	� ���� <���� ,�? �
�	� �� ���� �
 ������ �
��	 �������#
	
��� ���� ���� �
���	��
� ��� �
�� % %-�#� ����� # �� � �
�������� ��
�-� &
������ ���� !�
�	�� ��� ���� ������	� ���� ��
�� �
 �� ���������	��

����������� ��	1 :���� ����
��� ����� ���� ���� ���
��	� �� ��� ���

% %-�#� ����� # �� 	 ������	��� �� �' �� �������	����

����� ��� �� � �
�
		���
� � �
�� #�����	 ����������	��� ����	� �
� 	
���
4�� �4���� ����		�	 ��
�������� ����� �
		
�� ��
� ���������	�� ��
� ���
����	�
� 	
��� �
����� �������� �� ��
!
����
� 7�? ���� (3��*80��

+��
�, ��		 ��� �������	������ ������ 	��� �
����� �������	������ ��
����
����
��� ����� ���� ���� ��� ����� ��"�� ;�� �	� ������ ���������� �� ���
���
 % %-�# �� ��"� �� ��� ��������� �	�6 ��� �� �� 	� 	���
	��� ����
��	��� �	 ��� 	�� ��	�������� � � �� � � �� 	�� �� � �� ����� 	�� �	�����
���� 	�� 	������ �� ������	�� ���� �� 	������� �� � 	�� ��� ������	�� # ��
	������� �� ��� � �� ��� �����	� ��	�� 	�� �� �� ��� ���� ����	���� ��	��� ��� ��

�

�� 	� 	���
	��� ���� ���� ��� ��	�� � ����� �� ��� �����	� ��	�� 	�� ����	����
	�� 	 ��	������� � � � ���� 	�� 	������ �� ������	�� # �� 	������� �� ��
 ��� ��� 	�� ����� ���� � �� �	��

� �F % %-�# #� � �F �������	 #� � ��
��#�

$ ����� �
�� �	�� ���	%	���
���

<
��� ���� ��� �� �;������ ���� �������
� ����� ��� ����� ����
�����#
��������
�� ���� ���
�	�
�� �� �
�� ��
��� !	���� ��� ��!�� ����� ���� ���
���� �
� "��
�� ��� 	
��� ���� ���� �������
� ���� ��� ������	��� �
 	
���
�
����� ��������� A
���	 ���� ���� �������
� ���� ��� ����#�!
�����	�
��� 	
��� ���� ���� �������
� ���� ��� �
��

!"����� ��	 /�� ����� ���� ���� ��������� 	���

&� ��� ����	�
���� ����
��� ������
 �� �����	��� ��� ��� ����� �"� �

(�
���� ����
��� �� �����	��� ��� ��� ������ �"�	 	�� %"�

����� �� �
��������
�� �� <���� ,�? ��� ��
��� ,�8 �����
��� ������	�
�
 	
��� ���� ���� �������
� �����

'D

/������
� ���� ��� ����� ���! � ��������
� ��
�
���#� �������
�� ��� 9���
	

�� ��� �
����
� ��� !	���� ���� ������� ��� &
������ ����� ���� � ��������
�
���
���� ��� ������
� �
����
� ��� ���������# !	���� ��
;�� ��� ��
��
�;���	�� ���� � #�������� �� ��!
����	� �
 ������� �� 	
��� ���� ����
��
�������
� ����� ��� �
� �		 ����	�� �
� 	
��� ���� �����
��� �
 	
��� ����
���� �������
� �����

����������� ��� ��� � �� 	 ����� ���� ���� ��������� 	���� 9� �� �������	���
�� ����� ������ 	� �����	� �������	���� � ���� ����� �� 	� ������� ��� �� ���
�����
 ��	���

����� ��� �� � �
�
		���
� � �
�� #�����	 ����������	��� ����	� �
� 	
���
�
����� �������� �� (3��*80� �� ���� ���� �� ����
�� ��� ���
��� ����
	
�������
�����
�	�
����	�
���� �� ��� ��
���� ����

!"����� ��
 :���� ����
��� ����� ���� ���� ��������� 	��� ���� ��� �����
� � �� �������	����

����� 6� ������ ��� !�
�	��
� ��
!
����
� 7�? �
 ��� �
��	 �������#
!�
�	��� 6� �
������� � 	
��� ���� ���� �������
� ���� � � ���� �
�� ���
�
		
���#: .���� �� #������ �� ��������� �
�
#�����
� �
� � �
��#
�	� ���
��
��� ����
� �� ��� �� ����	���� �
� � �
��#
�	� ��� ��
��� ����
�
4� <�� �� �� � 4N��������
���
� ���� ������	 ����� � ��� ��!�����# �����

�� ��� ��������
�� �
�
� �� �

� �� ��� ��

� ��� <�� �� �� ��� ������	 �����

� � �� 6� ���� ������� ��� ������
�
� ��
!
����
� 7�? �
 ��� ������
� ��
���	� �� �F ��������	 ������ ��� ������
� ��� �� �;!������ �� < <�

/� �
		
�� ���������	� ���� �
��	 �������# 	
��� ���� ���� �������
� ����
���� �"��0�� �� ���������	�� /� �� ����������# �
 �
�!��� ���� ����	� ����
��
!
����
� ,�'J� /� ��
�� ���� �
� ����������	���
� ��� �
��	 �������#
!�
�	�� �� ��Æ��� �
 ���� ������ �������
� ���� �� ��� ������
� �
������
�	
��� �
��������� �� ��� 	
#��� ��� ��� �� ���
��� �� ���
���� ��� ����
������

 �� ��� �������� �� K- ��
���	� ����� �� �� �
������ �	
���� &
������ �� ��
�
� �
���������	� �
� 	
��� ���� ���� �������
� ���� ���	��� �
� 	
��� �����
��� ��
��� @�+��

!"����� ��� �� ��� �������� �� ��� ������������� ��� ����� ���� ���� ���
������� 	����

����� 4
��������� �� ���������	� �
� ����� ����� ���� (K.�*80� ��� ����	�
�������
��� �
 	
��� ����� ����� ����� <
��� ���� ���� �������
� ���� ���
����	��� 	
��� ����� ����� ����� /� �
		
�� ���� �
��������� �� ���������	�
�
� 	
��� ���� ���� �������
� ���� ��� ���� �������� �� �
� �
���������	��

',

& ����"��	��

6� ���� ��������� ����
����
� !�
�	��� �
� ���� ���� 	
��� ������	��� ����
������� ��� �
��	 �
����������# ������� ���� ���
����� 	
��� ��
������
��%���� ��� ��� �� ���� �� ���������
��
� �	
����
�
�������	 ��������
-
��������# 	
��� ���� �������
� 	
���
�
�������	 ������� ��� ������	 ���
�����#��: .����� ��� ���
� �������	� �
�
#�����
�� �������� ��� �
����� ��
�%������	� �
���������	�� ���	� �
� 	
��� ������	 �������
�	� ��� ��������
��������	��� ��� �� �
�!����	�� ��� �� ����������#� ����� �� !������� �
�����
��������	��� ���	���� ��� �� �
�� �Æ����� ���� �������� ���	����� ��� ��
��� �� �
������ ���� �Æ����� #��!� �;!	
����
� ���������� �	���
������I��
!�����	�
���� ����� !�
�������� ��
���� �
 ��
�� �������;!	
��
�� ��
����
�������#�
� �
��������# 	
��� ���� �� ���� �� ������
� �
 ������ !�
!���
���� � ��
��� ,�+�� �	�
 	������� !�
!������ ��� �� ������� ��� �������� �
��
�������� ��� �� ����� ���
 ���
��� � ��
��� ,�7�� ���	� �� ��� ���� ��
��
���� ���� �� ��!
����	� �
� 	
���
�
�������	 ������� (�)*,0�

/�
�� �
��� �� ���� �	�
 �����	����� ����	�� �
� �
���	 ���� ��� 	
���
���� ���� �������
� ���� �	
��� �
����� ���������� /���������#	�� �� �����
��
���� ����� ��
 �
��	� ��� ���
�!����	�� 3
��
���� �		 ��� !
������1��#�����
����	�� ��
������� �
� 	
��� ���� ���� �������
� ���� ��� ��� ���� �� �
�
	
���
�
�������	 �������� �
� �� ����������#
!�� ������
� �� ������� �����
��
 �
��	� ��� �
�!����	��

 �� �
		
���# ���	� �������"�� ��� ����	��
� ��� ��������	���
� �
��	 ������
��# �
� ����� 	
��� ���� ���� ���� �
� "��
� 	
��� ���� ��� 	
���
�
�������	
�������� 4� OHH$ �� ���
�� ��� ���� ���� �
� ��� �
���	� $ ��� ��� (($00 ��
�- ��
���	� ��� �%������	� �
���������	� �#	
��	 �
��	 �������#�� ���	� OH$
����� ����
�	� �
��	 �������# �� �������	�� 6� ���
�� �� P ���� �
��	
�������# �� ���������	�� �� ����
	 OQ$ ���
��� ��
!�� !�
�	���

����� ���� ����	 ����
� ����	 ���� ����	 �
�

���*�� + ,��-(./ 00 00 ,&1(�/ 00 ,&1(�/
����2��3���� 00 *0,��-(4/ + 00 + ,&1(�/
���2��3 5 + 00 + ,&1(�/
����*�� + ,�6(7/ 0 0 ,&1(�/ 0 ,&1(�/
����*�!8 + ,�6(7/ + + + ,&1(�/

 �� ����	�� �� ���� ���	� ��� ���� �;��!� ����� ���������� ��� #����� .
� �
��
��	 ���� ��� < <� ��������	���
� ��� �
��	 �������# !�
�	�� ��� ��
��
(=�!*@0� ��� ��� �
��������
�
� ��� ��� (($00 �� ���� �� ����	�� �� (�)*+0 ���
9��� ��
�� =. ��� =5 �
���	�� ����
�� ������#� �
� �
� ��� ��		 	
#��� �"�

��� �"�	�

�� �
� ���
!�� !�
�	�� �� ���� ���	�� �
�� ���� �� ��� ������ �
� � ����

'7

&8� �&8

�!8 �&82"�3 �&8�

&8

$��	9 �#�	9��9��

�� ��

���

�8!8

&8�

�&8�2"�3

�!8�

&8��

���

.�#��� ?: K�������	���
� ��� �
��	 �������# !�
�	�� �
� 	
��� �����

��� ��� ��<�2-� �
���	�� ������� ��� ��� (($00 �� �- ��
���	�� ��� �� ����
���� �� ��� �%������	� �
������� �� ��� ������ ��� �
��	 �������# ������
��
&
������ �� ���� ��� �� �
� �- ��
���	� ��� #�����	 ���� ��� �
�	� �� ���� �
�
����	������� �� ����
� ������ ��� �
��	 �������# ������
��

 �� ���� ��� ����	� �� ���� !�!�� �� ���� �
�� 	������� !�
!������� �� ���
������� �� ��"��0��� ��� �������	� �
� 	
��� ����� ��	��� �
� 	
��� ./.��
������	 �������� �	�
 ����� 	������� !�
!������ ��� ���������	� �
� 	
���
���� ���� ���� �
� "��
� �� #�����	 �
��	���
� �� ���� ������ !�
!������ ���
�	���� �������	� �
� 	
��� �������� ���	� �
� 	������� !�
!������ ���� ��!����

� ��� !������	�� �
��	 ���
� ��� ��
��� !�
!
����
�� ���� �� ��� 	
#���

 �� .�#���� ? ��� + ��
� ��� 	�����
� ��� ��������	���
� ��� �
��	 �������#
!�
�	�� �
� 	
��� ���� ��� 	
��� ���� ���� �������
� ����� 3
��	 �������#
�� �������	� �
� ��� 	��� �;!������� 	
#��� ��	
� ��� �
���� ��� ���������	�
�
� ��
�� ��
�� ���

#&,��2��*-����3 6� ����� ����� &�������	 �
� ����������# ��������
���

'8

&8� �&8

�!8 �&82"�3 �&8�

&8

$��	9 �#�	9��9��

�� ��

���

�8!8

&8�

�&8�2"�3

�!8�

&8��

���

.�#��� +: K�������	���
� ��� �
��	 �������# !�
�	�� �
� 	
��� ���� ����
�������
� �����

����������

(�4)*80 �� ����		�� �� 4
��99���� ��� 4�)
���
�� �������I� ���	����
�
������� ���� 2��
������ <
��� .��
 -�����	�� /� &4�� 9������
'���� �� '�
����� ����� ������	���� #'��.3<$� <A-� '@?7�
)��� '**8�

(�-) *,0 �� ����		�� >� -������ 4�)
���
�� ��� R�>� ���� 5�����	
K�������	��� ��
���� �
� /�
���������� �������� /� �9'�.3=�
/===� '**,�

(�)*+0 �� ����		� ��� 4�)
���
�� ��������# ��
#���� ���� 2���	���	�
-�����	�� /� �9'�.3+� /===� '**+�

(�)*,0 �� ����		� ��� 4�)
���
�� 2��������	� ����
����
� !�
�	���
�
� !�
#���� ���� ����	���	� ������	�� 9����
	���� 	�� '�
�
���	����� '+J�'�:7'S*J� '**,�

(4566*70 4� 4
�#�	
�� �� 5
����
��� 4� 6�		���� ��� �� 6
	!��� ��
!
���
� TKK�� /� ���.3>� <A-� '+J?� '**7�

(4&*70 �� 4
��99��� ��� �� &�������	� ����
	�� U�������	��� ���	�
����
� ./.��-�����	 ������� ���� A
���#�	�� ����
� -
�
#�

'*

�����
��� /� (?�� 9�����	����	� '����-���
 �� ����
	�	� �	��
��	��� 	�� @����	

��� #9'��@.3>$� <A-� '?D,�)�	� '**7�

(-./*,0 5V����� -V��V�� �	��� .����	� ��� �� ������
������ /���� 2��
��	���	� -�����	� ��� =����� �
 ������ ��� ������� -�����	��
9����
	���� 	�� '�
���	����� '?@�'�:?JS+'� '**,�

(-5>870 =� -	����� �� 5�N�����#� ��� U� >������� � ���������
� ��

�!!�
����� �
� ��������# .����� ����� -
�������� �������� /�

	��������� '	������ :�����)���������� '*87�

(K.�*80 -� K��
���� �� .����	� ��� ��� ����
���	��� U���� ���� �������
��������	��� ��� ����������	���� /� @���� �� 9'��@.3<� �
	���
'@@+
� �A'�� �!���#�� ���	�#� '**8�

(=>*D0)� =�!��"� ��� �� >����� �� ��� �
��	 �������# !�
�	�� �
�
��������# ���� 	
#��� ��� 4���� ����		�	 ��
������� /� '��.3B�
�
	��� *+*
� �A'�� !�#�� +D+S+,,� �!���#�� ���	�#� '**D�

(=�!*@0)� =�!��"�� �� ��� ��������	���
� �
��	 �������# �
� ������	
+���	��	� ��� ����� ����� /� ���� �� ������	 	�� @����	

���
C '��@.3?� �
	��� 787
� �A'�� �!���#�� ���	�#� '**@�

(=�!*70)� =�!��"�� K�������	���
� �
��	 �������# �
� ��
���������� �
��
������� �������� ���	 9����
	���	� +@:8DS'J7� '**7�

(5<*@0 �� 5������# ��� K� <
�#� 3
��	 -������# ��� 3
��	�� ����
�
����
�� �': �	��	������ �� @����	

��� �	���	��� 	��
�����
�� ',� '**@�

(>3,*0 U� >��! ��� U� 3�		��� ����		�	 !�
#��� ��������� D'��� +�
'*,*�

(3��*80 U� 3���� <
��� �
����� ��������� �������	 U�!
�� 23�
/*8?7� 2�3N������� ���
��� '**8� �������������
����������
�����������1$�������

(���,,0 U�)� ������� �� -
���;��.��� <��#��#��� D�':� '+� '*,,�

(�
8*0 6� �
���� -
�!�����
� ��� <
#�� ��� U�#�	�� ��<��#��#���
<A-� +D@� '*8*�

(�
*J0 6� �
���� ���
����
� /�
���� ��9����� /� E	�����
 ��
 ���� '�
�� ���� =	������ ���� ����� '**J�

?J

(�)8D0 U� ��	� ��� 3�)���"��� �� U������
� ����
� ���� ���� �!�
!	�����
�� �
 K�������	��� ��
�	��� �� ����� A���� ���	 9�����

	���	� ?'� '*8D�

(�68,0 3�R� ����� ��� �� 6
	!��� �� ���
����� ��
����� �!!�
���
�
 ���
����� ��
#��� ����
����
�� /� �9'�.<=� /===� '*8,�

(6
	8+0 �� 6
	!��� ��!
��	 	
#�� ��� �� �
�� �;!��������� 9����
	����
	�� '������� D,� '*8+�

?'

Undecidable Problems in Unreliable

Computations

Richard Mayr a

aLIAFA � Universit�e Denis Diderot � Case ���� � �� place Jussieu� F������ Paris
Cedex ��	 France	 E�mail
 mayr�liafa�jussieu�fr

Abstract

Lossy counter machines are de�ned as Minsky counter machines where the val�
ues in the counters can spontaneously decrease at any time� While termination is
decidable for lossy counter machines� structural termination �termination for ev�
ery input� is undecidable� This undecidability result has far�reaching consequences�
Lossy counter machines can be used as a general tool to prove the undecidability of
many problems� for example ��� The veri�cation of systems that model communi�
cation through unreliable channels �e�g�� model checking lossy �fo�channel systems
and lossy vector addition systems�� ��� Several problems for reset Petri nets� like
structural termination� boundedness and structural boundedness� ��� Parameterized
problems like fairness of broadcast communication protocols�

Key words
 Counter machines� lossy counter machines� decidability

� Introduction

Lossy counter machines �LCM� are de�ned just like Minsky counter machines
����� but with the addition that the values in the counters can spontaneously
decrease at any time� This is called 	lossiness
� since a part of the counter is
lost� �In a di�erent framework this corresponds to lost messages in unreliable
communication channels�� There are many di�erent kinds of lossiness� i�e��
di�erent ways in which the counters can decrease� For example� one can de�ne
that either a counter can only spontaneously decrease by �� or it can only
become zero� or it can change to any smaller value� All these di�erent ways
are described by di�erent lossiness relations �see Section ���

The addition of lossiness to counter machines weakens their computational
power� Some types of lossy counter machines �with certain lossiness relations�
are not Turing
powerful� since reachability and termination are decidable for
them� Since lossy counter machines are weaker than normal counter machines�
any undecidability result for lossy counter machines is particularly interesting�

Preprint submitted to Elsevier Preprint � December ����

The main result of this paper is that structural termination �termination for
every input� is undecidable for every type of lossy counter machine �i�e�� for
every lossiness relation��

This result can be applied to prove the undecidability of many problems�
To prove the undecidability of a problem X� it su�ces to choose a suitable
lossiness relation L and reduce the structural termination problem for lossy
counter machines with lossiness relation L to the problem X� The important
and nice point here is that problem X does not need to simulate a counter
machine perfectly� Instead� it su�ces if X can simulate a counter machine
imperfectly� by simulating only a lossy counter machine� Furthermore� one
can choose the right type of imperfection �lossiness� by choosing the lossiness
relation L�

Thus lossy counter machines can be used as a general tool to prove the unde

cidability of problems� Firstly� they can be used to prove new undecidability
results� and secondly they can be used to give more elegant� simpler and much
shorter proofs of existing results �see Section ���

Historically� the notion of 	lossiness
 was �rst de�ned to model communica

tion through unreliable channels� The main example are lossy �fo
channel sys

tems� which are systems of �nite
state processes that communicate through
lossy �fo
channels �bu�ers� of unbounded length� These lossy �fo
channels are
unreliable� because they can spontaneously lose messages� Since normal �non

lossy� �fo
channel systems are Turing
powerful� automatic analysis of them
is restricted to special cases ���� Lossy �fo
channel systems are not Turing

powerful� since reachability and some safety
properties are decidable for them
�������� However� some liveness
properties like the so
called 	recurrent
state
problem
 are undecidable even for lossy �fo
channel systems ���� The result
of this paper� the undecidability of structural termination for lossy counter
machines� is much more general and subsumes this result �see Section ���

The rest of the paper is structured as follows� In Section � we de�ne lossiness
relations and lossy counter machines� In Section � we show some decidable
properties of lossy counter machines� and in Section � we prove the main
undecidability result� Section � gives several examples how this result can be
applied� In the last two sections we discuss possible generalizations and draw
some conclusions�

� De�nitions

De�nition � A n�counter machine ����M is described by a �nite set of states
Q� an initial state q� � Q� a �nal state accept � Q� n counters c�� � � � � cn
and a �nite set of instructions of the form �q � ci �� ci � �� goto q�� or
�q � If ci � � then goto q� else ci �� ci � �� goto q��� where i � f�� � � � � ng and
q� q�� q�� � Q�

A con�guration of M is described by a tuple �q�m�� � � � � mn� where q � Q and
mi � IN is the content of the counter ci �� � i � n	� The size of a con�guration

�

is de�ned by size��q�m�� � � � � mn�� ��
Pn

i��mi� The possible computation steps
are de�ned as follows

��	 �q�m�� � � � � mn�� �q�� m�� � � � � mi � �� � � � � mn�
if there is an instruction �q � ci �� ci � �� goto q���

��	 �q�m�� � � � � mn�� �q�� m�� � � � � mn�
if there is an instruction �q � If ci � � then goto q� else ci �� ci��� goto q���
and mi � ��

��	 �q�m�� � � � � mn�� �q��� m�� � � � � mi � �� � � � � mn�
if there is an instruction �q � If ci � � then goto q� else ci �� ci��� goto q���
and mi � ��

A counter machine is deterministic i
 for every control�state q � Q there is
at most one instruction �q � � � � � � �� at this control�state� A run of a counter
machine is a �possibly in�nite	 sequence of con�gurations s�� s�� � � � with s� �
s� � s� � s� � � � ��

Now we de�ne lossiness relations� which describe spontaneous changes in the
con�gurations of lossy counter machines�

De�nition � Let
s
� �for �sum�	 be a relation on con�gurations of n�counter

machines which is de�ned as follows�

�q�m�� � � � � mn�
s
� �q�� m�

�� � � � � m
�

n� ��

�q�m�� � � � � mn� � �q�� m�

�� � � � � m
�

n���
q � q� �

nX
i��

mi �
nX

i��

m�

i

�

This relation means that either nothing is changed or the sum of all counters

strictly decreases� Let id be the identity relation� A relation
l
� is a lossiness

relation i
 id �
l
� �

s
�� A lossy counter machine �LCM	 is given by a

counter machineM and a lossiness relation
l
�� Let� be the normal transition

relation of M � The lossy transition relation �� of the lossy counter machine
is de�ned by

s� �� s� �� 	s��� s
�

�� s�
l
� s�� � s��

l
� s�

An arbitrary lossy counter machine is a lossy counter machine with an ar�
bitrary �unspeci�ed	 lossiness relation� The following relations are lossiness
relations

Perfect The relation id is a lossiness relation� Thus arbitrary lossy counter
machines subsume normal counter machines�

Classic Lossiness The classic lossiness relation
cl
� is de�ned by

�q�m�� � � � � mn�
cl
� �q�� m�

�� � � � � m
�

n� �� q � q� �
i�mi � m�

i

Here the contents of the counters can become any smaller value� A relation
l
� is called a subclassic lossiness relation i
 id �

l
� �

cl
��

�

Bounded Lossiness A counter can lose at most x � IN before and after

every computation step� Here the lossiness relation
l�x�
�� is de�ned by

�q�m�� � � � � mn�
l�x�
�� �q�� m�

�� � � � � m
�

n� ��

q�q� �
i�mi� m�

i� maxf�� mi � xg

Note that
l�x�
�� is a subclassic lossiness relation for every x � IN�

Reset Lossiness If a counter is tested for zero� then it can suddenly become

zero� The lossiness relation
rl
� is de�ned as follows

�q�m�� � � � � mn�
rl
� �q�m�

�� � � � � m
�

n� i
 for all i either
��	 mi � mi� or
��	 m�

i � � and there is an instruction
�q � If ci � � then goto q� else ci �� ci � �� goto q����

Note that
rl
� is a subclassic lossiness relation�

The de�nition of these lossiness relations carries over to other models like
Petri nets ����� where places are considered instead of counters and the control�
states q are ignored�

De�nition � For any arbitrary lossy n�counter machine and any con�gu�
ration s let runs�s� be the set of runs that start at con�guration s� �There
can be more than one run if the counter machine is nondeterministic or
lossy�	 Let runs��s� be the set of in�nite runs that start at con�guration
s� A run r � f�qi� mi

�� � � � � m
i
n�g

�

i�� � runs��s� is space
bounded i
 	c �
IN�
i�

Pn
j��m

i
j � c� Let runs�b �s� be the space�bounded in�nite runs that start

at s� For a run r and a con�guration s we write s � r to indicate that s is one
of the con�gurations that occur in r� An �arbitrary lossy	 n�counter machine
M is

zero�initializing i
 in the initial state q� it �rst sets all counters to ��
space�bounded i
 the space used by M is bounded by a constant c�

	c � IN�
r � runs��q�� �� � � � � ����
s � r� size�s� � c

input�bounded i
 in every run from any con�guration the size of every
reached con�guration is bounded by the size of the input�

s�
r � runs�s��
s� � r� size�s�� � size�s�

strongly�cyclic i
 every in�nite run from any con�guration visits the initial
state q� in�nitely often�

q � Q�m�� � � � � mn � IN�
r � runs���q�m�� � � � � mn���

	m�

�� � � � � m
�

n � IN� �q�� m
�

�� � � � � m
�

n� � r

�

bounded�strongly�cyclic i
 every space�bounded in�nite run from any con�
�guration visits the initial state q� in�nitely often�

q � Q�m�� � � � � mn � IN�
r � runs�b ��q�m�� � � � � mn���

	m�

�� � � � � m
�

n � IN� �q�� m
�

�� � � � � m
�

n� � r

If M is input�bounded then it is also space�bounded� If M is strongly�cyclic
then it is also bounded�strongly�cyclic� If M is input�bounded and bounded�
strongly�cyclic then it is also strongly�cyclic�

� Decidable Properties

Since arbitrary LCM subsume normal counter machines� no interesting prop

erties are decidable for them� However� some problems are decidable for classic
LCM �with the classic lossiness relation�� They are not Turing
powerful� The
following results in this section are special cases of positive decidability results
in ��������

Lemma � �Dickson�s Lemma ���	

Given an in�nite sequence of vectors �x�� �x�� �x�� � � � in INk there are i � j

s�t� �xi � �xj �� taken componentwise	�

Lemma � Let M be a classic LCM and s a con�guration of M � The set
pre��s� �� fs� j s� ��� sg of predecessors of s is e
ectively constructible�

PROOF� SinceM is a classic LCM� the set pre��s� is upward closed and can
thus be characterized by its �nitely many minimal elements� These minimal
elements can be e
ectively constructed because of Dickson�s Lemma ���� �see
also ���	� �

Theorem � Reachability is decidable for classic LCM�

PROOF� Given two con�gurations s and s�� the question if s ��� s� is
equivalent to s � pre��s��� This is decidable by Lemma �� �

Lemma
 LetM be a classic LCM with initial con�guration s�� It is decidable
if there is an in�nite run that starts at s�� i�e�� if runs

��s�� ��
�

PROOF� We analyze all runs by breadth��rst search� If there is no in�nite
run then all runs will eventually terminate� Thus� the algorithm will terminate
and give the correct answer �no�� If there is an in�nite run� then� by Dickson�s
Lemma ����� we will eventually reach a con�guration s s�t� there is a previous
con�guration s� in the same run with s � s�� In this case there is an in�nite
cyclic run from s� to s�� because M is classical lossy� Thus� in this case the
algorithm also terminates and gives the correct answer �yes�� �

�

In ��� Abdulla and Jonsson proved a more general result that subsumes Lemma ��
They showed that the existence of an in�nite run from a given initial con�g

uration is decidable even for lossy FIFO
channel systems�

Theorem � Termination is decidable for classic LCM�

PROOF� A classic LCM M with initial con�guration s� is terminating i

runs��s�� �
� This is decidable by Lemma �� �

It has been shown in ��� that even model checking classic LCM with the tem

poral logics EF and EG �natural fragments of computation tree
logic �CTL�
������� is decidable�

Another interesting observation is that Petri nets and classical lossy counter
machines are incomparable� For Petri nets� model checking with the temporal
logic EF is undecidable� but model checking with LTL is decidable ����� For
classical lossy counter machines it is just vice
versa� For classical lossy counter
machines model checking with EF is decidable ���� but model checking with
LTL is undecidable ��� �see also Theorem ����

� The Undecidability Result

We show that structural termination �i�e�� termination for every input� is
undecidable for LCM for every lossiness relation� We start with the problem
CM� which was shown to be undecidable by Minsky �����

CM

Instance� A deterministic �
counter machine M with initial state q��
Question� Does M accept �q�� �� �� �

We reduce the problem CM to the following problem�

BSC�ZI�CM�
b

Instance� A deterministic bounded
strongly
cyclic� zero
initializing �
counter
machine M with initial state q��

Question� Does M have an in�nite space
bounded run from �q�� �� �� ���
i�e�� runs�b ��q�� �� �� ��� ��
 �

Lemma � BSC�ZI�CM�
b is undecidable�

PROOF� We reduce CM to BSC�ZI�CM�
b � Let M be a ��counter machine

with initial state q�� We construct a ��counter machine M � as follows
 First
M � sets all three counters to �� Then it does the same as M � except that after
every instruction it increases the third counter c� by �� Every instruction of
M of the form �q � ci �� ci � �� goto q�� with �� � i � �� is replaced by
�q � ci �� ci � �� goto q�� and �q� � c� �� c� � �� goto q��� where q� is a new
state� Every instruction of the form

�q � If ci � � then goto q� else ci �� ci � �� goto q���

�

with �� � i � �� is replaced by

q � If ci � � then goto q� else ci �� ci � �� goto q�

q� � c� �� c� � �� goto q�

q� � c� �� c� � �� goto q��

where q�� q� are new states�

Finally� we replace the accepting state �accept� of M by the initial state q��
of M �� i�e�� we replace every instruction �goto accept	 by �goto q��	� M

� is
deterministic� because M is deterministic� M � is zero�initializing by de�nition�
M � is bounded�strongly�cyclic� because c� is increased after every instruction
and only set to zero at the initial state q���

� If M is a positive instance of CM then it has exactly one accepting run
from �q�� �� �� �we assume without restriction that M has exactly one ac�
cepting state and that this state has no outgoing transitions	� This run has
�nite length and is therefore space�bounded� Then M � has an in�nite space�
bounded cyclic run that starts at �q��� �� �� ��� Thus M

� is a positive instance
of BSC�ZI�CM�

b �
� If M � is a positive instance of BSC�ZI�CM�

b then there exists an in�nite
space�bounded run that starts at the con�guration �q��� �� �� ��� By the con�
struction of M � this run contains an accepting run of M from the con�gu�
ration �q�� �� ��� Thus M is a positive instance of CM� �

Now we consider the central problem for lossy counter machines�

	nLCM�

Instance� A strongly
cyclic� input
bounded �
counter LCM M with initial
state q��

Question� Does there exist an n � IN s�t� runs���q�� �� �� �� n�� ��
 �

Theorem �� 	nLCM� is undecidable for every lossiness relation�

PROOF� We reduce BSC�ZI�CM�
b to 	nLCM� with any lossiness relation

l
�� For any bounded�strongly�cyclic� zero�initializing ��counter machine M

we construct a strongly�cyclic� input�bounded lossy ��counter machineM � with

initial state q�� and lossiness relation
l
� as follows
 The ��th counter c� holds

the �capacity�� In every operation it is changed in a way s�t� the sum of all
counters never increases� �More exactly� the sum of all counters can increase
by �� but only if it was decreased by � in the previous step�	 Every instruction
of M of the form �q � ci �� ci � �� goto q�� with �� � i � �� is replaced by

q � If c� � � then goto fail else c� �� c� � �� goto q�

q� � ci �� ci � �� goto q�

�

where �fail� is a special �nal state and q� is a new state� Every instruction of
the form �q � If ci � � then goto q� else ci �� ci � �� goto q��� with �� � i � ��
is replaced by

q � If ci � � then goto q� else ci �� ci � �� goto q�

q� � c� �� c� � �� goto q��

where q� is a new state�

M � is bounded�strongly�cyclic� because M is bounded�strongly�cyclic� M � is
input�bounded� because every run from a con�guration �q�m�� � � � � m�� is space�
bounded by m� �m� �m� �m�� Thus M

� is also strongly�cyclic�

� If M is a positive instance of BSC�ZI�CM�
b then there exists a n � IN and

an in�nite run of M that starts at �q�� �� �� ��� visits q� in�nitely often and

always satis�es c� � c� � c� � n� Since id �
l
�� there is also an in�nite

run of M � that starts at �q�� �� �� �� n�� visits q� in�nitely often and always
satis�es c� � c� � c� � c� � n� Thus M � is a positive instance of 	nLCM��

� If M � is a positive instance of 	nLCM� then there exists an n � IN s�t�
there is an in�nite run that starts at the con�guration �q��� �� �� �� n�� This
run is space�bounded� because it always satis�es c� � c� � c� � c� � n� By
the construction of M �� the sum of all counters can only increase by � if it
was decreased by � in the previous step� By the de�nition of lossiness �see
Def� �	 we get the following
 If lossiness occurs �when the contents of the
counters spontaneously change	 then this strictly and permanently decreases
the sum of all counters� It follows that lossiness can only occur at most
n times in this in�nite run and the sum of all counters is bounded by n�
Thus there is an in�nite su�x of this run of M � where lossiness does not
occur� Thus there exist q� � Q� m�

�� � � � � m
�

� � IN s�t� an in�nite su�x of
this run of M � without lossiness starts at �q�� m�

�� � � � � m
�

��� It follows that
there is an in�nite space�bounded run of M that starts at �q�� m�

�� � � � � m
�

���
Since M is bounded�strongly�cyclic� this run must eventually visit q�� Thus
there exist m��

�� � � � � m
��

� � IN s�t� an in�nite space�bounded run of M starts
at �q�� m

��

�� � � � � m
��

��� Since M is zero�initializing� there is an in�nite space�
bounded run of M that starts at �q�� �� �� ��� Thus M is a positive instance
of BSC�ZI�CM�

b � �

Note that this undecidability result even holds under the additional condition
that the LCMs are strongly
cyclic and input
bounded�

This result can be used to show that model checking LCM with the temporal
logics CTL �computation
tree logic ������� and LTL �linear
time temporal logic
����� is undecidable� since the question of 	nLCM� can be encoded in these
logics�

Theorem �� Model checking LCM with the temporal logics CTL and LTL is
undecidable for every lossiness relation�

�

PROOF� Let M be a lossy ��counter LCM with lossiness relation
l
� and

initial state q�� We construct the LCM M � as follows
 Let q�� be the new initial
state of M �� M � has the same instructions as M plus the following ones

q�� � c� �� c� � �� goto q��

q�� � c� �� c� � �� goto q�

We label these two new instructions with action �a� and all others with action
�b�� Then we have that M is a positive instance of 	nLCM� i
 M � satis�es the
LTL formula �q��� �� �� �� �� j� haitrue U �hbitrue wU false� or the CTL formula
�q��� �� �� �� �� j� E�haitrue U E��hbitrue wU false��� �

The following two variants of the structural termination problem are equiva

lent� An LCM is a positive instance of variant � i� it is a positive instance of
variant �� because of the imposed condition that the LCM is strongly
cyclic�
The only reason why we de�ne both variants is to point out this fact�

Structterm�LCM� Variant �

Instance� A strongly
cyclic� input
bounded �
counter LCM M with initial
state q��

Question� Does M terminate for all inputs from q� � Formally�
n�� � � � � n� �
IN� runs���q�� n�� n�� n�� n��� �
 �

Structterm�LCM� Variant �

Instance� A strongly
cyclic� input
bounded �
counter LCM M with initial
state q��

Question� Does M terminate for all inputs from every control state q � For

mally�
n�� � � � � n� � IN�
q � Q�

runs���q� n�� n�� n�� n��� �
 �

Theorem �� Structural termination is undecidable for lossy counter ma�
chines� Both variants of STRUCTTERM�LCM are undecidable for every lossi�
ness relation�

PROOF� The proof of Theorem �� carries over� because the LCM is strongly�
cyclic and the ��CM in BSC�ZI�CM�

b is zero�initializing� �

Space�Boundedness for LCM

Instance� A strongly
cyclic �
counter LCM M with the initial con�guration
�q�� �� �� �� ���

Question� Is M space
bounded �

Theorem �� Space�boundedness for LCM is undecidable for all lossiness re�
lations�

�

PROOF� We reduce BSC�ZI�CM�
b to the space�boundedness problem for LCM�

Let M be the ��CM from BSC�ZI�CM�
b � We take the LCM M � from the proof

of Theorem �� and modify it as follows �obtaining a new LCM M ��	
 At the
�nal state �fail� we do not stop� Instead we add c�� c� and c� to c�� set c�� c�
and c� to � and increase c� by � and go to the initial state q��� of M ��� Formally�
this is de�ned by

fail � If c� � � then goto f� else c� �� c� � �� goto d�

d� � c� �� c� � �� goto fail

f� � If c� � � then goto f� else c� �� c� � �� goto d�

d� � c� �� c� � �� goto f�

f� � If c� � � then goto f� else c� �� c� � �� goto d�

d� � c� �� c� � �� goto f�

f� � c� �� c� � �� goto q���

The initial con�guration of M �� is �q��� � �� �� �� ��� Now we show that M is a
positive instance of BSC�ZI�CM�

b i
 M �� is bounded�

� IfM is a positive instance of BSC�ZI�CM�
b then it uses only a �nite amount

k of space� i�e�� we have always c� � c� � c� � k in both M and M ��� If the
value in c� becomes larger than k then there are two cases�
��	 If M �� does not lose then it will enter an in�nite space�bounded cyclic

computation which never visits the state �fail � again� Thus these runs
of M �� are bounded�

��	 In order to visit the state �fail � again M �� must lose at least once� This
is at most compensated in the state �fail� �the sum of the counters is
increased by �	� but not more than that� Thus these runs of M �� are
bounded as well�

Thus all computations of M �� from �q��� � �� �� �� �� are space�bounded�
� If M is a negative instance of BSC�ZI�CM�

b then the computation of M ��

from �q��� � �� �� �� �� without losses will visit the state �fail � in�nitely often
and the sum of all counters will become arbitrarily high� �The run without

losses is one possible run� since by Def� � id �
l
��	 Thus M �� is not space�

bounded� �

Remark �� It follows directly from Theorem �� that the set of reachable
con�gurations of a LCM cannot be e
ectively constructed� �If one could con�
struct this set then one could decide boundedness	� In particular� this non�
constructibility result also holds for classical LCM� The set of reachable con�
�gurations of a classical LCM is always semilinear� since it is downward closed�
Thus� the set of reachable con�gurations of a classical LCM is semilinear� but
not e
ectively semilinear�

��

It has already been stated in ��� that the regular expression that describes
the set of reachable con�gurations of a lossy �fo
channel system cannot be
e�ectively constructed� although it always exists� �The proof in ��� contains
a slight error�� This result is subsumed by the more general Theorem �� and
Remark ���

Structural Space�Boundedness for LCM

Instance� A strongly
cyclic �
counter LCM� M �
Question� Is M space
bounded for every initial con�guration

�q� n�� n�� n�� n�� n�� �

Theorem �� Structural space�boundedness for LCM is undecidable for every
lossiness relation�

PROOF� The proof is similar to Theorem ��� An extra counter c� is used to
count the length of the run� It is unbounded i
 the run is in�nite� All other
counters are bounded� �

� Applications

Lossy counter machines can be used to prove the undecidability of many prob

lems�

��� Lossy Fifo�Channel Systems

Fifo
channel systems are systems of �nitely many �nite
state processes that
communicate with each other by sending messages via unbounded �fo
channels
�queues� bu�ers�� In lossy �fo
channel systems these channels are lossy� i�e��
they can spontaneously lose �arbitrarily many� messages� This can be used to
model communication via unreliable channels� While normal �fo
channel sys

tems are Turing
powerful� some safety
properties are decidable for lossy �fo

channel systems �������� However� liveness properties are undecidable even for
lossy �fo
channel systems� In ��� Abdulla and Jonsson showed the undecidabil

ity of the recurrent�state problem for lossy �fo
channel systems� This problem
is if certain states of the system can be visited in�nitely often� The undecid

able core of the problem is essentially if there exists an initial con�guration of
a lossy �fo
channel system s�t� it has an in�nite run� The undecidability proof
in ��� was done by a reduction from a variant of Post
s correspondence prob

lem� namely �
permutation PCP� The undecidability of �
permutation PCP
has been shown by Ruohonen in ����� There is some confusion of the names of
the problems in the literature� Abdulla and Jonsson ��� use Ruohonen
s result
on the undecidability of �
permutation PCP and cite ����� but they refer to
the problem 	�
permutation PCP
 as 	cyclic PCP
� However� the real cyclic
PCP is a di�erent problem� which is also de�ned and shown to be undecidable
by Ruohonen in �����

��

Lossy counter machines can be used to give a much simpler proof of the
undecidability results for lossy FIFO
channel systems� The lossiness of lossy
�fo
channel systems is classic lossiness� i�e�� the contents of a �fo
channel can
change to any substring at any time� A lossy �fo
channel system can simulate
a classic LCM �with some additional deadlocks� in the following way� Every
lossy �fo
channel contains a string in X� �for some symbol X� and is used as a
classic lossy counter� The length of the string encodes the value in the counter�
The only problem is the test for zero� We test the emptiness of a �fo
channel
by adding a special symbol Y and removing it in the very next step� If it can
be done then the channel is empty �or has become empty by lossiness�� If this
cannot be done� then the channel was not empty or the symbol Y was lost�
In this case we get a deadlock� These additional deadlocks do not a�ect the
existence of in�nite runs� and thus the results of Section � carry over� Thus
the problem 	nLCM� �for the classic lossiness relation� can be reduced to the
problem above for lossy �fo
channel systems and the undecidability follows
immediately from Theorem ���

��� Model Checking Lossy Basic Parallel Processes

Petri nets ���� �also described as 	vector addition systems
 in a di�erent frame

work� are a widely known formalism used to model concurrent systems� They
can also be seen as counter machines without the ability to test for zero� and
are not Turing
powerful� since the reachability problem is decidable for them
����� Basic Parallel Processes ��� correspond to communication
free nets� the
�very weak� subclass of labeled Petri nets where every transition has exactly
one place in its preset� They have been studied intensively in the framework
of model checking and semantic equivalences �e�g�� ��������������������

An instance of the model checking problem is given by a system S �e�g�� a
counter machine� Petri net� pushdown automaton�� � � � and a temporal logic
formula �� The question is if the system S has the properties described by ��
denoted S j� ��

The branching
time temporal logics EF� EG and EG� are de�ned as exten

sions of Hennessy
Milner Logic ���������� by the operators EF � EG and EG��
respectively� s j� EF� i� there exists an s� s�t� s

�

� s� and s� j� �� s� j� EG��

i� there exists an in�nite run s� � s� � s� � � � � s�t�
i� si j� �� EG is similar�
except that it also includes �nite runs that end in a deadlock� Alternatively�
EF and EG can be seen as fragments of computation
tree logic �CTL ��������
since EF� � E�true U �� and EG� � E��wU false��

Model checking Petri nets with the logic EF is undecidable ����� but model
checking Basic Parallel Processes with EF is PSPACE
complete ����� Model
checking Basic Parallel Processes with EG is undecidable ����� It is di�erent
for lossy systems� By induction on the nesting
depth of the operators EF � EG
and EG�� and constructions similar to the ones in Lemma � and Lemma �� it
can be shown that model checking classic LCM with the logics EF� EG and

��

EG� is decidable� Thus it is also decidable for classical lossy Petri nets and
classical lossy Basic Parallel Processes �see �����

However� model checking lossy Basic Parallel Processes with nested EF and
EG�EG� operators is still undecidable for every subclassic lossiness relation�
This is quite surprising� since lossy Basic Parallel Processes are an extremely
weak model of in�nite
state concurrent systems and the temporal logic used is
very weak as well� �Note in particular that lossy Basic Parallel Processes are
normed� i�e�� from every reachable state there is a terminating computation��

Theorem �� Model checking lossy Basic Parallel Processes �with any sub�
classic lossiness relation	 with formulae of the form EFEG��� where � is a
Hennessy�Milner Logic formula� is undecidable�

PROOF� Esparza and Kiehn showed in ���� that for every counter machine
M �with all counters initially �	 a Basic Parallel Processes P and a Hennessy�
Milner Logic formula � can be constructed s�t� M does not halt i
 P j� EG���
The construction carries over to subclassic LCM and subclassic lossy Basic
Parallel Processes� The control�states of the counter machine are modeled by
special places of the Basic Parallel Processes� In every in�nite run that satis�es
� exactly one of these places is marked at any time�

We reduce 	nLCM� to the model checking problem� Let M be a subclassic
LCM� Let P be the corresponding Basic Parallel Processes as in ���� and let
� be the corresponding Hennessy�Milner Logic formula as in ����� We use the
same subclassic lossiness relation on M and on P � P stores the contents of
the ��th counter in a place Y � Thus PkY n corresponds to the con�guration of
M with n in the ��th counter �and � in the others	� We de�ne a new initial

state X and transitions X
a
� XkY and X

b
� P � where a and b do not occur

in P � Let � �� � � �hbitrue� Then M is a positive instance of 	nLCM� i

X j� EFEG��� The result follows from Theorem ��� �

For Petri nets and Basic Parallel Processes� the meaning of Hennessy
Milner
Logic formulae can be expressed by boolean combinations of constraints of
the form p � k �at least k tokens on place p�� Thus the results also hold if
boolean combinations of such constraints are used instead of Hennessy
Milner
Logic formulae� Another consequence of Theorem �� is that model checking
lossy Petri nets with CTL is undecidable�

��� Reset�Transfer Petri Nets

Reset Petri nets are an extension of Petri nets by the addition of reset
arcs�
A reset
arc between a transition and a place has the e�ect that� when the
transition �res� all tokens are removed from this place� i�e�� it is reset to zero�
Transfer nets and transfer arcs are de�ned similarly� except that all tokens
on this place are moved to some di�erent place� It was shown in ���� that
termination is decidable for 	Reset Post G
nets
� a more general extension

��

of Petri nets that subsumes reset nets and transfer nets� �For normal Petri
nets termination is EXPSPACE
complete ������ While boundedness is trivially
decidable for transfer nets� the same question for reset nets was open for some
time �and even a wrong decidability proof was published�� Finally� it was
shown in ���� that boundedness �and structural boundedness� is undecidable
for reset Petri nets� The proof in ���� was done by a complex reduction from
Hilbert
s ��th problem �a simpler proof was later given in ���������

Here we generalize these results by using lossy counter machines� This also
gives a uni�ed framework and considerably simpli�es the proofs�

Lemma �
 Reset Petri nets can simulate the in�nite runs of lossy counter
machines with reset�lossiness�

PROOF� For every n�counter LCM M �with the reset lossiness relation
rl
�	

we construct a reset Petri net N in the following way
 Let there be places
c�� � � � � cn that hold the contents of the counters and a place q for every state
q � Q of the �nite control of M � Every marking of this net N where exactly
one of the places q contains exactly one token corresponds to a con�guration
of the counter machine M and vice versa� For every instruction of M of the
form �q � ci �� ci��� goto q�� with �� � i � n� there is a transition that takes
one token from q� puts one token on ci� puts one token on q� and resets all
places except q�� c�� � � � � cn� The �ring of this transition exactly simulates the
computation step of M � For every instruction of M of the form �q � If ci �
� then goto q� else ci �� ci � �� goto q��� with �� � i � n� there are two
transitions
 The �rst transition takes a token from q� puts a token on q� and
resets ci and all places except q�� c�� � � � � cn� Instead of being tested for zero the
place�counter ci is reset to zero� If the place�counter ci actually was zero before
the transition �red� then this was a faithful simulation of the computation step
of the counter machine� If the place�counter ci was not zero before� then it
was still a faithful simulation of a computation step of the reset
lossy counter
machine� because ci could suddenly have become zero �empty	 by lossiness �see

the Def� � of reset lossiness
rl
�	� The second transition takes one token from q

and one from ci� puts one token on q�� and resets all places except q��� c�� � � � � cn�
This transition can only �re if ci is not zero �empty	 and faithfully simulates
the computation step of the counter machine�

The only problem with this simulation is that it is possible that in N all tokens
on the places q are lost� This causes a deadlock in N � The same thing cannot
happen in M � because the �nite�control cannot be lost� Thus� N simulates M
with some extra deadlocks� However� we still have that

� For every in�nite run of M there is an in�nite run of N that faithfully
simulates it�

� For every in�nite run of N there is an in�nite run of M that faithfully
simulates it�

Thus� the reset net N faithfully simulates all in�nite runs of M � �

��

Theorem �� Structural termination� boundedness and structural bounded�
ness are undecidable for lossy reset Petri nets with every subclassic lossiness
relation�

PROOF� It follows from Lemma �� that a lossy reset Petri net with sub�

classic lossiness relation
l
� can simulate the in�nite runs of a lossy counter

machine with lossiness relation
l
� �

rl
�� The results follow from Theorem ���

Theorem �� and Theorem ��� �

The undecidability result on structural termination carries over to transfer nets
�instead of a reset the tokens are moved to a special 	dead
 place�� but the
others don
t� For example� boundedness is decidable for transfer nets ����� Note
that for normal Petri nets structural termination and structural boundedness
can be decided in polynomial time �just check if there is a positive linear
combination of e�ects of transitions��

Theorem �� and Theorem �� also hold for arbitrary lossiness relations instead
of just subclassic ones� but this requires an additional argument� When a Petri
net �weakly� simulates a lossy counter machine �e�g�� like in Lemma ��� then
special places are used to encode the �nite
control� If the lossiness relation on
the Petri net is not subclassic then the simulated control
state could change by
lossiness� This is a problem for lossy counter machines� because �by using the
	capacity
 in c�� one wants to make sure that lossiness cannot occur in�nitely
often� But now it can happen again as follows�

q � c� �� c� � �� goto q�

By lossiness the control
state could change from q� back to q while the counter
c� is decreased by �� The result is an in�nite loop at q where c� stays at the
same value�

On can get around this problem by using the special features of Petri nets�
Petri nets �unlike counter machines� can increase a place�counter and decrease
another in the same step� So� instead of decreasing the capacity and increasing
a counter in the next step �like in Theorem ��� we can do both in one step
with one transition� This solves the problem� because now the sum of all places
never increases� not even temporarily as in lossy counter machines� Then the
proofs of Theorem �� and Theorem �� carry over to all lossiness relations�

��� Parameterized Problems

We consider veri�cation problems for systems whose de�nition includes a pa

rameter n � IN� Intuitively� n can be seen as the size of the system� Examples
are

� Systems of n indistinguishable communicating �nite
state processes�
� Systems of communicating pushdown automata with n
bounded stack�

��

� Systems of �a �xed number of� processes who communicate through �lossy�
bu�ers or queues of size n�

Let P �n� be such a system with parameter n� For every �xed n� P �n� is a
system with �nitely many states and thus �almost� every veri�cation problem
is decidable for it� So the problem P �n� j� � is decidable for any temporal
logic formula � from any reasonable temporal logic� e�g�� modal �
calculus ����
or monadic second
order theory� The parameterized veri�cation problem is if a
property holds independently of the parameter n� i�e�� for any size� Formally�
the question is if for given P and � we have
n � IN� P �n� j� � �or �	n �
IN� P �n� j� ���� Many of these parameterized problems are undecidable by
the following meta
theorem�

Theorem �� A parameterized veri�cation problem is undecidable if it satis�
�es the following conditions

��	 It can encode an n�space�bounded lossy counter machine �for some lossi�
ness relation	 in such a way that P �n� corresponds to the initial con�gu�
ration with n in one counter and � in the others�

��	 It can check for the existence of an in�nite run�

PROOF� By a reduction of 	nLCM� and Theorem ��� The important point
here is that in the problem 	nLCM� one can require that the LCM is input�
bounded� �

The technique of Theorem �� is used in ���� to show the undecidability of
the fairness problem for broadcast communication protocols� These are sys

tems of n indistinguishable communicating �nite
state processes� The rules
for communication are as follows�

��� Two processes can communicate directly by handshake�
��� One process can broadcast a message� which is received �immediately� by

all other n� � processes�

Every message sent or received by a process can change its internal state� which
in turn de�nes what actions it can perform and how it reacts to messages�
The rules for communication are de�ned independently from the number n
of processes in the system� If one considers processes with k internal states
then any con�guration of the broadcast protocol with n processes can be
described by a tuple �m�� m�� � � � � mk� where mi is the number of processes
in state i and

Pk
j��mj � n� Every such mi can be seen as the content of a

counter which is bounded by n� A broadcast can cause all processes in a certain
state to change to another state� This can be used to reset such a simulated
space
bounded counter to zero� Note however� that no test for zero is possible�
The problem if such a broadcast protocol terminates �i�e�� for every number
n of processes the system terminates� is undecidable� because it satis�es the
conditions of Theorem �� �the lossiness relation used here is reset
lossiness��
Thus all fairness properties� like those expressible in the temporal logics CTL
������� and LTL �linear
time temporal logic ������ are undecidable as well�

��

In the same way� similar results can be proved for parameterized problems
about systems with bounded bu�ers� stacks� etc�

� Extensions

The proofs of the main undecidability results in Theorem �� and Theorem ��
work only for LCM with at least � counters� The question arises� if fewer coun

ters su�ce� like the two counters used in normal counter machines� However�
the methods used to reduce the number of counters in normal counter ma

chines do not carry over to LCM� They use codings which are not robust under
lossiness� Also these codings require a lot of computation and some types of
LCM are not exactly Turing
powerful� The decidability of structural termi

nation for LCM with � or less counters probably depends on the particular
lossiness relation�

The computational power of lossy counter machines also depends very much
on the particular lossiness relation� However� a few general observations can
be made� The utmost one can expect from a LCM is the following�

� There is at least one computation that gives the correct result� since id �
l
��

� There may be other computations that give results that are smaller than
the correct result �by the de�nition of lossiness��

For some operations� e�g�� addition and multiplication� this optimal behavior
can be achieved� However� for other operations like subtraction it is impossible�
since the obtained result may even be larger than the correct one� In fact�
many versions of LCM cannot even compare two numbers� Thus� it should be
stressed that we do not advocate LCM as a model of computation� but rather
as a means of proving undecidability�

Another question is if the undecidability results can be extended to more gen

eral lossiness relations than

s
� �see Def� ��� �Even

s
� can hardly be called

lossiness any more� since it allows some counters to increase while others de

crease�� One idea is to introduce functions f � INn �� IN s�t� if s
l
� s� then

either s � s� or f�s�� � f�s�� �In the case of
s
� the function f is the sum��

Again this depends very much on the lossiness relation relation
l
�� In the

proof of Theorem �� a balance must be kept in the �th counter� to ensure that
the LCM is input
bounded and lossiness can occur only �nitely often in the
in�nite run� This balance must be updated �computed� on the lossy counter
machine� which is not always Turing
powerful� In the simple case of the 	sum

function this is trivial� but for more general functions f it is a problem�

 Conclusion

Lossy counter machines can be used as a general tool to show the undecid

ability of many problems� It provides a uni�ed way of reasoning about many
quite di�erent classes of systems� For example the recurrent
state problem for

��

lossy �fo
channel systems� the boundedness problem for reset Petri nets and
the fairness problem for broadcast communication protocols were previously
thought to be completely unrelated� Yet lossy counter machines show that the
principles behind their undecidability are the same� Moreover� the undecid

ability proofs for lossy counter machines are very short and much simpler than
previous proofs of weaker results �������

Lossy counter machines have also been used in this paper to show that even for
very weak temporal logics and extremely weak models of in�nite
state concur

rent systems� the model checking problem is undecidable �see Subsection �����

We expect that many more problems can be shown to be undecidable with
the help of lossy counter machines� especially in the area of parameterized
problems �see Subsection �����

Acknowledgments� Thanks to Javier Esparza and Petr Jan�car for fruitful
discussions and to an anonymous referee for detailed comments�

References

	�
 P� Abdulla� A� Bouajjani� and B� Jonsson� On�the��y Analysis of Systems with
Unbounded� Lossy Fifo Channels� In ��th Intern	 Conf	 on Computer Aided
Veri�cation �CAV
���� LNCS ���
� �����

	�
 P� Abdulla and B� Jonsson� Verifying Programs with Unreliable Channels� In
LICS
��� IEEE� �����

	�
 P� Abdulla and B� Jonsson� Undecidable veri�cation problems for programs
with unreliable channels� Information and Computation� �������
����� �����

	�
 A� Bouajjani and P� Habermehl� Symbolic reachability analysis of FIFO�channel
systems with nonregular sets of con�gurations� In Proc	 of ICALP
��� volume
���� of LNCS� ���
�

	�
 A� Bouajjani and R� Mayr� Model checking lossy vector addition systems� In
Proc	 of STACS
��� volume ���� of LNCS� Springer Verlag� �����

	�
 G� C�ec�e� A� Finkel� and S�P� Iyer� Unreliable Channels Are Easier to Verify
Than Perfect Channels� Information and Computation� ������������� �����

	

 S� Christensen� Decidability and Decomposition in Process Algebras� PhD thesis�
Edinburgh University� �����

	�
 S� Christensen� Y� Hirshfeld� and F� Moller� Bisimulation equivalence is
decidable for Basic Parallel Processes� In E� Best� editor� Proceedings of
CONCUR ��� volume
�� of LNCS� Springer Verlag� �����

	�
 E�M� Clarke and E�A� Emerson� Design and synthesis of synchronization
skeletons using branching time temporal logic� volume ��� of LNCS� pages
���
�� �����

��

	��
 L�E� Dickson� Finiteness of the odd perfect and primitive abundant numbers
with distinct factors� American Journal of Mathematics� ����������� �����

	��
 C� Dufourd� R�eseaux de Petri avec Reset�Transfert
 D�ecidabilit�e et
ind�ecidabilit�e� PhD thesis� ENS de Cachan� �����

	��
 C� Dufourd� A� Finkel� and Ph� Schnoebelen� Reset nets between decidability
and undecidability� In Proc	 of ICALP
��� volume ���� of LNCS� Springer
Verlag� �����

	��
 C� Dufourd� P� Jan�car� and Ph� Schnoebelen� Boundedness of Reset P�T Nets�
In Proc	 of ICALP
��� volume ���� of LNCS� Springer Verlag� �����

	��
 E�A� Emerson� Temporal and modal logic� In J� van Leeuwen� editor�
Handbook of Theoretical Computer Science
 Volume B� FORMAL MODELS
AND SEMANTICS� Elsevier� �����

	��
 J� Esparza� Decidability of model checking for in�nite�state concurrent systems�
Acta Informatica� ��������
� ���
�

	��
 J� Esparza� A� Finkel� and R� Mayr� On the veri�cation of broadcast protocols�
In Proc	 of LICS
��� IEEE� �����

	�

 J� Esparza and A� Kiehn� On the model checking problem for branching time
logics and Basic Parallel Processes� In CAV
��� volume ��� of LNCS� pages
�������� Springer Verlag� �����

	��
 M� Hennessy and R� Milner� On observing nondeterminism and concurrency�
volume �� of LNCS� pages �������� �����

	��
 M� Hennessy and R� Milner� Algebraic laws for nondeterminism and
concurrency� Journal of Association of Computer Machinery� �����
����� �����

	��
 Y� Hirshfeld� M� Jerrum� and F� Moller� A polynomial�time algorithm for
deciding bisimulation equivalence of normed Basic Parallel Processes� Journal
of Mathematical Structures in Computer Science� ���������� �����

	��
 D� Kozen� Results on the propositional ��calculus� TCS� �
��������� �����

	��
 E� Mayr� An algorithm for the general Petri net reachability problem� SIAM
Journal of Computing� ����������� �����

	��
 R� Mayr� Weak bisimulation and model checking for Basic Parallel Processes�
In Foundations of Software Technology and Theoretical Computer Science
�FST�TCS
���� volume ���� of LNCS� Springer Verlag� �����

	��
 R� Mayr� On the complexity of bisimulation problems for Basic Parallel
Processes� In Proc	 of ICALP ����� volume ���� of LNCS� Springer Verlag�
�����

	��
 M�L� Minsky� Computation
 Finite and In�nite Machines� Prentice�Hall� ���
�

	��
 F� Moller� In�nite results� In Ugo Montanari and Vladimiro Sassone� editors�
Proceedings of CONCUR
��� volume ���� of LNCS� Springer Verlag� �����

��

	�

 J�L� Peterson� Petri net theory and the modeling of systems� Prentice�Hall�
�����

	��
 A� Pnueli� The temporal logic of programs� In FOCS
��� IEEE� ��

�

	��
 K� Ruohonen� On some variants of Post�s correspondence problem� Acta
Informatica� �����
���
� �����

	��
 H� Yen� A uni�ed approach for deciding the existence of certain Petri net paths�
Information and Computation� ������������
� �����

��

On the Verification of Broadcast Protocols

Javier Esparza � Alain Finkely Richard Mayrz

Abstract

We analyze the model-checking problems for safety and
liveness properties in parameterized broadcast protocols,
a model introduced in [5]. We show that the procedure
suggested in [5] for safety properties may not terminate,
whereas termination is guaranteed for the procedure of [1]
based on upward closed sets. We show that the model-
checking problem for liveness properties is undecidable. In
fact, even the problem of deciding if a broadcast protocol
may exhibit an infinite behavior is undecidable.

1. Introduction

In [5], Emerson and Namjoshi present an abstract reacha-
bility procedure —called the EN-procedure in the sequel—
for the construction of a “covering graph”. It general-
izes the Karp-Miller construction of a covering graph for
Petri nets [9]. The EN-procedure can be applied to classes
of systems satisfying some abstract conditions (essentially,
computability of the least upper bounds of certain chains).
By combining it with the automata-theoretic approach to
model-checking [11], Emerson and Namjoshi show that it
can be used to verify safety and liveness properties. Similar
constructions have been studied in the framework of well-
structured transition systems [6].
The termination of the EN-procedure depends on the class
of systems being considered. In [5] termination is proved
for the parameterized systems of [4, 8]; termination for Petri
nets and vector addition systems was already proved in [9].
In the case of parameterized systems, the EN-procedure can
be used to prove that a property holds independently of the
number of processes participating in the protocol. In other
words, it can show that all the elements of an infinite family
of finite-state systems satisfy a certain property.

�Institut für Informatik, Technische Universität München, D-80290
München, Germany. E-mail: esparza@in.tum.de

yLab. Spécification et Vérification, ENS de Cachan, 61, av.
du Président Wilson, 94235 Cachan Cedex, France. E-mail:
finkel@lsv.ens-cachan.fr

zLFCS, Dept. of Computer Science, Univ. of Edinburgh, Edinburgh
EH9 3JZ, UK. E-mail: mayrri@dcs.ed.ac.uk

One of the most interesting points of [5] is the application
of the EN-procedure to a new parameterized model called
parameterized broadcast protocols—shortened to broadcast
protocols in the sequel. Broadcast protocols are systems
composed of a finite but arbitrarily large number of indistin-
guishable processes that communicate by rendezvous (two
processes exchange a message) or by broadcasts (a process
sends a message to all other processes). It is also possible
to incorporate a distinguished control process. While the
case in which processes communicate only by rendezvous
had already been studied in [8, 4], the extension to broad-
casts is considered in [5] for the first time. The addition
of broadcasts allows to model simplified versions of cache
coherence protocols like MESI-protocols.
In [5] it is shown that broadcast protocols satisfy the ab-
stract conditions necessary for the applicability of the EN-
procedure. However, neither the termination issue nor the
decidability of the model-checking problems for safety and
liveness properties are examined. In this paper we address
these points and obtain the following results:

� The EN-procedure may not terminate for broadcast
protocols.

� The model-checking problem for safety properties is
decidable. The decision procedure—which obviously
cannot be the EN-procedure—is the result of instan-
tiating for broadcast protocols an abstract backwards
reachability algorithm introduced in [1].

� The model-checking problem for liveness properties is
undecidable.

The paper is organized as follows: Section 2 introduces
broadcast protocols and formalizes the model-checking
problems for safety and liveness properties. Sections 3, 4, 5
present the results above, respectively.

2. Broadcast Protocols: Basic Definitions

2.1. Syntax

A broadcast protocol is a triple �S�L�R� where S is a finite
set of states. L is a finite set of labels composed of: a set �l

s3 s2

s1

a!!

a??

a??

a??

b!

b?

c

Figure 1. A broadcast protocol

of local labels, two sets �r�f�g and �r�f�g of input and
output rendez-vous labels, and two sets �b�f��g and �b�
f��g of input and output broadcast labels, where �l��r��b

are disjoint finite sets.

Along the paper a� b� c� � � � denote elements of � � �l �
�r � �b. Rendezvous and broadcast labels like �a� �� or
�b� ��� are shortened to a� and b��. Elements of � are called
actions. R � S�L�S is a set of transitions satisfying the
following property: for every a � �b and every state s � S,

there exists a state s� � S such that s
a��
��� s�. Intuitively,

this condition guarantees that a process is always willing
to receive a broadcasted message. We represent broadcast
protocols graphically as shown in Figure 1.

In this paper we consider broadcast protocols satisfying the
following additional constraints. (a) For each state s and
each broadcast label a�� there is exactly one state s� such

that s
a��
��� s� (determinism). (b) Each label of the form a,

a�, a� and a�� appears in exactly one transition.

These constraints are only used to simplify the presentation.
All our decidability/undecidability results are valid for gen-
eral broadcast protocols.

2.2. Semantics

Let B � �S�L�R� be a broadcast protocol where
S � fs�� � � � � sng. A configuration of B is a function
c � S � IN. Intuitively, c�si� indicates how many pro-
cesses are in the state si. We identify c with the vector
�c�s��� � � � � c�sn�� � INn. We denote by ui the configura-
tion given by ui�sj� � � if i � j and ui�sj� � � otherwise.
Moves between configurations are either rendezvous (two
processes exchange a message and move to new states) or

broadcasts (a process sends a message to all other processes;
all processes move to new states). The semantics ofB is the
smallest subset of INn � � � INn satisfying the three con-
ditions below, where a triple �c� a� c�� � INn � � � INn is
denoted by c

a
�� c�.

� If si
a
�� sj then c

a
�� c� for every c, c� such that

c�si� � � and c� � c� ui 	 uj .
I.e. one process is removed from si, and one process
is added to sj .

� If si
a�
�� sj and sk

a�
�� sl then c

a
�� c� for every c,

c� such that c�si� � �, c�sk� � � and c� � c � ui �
uk 	 uj 	 ul.
I.e. one process is removed from si and sk, and one
process is added to sj and sl.

� If si
a��
�� sj then c

a
�� c� for every c, c� such that

c�si� � � and c� can be computed from c in the fol-
lowing three steps:

c� � c� ui (1)

c��sk� �
X

fsljsl
a�����skg

c��sl� (2)

c� � c� 	 uj (3)

I.e. the sending process leaves si (1), all other pro-
cesses receive the broadcast and move to their destina-
tions (2), and the sending process reaches sj (3).

Thanks to our constraints (a) and (b) above, the configura-
tion c� is completely determined by c and the action a. In
the example of Figure 1 we have

�
� �� ��
c
�� ��� �� ��

�
� �� ��
b
�� �
� �� ��

�
� �� ��
a
�� ��� ��
�

Given a broadcast protocol with n states, we call the n� n

matrices having unit vectors as columns broadcast matrices
[5]. Given an action a � �, it is easy to see that there
exists a broadcast matrixMa and a vector va such that c� �
Ma � c 	 va holds whenever c

a
�� c�. For example, for the

action a in the example of Figure 1 we have

Ma �

�
� � � �

� � �
� � �

�
A va �

�
� �

�
��

�
A

Since broadcast matrices are closed under product, this ob-
servation can be generalized to arbitrary sequences � � ��:
If c

�
�� c� then c� �M� � c	v� for some broadcast matrix

M� and vector v� .

The language ofB from an initial configuration c�, denoted
byL�B� c��, is the set of sequences � � �� such that c�

�
��

c for some configuration c�. The �-language of B from c�,
denoted by L��B� c��, is defined accordingly.

A parameterized configuration is a partial functionp � S �
IN. We identify it with a set of configurations, namely those
extending p to a total function. So we identify the param-
eterized configuration of the broadcast protocol of Figure 1
given by p�s�� � p�s�� � � (undefined) and p�s�� �

with the set of configurations f�n�� n��
� j n�� n� � INg.

The language of B from an initial parameterized configura-
tion p�, denoted by L�B�p��, is defined as

L�B�p�� �
�
c�p�

L�B� c�

So L�B�p�� contains all sequences of actions that the pro-
tocol can execute from all initial configurations that belong
to the initial parameterized configuration p�. L��B�p�� is
defined analogously.

2.3. Model-Checking Problems

Following the automata-theoretic approach to model-
checking (see for instance [11]), we formalize a linear
safety property as a regular set of dangerous sequences of
actions the protocol should not engage in. Similarly, a live-
ness property is formalized as an �-regular language over
�.

Notice that we consider languages over �, corresponding
to properties on the actions of the system. In [5] proper-
ties on the configurations satisfying certain conditions are
considered instead; for that, configurations are labeled with
atomic properties. All the results of this paper hold for the
languages of [5] as well.

We study the decidability of the following two model-
checking problems:

Safety properties
Given: a broadcast protocol B, a parameterized
configuration p�, a regular language L.
To decide: if L�B�p�� 	 L �
.

Liveness properties
Given: a broadcast protocol B, a parameterized
configuration p�, an �-regular language L.
To decide: if L�B�p�� 	 L �
.

These two problems can be approached using well-known
automata-theoretic techniques. For the safety problem, we
take a finite automaton A � �Q��� �� q�� F � accepting the
language L. The combined system of a protocol B with

n states and an automaton A is a subset of �INn � Q� �

� � �INn � Q� defined by: �c� q�
a
�� �c�� q�� if and only if

c
a
�� c� in B and q

a
�� q� in A. Clearly, L�B�p�� 	 L �

if and only if no path of the combined system starting at
any �c� q��, where c � p�, ever visits a combined state of
the form �c�� q� where q � F . For the liveness problem
we replace A by a Büchi automaton, and ‘visits a state’ by
‘visits a state infinitely often’.

3. The EN-Procedure may not Terminate

The EN-procedure for the construction of the covering
graph is described below. We exhibit a broadcast protocol
for which it does not terminate. It is then straightforward to
show that the procedure may not terminate either for com-
bined systems.

Fix for the rest of this section a broadcast protocol B �
�S�L�R�, where S � fs�� � � � � sng, and a parameterized
initial configuration p�.

Let �IN � f�g�n be the set of �-configurations of B.
The semantics of broadcast protocols is generalized to �-
configurations by letting � 	 n � � � n � � for all
n � IN, � 	 � � � and � � � � �. Let e� and e� be �-
configurations. We say e� � e� if e� is pointwise smaller
than or equal to e�, where n � � for every n � IN � f�g.
Clearly, � is a complete partial order on �-configurations
The least upper bound (lub) of a chain is the vector of lubs
of the component chains. For a sequence of actions �, de-
fine T� as the affine operator given by T��e� �M��e�	v� .

The EN-procedure examines pairs �e� a�, where e is an �-
configuration and a � �. It is initialized with the empty
graph and the set of unexamined pairs f�e�� a� j a � �g,
where e� is defined by

e��si� �

�
p��si� if p��si� defined
� otherwise.

The procedure goes as follows:

0. Add the node e� to the graph.
1. Choose an unexamined pair �e� a�;

if there are none, stop.
2. If there is no e� such that e

a
�� e�,

then mark �e� a� as examined and go to 1.
3. If e

a
�� e� for some e� then

3.1 If the graph contains an
�-configuration d
 e�

then make d the a-successor of e;
3.2 else, if the graph contains a path from

some node d to e such that d � e�,
then let � be the sequence of actions
of this path, let l be the lub of the chain

s0

s1

s2

R

c1

c2

a! b!!

d!!

e! c!

a?

d??

e? c?

b??

b??
d??

b?? d??

b??

b??

b??

d??

d??

d??

Figure 2. A protocol with an infinite covering
graph

d � T�a�d� � T �
�a�d� � � � � ,

and make l the a-successor of e;
3.3 else, create e� as the a-successor of e.

4. Mark �e� a� as examined and go to 1.

Two questions arise: (a) is the lub of a chain effectively
computable? and, (b) does the procedure terminate, i.e., is
the covering graph finite? In [5], Emerson and Namjoshi
answer (a) positively (this is essentially a consequence of
the fact that there are only finitely many broadcast matrices
for a given n), but they do not study (b). We present an
example, inspired by [3], showing that the procedure may
not terminate.

Consider the broadcast protocol B of Figure 2. Initially
there is a process in state s� and arbitrarily many processes
in state R. Following the terminology of [4, 8], the example
consists of a control process, which is always in one of the
states s�� s�� s�, and an arbitrary number of identical user
processes, initially in state R. The protocol simulates a ma-
chine operating on two counters modeled by the states c�
and c�, which draw their items from a repository, modeled
by state R. The meaning of the different actions is:

a: add 1 to c�;
b: reset c� to 0;
c: transfer one item from c� to c�;
d: reset c� to 0;
e: transfer one item from c� to c�.

{s0}

{s1,c1}

{s0,c1}

{s2,c1}

{s1,2c1}

{s2,c2}

{s2,2c1}

{s0,c2}

{s2,2c2}

a

e

b

a

c

b

d

c

c

e

e

d

d{s1,c1,c2}

a

b

{s0,2c1}

{s0,2c2}

d

{s1,c1,2c2}

a

b

a

...

{s2,c1,c2}

{s0,c1,c2}

{s1,2c1,c2}

d

b

a

Figure 3. Semantics of the protocol of Figure
2

We construct the covering graph from e�, the �-
configuration putting 1 process in s�, � processes in R,
and 0 processes elsewhere. We use a multiset notation
for �-configurations; for example, fs��
c�g denotes the �-
configuration putting one process in s�, 3 processes in c�,
and � processes in R. Notice that every �-configuration
reachable from e� puts � processes in R, and so we
omit this part. With this notation we have e� � fs�g.
An initial part of the configurations of B reachable from
e� is shown in Figure 3. Notice that the sequence of
actions abcdeabc�de�abc�de� � � � abcnden � � � can be exe-
cuted from e�, and that all the �-configurations reached
along this sequence are different. So, in particular, there
are infinitely many reachable configurations from e�.

Proposition 3.1 The covering graph for the broadcast pro-
tocol of Figure 2 and the �-configuration e� � fs�g is infi-
nite.

Proof: Let �� be an arbitrary sequence of actions such that
e�

�
�� e�

�
�� e�, e� � e�, and e� �� e�. Since in every con-

figuration reachable from e� the total number of processes
in the states s�� s�� s� is 1, both e� and e� coincide on these
states. Since e� �� e�, � contains at least one occurrence
of b and d. Assume that the last occurrence of b precedes
the last occurrence of d (the other case is similar). Then, �
has the form ��b��d��, where ���� contains no b’s and ��
contains no d’s.

For the construction of the covering graph we can replace
e� by the lub of the chain e� � e� � e� � � � where ei �
T i��
� �e��. We prove that ei � e� for every i � �, which

implies that the lub is e�. This shows that for the protocol of
Figure 2 the EN-procedure and the EN-procedure without
step 3.2 compute the same graph. Since the latter computes
an infinite graph, the covering graph is infinite.

To show ei � e�, we observe that, since e� and ei coincide
on the states s�� s�� s� and R, it suffices to prove e��c�� �
ei�c�� and e��c�� � ei�c��. We prove e��c�� � ei�c��, the
other case being similar.

By the definition of T� , we have e�
�
�� e�

� i��

���� ei
for every i � �. Since the occurrence of d removes all
processes from c�, e��c�� and ei�c�� are determined by the
suffix of � and � i�� starting right after the last occurrence
of d. This suffix is �� in the two cases, and so we have
e��c�� �
���� a� 	
���� e� �
���� c� � ei�c��, where

 denotes the number of occurrences of an action in a
sequence.

Since the protocol of Figure 2 contains both broadcast and
rendezvous actions, the EN-procedure might still terminate
for broadcast protocols with only broadcast moves. Unfor-
tunately, this is not the case. To prove it, given a broadcast
protocol B � �S�L�R�, we define the broadcast protocol
Exp�B� (expansion of B) as the result of performing the
following two operations:

� each transition s
a
�� s� where a is a local action is

replaced by the transition s
a��
�� s�, and a transition

t
a��
��� t is added for each state t;

� each pair of transitions s
a�
�� s� and t

a�
�� t�, where a

is a rendezvous action, is replaced by the construction
shown in Figure 4.1 Moreover, in order to make sure

that for each state s there is a state s� such that s
a�������

s� and s
a������� s�, transitions s

a������� s and s
a������� s

are added where needed.
1The construction introduces two new states per rendezvous.

a1!! a2??

a1??

a2??

a2!!

s s’

t t’

Figure 4. Simulation of a rendezvous by
broadcasts

Observe that Exp�B� only contains broadcast actions. We
also define a morphism � between the action sequences of
B and Exp�B� as follows: ��a� � a�a� if a is a ren-
dezvous action, and ��a� � a otherwise.

It is immediate to see that if c
�
�� c� in B, then c

����
����

c� in Exp�B�, and vice versa. Here we interpret c as the
configuration of Exp�B� that coincides with c on the states
of B and puts no process in the new states. We now have:

Proposition 3.2 Let B the broadcast protocol shown in
Figure 2. The covering graph for the protocol Exp�B� and
the �-configuration fs�g is infinite.

Proof: The sequence

��abcdeabc�de�abc�de� � � � abcnden � � � �

can be executed from e� in Exp�B�, and all the �-
configurations reached along this sequence are different.
So there are infinitely many reachable configurations
from e� in Exp�B�. The argument used in the proof of
Proposition 3.1, namely that every sequence � must contain
occurrences of b and d, is still valid, and in fact the proof
can be carried out in the same way.

The Exp construction also leads to the following result:

Proposition 3.3 The safety and liveness problems for ar-
bitrary protocols can be reduced to the same problems for
broadcast protocols with only broadcast actions.

Proof: Given an arbitrary protocol B and a regular or
�-regular language L, we have L�B�p�� 	 L �
 if and
only if L�Exp�B��p�� 	 ��L� �
.

We finish this section with a small remark. It was shown
in [8] that non-broadcast protocols with a control process
and arbitrarily many user processes are more complicated to

analyze than those in which all processes are identical. So
one could ask if this is also the case for broadcast protocols.
The answer is no. We can easily simulate the protocol of
Figure 2 by another one in which all processes are identical:
It suffices to add a new state Init and two new transitions
Init

init ��
���� s� and Init

init��
���� R, and put all processes

initially in the Init state. The new protocol must first do
an init, by which essentially a process tells the others that
it becomes the control process and the others become user
processes.

4. A Model-Checking Algorithm for Safety
Properties

LetB be a broadcast protocol with states S � fs�� � � � � sng
and a parameterized initial configuration p�, and let A �
�Q��� �� q�� F � be an automaton. The model-checking
problem for safety properties can be reformulated as fol-
lows: Can some combined state n � INn � F be reached
from a combined state �c�� q�� such that c� � p�?

We can use this observation to apply a general backwards
reachability algorithm presented in [1] (see also [7]), which
we “instantiate” for broadcast protocols in the rest of this
section. The algorithm constructs the set of predecessors of
INn � F , and checks whether it has an empty intersection
with �p�� q��.

We need some preliminaries. A set C of combined states is
upwards-closed if �c� q� � C implies �c�� q�� � C for every
�c� q�� �c�� q��, where �c� q�� �c�� q�� if c � c� and q � q�.
Denote by pred�C� the set of immediate predecessors of C
(i.e. the combined states from which C can be reached in
one step). We have the following result:

Proposition 4.1 Let C be an upwards-closed set of com-
bined states. Then:

1. The set of minimal elements of C is finite.

2. The set pred�C� is upwards-closed.

3. The minimal elements of pred�C� are effectively com-
putable from the minimal elements of C.

Proof: 1. Follows immediately from the fact that � is a
well-ordering.
2. It suffices to prove that for each action a the set of
immediate predecessors of C through the action a is
upwards-closed. We do it for the case in which a is a
broadcast action, the other cases being simpler. Assume we

have s�
a��
�� s�. The immediate prodecessors of C through

a is the set of combined states �c� q� such that the following
conditions hold for some minimal element �c�� q�� of C:
(1) Ma � c	 va � c�, (2) c�s�� � �, and (3) q

a
�� q�. Since

read!!

write-inv!!

local-read

local-read

read??

read??

write

write

local-read

write-inv??

write-inv??

read??

write-inv??

write-inv??

read??

M E

SI

Figure 5. A MESI-protocol

Ma is a broadcast matrix, this set is upward-closed.
3. Again, it suffices to prove the result for the set of
immediate predecessors of C through the action a. A
little algebra shows that the minimal elements of this set
are the combined states satisfying (2) and (3) above, plus
a new condition (1�) of the form Ma � c � d, where d

is defined as follows. Since Ma is a broadcast matrix,
there is exactly one state s such that Ma�s� s�� � �.
We take d�s�� � c��s�� � va�s

�� for every s� �� s, and
d�s� � max��� c��s��va�s��. The set of solutions of (1�),
(2), and (3) is clearly computable.

Since INn � F is an upwards-closed set, we can apply
Proposition 4.1 and iteratively compute the minimal ele-
ments of C� � INn � F , C� � C� � pred�INn � F �,
C� � C� � pred��INn � F �, etc. But we know that in any
infinite set of combined states there exist two elements n�n�

such that n� n� (i.e. � is a so-called well-quasi-ordering).
Therefore, there is an n such that the minimal elements of
Cn and pred��INn � F � �

S
i�� Ci coincide, and so the

algorithm terminates.

In [5] the EN-procedure is applied to the protocol shown in
Figure 5, a simplified version of a MESI-protocol for cache
coherence. The initial configuration puts arbitrarily many
processes in state I, and none in the other three states. For
this particular protocol the EN-procedure terminates and
yields a covering graph with four nodes [5]. The invariants

M � ��
S � � and
M	
E � �, where
s denotes
the number of processes in the state s, are proved to hold by
observing that no node covers a configuration violating the
invariants.

We can prove the same two invariants using our algorithm.

For these simple properties we can do without an automa-
ton2: It suffices to compute the set of predecessors of the
upwards-closed sets
M � ��
S � � and
M	
E �
�, respectively, which we call U and V in the sequel. The
reader can easily check that pred�V � � V , and so the pro-
cedure terminates after one step with pred��V � � V . For
U we have

U :
M � � �
S � �
pred�U�: �
M � � �
S � �� �

�
M � � �
E � � �
S � ��
pred��U�: pred�U�

i.e. the procedure terminates after 2 steps. Since the prede-
cessors of U and V do not contain any initial configuration,
the invariants hold.

5. The Model-Checking Problem for Liveness
Properties is Undecidable

We prove that it is undecidable if L��B�p�� �
, i.e. it is
undecidable if the broadcast protocol B with initial param-
eterized configuration p� can execute an infinite sequence.
The undecidability of the model-checking problem follows.

The proof is by reduction from a problem on counter ma-
chines. It is closely related to the undecidability of a similar
problem for lossy counter machines proved in [10] (in fact,
it follows as a corollary from the results in [10]), and has
been inspired by the undecidability proofs of [2].

We start by introducing some notations and definitions. A
counter machine is a tuple M � �Q�C��� q�� H� where Q
is a set of states, C is a set of counters, q� is an initial state,
H is a set of halting states, and � is a set of transitions.
Transitions are of three types:

� q
c�	c
�
����� q�, which increase counter c,

� q
c�	c��
����� q�, which decrease counter c; these transi-

tions can only be taken if the counter has a positive
value;

� q
c	�
��� q�, zero-tests that can only occur if the value of

the counter is 0.

A configuration of M is a tuple �q� j�� � � � � jm�, where q
is a state, and j�� � � � � jm are natural numbers indicating
the contents of the counters. The semantics of a counter
machine is a relation � between configurations, defined as
expected. A run is either an infinite sequence c� � c� �
� � � or a finite sequence c� � � � �� cn where cn is halting.

A configuration �q� j�� � � � � jm� is initial if q � q�, and n-
bounded if

P
��i�m ji � n. A run is initial if its first

configuration is initial, n-bounded if all its configurations

2No automaton is used in [5] either.

contain only n-bounded configurations, and bounded if it is
n-bounded for some number n.

Theorem 5.1 The following problem is undecidable:

Given: a broadcast protocol B, a parameterized
configuration p�.
To decide: if L��B�p�� �
.

Proof: We proceed by reduction from the following unde-
cidable problem:

Given: a 2-counter machine M .
To decide: Does M halt on the input ��� �� ?

Let M � be a counter machine with 3 counters, behaving as
follows. Initially,M � sets all counters to 0; then it simulates
M on the counters c� and c�, but after each step in the sim-
ulation it increases c� by 1. If M halts, then M � goes back
to its initial state.

We make the following two observations about M �:

� M � has an infinite bounded initial run if and only if M
halts for ��� ��.

The only bounded initial run ofM �, if any, corresponds
to the infinite iteration of the accepting run of M on
��� �� (all other infinite runs continuously increase c�).

� Every infinite bounded run of M � (not necessarily ini-
tial!) contains infinitely many initial configurations.

Such a run must set c� to 0 infinitely often, and this can
only be done after visiting an initial configuration.

We simulate in a weak sense the machine M � by a broad-
cast protocol B. In B we have a state for each state and
each counter of M �, and two special states D and I . D is a
special ‘dead’ state and I is introduced to keep an invariant
(see below). The total number of processes in the counters
ofB plus the number of processes in I never increases. The
following table describes the simulation:

Counter machine Broadcast protocol

q
c�	c
�
����� q� q

incc ����� q�

I
incc����� c

q
c�	c��
����� q� q

decc����� q�

c
decc����� I

q
c	�
��� q� q

resetc������� q�

c
resetc�������� D

The parameterized configuration p� puts 1 process in the
initial state q�, arbitrarily many in I , and 0 processes else-
where.

The only situation in which the broadcast protocol does
not faithfully simulate a step of the counter machine oc-
curs when a resetc broadcast is executed at a configuration
having at least one process in the counter c. We call such a
broadcast a cheat.

Take an arbitrary run of the broadcast proto-
col and compute for all configurations c the sum
S�c� � c�c�� 	 c�c�� 	 c�c�� 	 c�I�. The sums
form a non-increasing sequence. Moreover, the sequence
decreases only when the protocol cheats. We prove:

(1) If M halts for ��� ��, then L��B�p�� ��
.
If M halts for ��� ��, then M � has a bounded infinite initial
run, which iterates infinitely often the accepting run of M
on ��� ��. Let b be the bound of this run. We consider the
configuration c � p� that puts b processes in I . We claim
that B has an infinite run from c. This run exactly mimics
the infinite run of M �; since the infinite run is b-bounded,
the total number of processes in the counters of B never
exceeds b, and so B can mimic it even though there are
only b processes in I . Since in this run the protocol only

executes q
resetc������� q� when there are no processes in c,

there are no cheats. So this run of B faithfully simulates
the run of M �, and so it is infinite.

(2) If L��B�p�� ��
, then M halts for ��� ��.
Let c � p� be a configuration such that B has an infinite
run from c. Since each cheat strictly decreases the sum
S�c�, the run contains only finitely many cheats. Take a
suffix of the run containing no cheats. Since the suffix is
infinite, it corresponds to an infinite run r ofM �. Moreover,
r is bounded, because no counter can ever be larger than
c�I�. Now recall that every infinite bounded run of M �

contains infinitely many initial configurations. So some
suffix r� of r is an initial run of M �. Clearly M halts for the
input ��� ��.

6. Conclusions

In this paper we have studied (parameterized) broadcast
protocols, a model introduced by Emerson and Namjoshi in
[5]. We have shown that the covering graph procedure pro-
posed there for the verification of safety properties may not
terminate, whereas termination is guaranteed for the pro-
cedure of [1] based on upward closed sets. So, while the
covering graph technique is certainly adequate for several
classes of systems, it is not the most suitable for broadcast
protocols. Finally, we have shown that the model-checking
problem for liveness properties is undecidable. In fact, even
the problem of deciding if a broadcast protocol may exhibit
an infinite behaviour is undecidable.

Acknowledgements Many thanks to Kedar Namjoshi for
helpful discussions, to Giorgio Delzanno for implementing
the backwards reachability algorithm using constraint pro-
gramming, and to three ananymous referees, whose com-
ments helped us to improve the presentation and correct a
minor mistake.

References

[1] P. Abdulla, K. Cerans, B. Jonnson, Y.K. Tsay. Gen-
eral Decidability Theorems for Infinite State Systems.
LICS, 1996.

[2] P. Abdulla, B. Jonnson. Undecidable Verification
problems for Programs with Unreliable Channels.
ICALP, LNCS 820, 1994.

[3] C. Dufourd, A. Finkel, P. Schnoebelen. Reset Nets Be-
tween Decidability and Undecidability. ICALP, LNCS
1443, 1998.

[4] E.A. Emerson, K.S. Namjoshi. Automatic Verification
of Parameterized Synchronous Systems. CAV, LNCS
1102, 1996.

[5] E.A. Emerson, K.S. Namjoshi. On Model Checking
for Non-Deterministic Infinite-State Systems. LICS,
1998.

[6] A. Finkel. Reduction and covering of infinite reacha-
bility trees. Information and Computation, 89(2):144-
179, 1990.

[7] A. Finkel, P. Schnoebelen. Well-structured Transition
Systems Everywhere! Research Report LSV-98-4,
Lab. Specification and Verification, ENS de Cachan,
France, 1998. To appear in TCS.

[8] S.M. German, A.P. Sistla. Reasoning about Systems
with Many Processes. JACM 39(3), 1992.

[9] R. Karp, R. Miller. Parallel Program Schemata. JCSS
3, 1969.

[10] R. Mayr. Lossy Counter Machines. Technical Report
TUM-I9827, Technische Universität München, 1998.

[11] M. Vardi, P. Wolper. An Automata-Theoretic Ap-
proach to Automatic Program Verification. LICS,
1986.

Decidability of Model Checking with the

Temporal Logic EF

Richard Mayr

Institut f�ur Informatik

Technische Universit�at M�unchen

Arcisstr� ��� D������ M�unchen� Germany

e�mail	 mayrri�informatik�tu�muenchen�de

Abstract

The branching�time temporal logic EF is a simple� but natural fragment of com�
putation�tree logic �CTL� and the modal ��calculus� We study the decidability
of the model checking problem for EF and in�nite�state systems� We use process
rewrite systems �PRS� to describe in�nite�state systems and de�ne a hierarchy
of subclasses of PRS that includes Petri nets� pushdown processes� Basic Parallel
Processes �BPP�� context�free processes and PA�Processes� Then we establish the
exact limits of the decidability of model checking with EF in this hierarchy�

Model checking with EF is undecidable for Petri nets and even for parallel push�
down automata �the pushdown extension of Basic Parallel Processes�� On the other
hand� model checking with EF is decidable for PAD� a process model that subsumes
both PA�processes and pushdown processes�

Key words	 in�nite�state systems� temporal logic� EF� model checking� process
algebra� PA�processes� pushdown processes

� Introduction

The branching�time temporal logic EF �also called UB� in ���� and ����� uses
the boolean operators� the one�step next operator EX �for some successor��
and the operator EF �for some path eventually in the future�� It is a fragment
of computation tree logic �CTL�� which in turn is weaker than the modal ��
calculus �	�� EF�formulae are interpreted over �possibly in
nite� trees describ�
ing all possible computations of a process� The processes can also have in
nite
state spaces�

Preprint submitted to Elsevier Preprint �� June ����

There are many models for systems with in
nite state spaces� Some of the
most common are Milner�s Calculus of Communicating Systems �CCS� ��	��
Basic Parallel Processes �BPP� ���� context�free processes �BPA�� pushdown
processes and Petri nets� The process algebra PA is a common generaliza�
tion of BPP and BPA and has operators for nondeterministic choice� parallel
composition� sequential composition and recursion� Unlike BPP� PA is not a
syntactical subset of CCS ��	�� because CCS does not have an explicit op�
erator for sequential composition� However� as CCS can simulate sequential
composition by parallel composition and synchronization� PA is still a weaker
model than CCS� PA�processes� pushdown processes and Petri nets are mutu�
ally incomparable �see Section ���

Except for CCS� all these models can be represented by special subclasses of
a general rewriting formalism� These rewrite systems called
Process Rewrite
Systems �PRS�� were introduced in �������� together with a hierarchy of its
subclasses �the
PRS�hierarchy��� The PRS�hierarchy is a common general�
ization of two separate hierarchies for rewrite systems with sequential and
parallel composition that were de
ned by Stirling� Moller and Caucal ���� �see
also ������� in analogy to the Chomsky�hierarchy� In this hierarchy� there is a
natural common generalization of PA�processes and pushdown processes� This
model was called PAD �for PA � PD� in ������� and it is strictly more general
than PA and pushdown processes with respect to bisimulation equivalence�

The model checking problem is the problem if a given process satis
es a prop�
erty encoded as a formula in a certain temporal logic� We study the model
checking problem for the logic EF and the models in the PRS�hierarchy� The
main new result in this paper is that model checking with EF is decidable
even for PAD� This completes the general picture of the decidability of model
checking with EF�

In Section � we de
ne Process Rewrite Systems �PRS� and the PRS�hierarchy
of its subclasses� In Section � we de
ne the logic EF and some generalizations
of EF� In Section � we show that model checking PAD with EF is decidable�
In Section 	 we describe a small example� In Section � we show that model
checking with EF is undecidable for PPDA� the pushdown extension of BPP�
which is a subclass of Petri nets� In the last section we present a general view
of the limits of the decidability of model checking with EF and other temporal
logics�

� Process Models

Many classes of concurrent systems can be described by a �possibly in
nite�
set of process terms� representing the states� and a
nite set of rewrite rules

�

describing the dynamics of the system�

De�nition � Let Act � fa� b� � � � g be a countably in�nite set of atomic ac�
tions and Const � f��X� Y� Z� � � � g a countably in�nite set of process con�
stants� The process terms that describe the states of the system have the fol�
lowing form�

t ��� � j X j t��t� j t�kt�

where � is the empty term� X � Const is a process constant �used as an
atomic process in this context�� �k� means parallel composition and ��� means
sequential composition� Parallel composition is associative and commutative�
Sequential composition is associative� Let T be the set of process terms�

Convention �� We always work with equivalence classes of terms modulo
commutativity and associativity of parallel composition and modulo associa�
tivity of sequential composition� Also we de�ne that ��t � t � t�� and tk� � t�

Convention �� We de�ned that sequential composition is associative� How�
ever� when we look at terms we think of it as left�associative� So when we
say that a term t has the form t��t�� then we mean that t� is either a single
constant or a parallel composition of process terms�

The size of a process term is de�ned as the number of occurrences of constants
in it plus the number of occurrences of operators in it�

size��� �� �

size�X� �� �

size�t��t�� �� size�t�� � size�t�� � �

size�t�kt�� �� size�t�� � size�t�� � �

For a term t the set Const�t� is the set of constants that occur in t�

Const��� �� �

Const�X� �� fXg

Const�t��t�� ��Const�t�� � Const�t��

Const�t�kt�� ��Const�t�� � Const�t��

The dynamics of the system is described by a �nite set of rules � of the form
�t�

a
� t�� where t� and t� are process terms and a � Act is an atomic action�

The �nite set of rules � induces a �possibly in�nite� labeled transition system
with relations

a
� with a � Act� For every a � Act� the transition relation

a
�

�

is the smallest relation that satis�es the following inference rules�

�t�
a
� t�� � �

t�
a
� t�

t�
a
� t��

t�kt�
a
� t��kt�

t�
a
� t��

t��t�
a
� t���t�

where t�� t�� t
�
�� t

�
� are process terms� Note that parallel composition is commu�

tative and thus the inference rule for parallel composition also holds with t�
and t� exchanged�

Since � is �nite� the generated LTS is �nitely branching� �For some classes
of systems �e�g� Petri nets� the branching�degree is bounded by a constant that
depends on �� For other classes �e�g� PA� the branching�degree is �nite at
every state� but it can get arbitrarily high�� Also every single � uses only
a �nite subset Const��� ��

S
�t�

a
�t����

�Const�t�� � Const�t��� of constants

and only a �nite subset Act��� ��
S
�t�

a
�t����

fag of atomic actions� Thus for

every � only �nitely many of the generated transition relations
ai� for ai � Act

are nonempty� �Those for which ai � Act����� Still the generated transition
system can be in�nite� �Consider the analogy� Every labeled Petri net has only
�nitely many transitions and uses only �nitely many di	erent atomic actions�
but the state space can be in�nite�� The relation

a
� is generalized to sequences

of actions in the standard way� Sequences are denoted by ��

Remark � There is no operator ��� for nondeterministic choice in the pro�
cess terms� because this is encoded in the set of rules �
 There can be several
rules with the same term on the left hand side� It is also possible that several
rules are applicable at di	erent places in a term� The rule that is applied and
the position where it is applied are chosen nondeterministically� Also there is
no such thing as action pre�xes in the process terms� The atomic actions are
introduced by the rules�

Many common models of systems
t into this scheme� In the following we
characterize subclasses of rewrite systems� The expressiveness of a class de�
pends on what kind of terms are allowed on the left hand side and right hand
side of the rewrite rules in ��

De�nition � �Classes of process terms�
We distinguish four classes of process terms�

� Terms consisting of a single process constant like X�
S Terms consisting of a single constant or a sequential composition of process
constants like X�Y�Z�

P Terms consisting of a single constant or a parallel composition of process
constants like XkY kZ�

G General process terms with arbitrary sequential and parallel composition
like �X��Y kZ��kW �

�

Also let � � S� P�G� but � �� �� It is easy to see that the relations between these
classes of process terms are� � � S� � � P � S � G and P � G� S and P are
incomparable and S � P � � � f�g�

We characterize classes of process rewrite systems �PRS� by the classes of
terms allowed on the left hand sides and the right hand sides of rewrite rules�

De�nition � �PRS�
Let �� � � f�� S� P�Gg� A ��� ���PRS is a �nite set of rules � where for every
rewrite rule �l

a
� r� � � the term l is in the class � and l �� � and the term r

is in the class � �and can be ��� The initial state is given as a term t� � �� A
�G�G��PRS is simply called PRS�

Remark � W�l�o�g� it can be assumed that the initial state t� of a PRS is a
single constant� There are only �nitely many terms t�� � � � � tn s�t� t�

ai� ti� If t�
is not a single constant then we can achieve this by introducing a new constant
X� and new rules X�

ai� ti and declaring X� to be the initial state�

��� ���PRS where � is more general than � or incomparable to � �for example
� � G and � � S� do not make any sense� This is because the terms that are
introduced by the right side of rules must later be matched by the left sides
of other rules� So in a �G� S��PRS the rules that contain parallel composition
on the left hand side will never be used �assuming that the initial state is a
single constant�� Thus one may as well use a �S� S��PRS� So we restrict our
attention to ��� ���PRS with � � ��

Figure � shows a graphical description of the hierarchy of ��� ���PRS�

Many of these ��� ���PRS correspond to widely known models like Petri nets�
pushdown processes� context�free processes and others�

��� A ��� ���PRS is a
nite�state system� Every process constant corresponds
to a state and the state space is bounded by jConst���j� Every
nite�state
system can be encoded as a ��� ���PRS�

��� ��� S��PRS are equivalent to context�free processes �also called
Basic
Process Algebra �BPA��� ������� They are transition systems associated
with Greibach normal form �GNF� context�free grammars in which only
left�most derivations are permitted�

��� It is easy to see that pushdown automata can be encoded as a subclass
of �S� S��PRS �with at most two constants on the left side of rules��
Caucal ��� showed that any unrestricted �S� S��PRS can be presented as a
pushdown automaton �PDA�� in the sense that the transition systems are
isomorphic up to the labeling of states� Thus �S� S��PRS are equivalent
to pushdown processes� the processes described by pushdown automata�

��� �P� P ��PRS are equivalent to Petri nets� Every constant corresponds to
a place in the net and the number of occurrences of a constant in a term

	

BPA ���S�

nite state systems �����

PA ���G�

PAD �S�G� PAN �P�G�

BPP ���P�

PRS �G�G�

Petri nets �P�P�

PPDA

Pushdown �S�S�
processes

Fig� �� The PRS�hierarchy

corresponds to the number of tokens in this place� This is because we
work with classes of terms modulo commutativity of parallel composition�
Every rule in � corresponds to a transition in the net�

�	� ��� P ��PRS are equivalent to communication�free nets� the subclass of
Petri nets where every transition has exactly one place in its preset �������
This class of Petri nets is equivalent to Basic Parallel Processes �BPP�
����

��� ��� G��PRS are equivalent to PA�processes� a process algebra with sequen�
tial and parallel composition� but no communication �see �����������

��� �P�G��PRS are called PAN�processes in ����� It is a common generaliza�
tion of Petri nets and PA�processes and it is strictly more general than
both of them �e�g� PAN can describe all Chomsky�� languages while Petri
nets cannot��

��� �S�G��PRS are a common generalization of pushdown processes and PA�
processes� They are called PAD �PA � PD� in �����

��� The most general case is �G�G��PRS �here simply called PRS�� PRS have
been introduced in �������� They subsume all the previously mentioned
classes�

What does it mean that parallel�sequential�arbitrary composition is allowed in
terms on the left�right hand sides of rules� The general intuition is as follows�

�

If parallel composition is allowed on the right hand side of rules� then there can
be rules of the form t

a
� t�kt�� This means that it is possible to create processes

that run in parallel� The rule can be interpreted that� by action a� the process t
becomes the process t� and spawns o� the process t� or vice versa� If sequential
composition is allowed on the right hand side of rules� then there are rules of
the form t

a
� t��t�� The interpretation is that process t calls a subroutine t� and

becomes process t�� It resumes its execution when the subroutine t� terminates�
If arbitrary sequential and parallel composition is allowed on the right hand
side of rules then both parallelism and subroutines are possible� If parallel
composition is allowed on the left hand side of rules� then there are rules of
the form t�kt�

a
� t� This can be interpreted as synchronization�communication

of the parallel processes t� and t�� This is because this action can only occur
if both t� and t� change in a certain de
ned way� If sequential composition
is allowed on the left hand side of rules� then there can be rules of the form
t���t�

a
� t� and t����t�

a
� t��� The intuition is that a process t called a subroutine

t� and became process t� by a rule t
a
� t��t�� The subroutine may in its

computation reach a state t�� or t
��
�� Now one of these rules is applicable� This

means that the result of the computation of the subroutine a�ects the behavior
of the caller when it becomes active again� since the caller can become t� or t���
The interpretation is that the subroutine returns a value to the caller when it
terminates� If arbitrary sequential and parallel composition is allowed on the
left hand sides of rules then both synchronization and returning of values by
subroutines are possible� Rules with nested sequential and parallel composition
�on the left side or the right side� do not increase the expressiveness �����

Thus� for example� the processes of class PAD �type �S�G� in the PRS�
hierarchy� have parallel composition and subroutines that can return values
to their caller� but they lack the ability to synchronize parallel processes�

It has been shown in ���� �with the help of earlier results from ������� that this
hierarchy of subclasses of PRS is strict w�r�t� bisimulation equivalence� i�e��
more general subclasses are strictly more expressive� �See ��	���� for more on
bisimulation��

Theorem 	 �
����
The PRS�hierarchy is strict with respect to bisimulation equivalence�

It has also been shown in ���� that PRS are not Turing�powerful�

Theorem
 �
����
The reachability problem is decidable for PRS�

�

� The Temporal Logic EF

Temporal logics are used to describe properties of systems� The veri
cation
process consists in showing that a given system satis
es a property encoded
in a given formula� We use the logic EF�

DC � an extended version of the logic
EF ������� In addition to the standard operators of EF� the logic EF�

DC uses
strong atomic propositions of the form �The current state is term t� and can
thus express the reachability problem� The
�� in the name stands for these
strong propositions� because they express that the current state is equal to a
given state t� Note that� because of this feature� the logic EF�

DC �unlike EF�
is not a fragment of CTL or the modal ��calculus� The modal ��calculus �and
CTL� cannot distinguish bisimilar states� but EF�

DC can� The logic EF
�
DC can

also express weak constraints on sequences of actions� These constraints are
called decomposable constraints �thus the DC in the name��

De�nition � �EF�
DC�

The syntax of the formulae is as follows�

� ��� t j �� j �� 	 �� j �C�

where t � T is a process term and C is a decomposable constraint �see
Def� ����

Let F be the set of all EF�
DC�formulae� Let T be the set of all processes terms

�as in Def� �� in the process algebra� The denotation ����� of an EF�
DC�formula

� is the set of process terms de�ned inductively by the following rules�

��t�� �� ftg

������ �� T
 �����

���� 	 ���� �� ������ � ������

���C��� �� ft � T j �t�� �� t
�
� t� 	 t� � ����� 	 C���g

Disjunction can be expressed by conjunction and negation�

The property t � ����� is also denoted by t j� ��

The model checking problem is the problem if a process satis
es a property
encoded as a formula in a temporal logic�

Model Checking

Instance� A description of a process �for example an ��� ���PRS � with
�� � � f�� S� P�Gg �see Def� ��� and a state t and a formula �
from a temporal logic �for example EF or EF�

DC��
Question� Is it true that t j� � �

�

Model checking
nite�state systems with EF can be done in polynomial time�
since EF is a fragment of the alternation�free modal ��calculus ������� Model
checking Petri nets with EF has been shown to be undecidable ������ by reduc�
tion of the reachability set containment problem for Petri nets� Model checking
with EF is PSPACE �complete for Basic Parallel Processes �BPP� �������� and
context�free processes �BPA� ������� For pushdown processes the complexity of
model checking with EF is between PSPACEand EXPTIME ���������� It was
claimed in ��� that model checking pushdown processes with EF is PSPACE �
complete� Unfortunately� the given proof is wrong� It assumes that an accept�
ing polynomial space�bounded Turing�machine has an accepting computation
of polynomial length� which is not true in general� It was shown in ���� that
model checking with EF is decidable for PA�processes� Lugiez and Schnoebe�
len ���� later proved the same result by using a completely di�erent method
�using tree�automata to represent in
nite sets of con
gurations�� In the next
section we show that model checking with the more general logic EF�

DC is de�
cidable for the more general model PAD �type �S�G� in the PRS�hierarchy��
But
rst we reduce the problem to a simpler form�

De�nition � For any EF�
DC�formula � let terms��� be the set of process

terms used in � as atomic propositions�

terms�t� �� ftg

terms���� �� terms���

terms��� 	 ��� �� terms���� � terms����

terms��C�� �� terms���

The logic EF�
DC uses constraints on sequences of actions� These constraints

are called decomposable� because they can be decomposed with respect to
sequential and parallel composition of sequences of actions�

De�nition �� �Decomposable Constraints�
A set of decomposable constraints DC is a �nite set of predicates on �nite
sequences of actions that satisfy the following conditions�

��� DC contains the predicates true �all sequences satisfy it� and false �no
sequence satis�es it��

�
� For every predicate C � DC it is decidable if C is satis�able�
��� For every C � DC there is a �nite index set I and a �nite set of decom�

posable constraints fC�
i � C

�
i � DC j i � Ig s�t�

��� ��� ��� ���� � �

�
C��� �

�
i�I

C�
i ���� 	 C�

i ����

�

��� For every C � DC there is a �nite index set I and a �nite set of decom�

�

posable constraints fC �
i � DC j i � Ig s�t�

��� ��� a�� � �

�
C��� �

�
i�I

C �
i��

��

�

��� For every C � DC there is a �nite index set I and a �nite set of decom�
posable constraints fC�

i � C
�
i � DC j i � Ig s�t�

��� ��� ����a � Act � ��a�� � �

�
C��� �

�
i�I

C�
i ���� 	 C

�
i ����

�

��� For every C � DC there is a �nite index set I and a �nite set of decom�
posable constraints fC�

i � C
�
i � DC j i � Ig s�t�

���� ���

�
��� � interleave���� ���� C���� �

�
i�I

�C�
i ���� 	 C�

i �����

�

� � interleave���� ��� means that � is an arbitrary interleaving of �� and
��� The formal de�nition of the function interleave is as follows� Let �
be the empty sequence�

interleave��� �� �� f�g

interleave��� �� �� f�g

interleave�a���� a���� ��
fa�� j � � interleave���� a����g�

fa�� j � � interleave�a���� ���g

Lemma �� If DC is a set of decomposable constraints� then the closure DC�

of DC under the boolean operations of conjunction and disjunction is also a
set of decomposable constraints�

PROOF� The formulae in DC � can be transformed into disjunctive normal
form� such that the formulae in DC are the atomic formulae� Since DC is
�nite� DC � is �nite too�

Remark �� A set of decomposable constraints need not be closed under nega�
tion�

Now we give an example for a set of decomposable constraints� Let A � Act �
be a
nite set of atomic actions� For any a � A let �a��� be the number of
occurrences of action a in �� For u� v � IN let �u�v denote u modulo v� We
de
ne the following constraints�

��� length��� � i or length��� � i for all i � k for some
xed constant k�
��� �a��� � i or �a��� � i for all i � n for some
xed constant n�

��

��� ��a����k � i for all i� k � m for some
xed constant m�
��� �rst��� � a for any action a � A�

For any choice of A� k� n�m let CA�k�n�m denote the closure of the set of these
constraints under conjunction and disjunction�

Lemma �� For any A� k� n�m� the set CA�k�n�m is a set of decomposable con�
straints� It is even closed under negation�

PROOF� Directly from the de�nitions�

Example �� The constraint ��a����� � � expresses that the number of oc�
currences of action a in � is even� Let � � interleave���� ��� be an interleaving
of two sequences� Then the number of occurrences of the action a in � is even
i	 it is either even in both �� and �� or odd in both �� and ��� This can be
expressed by the following decomposition�

��a����� � � �
 ���a������ � � 	 ��a������ � �� �

���a������ � � 	 ��a������ � ��

Decomposable constraints increase the expressiveness of the logic� They have
proved to be useful for constructing characteristic formulae for
nite�state
systems up to �di�erent kinds of� bisimulation�like equivalences ��	�� For more
details on decomposable constraints and decomposable languages see ��������

We use these constraints to show that the usual de
nition of EF is a fragment
of EF�

DC � The usual � is just �true� The normal one�step nexttime operator
EX is often denoted by hai and de
ned by

��hai��� �� ft j �t�� t
a
� t� 	 t� � �����g

It is clear that hai � �C with C �� ��rst��� � a	 length��� � ��� The normal
version of EF also does not have atomic propositions t �meaning that the state
is equal to t� see Def� ��� but propositions
a� �meaning that the atomic action
a is enabled�� This can be expressed by haitrue� where true � t � �t for any
term t�

It is also possible to express the modal operator � �meaning �always�� by
de
ning �C �� ��C�� �C� then means that � holds in all states that are
reachable via a sequence of actions � s�t� C����

De�nition �� The nesting�depth nd��� of an EF�
DC�formula � is de�ned by

��

nd�t� �� �

nd���� �� nd���

nd��� 	 ��� ��maxfnd����� nd����g

nd��C�� �� nd��� � �

De�nition �	 Fd � F is de�ned as the set of all EF�
DC�formulae with a

nesting�depth of modal operators �C of at most d�

Fd �� f� � F j nd��� � dg

It follows that formulae in F� contain no modal operators�

In order to simplify the notation we use some abbreviations�
Let T � ft�� � � � � tng � T be a
nite set of process terms� then

t j�
T ��
 t j� �t� 	 � � � 	 �tn

For reasons of symmetry we also de
ne

t j� T ��
 t j� t� 	 � � � 	 tn

Of course this cannot be true if n � ��

De�nition �
 We de�ne a subset F c
d � Fd of formulae that do not contain

disjunction� Thus the formulae in F c
d are called conjunctive formulae� F c

d is
de�ned as the minimal set of formulae �d that are de�ned by the following
grammar�

�� � T� 	
T�

for every �nite T�� T� � T and

�d � T� 	
T� j �d 	�C�d�� j �d 	 ��C�d��

for every �nite T�� T� � T and every decomposable constraint C and every
�d�� � F

c
d���

It follows that every formula in F c
d has the form

T� 	
T� 	
�
i�I

�Ci
 i 	

�
j�J

��Dj
!j

where T�� T� � T � and Ci� Dj are decomposable constraints and i � F c
d��

and !j � F c
d���

A formula � is in normal form if � �
W
i�I �Ci

 i s�t� the i are conjunctive
formulae�

��

Lemma �� Any EF�
DC�formula �C� is equivalent to a formula in normal

form�

PROOF� By induction on the nesting�depth d of modal operators in �� The
important property here is that �C��� � ��� � �C�� ��C��� We transform
the subformulae into disjunctive normal form� and then push the disjunctions
outwards�

Lemma �� Every model checking problem for EF�
DC is decidable i	 it is de�

cidable for all formulae �C� with � �
S
d�INF

c
d�

PROOF� If it is decidable for formulae of the form �C� with � � F c
d� then

it is decidable for formulae in normal form and thus by Lemma �� for all
formulae of the form �C � with � F � Simple boolean operations yield the
decidability of the whole model checking problem� The other direction is trivial�

� Model Checking PAD

We prove the decidability of the model checking problem for EF�
DC and PAD

by construction of a sound and complete tableau� By Lemma �� it su"ces to
consider formulae of the form �C� for � � F c

d for any d and C in some set of
decomposable constraints�

��� Decomposition

The key to the construction of the tableau system in Subsection ��� is that
properties of the form t��t� j� �C� or t�kt� j� �C� can be decomposed into
properties of t� and properties of t�� First we give a small example how this
is done and then we do it in general�

Example �� We show how to do the decomposition for the following simple
formula of nesting�depth two�

� �� ���u 	 ��v� 	 ���w��

where u� v� w are process terms� No decomposable constraints are used� except
for the constraint true ��true � ��� This formula means that there is a reach�
able state di	erent from u� s�t� from this state the state v is reachable� but the
state w is not reachable�

��

Let t�� t� be process terms� Then the property

t�kt� j� ���u 	 ��v� 	 ���w��

is equivalent to

�t� j� ���� 	 t� j� �� �

�t� j� � 	 t� j� ����� �

���� ��� t
�
�� t

�
�� t�

��� t�� 	 t�
��� t�� 	�

��k���u

�t�� �� �� � t�� �� ��� 	 t��kt
�
� j� ��v� 	 t��kt

�
� j� ���w�

where ��� �� are process terms� This is equivalent to

�t� j� ���� 	 t� j� �� �

�t� j� � 	 t� j� ����� �

���� ��� t��� t
�
�� t�

��� t�� 	 t�
��� t�� 	

�
��k���u

�t�� �� �� � t�� �� ��� 	

�
��k���v

�t�� j� ����� 	 t�� j� ������ 	

�

�
� �
��k���w

t�� j� ��	�� 	 t
�
� j� ��	��

�
A

This is equivalent to

�t� j� ���� 	 t� j� �� �

�t� j� � 	 t� j� ����� �

���� ��� t��� t
�
�� t�

��� t�� 	 t�
��� t�� 	

�
��k���u

�t�� �� �� � t
�
� �� ��� 	

�
��k���v

�t�� j� ����� 	 t�� j� ������ 	

�
��k���w

�t�� j� ���	�� � t�� j� ���	���

Now we transform this expression into disjunctive normal form� We de�ne
the set F of all functions f that assign to every pair ���� ��� s�t� ��k�� � u�
a value in f�� �g� For every f � F let A�

f �� f�� j f����� ���� � �g and

��

A�
f �� f�� j f����� ���� � �g� Then the expression is equivalent to

�t� j� ���� 	 t� j� �� �

�t� j� � 	 t� j� ����� �

���� ��� t��� t
�
�� t�

��� t�� 	 t�
��� t�� 	

�
f�F

�t�� �� A�
f 	 t�� �� A�

f � 	

�
��k���v

�t�� j� ����� 	 t�� j� ������ 	

�
��k���w

�t�� j� ���	�� � t�� j� ���	���

In the same way we de�ne the set G of all functions g that assign to every
pair �	�� 	�� s�t� 	�k	� � w� a value in f�� �g� For every g � G let B�

g �� f	� j
g��	�� 	��� � �g and B�

g �� f	� j g��	�� 	��� � �g�

Then the expression is equivalent to

�t� j� ���� 	 t� j� �� �

�t� j� � 	 t� j� ����� �

���� ��� t
�
�� t

�
�� t�

��� t�� 	 t�
��� t�� 	

�
f�F

�t�� j�
A�
f 	 t�� j�
A�

f � 	

�
��k���v

�t�� j� ����� 	 t�� j� ������ 	

�
g�G

�
� �
���B�

g

t�� j� ���	�� 	
�

���B�
g

t�� j� ���	��

�
A

This is equivalent to

�t� j� ���� 	 t� j� �� �

�t� j� � 	 t� j� ����� �

���� ��� t��� t
�
�� t�

��� t�� 	 t�
��� t�� 	�

f�F���k���v�g�G

t�� j�
A�
f 	 t

�
� j� ����� 	

�
���B�

g

t�� j� ���	��	

t�� j�
A�
f 	 t

�
� j� ����� 	

�
���B�

g

t�� j� ���	��

�	

Finally� this is equivalent to

�t� j� ���� 	 t� j� �� �

�t� j� � 	 t� j� ����� ��
f�F���k���v�g�G

t� j� ��
A
�
f 	����� 	

�
���B�

g

���	��� 	

t� j� ��
A
�
f 	����� 	

�
���B�

g

���	���

This is a boolean combination of properties of t� and properties of t��

Now we show how the decomposition is done in the general case� In order to
simplify the presentation� we de
ne the following sets of expressions� Let DC
be a set of decomposable constraints� T � T a
nite set of process terms and
d � IN�

Cform�d� T�DC� ��

����	
���

�
��
i�I

ti j� �Ci
�i 	

�
j�J

t�j j� ��Dj
 j

�
A j

�i� j� ti� t�j � T� Ci� Dj � DC��i � F c
d� j � F c

d��

�����
���

Cform ��d� T�DC� �� like Cform�d� T�DC�� except that j � F c
d

Dform�d� T�DC� ��

��
i�I

Fi j Fi � Cform�d� T�DC�

�

The next two lemmas show the decomposition of properties for sequential
composition� The general idea is that properties of the form t��t� j� �C� are
decomposed into properties of t� and properties of t�� However� the details are
more complex� It does not always su"ce to use properties of t� and properties
of t�� but sometimes also properties of other terms are needed� These other
terms are the terms that occur in � as atomic propositions and the terms
that occur in the rules of the PAD�process� Fortunately� these are only
nitely
many�

We de
ned that sequential composition is left�associative� so if we write t��t��
then the term t� is either a single constant or a parallel composition� The
following lemma describes the decomposition for the case that t� is a single
constant�

Lemma �� Let t be a process term� X a process constant� � a PAD� � a
formula in F c

d that contains only constraints from a set DC of decomposable
constraints and C � DC� Let T �� f�� t� Xg � terms��� � fr j �l

a
� r� � �g

��

Then an expression F � Dform�d� T�DC� can be e	ectively constructed s�t�

t�X j� �C� �
 F

PROOF� by induction on d�

� � �T�	
T� 	
V
i�I �Ci

�i 	
V
j�J ��Dj

 j� for some T�� T� � T � �i� j �
F c
d�� and Ci� Dj � DC decomposable constraints� In the base case d � � the

sets I and J are empty and we solve the problem without referring to the
induction hypothesis�

If jT�j � � then t�X j� �C� is equivalent to false�

If jT�j � � s�t� the term in T� is not t��X for some t�� then t�X j� �C� is
equivalent to

�
i�I

�t j� �Ci
�

��� 	X j� �Ci
�

��

��
j�J�

�
l�X

a
�r

�
��

�t j� �
D
j
�

�l� 	 r j� �
D
j
�

��

where the Ci
k� D

j
k are the decompositions of C as de�ned in Def� �� �cases � and

��� This expression is the F that we are looking for� It is in Dform�d� T�DC��

Now we consider the case that T� � fu�Xg for some term u� If u�X � T�

then t�X j� �C� is equivalent to false� Otherwise t�X j� �C� is equivalent to

�
i�I

�t j� �Ci
�

��� 	X j� �Ci
�

��

��
j�J�

�
l�X

a
�r

�
��

�t j� �
D
j
�

�l� 	 r j� �
D
j
�

��

�

t j� �C�u� 	
�
i�I

u�X j� �Ci
�i 	

�
j�J

u�X j� ��Dj
 j

where the Ci
k� D

j
k are the decompositions of C as de�ned in Def� �� �cases � and

��� This is the expression F that we are looking for� It is in Dform�d� T�DC��

��

Now we consider the case that T� � fg� Then t�X j� �C� is equivalent to

�
i�I

�t j� �Ci
�

��� 	X j� �Ci
�

��

��
j�J�

�
l�X

a
�r

�
��

�t j� �
D
j
�

�l� 	 r j� �
D
j
�

��

�

��� t��

�
BB�
t

�
� t� 	 C��� 	 �����X� � T�� t� �� �� 	�

i�I

t��X j� �Ci
�i 	

�
j�J

t��X j� ��Dj
 j

�
CCA

where the Ci
k� D

j
k are the decompositions of C as de�ned in Def� �� �cases �

and ���

If d � � then I � J � fg and the induction hypothesis is not needed� If d
 �
then by induction hypothesis there are expressions Fi� Gj � Dform�d
 �� �T

ftg� � ft�g�DC� s�t� the above expression is equivalent to

�
i�I

�t j� �Ci
�

��� 	X j� �Ci
�

��

��
j�J�

�
l�X

a
�r

�
��

�t j� �
D
j
�

�l� 	 r j� �
D
j
�

��

�

��� t�� t
�
� t� 	 C��� 	 �����X� � T�� t� �� �� 	

�
i�I

Fi 	
�
j�J

�Gj

By transformation to disjunctive normal form there are �nite index sets K�
Nk� N

�
k�Mk and formulae ��

i�
�
i � F

c
d�� and decomposable constraints Ei� E

�
i �

DC and Hj � Cform ��d
�� T
ftg�DC� s�t� the above expression is equivalent

��

to

�
i�I

�t j� �Ci
�

��� 	X j� �Ci
�

��

��
j�J�

�
l�X

a
�r

�
��

�t j� �
D
j
�

�l� 	 r j� �
D
j
�

��

�

��� t��

�
BBBB�
t

�
� t� 	 C��� 	 �����X� � T�� t� �� �� 	

�
k�K

�
� �
i�Nk

t� j� �Ei
��
i

�
i�N �

k

t� j� ��E�

i
 �
i

�
j�Mk

Hj

�
�

�
CCCCA

Note that the expressions Hj do not contain the terms t or t�� This is equivalent
to

�
i�I

�t j� �Ci
�

��� 	X j� �Ci
�

��

��
j�J�

�
l�X

a
�r

�
��

�t j� �
D
j
�

�l� 	 r j� �
D
j
�

��

�

�
k�K

�
�t j� �C

�
�
f� j ��X � T�g 	

�
i�Nk

�Ei
��
i

�
i�N �

k

��E�

i
 �
i

�
A 	 �

j�Mk

Hj

�
�

This is the expression F that we are looking for� It is in Dform�d� T�DC��

The following lemma does the same decomposition for the case that the second
component in the sequential composition is itself a parallel composition�

Lemma �� Let t�� t�� t� be process terms� � a PAD� � a formula in F c
d that

contains only constraints from a set DC of decomposable constraints and C �
DC� Let T �� f�� t�� t�kt�g � terms��� � fr j �l

a
� r� � �g

Then an expression F � Dform�d� T�DC� can be e	ectively constructed s�t�

t���t�kt�� j� �C� �
 F

PROOF� The proof is similar to Lemma
� with only the following di	er�
ences�

��

��� Leave out the part

�
j�J�

�
l�X

a
�r

�
��

t j� �
D
j
�

�l� 	 r j� �
D
j
�

�

of the disjunction� and
�
� Substitute �t�kt�� for X everywhere� �

Now we show an analogous property for parallel composition�

Lemma �� Let t�� t� be process terms� � a PAD� � a formula in F c
d that

contains only constraints from a set DC of decomposable constraints and C �
DC� Let T �� f�� t�� t�g � terms����

Then an expression F � Dform�d� T�DC� can be e	ectively constructed s�t�

t�kt� j� �C� �
 F

PROOF� by induction on d�
� has the form �T�	
T�	

V
i�I �Ci

�i	
V
j�J ��Dj

 j� for some T�� T� � T
and �i� j � F c

d���

If jT�j � � then �C� is equivalent to false�

Now we consider the case that T� � ftg for some term t� If t � T� then
t�kt� j� �C� is equivalent to false� Otherwise it is equivalent to

�
k�K

�
B� �t� j� �C�

k
��� 	 t� j� �C��

k
�� �

�t� j� �C�

k
��� 	 t� j� �C��

k
��

�
CA

�

�
l�L

�
��k���t

�
BB�
t� j� �D�

l
���� 	 t� j� �D��

l
����	�

i�I

t j� �Ci
�i 	

�
j�J

t j� ��Dj
 j

�
CCA

where the C �
k� C

��
k � D

�
l� D

��
l are the decompositions of C as de�ned in Def� ��

�case ��� This is the F that we are looking for� It is in Dform�d� T�DC��

��

Now we consider the case that T� � fg� Then t�kt� j� �C� is equivalent to

�
k�K

�
B� �t� j� �C�

k
��� 	 t� j� �C��

k
���

�t� j� �C�

k
��� 	 t� j� �C��

k
��

�
CA

�

�
l�L

���� ��� t
�
�� t

�
��

�
BBBBBBB�

t�
��� t�� 	 t�

��� t�� 	D
�
l���� 	D��

l ���� 	�
��k���T�

�t�� �� �� � t
�
� �� ��� 	

�
i�I

t��kt
�
� j� �Ci

�i 	
�
j�J

t��kt
�
� j� ��Dj

 j

�
CCCCCCCA

where the C �
k� C

��
k � D

�
l� D

��
l are the decompositions of C as de�ned in Def� ��

�case ��� In the base case d � � we have I � J � fg and don�t need the
induction hypothesis� For d
 �� by induction hypothesis� there are formulae
Fi� Gj � Dform�d
 �� ft��� t

�
�g � terms����DC� such that t��kt

�
� j� �Ci

�i �

Fi and t��kt

�
� j� �Dj

 j �
 Gj� Now we transform the expression into
disjunctive normal form� We de�ne the set Func of all functions

f � f���� ��� j ��k�� � T�g �� f�� �g

that assign to every pair ���� ��� s�t� ��k�� � T�� a value in f�� �g� For every
f � Func let A�

f �� f�� j f����� ���� � �g and A
�
f �� f�� j f����� ���� � �g�

Then the expression is equivalent to

�
k�K

�
B� �t� j� �C�

k
��� 	 t� j� �C��

k
���

�t� j� �C�

k
��� 	 t� j� �C��

k
��

�
CA

�

�
l�L

���� ��� t
�
�� t

�
��

�
BBBBBBB�

t�
��� t�� 	 t�

��� t�� 	D�
l���� 	D

��
l ���� 	�

f�Func

�t�� �� A�
f 	 t

�
� �� A�

f� 	

�
i�I

Fi 	
�
j�J

�Gj

�
CCCCCCCA

By transformation to disjunctive normal form there must be �nite index sets O
andM�o��M ��o�� N�o�� N ��o� for every o � O and formulae ��

n�
�
n���

��
m�

��
m� �

F c
d�� and decomposable constraints En� E

�
n�� Fm� F

�
m� � DC s�t� the condition is

��

equivalent to

�
k�K

�
B� �t� j� �C�

k
��� 	 t� j� �C��

k
�� �

�t� j� �C�

k
��� 	 t� j� �C��

k
��

�
CA

�

�
l�L

���� ��� t
�
�� t

�
��

�
�����������

t�
��� t�� 	 t�

��� t�� 	D�
l���� 	D

��
l ���� 	�

f�Func

�t�� �� A�
f 	 t

�
� �� A�

f� 	

�
o�O

�
B�
V
n�N�o� t

�
� j� �En

��
n

V
n��N ��o� t

�
� j� ��E�

n�
 �
n�V

m�M�o� t
�
� j� �Fm�

��
m

V
m��M ��o� t

�
� j� ��F �

m�

 ��
m�

�
CA

�
�����������

This is equivalent to

�
k�K

�
B� �t� j� �C�

k
��� 	 t� j� �C��

k
�� �

�t� j� �C�

k
��� 	 t� j� �C��

k
��

�
CA

�

�
l�L�f�Func�o�O

�
�� t� j� �D�

l

�

A�

f 	
V
n�N�o��En�

�
n

V
n��N ��o� ��E�

n�
 �
n�

�
	

t� j� �D��

l

�

A�

f 	
V
m�M�o��Fm�

��
m

V
m��M ��o� ��F �

m�

 ��
m�

�
�
��

This is the expression F that we are looking for� It is in Dform�d� T�DC��

��
 The Tableau System

We show the decidability of the model checking problem for PAD and EF�
DC

by induction on the nesting�depth d of the formula� We describe a tableau
system that solves the model checking problem for formulae �C� with � � F

c
d

under the condition that we can already solve the problem for formulae �C
with � F c

d��� This is because we use properties of the form t� j� �C for
 � F c

d�� as side conditions in the construction of the tableau� By induction
hypothesis we can assume this� In the base case of d � � the condition is
trivially satis
ed� as F c

�� � fg�

Every node in the tableau is a set of expressions of the form t � �� where
t is a process term and � an EF�

DC�formula� We use the symbol � in the
tableau instead of j�� The expression t � � means that one attempts to
prove the property t j� �� The meaning of t j� � is de
ned semantically
�Def� ��� The sets of expressions that form the tableau nodes are denoted by
and interpreted as sets of subgoals that should be proved� These subgoals
are interpreted conjunctively� The branches in the tableau are interpreted

��

disjunctively� so the tableau is successful i� there is at least one successful
branch� Every branch in the tableau can be seen as an attempt to construct
a proof�

The following tableau rules are meant to be applied to a problem of the form
t j� �C� with � � F c

d� In the rules Induct�$Induct� we apply the induction
hypothesis that we can already solve the problem for formulae of a smaller
nesting�depth�

SEQ�
ft�X � �C�g � #

fFg � #
where F is from Lemma ��

SEQ�
ft���t�kt�� � �C�g � #

fFg � #
where F is from Lemma ��

PAR
ft�kt� � �C�g � #

fFg � #
where F is from Lemma ��

STEP�
fX � �C�g � #

fX � �g � # f
W
i�I� t� � �Di

�

�g � # � � � f
W
i�In tn � �Di

n
�g � #

if C���� where � is the empty sequence� �X
ak� tk� � �� k � �� � � � � n

and the Di
k are the decompositions of C �Def� �� �case ����

STEP�
fX � �C�g � #

f
W
i�I� t� � �Di

�

�g � # � � � f
W
i�In tn � �Di

n
�g � #

if not C���� �X
ak� tk� � �� k � �� � � � � n

and the Di
k are decompositions of C �Def� �� �case ����

Unsat
ft � �C�g � #

ffalseg
if C is unsatis
able

conj�
ft � � 	 g � #

ft � �� t � g � #

conj�
fF 	Gg � #

fF�Gg � #

disj�
ft � � � g � #

ft � �g � # ft � g � #

��

disj�
fF �Gg � #

fFg � # fGg � #

Induct�
ft � �C g � #

#
if � F c

d�� and t j� �C

Induct�
ft � �C g � #

ffalseg
if � F c

d�� and not t j� �C

Induct�
ft � ��C g � #

#
if � F c

d�� and not t j� �C

Induct�
ft � ��C g � #

ffalseg
if � F c

d�� and t j� �C

Term�
ft � T�g � #

#
if T� � ftg or T� � fg

Term�
ft � T�g � #

ffalseg
if T� �� fg 	 T� �� ftg

Term�
ft �
T�g � #

#
if t �� T�

Term�
ft �
T�g � #

ffalseg
if t � T�

In order to avoid any unnecessary growth of the proof tree� we de
ne that the
rules with names in capital letters �PAR� SEQ�� SEQ�� STEP� and STEP��
have a lower precedence than the other rules� So in the construction of a
branch of the proof tree we only use such a rule if none of the others is
applicable�

Lemma �� For any instance of a tableau�rule� the antecedent is true i	 at
least one of the succedents is true�

PROOF� This follows immediately from the de�nition of the tableau�rules
and Lemma
�� Lemma

 and Lemma
��

De�nition �� �Termination conditions�
A node in the tableau consisting of a set of formulae # is a terminal node if
one of the following conditions is satis�ed�

��

��� # � fg
�
� false � #�
��� There is a previous node in the same branch that is marked with the same

set #�

Terminal nodes of type � are successful� while terminal nodes of types
�� are
unsuccessful�

The construction of a branch of the tableau stops when a terminal node is
reached� The branch is successful if this terminal node is successful� The tableau
is successful if there is at least one successful branch�

The intuition is that every branch in the tableau is an attempt to construct a
proof� A terminal node of type � means that all subgoals have been solved� A
terminal node of type � means that this attempt to construct a proof failed�
A terminal node of type � means that the proof is �running in circles�� If there
is a proof� then it can be found elsewhere in the tableau by a shorter branch�

The construction of the tableau starts with a root�node of the form ft � �C�g
where t is a process term and � � F c

d � The tableau for a given root is not
unique� because the sequents are sets of expressions and the element to which
a rule is applied is chosen nondeterministically� However� all tableaux are
equivalent semantically� because the order in which subgoals are solved does
not matter�

��� Decidability

In this section we show that the tableau system of the previous section is
sound and complete and produces only
nite tableaux for any given root�
Thus it yields a decision procedure for the model checking problem for PAD
and EF�

DC �

Lemma �	 If the root node has the form ft � �C�g� for � � F c
d� then for

every node in a tableau with this root at least one of the following conditions
is satis�ed�

��� A tableau rule is applicable
�
� The node is a terminal node�

PROOF� The only problematic cases are the expressions of the form t �
��C�� If such an expression occurs� then it must be due to the rules SEQ��
SEQ
 or STEP�� By de�nition of these rules and Lemma
� and Lemma

we know that � � F c

d��� Then the rules Induct� or Induct� are applicable�

�	

because we assumed �by induction hypothesis� that we can already solve the
problem for formulae of a smaller nesting depth�

Lemma �
 The tableau is �nite for every instance of the model checking
problem�

PROOF� If only process terms of a bounded size are used as atomic propo�
sitions� then there are only �nitely many formulae in F c

d for any �xed d� The
tableau rules and the proofs of Lemmas
��

 and
� show that this precon�
dition is satis�ed� Any set DC of decomposable constraints is �nite� There are
only �nitely many rules �t�

a
� t�� � � with only �nitely many subterms of the

terms t�� So there are only �nitely many di	erent sets of expressions of the
form t � � in the tableau� Therefore the branches of the tableau can only have
�nite length� because of termination condition �� Since the tableau is �nitely
branching� the result follows�

Now we prove the soundness and completeness of the tableau� The following
lemma shows the soundness�

Lemma �� Let � � F c
d and C � DC� If there is a successful tableau with root

ft � �C�g� then t j� �C��

PROOF� A successful tableau has a successful branch ending with a node
marked by the empty set of expressions� Since these sets are interpreted con�
junctively this node is true� By repeated application of Lemma
� all its ancestor�
nodes must be true and thus the root�node must be true�

We need some new de
nitions to show the completeness of the tableau system�

De�nition �� A valid sequent # in a tableau is a set of expressions which
evaluate to true�

For example if �t � �C�� � # then t j� �C�� If �F 	 G� � # then F and G
evaluate to true�

It follows from the construction of the tableau system that every expression
in a valid sequent is a disjunction of conjunctions of expressions of the form
t � �C� or t � ��C��

Now we de
ne a total order on valid sequents�

��

De�nition �� For an expression t � �C� with t j� �C� we de�ne

xnorm�t � �C�� �� minflength��� j t
�
� t� � ����� 	 C���g

and

ynorm�t � �C�� �� size�t�

For an expression F in a valid sequent we de�ne

xnorm�F � �� maxfxnorm�t � �C�� j t � �C� is subterm of F � nd��� � dg

and

ynorm�F � �� maxfynorm�t � �C�� j t � �C� is subterm of F � nd��� � dg

and

znorm�F � �� size�F �

where size�F � is just the number of letters�symbols needed to write F � The
norm of F is a triple� which is de�ned by

norm�F � �� �xnorm�F �� ynorm�F �� znorm�F ��

These norms are ordered lexicographically� The order is well�founded�

For a valid sequent # let

	x�y�z �� jfF � # j norm�#� � �x� y� z�gj

Since # is valid and �nite� there is a largest x s�t� 	x�y�z �� � for some y� z�
This largest x will be called xmax� It depends on #� Also for every x � xmax

there is a largest y �called y�x�� s�t� 	x�y�z �� � for some z� Finally� for every
x� y there is a largest z�x� y� s�t� 	x�y�z �� ��

We de�ne a well�founded ordering on valid sequents� Let # and #� be two valid
sequents and 	x�y�z and 	

�
x�y�z be de�ned as above� Then

# � #� �� ��x� y� z��	x�y�z � 	�x�y�z 	 ��x�� y�� z�� �lex �x� y� z�� 	x��y��z� � 	�x��y��z�

The intuition is that if a tableau�rule is applied to a valid sequent #� then
there is at least one valid succedent sequent that is smaller� This is because
an expression F � # is replaced with several others with a lower norm� Since
the ordering is well�founded� the process must eventually terminate�

Note that these de
nitions do not apply to non�valid sequents�

��

Lemma �� Let # be a valid sequent� Then every tableau with root # has at
least one successful branch that ends with the empty sequent�

PROOF� By Lemma
� every tableau with root # has at least one branch that
only contains valid sequents� Choose one such branch of minimal length� We
show that the order of the sequents on this branch must strictly decrease� We
do this by showing that every application of a tableau rule to a valid sequent
yields a smaller sequent�

SEQ��SEQ� It follows from the construction of the expressions in Lemma
�
and Lemma

 that in these expressions one of two cases holds�
��� The remaining sequence is shorter �lower xnorm� or
�
� The remaining sequence has the same length and the terms are smaller

�lower ynorm��
Thus the succedent sequent is smaller�

PAR It follows from the construction of the expression in Lemma
� that the
terms are always smaller �since t�� t� are smaller than t�kt��� The xnorm
is the same or smaller and the ynorm is smaller� Thus the succedent is
smaller�

STEP��STEP� Here we have two sub�cases�
� In the �rst branch of the rule STEP� the sequence has length �� In the
succedent the xnorm and ynorm are the same� but the znorm is smaller�

� In the other branches of STEP� and all branches of STEP
 we choose the
valid succedent that corresponds to the shortest sequence that leads to a
state that satis�es �� In this succedent the sequence is shorter and thus
the xnorm is smaller�

In both cases the succedent is smaller�
Unsat This rule is never applied in this branch� because all sequents are valid�
conj��conj� For these rules the succedent is smaller� because the znorm de�
creases�

disj��disj� For these rules the succedent is smaller� because the znorm de�
creases�

Induct�Term For the rules Induct��Induct� and Term��Term� the succe�
dent must be smaller� because expressions are removed from the sequent�
The rules Induct
�Induct��Term
�Term� are never applied in this branch�
because all sequents are valid�

The construction of this branch cannot be stopped by termination condition
�� because the order strictly decreases� Since the order of the sequents strictly
decreases on this branch� it must eventually end with the empty sequent and
thus it is successful�

Corollary �� If t j� �C� for � � F c
d and C � DC then every tableau with

root ft � �C�g is successful�

��

PROOF� The root�sequent is valid� By Lemma �� every tableau must have
a branch that ends with the empty sequent� This branch is successful and thus
the tableau is successful�

Lemma �� Let t be a process term� � a PAD� � � F c
d� DC a set of decom�

posable constraints and C � DC� Then the following conditions are equivalent�

� t j� �C�
� A tableau with root ft � �C�g is successful�
� Every tableau with root ft � �C�g is successful�

PROOF� Directly from Lemma
� and Corollary �
�

Theorem �� The model checking problem for EF�
DC and PAD is decidable�

PROOF� By Lemma �� it su�ces to prove decidability for formulae of the
form �C� with � in F c

d for any d� We prove this by induction on d� By
Lemma �� and Lemma
� it su�ces to construct a �nite tableau� During the
construction we must decide problems of the form t� j� �C for � F c

d��� In
the base case d � � this is trivial� since F c

�� � �� For d
 � this is possible by
induction hypothesis�

Since EF is weaker than EF�
DC � we get the following corollary�

Corollary �� Model checking PAD with EF is decidable�

� Example

In this section we describe a small example of the model checking problem for
EF and PAD� The PAD�process is described by the following set of rules ��

X
a
� �Y kX��Z

Y
b
� �

X�Z
c
�X

The initial state is X� By using the algorithm derived from the tableau system
described in Section � we can show a property of the process X�

X j� ��haitrue 	 ��hcitrue 	 ��haihcitrue

��

This means that process X can always get back into states where it can do
action
a� or action
c�� but never a
c� directly after an
a��

	 Parallel Pushdown Automata

Parallel Pushdown Automata �PPDA� are de
ned as the pushdown extension
of BPP� They are the class of systems that can be described by a synchro�
nization of a BPP with a
nite�state system� In the framework of PRS they
can be described as follows� Let R �� fX�� � � � � Xkg � Const be the process
constants that represent the states in the
nite state system� Then a PPDA
is a PRS where all rules in � have the form

XikY
a
� Xjkt

where Xi� Xj � R� Y � Const and t � P is a parallel composition of constants
that does not contain any constants from R� This is a subclass of Petri net
�type �P� P �� rules� In the case of sequential composition the same construction
yields pushdown automata� which are equivalent to �S� S��PRS ���� However�
PPDA are slightly weaker than Petri nets w�r�t� bisimulation�

We prove that model checking with EF is undecidable for PPDA by showing
that the proof of undecidability for Petri nets carries over to PPDA� Undecid�
ability of model checking Petri nets with EF was
rst proved by Esparza in
����� The proof there contains a slight error� which was corrected in ����� The
idea is to prove undecidability by reduction from the reachability set contain�
ment problem�

Reachability set containment

Instance� Two Petri nets N� and N� having the same number of places and
a bijection f between the sets of places of N� and N�� f can be
extended to a bijection on markings in the obvious way�

Question� Is it true that for every reachable marking M of N�� f�M� is a
reachable marking of N� �

Rabin showed that this problem is undecidable by reduction of Hilbert�s ��th
problem� Later Jan%car ������� gave a more direct proof by a reduction from
the halting problem for counter machines�

We sketch the reduction of the reachability set containment problem to the
model checking problem� It is similar to the one in ����� but slightly simpler�
We assume that the transitions in the Petri nets N�� N� are not labeled with
atomic actions�

Figure � illustrates the following construction�

��

B

A

a

b

b

t
s

f�s�

N�

N�

Fig� �� Reducing reachability set containment to model checking with EF

��� Put N� and N� side by side�
��� Add a place A and arcs from A to every transition in N� and back� Put

one token on A�
��� Add a new transition t and a place B and arcs from A to t and from

t to B� The transition t is labeled with the atomic action a� Place B is
initially unmarked�

��� Add arcs from B to every transition in N� and back�
�	� For every pair of places �s� f�s�� add a transition ts and arcs from s to

ts� f�s� to ts� B to ts and ts to B�
��� For every place s in N� add a transition t

�
s labeled with action b and arcs

from s to t�s and back� Do the same for N��

Proposition �	 An instance of the reachability set containment problem has
answer �yes� i	 the newly constructed Petri net satis�es the EF�formula

���a � ���a 	 �b��

Now we construct a PPDA that weakly simulates the Petri net of Figure �� As�
sign a unique process constant to every place in this net� Every transition t in
the net then corresponds to a rule Y�k � � � kYn

a
� Y �

�k � � � Y
�
m� �These constants

need not be pairwise di�erent�� Now replace every such rule by the following
rules�

��

XkY�
�
�X�

XikYi��
�
�Xi�� for i��� � � � �n��

Xn��kYn
a
�XkY �

�k � � � Y
�
m

where � is a new action� The Xj are states of the
nite control and are speci
c
for every transition t� X is also a state of the
nite control� but it is global
and only exists once� The intuition is that these rules simulate the original
transition in n steps� The initial state of the PPDA is XkI� where I is the
initial state of the Petri net�

Finally� we add one rule X
�
� X� where
 is a new action� So action
 is

enabled i� the
nite control is in state X� This simulation can get stuck� in
case there were not enough tokens there to
re the transition in the
rst place�
We call a state in the simulation �faithful� if it is not forced to get stuck� i�e��
it can get back to a state where
 is enabled again� This can be expressed by
the formula ��
��

Theorem �
 Model checking with EF is undecidable for PPDA�

PROOF� An instance of the containment problem has answer �yes� i	 the
PPDA simulation of the net in Figure
 satis�es

�����
� � �a � ��
 	 �a 	 �b��

 Conclusion

We have shown decidability of the model checking problem for the branching�
time temporal logic EF and the process model PAD� The exact complexity
of the problem is an open question� The problem is known to be PSPACE �
complete for the special cases of BPP ������� and BPA ������� Model checking
pushdown processes with EF is decidable in EXPTIME and PSPACE �hard
������� It is even PSPACE �hard in the size of the system for a small
xed
EF�formula� The complexity for PA and PAD is an open question� The two
completely di�erent algorithms for PA by Mayr ���� and by Lugiez and Sch�
noebelen ���� both have the same extremely high complexity of O�tower�n���
The algorithm for PAD described in this paper is a generalization of the one in
����� but not a generalization of the algorithm for BPP in ����� The PSPACE �
algorithm for BPP in ������� uses a bounded search� while the algorithm for
PAD works by decomposition� For a formula of nesting�depth d the complexity
of the algorithm derived from the tableau system is d�times exponential� This
is because the tableau has a branching degree that is d�times exponential for
EF�formulae of nesting depth d� Also there are d�times exponentially many

��

di�erent EF�formulae of nesting depth d� So the overall complexity of the
algorithm is O�tower�n��� where tower��� �� � and tower�i� �� �� �tower�i��

The best known lower bound for both PAD and PA is PSPACE �hardness�
but there is a slight di�erence� For PAD the problem is PSPACE �hard in
the size of the system for a
xed formula� because this holds for pushdown
processes ��� and PAD subsumes pushdown processes� PA does not subsume
pushdown processes and the best known lower bound is the same as for BPP�
The problem is &p

d�hard for formulae of nesting depth � d �����

Finally� model checking PPDA with EF is undecidable� as shown in Section ��
This implies undecidability for all models in the PRS�hierarchy that are more
general than PPDA� i�e�� Petri nets� PAN and PRS�

Model Complexity of model checking with EF

nite�state systems polynomial

BPA PSPACE �complete

pushdown processes � EXPTIME � PSPACE �hard

BPP PSPACE �complete

PA decidable� PSPACE �hard

PAD decidable� PSPACE �hard

PPDA �and higher� undecidable

As EF is a fragment of CTL and the modal ��calculus� it is interesting to
compare the limits of decidability for these logics� There is another fragment
of CTL �and modal ��calculus� called EG� EG is like EF� except that the
diamond operator EF �for some path eventually in the future� is replaced
by the operator EG �for some path always in the future�� EG is also a frag�
ment of CTL� Model checking with EG is undecidable even for BPP ����� On
the other hand model checking with the modal ��calculus is decidable �and
EXPTIME �complete� for pushdown processes ���� and BPA ����� Thus in the
PRS�hierarchy decidability of the weak logic EG coincides with decidability of
the much more expressive modal ��calculus� In Figure � we draw the border
of decidability of several branching�time logics in the PRS�hierarchy� Model
checking is decidable for all models below the border and undecidable for all
those above it� Note that almost all branching�time logics have the same de�
cidability border� EF is the only exception� So EF is �much more decidable�
than all other branching�time logics�

It is interesting to compare the decidability results for branching�time logics
with the results for linear�time logics like LTL ���� and the linear�time ��

��

BPA ���S�

�nite state systems �����

PA ���G�

PAD �S�G� PAN �P�G�

BPP ���P�

PRS �G�G�

Petri nets �P�P�

PPDA

EF

EG� modal ��calc�

Pushdown �S�S�
processes

Fig� �� Limits of the decidability of branching�time logics�

calculus� While model checking PA�processes with EF is decidable� it is unde�
cidable for LTL and the linear�time ��calculus ���� For Petri nets the situation
is just the opposite� While model checking Petri nets with EF is undecidable�
it is decidable for LTL and the linear�time ��calculus ��������� In Figure � we
draw the border of decidability of LTL in the diagram of the PRS�hierarchy�

Acknowledgment� Thanks to Javier Esparza for helpful discussions�

��

BPA ���S�

�nite state systems �����

Petri nets �P�P�PA ���G�

PAD �S�G� PAN �P�G�

BPP ���P�

PRS �G�G�

linear time ��calc�� LTL

Pushdown �S�S�
processes

Fig� 	� Limits of the decidability of linear�time logics�

References

�� J� A� Bergstra and J�W� Klop� Algebra of communicating processes with
abstraction� Theoretical Computer Science
TCS�� ��
������� �����

�� A� Bouajjani� J� Esparza� and O� Maler� Reachability analysis of pushdown
automata
 application to model checking� In International Conference on

Concurrency Theory
CONCUR��
�� volume ��	� of LNCS� Springer Verlag�
�����

�� A� Bouajjani and P� Habermehl� Constrained properties� semilinear systems�
and Petri nets� In Ugo Montanari and Vladimiro Sassone� editors� Proceedings
of CONCUR���� volume ���� of LNCS� Springer Verlag� �����

	� A� Bouajjani and R� Mayr� Model checking lossy vector addition systems� In
Proc� of STACS���� volume ���� of LNCS� Springer Verlag� �����

�� J� Brad�eld� Verifying Temporal Properties of Systems� Birkh�auser� �����

�� O� Burkart� D� Caucal� and B� Ste�en� Bisimulation collapse and the
process taxonomy� In U� Montanari and V� Sassone� editors� Proceedings of

CONCUR���� volume ���� of LNCS� Springer Verlag� �����

�� O� Burkart and J� Esparza� More in�nite results� Electronic Notes in Theoretical

Computer Science
ENTCS�� �� �����

�	

�� D� Caucal� On the regular structure of pre�x rewriting� Journal of Theoretical
Computer Science� ���
������ �����

�� S� Christensen� Decidability and Decomposition in Process Algebras� PhD thesis�
Edinburgh University� �����

��� J� Esparza� On the decidability of model checking for several ��calculi and Petri
nets� In Trees in Algebra and Programming � CAAP���� volume ��� of LNCS�
Springer Verlag� ���	�

��� J� Esparza� Decidability of model checking for in�nite�state concurrent systems�
Acta Informatica� �	
������� �����

��� J� Esparza and A� Kiehn� On the model checking problem for branching time
logics and Basic Parallel Processes� In CAV���� volume ��� of LNCS� pages
�������� Springer Verlag� �����

��� P� Jan�car� Decidability questions for bisimilarity of Petri nets and some related
problems� In Proceedings of STACS���� volume ��� of LNCS� Springer Verlag�
���	�

�	� P� Jan�car� Undecidability of bisimilarity for Petri nets and some related
problems� Theoretical Computer Science� �	�
�������� �����

��� P� Jan�car� A� Ku�cera� and R� Mayr� Deciding bisimulation�like equivalences with
�nite�state processes� In Proc� of ICALP���� volume �		� of LNCS� Springer
Verlag� �����

��� A� Kucera� Regularity is decidable for normed PA processes in polynomial
time� In Foundations of Software Technology and Theoretical Computer Science

FST�TCS����� volume ���� of LNCS� Springer Verlag� �����

��� D� Lugiez and Ph� Schnoebelen� The regular viewpoint on PA�processes� In
Proc� of CONCUR���� volume �	�� of LNCS� Springer Verlag� �����

��� R� Mayr� Process rewrite systems� Information and Computation� To appear�

��� R� Mayr� Weak bisimulation and model checking for Basic Parallel Processes�
In Foundations of Software Technology and Theoretical Computer Science

FST�TCS����� volume ���� of LNCS� Springer Verlag� �����

��� R� Mayr� Combining Petri nets and PA�processes� In Martin Abadi and
Takayasu Ito� editors� International Symposium on Theoretical Aspects of
Computer Software
TACS��
�� volume ���� of LNCS� Springer Verlag� �����

��� R� Mayr� Model checking PA�processes� In International Conference on

Concurrency Theory
CONCUR��
�� volume ��	� of LNCS� Springer Verlag�
�����

��� R� Mayr� Process rewrite systems� Electronic Notes in Theoretical Computer

Science
ENTCS�� �� ����� Proceedings of Expressiveness in Concurrency
�EXPRESS�����

��

��� R� Mayr� Decidability and Complexity of Model Checking Problems for In�nite�

State Systems� PhD thesis� TU�M�unchen� �����

�	� R� Mayr� Strict lower bounds for model checking BPA� Electronic Notes in

Theoretical Computer Science
ENTCS�� ��� �����

��� R� Milner� Communication and Concurrency� Prentice Hall� �����

��� F� Moller� In�nite results� In Ugo Montanari and Vladimiro Sassone� editors�
Proceedings of CONCUR���� volume ���� of LNCS� Springer Verlag� �����

��� A� Pnueli� The temporal logic of programs� In FOCS�

� IEEE� �����

��� Ph� Schnoebelen� Decomposable and regular languages and the shu�e op erator�
In EATCS Bulletin� volume ��� European Association of Theoretical Computer
Science � February �����

��� I� Walukiewicz� Pushdown processes
 games and model checking� In
International Conference on Computer Aided Veri�cation
CAV����� volume
���� of LNCS� Springer Verlag� �����

��� I� Walukiewicz� Pushdown processes
 games and model checking� Technical
Report RS�����	� BRICS� Aarhus� Denmark� ����� Longer version of a CAV���
paper�

��

Deciding Bisimulation�Like Equivalences with

Finite�State Processes

Petr Jan�car a��� Anton��n Ku�cera b��� Richard Mayr c

aDept� of Computer Science� FEI� Technical University of Ostrava� ��� listopadu

��� ��� �� Ostrava� Czech Republic� E�mail	 Petr�Jancar�vsb�cz

bFaculty of Informatics� Masaryk University� Botanick
a ��a� ����� Brno� Czech

Republic� E�mail	 tony�fi�muni�cz

cInstitut f
ur Informatik� Technische Universit
at M
unchen� Arcisstr� ��� D������

M
unchen� Germany� E�mail	 mayrri�informatik�tu�muenchen�de

Abstract

We show that characteristic formulae for �nite�state systems up to bisimulation�
like equivalences �e�g�� strong and weak bisimilarity� can be given in the simple
branching�time temporal logic EF� Since EF is a very weak fragment of the modal ��
calculus� model checking with EF is decidable for many more classes of in�nite�state
systems� This yields a general method for proving decidability of bisimulation�like
equivalences between in�nite�state processes and �nite�state ones� We apply this
method to the class of PAD processes� which strictly subsumes PA and pushdown
�PDA� processes� showing that a large class of bisimulation�like equivalences �includ�
ing� e�g�� strong and weak bisimilarity� is decidable between PAD and �nite�state
processes� On the other hand� we also demonstrate that no �reasonable� bisimulation�
like equivalence is decidable between state�extended PA processes and �nite�state
ones� Furthermore� weak bisimilarity with �nite�state processes is shown to be un�
decidable even for state�extended BPP �which are also known as �parallel pushdown
processes���

Key words	 concurrency� bisimulation� characteristic formulae� in�nite�state
systems

� Supported by the Grant Agency of the Czech Republic� grant number
�	
��
�	����
� Supported by a Research Fellowship granted by the Alexander von Humboldt
Foundation and by a Post�Doc grant GA �CR No� �	
����P	���

Preprint submitted to Elsevier Preprint �� July ����

� Introduction

We study the decidability of bisimulation�like equivalences between in�nite�
state processes and �nite�state ones� The motivation is that the intended be�
havior of a process is often easy to specify �by a �nite�state system�� but a
�real� implementation can contain components which are essentially in�nite�
state �e�g�� counters� bu�ers�� The aim of formal veri�cation is to check if the
�nite�state speci�cation and the in�nite�state implementation are semantically
equivalent �i�e�� bisimilar�� First we examine this problem in a general setting�
extracting its core in a form of two rather special subproblems �which are nat�
urally not decidable in general�� A special variant of this method which works
for strong bisimilarity has been described in 	
��
 here we extend and gener�
alize the concept� obtaining a universal mechanism for proving decidability of
bisimulation�like equivalences between in�nite�state and �nite�state processes�
We show that �nite�state processes can be encoded up to bisimilarity in for�
mulae of the temporal logic EF �more precisely� in a slightly extended version
of EF which can also express constraints on sequences of atomic actions�� Such
a formula is called a characteristic formula for the given �nite�state process�
The characteristic formula �f of a �nite�state process f has the property that
for any �general� process g whose set of actions is contained in the one of f we
have that g is bisimilar to f if and only if g satis�es �f � Previous works used
the modal ��calculus to construct characteristic formulae 	���� We show that
the much simpler logic EF �a fragment of CTL and the modal ��calculus�
su�ces� This is signi�cant� because model checking with EF is decidable for
many more classes of in�nite�state systems than with the modal ��calculus
	
���������

Then we apply the designed method to the class of PAD processes �de�ned in
	�
��� which properly subsumes all PA and pushdown processes� We prove that
a large class of bisimulation�like equivalences �including� e�g�� strong and weak
bisimilarity� is decidable between PAD and �nite�state processes� utilizing pre�
viously established results on decidability of the model�checking problem for
the logic EF 	���������
��� We also provide several undecidability results to
complete the picture�we show that any �reasonable� bisimulation�like equiv�
alence is undecidable between state�extended PA processes and �nite�state
ones� Moreover� even in the case of state�extended BPP processes �which form
a natural subclass of Petri nets� the problem of weak bisimilarity with �nite�
state processes is undecidable�

Decidability of bisimulation�like equivalences has been intensively studied for
various process classes �see 	��� for a survey�� The majority of the results are
about the decidability of strong bisimilarity� e�g�� 	�����������
��
���

Strong bisimilarity with �nite�state processes is known to be decidable for

�

�labeled� Petri nets 	
��� PA� and pushdown processes 	
��� Another positive
result of this kind is presented in 	���� where it is shown that weak bisimilarity
is decidable between BPP and �nite�state processes� However� weak bisimila�
rity with �nite�state processes is undecidable for Petri nets 	
��� In this paper
we obtain original positive results for PAD �and hence also PA and PDA� pro�
cesses� and an undecidability result for state�extended BPP processes� More�
over� all positive results are proved using the same general strategy which can
also be adapted to the previously established ones�

In Section � we de�ne process rewrite systems� the formalism we use to de�
scribe in�nite�state systems� In Section � we describe the general method for
deciding bisimilarity between in�nite�state systems and �nite�state systems�
In Section � we use this method to construct characteristic formulae and apply
them to prove the main positive decidability result� In Section � we prove sev�
eral undecidability results for strong and weak bisimilarity� In the last section
we summarize the results and outline possible future work�

� De�nitions

Transition systems are widely accepted as structures which can exactly de�ne
the operational semantics of processes� In the rest of this paper we understand
processes as �being associated with� nodes in transition systems of certain
types�

De�nition � A transition system �TS� T is a triple �S�Act ��� where S is
a set of states� Act is a �nite set of actions �or labels�� and �� S �A� S

is a transition relation�

We de�ned Act as a �nite set
 it is somewhat nonstandard� but we can al�
low this as all classes of process descriptions we consider generate transition
systems of this kind� As usual� we write s

a
� t instead of �s� a� t� �� and

we extend this notation to elements of Act� in an obvious way �we sometimes
write s�� t instead of s

w
� t if w � Act� is irrelevant�� A state t is reachable

from a state s i� s�� t�

Let Const � fX� Y� Z� � � �g be a countably in�nite set of process constants�
The set of �general� process expressions� denoted G� is de�ned by the following
abstract syntax equation�

E ��� � j X j EkE j E�E

Here X ranges over Const and � is a special constant that denotes the empty
expression� Intuitively� the ��� operator corresponds to a sequential composi�

�

tion� while the �k� operator models a simple form of parallelism�

In the rest of this paper we do not distinguish between expressions related by
structural congruence which is the smallest congruence relation over process
expressions such that the following laws hold�

� associativity for ��� and �k�
� commutativity for �k�
� ��� as a unit for ��� and �k��

A process rewrite system 	�
� is speci�ed by a �nite set � of rules which are
of the form E

a
� F � where E� F are process expressions and a is an element

of a �nite set Act � The sets of process constants which are used in the rules
of � is denoted by Const���� and the set of all process expressions built over
Const��� is denoted by G����

Each process rewrite system � determines a unique transition system where
states are process expressions of G���� the set of labels is Act � and transitions
are determined by � and the following inference rules �remember that �k� is
commutative��

�E
a
� F � � �
E

a
� F

E
a
� E �

E�F
a
� E ��F

E
a
� E �

EkF
a
� E �kF

Various subclasses of process rewrite systems can be obtained by imposing
certain restrictions on the form of the rules� To specify those restrictions�
we �rst de�ne the classes S and P of sequential and parallel expressions�
composed of all process expressions which do not contain the �k� and the ���
operator� respectively� For short� we also use �
� to denote the set of process
constants� A hierarchy of process rewrite systems is presented in Figure

 the
restrictions are speci�ed by a pair �A�B�� where A and B are the classes of
expressions which can appear on the left�hand and the right�hand side of rules�
respectively� The set of states of a system � which belongs to the subclass
determined by �A�B� is then formed by all process expressions of B � G����
It is important to realize that� e�g�� every BPA system � can also be seen as
a PA system� but the sets of states �processes� of � are di�erent in the two
respective cases�

The hierarchy of Figure
 contains almost all classes of in�nite�state systems
which have been studied so far
 BPA� BPP� and PA processes are well�known
	��� PDA correspond to pushdown processes �as proved by Caucal in 	���� PN
correspond to Petri nets �see� e�g�� 	�
��� etc� This hierarchy is strict w�r�t�
strong bisimulation� i�e�� �higher� classes are strictly more expressive 	�
��

�

PDA (S,S) PN (P,P)

BPA (1,S)

FS (1,1)

BPP (1,P)

PAN (P,G)PAD (S,G)

PRS (G,G)

PA (1,G)

Fig�
� A hierarchy of process rewrite systems

A convenient way how to extend expressibility of process rewrite systems is to
equip them with a �nite�state control unit� In order to do that� we �rst need
to introduce the notion of Step� Let � be a PRS� Observe that each transition
E

a
� F is due to some rule H

a
� K of � �i�e�� H is rewritten to K within E�

yielding the expression F �� Generally� there can be more than one rule of �
with this property�if� e�g�� � � fX

a
� XkY� Y

a
� Y kY g� then the transition

XkY
a
� XkY kY can be derived in one step in two di�erent ways� For each

transition E
a
� F we denote the set of all rules of � which allow to derive the

transition in one step by Step�E
a
� F ��

A state�extended PRS �StExt�PRS�� is a triple ��� Q�BT� where � is a PRS�
Q is a �nite set of control states� and BT � ��Q�Q is a set of basic tran�
sitions� The transition system generated by a state�extended PRS ��� Q�BT�
has Q�G��� as the set of states �its elements are called state�extended PRS
processes� or StExt�PRS� processes for short�� Act is the set of labels� and
the transition relation is determined by the following rule� �p� E�

a
� �q� F � i�

E
a
� F and there is H

a
� K � Step�E

a
� F � such that �H

a
� K� p� q� � BT�

This construction also applies to the aforementioned subclasses of PRS� It can
�but does not have to� increase the expressive power of a given subclass� For
example� if we add a �nite�state control to a FS� PDA� or PN process� we
obtain a process which can be equivalently described by another FS� PDA�
or PN process� respectively �here the word �equivalent� means �the same up
to isomorphism��� In the other cases� the mentioned extension brings strictly
more power�StExt�BPA� are in fact PDA processes� StExt�BPP� form a

�

proper subclass of PN processes �which is also a proper superclass of BPP��
and if we add �nite�state control to PA �or to any of its superclasses�� we
obtain systems with full Turing power� The last fact will be demonstrated in
Section �� Let us note that PRS themselves are not Turing�powerful� because
the reachability problem is decidable for them�see 	�
��

� A General Method for Bisimulation�Like Equivalences

In this section we design a general method for proving decidability of bisimulation�
like equivalences between in�nite�state processes and �nite�state ones�

De�nition � Let R � Act � �Act
�

be a �total� function� assigning to each
action its corresponding set of responses� We say that R is closed under sub�
stitution if the following conditions hold�

� a � R�a� for each a � Act�
� If b�b� � � � bn � R�a� and w� � R�b��� w� � R�b��� � � � � wn � R�bn�� then also
w�w� � � � wn � R�a��

In order to simplify our notation� we adopt the following conventions in this
section�

� G � �G�Act ��� always denotes a �general� transition system�
� F � �F�Act ��� always denotes a �nite�state transition system with k

states�
� R always denotes a function from Act to �Act

�

which is closed under substi�
tution�

� N always denotes a decidable binary predicate de�ned for pairs �s� t� of
nodes in transition systems �which will be clear from the context�� Moreover�
N is re�exive� symmetric� and transitive�

Note that G and F have the same set of actions Act � All de�nitions and
propositions which are formulated for G should be considered as general
 if
we want to state some speci�c property of �nite�state transition systems� we
refer to F � We also assume that G� F � R� and N are de�ned in a �reasonable�
way so that we can allow natural decidability assumptions on them �e�g�� it is
decidable whether g

a
� g� for all g� g� � G and a � Act � or whether w � R�a�

for a given w � Act�� etc��

De�nition � The extended transition relation �� G � Act � G is de�ned
as follows� s

a
� t i� s

w
� t for some w � R�a��

De�nition � A relation P � G � G is an R�N�bisimulation if whenever

�

�s� t� � P � then N�s� t� is true and for each a � Act�

� If s
a
� s�� then t

a
� t� for some t� � G such that �s�� t�� � P �

� If t
a
� t�� then s

a
� s� for some s� � G such that �s�� t�� � P �

States s� t � G are R�N�bisimilar� written s
RN

� t� if there is an R�N�bisimulation
relating them�

Various special versions of R�N �bisimilarity appeared in the literature� e�g��
strong and weak bisimilarity �see 	�������� The corresponding versions of R
�denoted by S and W � respectively� are de�ned as follows �N� denotes the set
of all nonnegative integers��

� S�a� � fag for each a � Act �

� W �a� �

���
��
f� i j i � N�g if a � �

f� ia� j j i� j � N�g otherwise�

The �� � is a special �silent� action� usually used to model an internal commu�
nication� As the predicate N is not used in the de�nitions of strong and weak
bisimilarity� we can assume it is always true �we use T to denote this special
case of N in the rest of this paper�� One can also argue that the N predicate
could be omitted from the de�nition of R�N �bisimilarity� as it is not employed
by any known bisimulation�like equivalence� This is not completely true� as�
e�g�� the version of strong bisimilarity introduced in 	��� uses such a predi�
cate to distinguish between �terminal� and ��nal� states of pushdown processes
�in this way it is possible to distinguish between a �successful� termination
caused by emptying the stack� and an �unsuccessful� one �deadlock� caused by
entering a state �p� E�� where E �� �� from which there are no transitions��

Generally� every R�N �bisimilarity is a re�nement of R�T �bisimilarity and this
fact also suggests the way how to use the predicate N
 its basic purpose
is to impose some additional conditions on pairs of states which cannot be
speci�ed by R� but which should be satis�ed by �pairs of� equivalent states� We
illustrate this approach by designing a natural re�nement of weak bisimilarity�

Example � It is a well�known fact that weak bisimilarity does not distinguish
between a state which cannot emit any action �deadlock�� and a state which
can emit only an in�nite number of silent �� 	 actions �livelock�� However� these
two behaviors are considered to be di�erent in many situations
 for example�
there are very good reasons to distinguish between deadlock and livelock in the
context of operating systems� Therefore� it is natural to ask whether there is
some re�nement of weak bisimilarity which preserves most of its properties but
eliminates the mentioned drawback at the same time� A simple solution is to

�

de�ne the D predicate in the following way�

D�s� t� is true i� �Init�s� � 	
� Init�t� � 	�

Here Init�s� denotes the set of initial actions� de�ned as follows� Init�s� �
fa � Act j s

a
� s� for some s�g� Now W�D�bisimilarity is a good candidate for

the equivalence we are looking for
 it is very similar to weak bisimilarity� but it
distinguishes between deadlock and livelock� As we shall see� W�D�bisimilarity
is also decidable between PAD processes and �nite�state ones�

The concept of R�N �bisimilarity covers many equivalences which have not
been explicitly investigated so far
 for example� we can de�ne the function R
like this�

� K�a� � fai j i � N�g for each a � Act �
� L�a� � fw � Act� j w begins with ag�

� M�a� �

���
��
Act� if a � �

fw � Act� j w contains at least one ag otherwise�

The predicate N can also have various forms� We have already mentioned the
�T � �always true� and �D� �deadlock equivalence�� Another natural example is
the �I� predicate� I�s� t� is true i� Init�s� � Init�t�� It is easy to see that� e�g��
ST

� coincides with
SI

�� while
WI

� re�nes
WD

� �

An important example of a bisimulation�like equivalence which cannot be
seen as R�N �bisimilarity is branching bisimilarity �introduced in 	����� This
relation places additional requirements on �intermediate� nodes that extended
transitions pass through� and this brings further di�culties� Therefore� we do
not consider branching bisimilarity in our paper�

R�N �bisimilarity can also be de�ned in terms of the so�called R�N�bisimulation
game� Imagine that there are two tokens initially placed in states s and t

such that N�s� t� is true� Two players� Al and Ex� now start to play a game
consisting of a �possibly in�nite� sequence of rounds� where each round is
performed as follows�

� Al chooses one of the two tokens and moves it along an arbitrary �but
single�� transition� labeled by some a � Act �

�� Ex has to respond by moving the other token along a �nite sequence of
transitions in such a way that the corresponding sequence of labels belongs
to R�a� and the predicate N is true for the pair of states where the tokens
lie after Ex �nishes his move�

Al wins the R�N �bisimulation game� if after a �nite number of rounds Ex
cannot respond to Al�s �nal attack� Now it is easy to see that the states s and

�

ss

�
a

c

ts

�
�
��
� �

c

A
A
AU c

� �
a b

c c

us

�
b

c

Fig� �� A transition system considered in Example �

t are R�N �bisimilar i� Ex has a universal defending strategy �i�e�� Ex can play
in such a way that Al cannot win��

A natural way how to approximate R�N �bisimilarity is to de�ne the family of
relations

RN

�i� G�G� i � N� � as follows� s
RN

�i t i� N�s� t� is true and Ex has
a defending strategy within the �rst i rounds in the R�N �bisimulation game�
However�

RN

�i does not have to be an equivalence relation� Moreover� it is not
necessarily true that s

RN

� t
� �i � N� � s
RN

�i t�

Example � It is a well�known fact that in the case of weak bisimilarity �i�e��
W�T�bisimilarity� the equivalence

s
WT

� t
� �i � N� � s
RN

�i t

does not hold in general � �
�	 does not have to be valid�� Moreover�
WT

� i is
not transitive for i �
� To see this� consider the states s� t� u in the transition
system of Figure �
 we have s

WT

� � t and t
WT

� � u� but s �
WT

� � u�

Now we show how to overcome those di�culties
 to do this� we �rst introduce
the extended R�N �bisimulation relation�

De�nition � A relation P � G � G is an extended R�N�bisimulation if
whenever �s� t� � P � then N�s� t� is true and for each a � Act�

� If s
a
� s�� then t

a
� t� for some t� � G such that �s�� t�� � P �

� If t
a
� t�� then s

a
� s� for some s� � G such that �s�� t�� � P �

States s� t � G are extended R�N�bisimilar if there is an extended R�N�
bisimulation relating them�

Naturally� we can also de�ne the extended R�N �bisimilarity by means of the
extended R�N �bisimulation game
 we simply allow Al to use the �long� moves
�i�e�� Al can play the same kind of moves as Ex�� Moreover� we can de�ne the
family of approximations of extended R�N �bisimilarity in the same way as in

the case of R�N �bisimilarity�for each i � N� we de�ne the relation
RN

i� G�G

as follows� s
RN

i t i� N�s� t� is true and Ex has a defending strategy within
the �rst i rounds in the extended R�N �bisimulation game where tokens are

�

initially placed in s and t�

Lemma 	 Two states s� t of G are R�N�bisimilar i� s and t are extended
R�N�bisimilar�

PROOF
 Every extended R�N �bisimulation is also an R�N �bisimulation
 here
we need that a � R�a� for each a � Act � Conversely� every R�N �bisimulation
is also an extended R�N �bisimulation
 each extended transition is a �nite se�
quence of transitions� hence we can concatenate �responses� to those individual
transitions� obtaining a valid response to the original extended transition� Here
we need the second requirement of De�nition �� that the relation R is closed
under substitution� �

Lemma � The following properties hold�

���
RN

i is an equivalence relation for each i � N� �

��� Let s� t be states of G� Then �i � N� � s
RN

�i t i� �i � N� � s
RN

i t�

PROOF

�
� For the �rst part� re�exivity and symmetry are obvious� Transitivity fol�
lows from the condition that the relation R is closed under substitution�

��� It follows from the de�nition of
RN

 that s
RN

i t �� s
RN

�i t� Hence� it

su�ces to realize that if s �
RN

i t� then s �
RN

�j t for some j � N��as Al can
force his win using i �long� moves and each of those moves consists of a
�nite number of �short� moves� Al could actually �decompose� his attacks�
playing only �a �nite number of� short moves� �

Remark �� For all states s� t of G and i � N� we have that if s
RN

i t then also
s
RN

�i t� However� there is no �reverse correspondence	
it can be easily shown

that for arbitrarily large j the implication s
RN

�j t �� s
RN

� t is generally
invalid �the implication is invalid even in the case when t is a state in a one�
state TS�� See Section � for details�

Now we examine some special properties of R�N �bisimilarity on �nite�state
transition systems �remember that F is a �nite�state TS with k states��

Lemma �� Two states s� t of F are R�N�bisimilar i� s
RN

k�� t�

PROOF
 As F has k states and
RN

i�� re�nes
RN

i for each i � N� � we have

that
RN

k���
RN

k� hence
RN

k���
RN

�� �

�

Theorem �� States g � G and f � F are R�N�bisimilar i� the following
conditions hold�

�� g
RN

k f �
�� For each state g� which is reachable from g there is a state f � � F such that

g�
RN

k f
��

PROOF

����� Obvious�
�
��� We prove that the relation

P � f�g�� f �� j g �� g� and g�
RN

k f
�g

is an extended R�N �bisimulation� Let �g�� f �� � P and let g�
a
� g�� for some

a � Act �the case when f �
a
� f �� is handled in the same way�� By de�nition

of
RN

k� there is an f
�� such that f �

a
� f �� and g��

RN

k�� f
��� It su�ces to show

that g��
RN

k f ��
 as g �� g��� there is a state f of F such that g��
RN

k f � By

transitivity of
RN

k�� we have f
RN

k�� f
��� hence f

RN

k f
�� �due to Lemma

��

Now g��
RN

k f
RN

k f
�� and thus g��

RN

k f
�� as required� Clearly �g� f� � P and

the proof is �nished� �

Remark �� We have already mentioned that the equivalence

s
RN

� t
� �i � N� � s
RN

i t

is generally invalid �e�g�� in the case of weak bisimilarity�� However� as soon as
we assume that t is a state in a �nite�state transition system� the equivalence
holds� This is an immediate consequence of the previous theorem� Moreover�
the second part of Lemma � says that we could also use the

RN

�i approximations
on the right�hand side of the equivalence�

The previous theorem in fact says that one can use the following strategy to
decide whether g

RN

� f �

� Decide whether g
RN

k f �if not� then g �
RN

� f��

�� Check whether g can reach a state g� such that g� �
RN

k f
� for every state f �

of F �if there is such a g� then g �
RN

� f
 otherwise g
RN

� f��

However� none of these tasks is easy in general� Our aim is to examine both
subproblems in detail� keeping the general setting� Hence� we cannot expect

any �universal� �semi�decidability result� because even the problems g
WT

 � f

and g �
WT

 � f are not semidecidable in general �see Section ���

As F has �nitely many states� the extended transition relation� is �nite and
e�ectively constructible� Therefore� we can e�ectively replace the transition
relation of F with its corresponding extended transition relation� Al and Ex
can now play only �short� moves consisting of exactly one transition whenever
playing within the modi�ed system F�each such move corresponds to some
extended transition of the original system F and vice versa� This observation
leads to the notion of branching tree� which allows to �extract� from F the
information which is relevant for the �rst k moves in the extended R�N �
bisimulation game� The aim of the following de�nition is to describe all such
trees up to isomorphism �remember that Act is a �nite set��

De�nition �� For each i � N� we de�ne the set of Trees with depth at most
i �denoted Treei� inductively as follows�

� A Tree with depth � is any tree with no arcs and a single node �the root�
which is labeled by an element of F � f�g�

� A Tree with depth at most i�
 is any directed tree with root r whose nodes
are labeled by elements of F � f�g� arcs are labeled by elements of Act�
which satis�es the following conditions�
� If r

a
� s� then the subtree rooted by s is a Tree with depth at most i�

� If r
a
� s and r

a
� s� for s �� s�� then the subtrees rooted by s and s� are

not isomorphic�

It is clear that the set Treej is �nite for every j � N� � More precisely� its
cardinality �denoted NT�j�� is given by�

� NT��� � k �

� NT�i�
� � �k �
� � �n�NT�i�� where n � card�Act�

The set Treej is e�ectively constructible for every j � N� � As each Tree can
be seen as a transition system� we can also speak about Tree�processes which
are associated with roots of Trees �we do not distinguish between Trees and
Tree�processes in the rest of this paper��

Now we introduce special rules which replace the standard ones whenever we
consider an extended R�N�bisimulation game with initial state �g� p�� where
g � G and p is a Tree process �formally� this is a di�erent game�however� it
does not deserve a special name in our opinion��

� Al and Ex are allowed to play only �short� moves consisting of exactly one
transition whenever playing within the Tree process p �transitions of Trees
correspond to the extended transitions of F��

� The predicate N�g�� p��� where g� � G and p� is a state of the Tree process

�

p� is evaluated as follows�

N�g�� p�� �

����������
���������

true if label�p�� � � and
N�g�� f� � false for every f � F

false if label�p�� � � and
N�g�� f� � true for some f � F

N�g�� label�p��� otherwise

Whenever we write g
RN

i p� where g � G and p is a Tree process� we mean that
Ex has a defending strategy within the �rst i rounds in the �modi�ed� extended
R�N �bisimulation game� The importance of Tree processes is clari�ed by the
two lemmas below�

Lemma �� Let g be a state of G� j � N� � Then g
RN

j p for some p � Treej�

PROOF
 We proceed by induction on j�

� j � � � Then p is a Tree with no arcs and just one node labeled by some
f � F such that N�g� f� is true
 if there is no such f � then it is labeled by

�� Clearly g
RN

� p�

� Induction step
 We need to construct a Tree p such that g
RN

j�� p� The
Tree p has a root r whose label is determined in the same way as in the case
when j � �� The successors of r are de�ned by

r
a
� s i� g

a
� g� and g�

RN

j s

Note that for each g� there is s � Treej such that g
�
RN

j s by induction

hypothesis� Thus� we have g
RN

j�� p as required� �

Lemma �� Let f be a state of F � j � N� � and p � Treej such that f
RN

j p�

Then for every state g of G we have that g
RN

j f i� g
RN

j p�

PROOF

����� By induction on j�

� j � � � As f
RN

� p and g
RN

� f � we have that N�g� f� is true and �the root
of� p is labeled by some f � such that N�f� f �� is true� Hence� N�g� f �� is true

and g
RN

� p�

� Induction step
 Let f
RN

j�� p and g
RN

j�� f � We prove that g
RN

j�� p�
Clearly N�g� label�p�� is true �see above�� Let g

a
� g� �the case when p

a
� p�

can be done similarly�� We need to show that p
a
� p� for some p� with

g�
RN

j p
�� As g

RN

j�� f � there is f
� � F such that f

a
� f � and g�

RN

j f
��

�

Furthermore� as f
RN

j�� p and f
a
� f �� there is p� such that p

a
� p� and

f �
RN

j p
�� To sum up� we have f �

RN

j p
� and g�

RN

j f
�� hence g�

RN

j p
� by

induction hypotheses�

�
��� In a similar way� �

Now we can extract the core of both subproblems which appeared in the pre�
viously mentioned general strategy in a �hopefully� nice way by de�ning two
new and rather special problems�the Step�problem and the Reach�problem�

The Step�problem
Instance� �g� a� j� p� where g is a state of G� a � Act � � � j � k� and p � Treej�

Question� Is there a state g� of G such that g
a
� g� and g�

RN

j p�

A decision algorithm may use an oracle which for any state g�� of G answers

whether g��
RN

j p�

The Reach�problem
Instance� �g� p� where g is a state of G and p is a Tree�process of depth � k�

Question� Is there a state g� of G such that g �� g� and g�
RN

k p�

A decision algorithm may use an oracle which for any state g�� of G answers

whether g��
RN

k p�

Formally� the transition system F should also be given in the instances of the
aforementioned problems� as it determines the sets Treej and the constant k

we prefer the simpli�ed form to make the following proofs more readable�

Theorem �� If the Step�problem is decidable �possibly using the mentioned

oracle�� then
RN

k is decidable between all states g and f of G and F � respec�
tively�

PROOF
 We prove by induction on j that
RN

j is decidable for every � � j �

k� First�
RN

� is decidable because the predicate N is decidable� Let us assume

that
RN

j is decidable �hence the mentioned oracle can be used�� It remains to

prove that if the Step�problem is decidable� then
RN

j�� is decidable as well�
We need to introduce two auxiliary �nite sets�

� The set of Compatible Steps� denoted CSfj � is composed exactly of all pairs

of the form �a� p�� where a � Act and p � Treej� such that f
a
� f � for some

f � with f �
RN

j p�

�

� The set of INCompatible Steps� denoted INCSfj � is a complement of CS
f
j

w�r�t� Act � Treej�

The sets CSfj and INCSfj are e�ectively constructible� By de�nition� g
RN

j�� f

i� N�g� f� is true and the following conditions hold�

� If f
a
� f �� then g

a
� g� for some g� with g�

RN

j f
��

�� If g
a
� g�� then f

a
� f � for some f � with g�

RN

j f
��

The �rst condition in fact says that �g� a� j� p� is a positive instance of the
Step�problem for every �a� p� � CSfj �see Lemma
� and
��� It can be checked
e�ectively due to the decidability of the Step�problem�

The second condition does not hold i� g
a
� g� for some g� such that g�

RN

j p

where �a� p� is an element of INCSfj �due to Lemma
� and
��� This is clearly
decidable due to the decidability of the Step�problem again� �

It is worth mentioning that the Step�problem is generally semidecidable �pro�
vided it is possible to enumerate all �nite paths starting in g�� However� it

does not su�ce for semidecidability of
RN

i or �
RN

i between states of G and F �

Theorem �	 Decidability of the Step�problem and the Reach�problem �possi�
bly using the indicated oracles� implies decidability of the problem whether for
each g� which is reachable from a given state g of G there is a state f � of F

with g�
RN

k f
��

PROOF
 First� the oracle indicated in the de�nition of Reach�problem can
be used because we already know that decidability of the Step�problem implies

decidability of
RN

k between states of G and F �see the previous theorem�� To
�nish the proof� we need to de�ne one auxiliary set�

� The set of INCompatible Trees� denoted INCT � is composed of all p �

Treek such that f �
RN

k p for every state f of F �

The set INCT is �nite and e�ectively constructible� The state g can reach a

state g� such that g� �
RN

k f for every state f of F �i�e�� g is a negative instance of
the problem speci�ed in the second part of this theorem� i� �g� p� is a positive
instance of the Reach problem for some p � INCT �due to Lemma
� and
���

�

�

� Characteristic Formulae

In this section we show how to apply the previously designed general method
to construct characteristic formulae for �nite�state systems in the temporal
logic EFC �we show that the Step�problem as well as the Reach�problem can
be encoded by EFC formulae�� Consequently� we reduce the problem of R�N �
bisimilarity between in�nite�state processes and �nite�state ones to the model
checking problem for EFC� Therefore it is possible to apply decidability results
from this area� In this way we prove that a large class of R�N �bisimulation
equivalences is decidable between PAD processes and �nite�state ones �the
class includes all versions of R�N �bisimulation equivalences we de�ned in this
paper and many others�� First we de�ne the logic EFC �it is an extended version
of the logic EF 	
�� with constraints on sequences of actions�� Let C be a �nite
set of unary predicates on sequences of atomic actions� The formulae of EFC
have the following syntax �where a � Act and C � C��

 ��� true j � j � � � j hai j �C

Let T � �S�Act ��� be a transition system� The denotation 		 �� of a formula
 is a set of states of T where the formula holds
 it is de�ned as follows
�sequences of atomic actions are denoted by w��

		true�� ��S

		� �� ��S � 		 ��

		 � � ��� �� 		 ��� � 		 ���

		hai �� �� fs � S j �s� � S� s
a
� s� � s� � 		 ��g

		�C �� �� fs � S j �w� s�� s
w
� s� � C�w� � s� � 		 ��g

The predicates of C are used to express constraints on sequences of actions� An
instance of the model checking problem is given by a state s in S and an EFC
formula � The question is whether s � 		 ��� This property is also denoted by
s j� �

A characteristic formula �f for a �nite�state process f w�r�t� R�N�bisimulation
has the property that for every �general� process g whose set of actions is
contained in the set of actions of f we have

g
RN

� f
� g j� �f

For every R�N �bisimulation we de�ne the set of predicates R as follows�

R � fCa j a � Act � Ca�w�
� w � R�a�g � ftrue� falseg

�

As usual� we write � instead of �true �

Let us �x a general TS G � �G�Act ��� and a �nite�state TS F � �F�Act ���
with k states in the same way as in the previous section� We show how to
encode the Step and the Reach problems by EFR formulae� The �rst di�culty
is the N predicate� Although it is decidable� this fact is generally of no use
because we cannot make any assumptions on �strategies� of model checking
algorithms� Instead� we restrict our attention to those predicates which can
be encoded by EFR formulae in the following sense� for each f � F there is
an EFR formula !f such that for each g � G we have that g j� !f i� N�g� f�
is true� In this case we also de�ne the formula !� ��

V
f�F �!f �

A concrete example of a predicate which can be encoded by EFR formulae
is� e�g�� the �I� predicate de�ned in the previous section� For every f � F let
Af �� fa � Act j �f �� f

a
� f �g� Then

!f ��
�

a�Af

haitrue �
�

a�Act�Af

�haitrue

The �D� predicate can be encoded in a similar way�

Now we design the family of j�p formulae� where � � j � k and p � Treej� in
such a way that for every g � G the following equivalence holds�

g
RN

j p
� g j� j�p

Having these formulae� the Step and the Reach problems can be encoded in a
rather straightforward way�

� �g� a� j� p� is a positive instance of the Step problem i� g j� �Ca� j�p�
� �g� p� is a positive instance of the Reach problem i� g j� �� k�p�

The family of j�p formulae is de�ned inductively on j as follows�

� ��p �� !f � where f � label�p�

� j���p �� !f �

�
� �
a�Act

�
p��S�p�a�

�Ca j�p�

�
A �

�
� �
a�Act

���Ca�
�

p��S�p�a�

� j�p���

�
A�

where f � label�p� and S�p� a� � fp� j p
a
� p�g� Empty conjunctions are

equivalent to true�

�

Thus� the characteristic formula �f for a process f of a �nite�state system
F � �F�Act ��� with k states is de�ned by

�f � k�f � ��

�
� �
f ��F

� k�f �

�
A

The decidability of the model checking problem for the logic EFC depends
on properties of the family of constraints C� It has been shown in 	��� that
the model checking problem for PA processes and the logic EFC is decidable
for the class of decomposable constraints �see also 	
�� where the same result
was proved later using a completely di�erent technique�� This result has been
generalized to PAD processes in 	������� These constraints are called decom�
posable� because they can be decomposed w�r�t� sequential and parallel compo�
sition� A formal de�nition is as follows� a set of decomposable constraints DC
is a �nite set of unary predicates on �nite sequences of actions that contains
the predicates true and false and satis�es the following conditions�

� For every C � DC there is a �nite index set I and a �nite set of decomposable
constraints fC�

i � C
�
i � DC j i � Ig s�t�

�w�w�� w�� w�w� � w ��

�
C�w�
�

	
i�I

C�
i �w�� � C

�
i �w��

�� For every C � DC there is a �nite index set J and a �nite set of decompos�
able constraints fC�

i � C
�
i � DC j i � Jg s�t�

�w�� w��

�
��w � interleave�w�� w��� C�w��
�

	
i�J

�C�
i �w�� � C

�
i �w���

where interleave�w�� w�� is the set of all interleavings of w� and w� de�ned
by

interleave��� w� �� fwg

interleave�w� �� �� fwg

interleave�a�w�� a�w�� �� fa�w j w � interleave�w�� a�w��g �

fa�w j w � interleave�a�w�� w��g

It is easy to see that the closure of a set of decomposable constraints under
disjunction is again a set of decomposable constraints �see 	
����� for more on
decomposable constraints and decomposable languages�� All the previously
mentioned examples of relations R can be expressed by decomposable con�
straints� Consider the relation W for weak bisimulation� There we have the
following constraints�

W� �w� �� �w � � i for some i � N��

�

Wa�w� �� �w � � ia� j for some i� j � N��

These constraints can be decomposed w�r�t� sequential and parallel composi�
tion� For W� this is trivial� For Wa we have

Wa�w�w��
� �Wa�w�� �W� �w��� � �W� �w�� �Wa�w���

��w� interleave�w�� w���Wa�w��
� �Wa�w�� �W� �w��� � �W� �w�� �Wa�w���

Now we show decomposability for some other �nonstandard� relations that
were de�ned in Section �� For the relation K the decomposition is trivial� For
the relation L we have the constraint

La�w� �� w begins with a

The decomposition is

La�w�w��
� La�w��

��w � interleave�w�� w��� La�w��
� La�w�� � La�w��

For the relation M we have the constraints

M� �w� �� true

Ma�w� ��w contains at least one a

The decomposition of M� is trivial� The decomposition of Ma is

Ma�w�w��
� Ma�w�� �Ma�w��

��w � interleave�w�� w���Ma�w��
� Ma�w�� �Ma�w��

However� there are also relations R that are closed under substitution� but
which yield non�decomposable constraints� For example� let Act � fa� bg and
R�a� �� fw j "aw � "bwg and R�b� �� fbg� where "aw is the number of
actions a in w� The function R is obviously closed under substitution� but
the corresponding set of constraints is not decomposable� On the other hand�
there are decomposable constraints that are not closed under substitution like�
e�g�� R�a� �� fai j
 � i � �g� Now we can formulate a general decidability
theorem�

Theorem �� The problem g
RN

� f � where R yields a set of constraints R
contained in a set DC of decomposable constraints� N is expressible in EFR�
g is a PAD processes� and f is a �nite�state process� is decidable�

Corollary �� Weak bisimilarity between PAD processes and �nite�state ones
is decidable�

�

Remark �� �Complexity of the problem�
The complexity of our algorithm for the problem g

RN

� f depends on the com�
plexity of the model checking problem for EFC and PAD� which is not known
exactly yet� The algorithm for PAD in ������� and the di�erent algorithms
for PA in ���� and ���� all have non�elementary complexity� For BPP� model
checking with EFC is PSPACE�complete ������� �see also Section ��� The EFR
formulae that are constructed for a �nite�state system F with k states have
exponential size in k� but a nesting�depth of the operator � that is only poly�
nomial in k� Model checking can be done �on�the��y	 while these formulae are
constructed and thus polynomial space su�ces� Hence� the problem g

RN

� f is
in PSPACE for BPP�

For BPA and PDA� model checking with EFC is known to be in EXPTIME
������� It was claimed in ��� that it is even in PSPACE� but the given proof con�
tains an error �it assumed that an accepting polynomial space�bounded Turing
machine always has an accepting computation of polynomial length
 however�
there are cases where the shortest accepting computation has an exponential
length�� Thus the question about the complexity of model checking pushdown
systems with EFC is open again� Still we conjecture PSPACE�completeness
to be most likely� because the number of alternations between conjunction and
disjunction in the model checking problem is bounded by the size of the formula
and thus polynomial� So far� our construction yields an EXPTIME algorithm
for the problem g

RN

� f for BPA and PDA�

The known lower bounds for the model checking problem are PSPACE�hardness
for BPP ���� and BPA ���� �and thus also for for PDA� PA and PAD�� How�
ever� unlike the upper bounds� the lower bounds for the model checking problem
do not carry over to the bisimulation problem g

RN

� f � For example� it has re�
cently been shown that weak bisimilarity between BPA and �nite�state systems
is decidable in polynomial time ����� while model checking BPA with EFC is
PSPACE�hard �����

Decidability of the model checking problem for the EFR logic in a certain
class of transition systems K is a su�cient but not necessary condition for
decidability of R�N �bisimilarity between processes of K and �nite�state ones�
For example� model checking the �pure� EF �without any constraints� is unde�
cidable for Petri nets� but the Step and the Reach problems are decidable for
S�T �bisimilarity 	
��� In fact� strong bisimilarity is the simplest form of R�N �
bisimilarity and the EF formulae which encode the two problems are therefore
very simple as well� An exact formulation of this observation is given in the
following theorem�

Theorem �� An EF formula is simple i� it is of the form � where the sub�
formula does not contain any ��operator �i�e�� is a formula of Hennessy�
Milner logic ������ If the model checking problem for simple EF formulae is

��

decidable in a class K of transition systems� then strong bisimilarity is decid�
able between processes of K and �nite�state ones�

PROOF
 The
ST

j equivalence with a given Tree process p can be encoded by
a formula of Hennessy�Milner logic for every j � N� � Consequently� the Step
problem can also be encoded by a formula of Hennessy�Milner logic� and the
Reach problem is encoded by a formula of the form � where is a formula
of Hennessy�Milner logic� �

The model checking problem for simple EF formulae is essentially a kind
of generalized reachability problem �one checks whether there is a reachable
state that satis�es a given formula of Hennessy�Milner logic�� Of course� it is
much easier than the general model checking problem for EF� Thus� decidabil�
ity issues can be di�erent�we have already mentioned that model checking
EF logic is undecidable for Petri nets
 however� model checking simple EF
is decidable �due to the decidability of the Reach problem�see below�� For
example� in the case of Petri nets we can observe that the markings which
satisfy some formula of H�M� logic can be characterized by boolean combi�
nations of constraints of the form p � k or p � k� meaning that there are
at least#at most k tokens in place p� This leads to a generalized reachability
problem which is decidable 	

��

Now we show that the model checking problem for simple EF formulae can
be seen as a reformulation of the Step and the Reach problems in the case
of strong bisimilarity �the Step problem is trivially decidable� and the Reach
problem is �equivalently hard� to the model checking problem for the simple
EF logic�� This shows the essence of the whole problem in a new light�

Theorem �� The model checking problem for simple EF formulae and the
special variant of the Reach problem for strong bisimilarity are inter�reducible
in the Turing sense �i�e�� decidability of one of the two problems implies de�
cidability of the other one��

PROOF
 Decidability of the model checking problem for simple EF formulae
implies decidability of the Reach problem� as shown in Theorem ��� We prove
the other direction
 let � be a simple EF formula� First� let us realize that

the sub�formula cannot distinguish between states related by
ST

n� where
n � length� �� Due to Lemma
� we know that for every state g of the

transition system G there is a p � Treen such that g
ST

n p �as the predicate T
is trivial� we do not have to label the nodes of Trees
 hence the construction
of Treen does not depend on the transition system F�see De�nition
��� For

�

each p � Treen we check whether p j� � Now it is easy to see that g� j� �
i� Reach�g�� p� � true for some p � Treen such that p j� � �

� Undecidability Results

In this section we provide several negative �undecidability� results which help
to clarify the decidability#undecidability border in the area of comparing
in�nite�state processes with �nite�state ones�

Intuitively� any �nontrivial� equivalence with �nite�state processes should be
undecidable for a class of processes having �full Turing power�� which can be
formally expressed as� e�g�� the ability to simulate Minsky counter machines�

De�nition �� A counter machineM with nonnegative counters c�� c�� ���� cm
is a sequence of instructions

 � INS�
� � INS�
���
n�
 � INSn��

n � halt

where each INSi �i �
� �� ���� n �
� is in one of the following two forms
�assuming
 � k� k�� k� � n�
 � j � m�

� cj �� cj �

 goto k

� if cj � � then goto k� else �cj �� cj �

 goto k��

The halting problem is undecidable even for Minsky machines with two coun�
ters initialized to zero values 	���� Any such machineM can be easily �mim�
icked� by a StExt�PA� process P �M� � ��� Q�BT� where

� � contains the following rules�
� Zj

a
� Ij�Zj� Zj

a
� Zj

� Ij
a
� Ij�Ij� Ij

a
� �

where j � f
� �g�
� Q � fq�� � � � � qng� where n is the number of instructions ofM�
� BT is determined by the following rules�
�
� If the program ofM contains an instruction of the form

l � cj �� cj �

 goto k

then BT contains the elements �Zj
a
� Ij�Zj� ql� qk� and �Ij

a
� Ij�Ij� ql� qk��

��

��� If the program ofM contains an instruction of the form

l � if cj � � then goto k� else �cj �� cj �

 goto k��

then BT contains the elements �Zj
a
� Zj� ql� qk�� and �Ij

a
� �� ql� qk���

��� Each element of BT can be derived using the rule
 or ��

Intuitively� the �two� counters of the machineM are modeled by a simple PA
process �I��I� � � � I��Z��k�I��I� � � � I��Z�� where the number of Ij�s means the
current value of the counter cj� j � f
� �g �the starting zero point being mod�
eled by Z�kZ��� The control states q�� � � � � qn correspond to the instructions of
M �more precisely� to their labels�� Each state determines the unique transi�
tion to be performed next with the exception of qn which is the �halting state��
The process �q�� Z�kZ�� is able either to perform the action a boundedly many
times and to stop �its behavior can be de�ned as am for some m � N�� or to
do a forever �its behavior being a��
 this depends on whether the machineM
halts or not� Notice that a� is the behavior of the one�state process f where
ff

a
� fg is the underlying PRS� When we declare as reasonable any equiva�

lence which distinguishes between �processes with� behaviors a� and am� we
can conclude�

Theorem �� Any reasonable equivalence between StExt�PA� processes and
�nite�state ones is undecidable�

It is obvious that �almost� any R�N �bisimilarity is reasonable in the above
sense� except for some trivial cases� For weak bisimilarity� we can even show

that none of the problems g
WT

 � f � g �
WT

 � f is semidecidable when g is a
StExt�PA� process� It su�ces to realize that we can label all transitions in
P �M� by � and add a special a�transition enabled in the �halting� state

qn� Now q��Z�kZ��
WT

 � �� i� the machine M does not halt� and similarly

q��Z�kZ��
WT

 � f where ff
�
� f� f

a
� gg i� the machineM halts�

Now� the claim of Remark
� is also easy to see
 if we take the modi�ed process
P �M� of the previous paragraph� we can observe that q��Z�kZ��

WT

� j �
� for

every j which is less than the number of computational steps of M� On the

other hand� if M halts then q��Z�kZ�� �
WT

 � ��� Therefore� the implication

q��Z�kZ��
WT

� j �
� �� q��Z�kZ��

WT

 � �
� is invalid for any j � N � because for

each such j there is a machine with more then j computational steps which
halts�

Once seeing that StExt�PA� are strong enough to make our equivalences un�
decidable� it is natural to ask what happens when we add �nite�state control
parts to processes from subclasses of PA� namely to BPA and BPP�

We have already shown that every R�N �bisimilarity such that R yields de�
composable constraints and N is expressible within EFR is decidable be�

��

s � c�
���

�
��R

c

c

�

�

c

c � c�

��
�

�

��
�

f a
�

�

b

b

c

c
�

Fig� �� A �nite�state system used in the proof of Theorem ��

tween StExt�BPA� �i�e�� PDA� processes and �nite�state ones� In the case of
StExt�BPP�� strong bisimilarity with �nite�state processes is decidable 	
���
Here we demonstrate that the problem for weak bisimilarity is undecidable�
Our proof is obtained by modifying the construction which has been used in
	
�� to show the undecidability of weak bisimilarity between Petri nets and
�nite�state systems� To make this paper self�contained� we now give a concise
description of this modi�ed construction�

Theorem �� Weak bisimilarity is undecidable between StExt�BPP� processes
and �nite�state ones�

PROOF
 Consider a Minsky machine M as in De�nition �� with just two
counters �m � ��� In a stepwise manner� we show how to construct a StExt�BPP�
process P �M� such that P �M� is weakly bisimilar to the process f of Figure �
i�M does not halt�

We begin with using just the action � � the process constants Z� I�� I�� D� S and
the control states p�� � � � � pn� q�� � � � � qn� The states �p�� Z�� �q�� Z� are consid�
ered as two possible starting ones� Basic transitions of P �M� are determined
as follows� for every machine instruction

l � cj �� cj �

 goto k

we have �Z
�
� IjkSkZ� pl� pk� and �Z

�
� IjkSkZ� ql� qk�� For every machine

instruction

l � if cj � � then goto k� else �cj �� cj �

 goto k��

we have

�Ij
�
� DkS� pl� pk��� �Z

�
� SkZ� pl� pk��� �Ij

�
� IjkS� pl� qk���

and

�Ij
�
� DkS� ql� qk��� �Z

�
� SkZ� ql� qk���

��

We observe that� for every reachable state �r� E�� exactly one occurrence of Z
appears in the expression E
 the constant Z only serves as an auxiliary symbol
which is used to model the �empty left�hand side� of rules� The number of I�
�I�� in E is meant to correspond to the current value of counter c� �c��� By
�the occurrences of� S we count the number of steps� and by D the number
of �decreasing steps��

Thus both �p�� Z� and �q�� Z� can simulate the computation of M �with
counters initialized to zero�� Nevertheless� also �cheating steps� �performing
a �zero step� instead of a decreasing one� are possible
 it re�ects the inability
of StExt�BPP� �more generally� Petri nets� to test for zero� Note that by �and
only by� a cheating step we can go from the �p�domain� to the �q�domain��

Now we shall re�ne the transitions mentioned so far� The idea is to view
the sequence of steps as a string of ��s �non�decreasing steps� and
�s �de�
creasing steps�� and to enable D to �count� the respective binary number�
We introduce an additional auxiliary constant C� and replace every transition
�E�

�
� E�� r�� r�� by the set

�E�
�
� E�� r�� r

��� �D
�
� CkC� r�� r��� �Z

�
� Z� r�� r����

�C
�
� D� r��� r���� �Z

�
� Z� r��� r��

where r�� r�� are newly added control states� It allows �though does not force� to
double the number ofD�s in each step �after adding
 in the case of a decreasing
step�� Now we add a control state h and the basic transition �Z

�
� DkZ� qn� h��

De�ning vec�E� as the ��dimensional vector giving the numbers of �occur�
rences of� I�� I�� C�D� S in E� we can easily derive �similarly as in 	
��� that
the set f vec�E� j �r such that �r� E� is reachable from �p�� Z� g is a subset of
f vec�E� j �r such that �r� E� is reachable from �q�� Z� g
 moreover� the two
sets are equal i�M does not halt�

To proceed with the construction of our desired P �M�� we now take a disjoint
union of the so far constructed StExt�BPP� system with its isomorphic dupli�
cate� For a control state r �or a process constant X�� we denote the respective
duplicate by r �or X��

We now introduce new control states s�� s�� s�
 moreover� the pairs �s� r��
�s� r��where s � fs�� s�� s�g and r is �old��will also serve as control states�
The process P �M� is de�ned as ��s�� q��� ZkZ� when we also include the fol�
lowing basic transitions �adding actions a� b� c�� for every �E

�
� E �� r� r�� we

add

�E
�
� E �� �s�� r�� �s�� r

���� �E
�
� E �� �s�� r�� �s�� r����

��

For every r� we add

�Z
�
� Z� �s�� r�� s��� �Z

�
� Z� �s�� r�� s���

We also add �Z
a
� Z� s�� �s�� p��� and �Z

b
� Z� s�� s��� Finally� for every X �

fI�� I�� C�D� Sg we add a new control state sX and

�X
c
� X� s�� s��� �X

c
� X� s�� s��� �X

�
� �� s�� sX��

�X
�
� �� sX� s��� �Z

c
� Z� sX� sX�

Checking that P �M� is weakly bisimilar to f i�M does not halt can be done
analogously to 	
��� �

� Conclusions� Future Work

We designed a general method for proving decidability of R�N �bisimilarity
between in�nite�state processes and �nite�state ones �Theorem
�� by reduc�
ing this problem to two other problems�the Step and the Reach problem
�Theorem
� and
��� We also showed how to encode these special problems
by formulae of EFR logic� In this way we constructed characteristic formu�
lae for �nite�state systems up to bisimulation in the logic EFC� As this logic
is decidable for PAD �and hence also PA and PDA� processes� we obtained
a general decidability theorem �Theorem
��� which says that every R�N �
bisimilarity such that R yields decomposable constrains on sequences of ac�
tions and N can be expressed by EFR formulae is decidable between PAD and
�nite�state processes� This class of R�N �bisimilarities includes all versions of
R�N �bisimulation equivalences mentioned in this paper� Examples are the re�
lations

KI

��
LT

��
MI

�� or
WD

� � but most importantly
ST

� and
WT

� �i�e�� strong and weak
bisimilarity��

Then we demonstrated that each �reasonable� R�N �bisimilarity is undecid�
able between StExt�PA� processes and �nite�state ones �Theorem ���
 this is
caused by the fact that StExt�PA� processes have full Turing power� Moreover�
even if we restrict our attention to StExt�BPP�� we get an undecidability result
for weak bisimilarity �Theorem ���� This proof is obtained by a modi�cation
of the one which has been used for Petri nets�

A complete summary of the results on decidability of bisimulation�like equiv�
alences with �nite�state processes is given in the table below� As we want
to clarify what results have been previously obtained by other researchers�
our table contains more rows than it is necessary �e�g�� the positive result for

��

PAD and
RN

�� where R and N have the above indicated properties� �covers� all
positive results for BPA� BPP� PA� and PDA��

We also add a special column which indicates decidability of the model�
checking problem for the logic EF� The decidability of EF for pushdown pro�
cesses �PDA� and BPA follows from a much stronger result by Muller and
Schupp 	��� who showed the decidability of monadic second order logic for
pushdown automata� Later� model checking PDA with EF was shown to be
in EXPTIME 	����� �see also Remark �
�� Model checking BPP with EF was
shown to be decidable by Esparza 	
�� and PSPACE �complete by Mayr 	�������
Decidability of EF for PA was shown by Mayr 	��� and later by Lugiez and
Schnoebelen 	
��� who used a completely di�erent method� The decidability for
PAD was shown in 	������� The undecidability of EF for Petri nets was shown
by Esparza in 	
��� The undecidability of EF for StExt�BPP� and StExt�PA�
follows directly from the undecidability results on bisimilarity in this paper�

ST

�

WT

�

RN

� EF

BPA Yes ��� YES YES Yes ������

BPP Yes ��� Yes ���� YES Yes �
	�������

PA Yes �
�� YES YES Yes ����
��

StExt�BPA�� i�e�� PDA Yes �
�� YES YES Yes ������

StExt�BPP�� i�e�� PPDA Yes �
�� NO NO NO

StExt�PA� No �
�� No �
�� No �
�� NO

PAD YES YES YES Yes ��	����

Petri nets Yes �
�� No �
�� No �
�� No �
	�

The results obtained in this paper are in boldface� Note that although model�
checking EF logic is undecidable for StExt�BPP� processes and Petri nets�
strong bisimilarity with �nite�state systems is decidable� The original proof in
	
�� in fact demonstrates decidability of the Reach problem �the Step problem
is trivially decidable�� hence our general strategy applies also in this case�

A unifying concept similar toR�N �bisimulation can also be used for simulation�
like equivalences�we can de�ne the R�N �simulation relation in the very same
way as R�N �bisimulation �which can be then seen as a special case of R�N �
simulation with the property that its inverse is also an R�N �simulation�� The
predicate N becomes more important in this context� as it allows to de�ne
some of the known and studied simulation�like equivalences �e�g�� the ready
simulation equivalence�� An interesting open problem is whether it is possible
to design a general strategy for deciding R�N �simulation equivalence between
in�nite�state and �nite�state processes in a similar way as for R�N �bisimilarity

��

�recently� the decidability#tractability border for strong simulation �i�e�� S�T �
simulation� with �nite�state systems has been established in 	
���� Another set
of open problems is the decidability of branching bisimilarity with �nite�state
processes�

References

�
� Proceedings of CONCUR���� volume

� of Lecture Notes in Computer

Science� Springer�
����

��� Proceedings of CONCUR���� volume
��� of Lecture Notes in Computer

Science� Springer�
��
�

��� J�C�M� Baeten� J�A� Bergstra� and J�W� Klop� Decidability of bisimulation
equivalence for processes generating context�free languages� Journal of the
Association for Computing Machinery� �	���������
����

��� J�C�M� Baeten and W�P� Weijland� Process Algebra� Number
� in Cambridge
Tracts in Theoretical Computer Science� Cambridge University Press�
��	�

��� A� Bouajjani� J� Esparza� and O� Maler� Reachability analysis of pushdown
automata� application to model checking� In Proceedings of CONCUR��� ����
pages
���
�	�

��� D� Caucal� On the regular structure of pre�x rewriting� Theoretical Computer
Science�
	���
����
����

�
� I� �Cern�a� M� K�ret��nsk�y� and A� Ku�cera� Comparing expressibility of normed
BPA and normed BPP processes� Acta Informatica� ��������������
����

��� S� Christensen� Y� Hirshfeld� and F� Moller� Bisimulation is decidable for all
basic parallel processes� In Proceedings of CONCUR���� volume

� of Lecture
Notes in Computer Science� pages
���
�
� Springer�
����

��� S� Christensen� H� H�uttel� and C� Stirling� Bisimulation equivalence is decidable
for all context�free processes� Information and Computation�
�
�
���
���
����

�
	� J� Esparza� Decidability of model checking for in�nite�state concurrent systems�
Acta Informatica� ������
	
�
��
�

�

� P� Jan�car� Decidability of a temporal logic problem for Petri nets� Theoretical
Computer Science�
��

����
��	�

�
�� P� Jan�car� Undecidability of bisimilarity for Petri nets and some related
problems� Theoretical Computer Science�
��������
��	
�
����

�
�� P� Jan�car and J� Esparza� Deciding �niteness of Petri nets up to bisimilarity� In
Proceedings of ICALP���� volume
	�� of Lecture Notes in Computer Science�
pages �
������ Springer�
����

��

�
�� P� Jan�car and A� Ku�cera� Bisimilarity of processes with �nite�state systems�
Electronic Notes in Theoretical Computer Science� ��
��
�

�
�� P� Jan�car and F� Moller� Checking regular properties of Petri nets� In
Proceedings of CONCUR���� volume ��� of Lecture Notes in Computer Science�
pages �������� Springer�
����

�
�� A� Ku�cera� On e�ective decomposability of sequential behaviours� Theoretical
Computer Science� To appear�

�

� A� Ku�cera and R� Mayr� Simulation preorder on simple process algebras� In
Proceedings of ICALP���� volume
��� of Lecture Notes in Computer Science�
pages �	���
�� Springer�
����

�
�� A� Ku�cera and R� Mayr� Weak bisimilarity with in�nite�state systems can be
decided in polynomial time� In Proceedings of CONCUR���� Lecture Notes in
Computer Science� Springer�
���� To appear�

�
�� D� Lugiez and Ph� Schnoebelen� The regular viewpoint on PA�processes�
In Proceedings of CONCUR���� volume
��� of Lecture Notes in Computer

Science� pages �	���� Springer�
����

��	� R� Mayr� Decidability of Model Checking with the Temporal Logic EF�
Theoretical Computer Science� To appear�

��
� R� Mayr� Process rewrite systems� Information and Computation� To appear�

���� R� Mayr� Weak bisimulation and model checking for basic parallel processes�
In Proceedings of FST�TCS���� volume

�	 of Lecture Notes in Computer

Science� pages ������ Springer�
����

���� R� Mayr� Model checking PA�processes� In Proceedings of CONCUR��� ����
pages ��������

���� R� Mayr� Decidability and Complexity of Model Checking Problems for In�nite�

State Systems� PhD thesis� TU�M�unchen�
����

���� R� Mayr� Strict lower bounds for model checking BPA� Electronic Notes in

Theoretical Computer Science�
��
����

���� R� Milner� Communication and Concurrency� Prentice�Hall�
����

��
� M�L� Minsky� Computation	 Finite and In�nite Machines� Prentice�Hall�
��
�

���� F� Moller� In�nite results� In Proceedings of CONCUR��� �
�� pages
����
��

���� D�E� Muller and P�E� Schupp� The theory of ends� pushdown automata� and
second order logic� Theoretical Computer Science� �
�
���
�
��
����

��	� D�M�R� Park� Concurrency and automata on in�nite sequences� In Proceedings

�th GI Conference� volume
	� of Lecture Notes in Computer Science� pages

�
�
��� Springer�
��
�

��
� W� Reisig� Petri Nets�An Introduction� Springer�
����

��

���� Ph� Schnoebelen� Decomposable regular languages and the shu�e operator�
EATCS Bulletin� �
��������� February
����

���� B� Ste�en and A� Ing�olfsd�ottir� Characteristic formulae for processes with
divergence� Information and Computation�

	�
��
���
���
����

���� C� Stirling� Decidability of bisimulation equivalence for normed pushdown
processes� Theoretical Computer Science�
���

��
�
�
����

���� R�J� van Glabbeek and W�P� Weijland� Branching time and abstraction in
bisimulation semantics� Journal of the Association for Computing Machinery�
�����������		�
����

���� I� Walukiewicz� Pushdown processes� games and model checking� In
International Conference on Computer Aided Veri�cation �CAV����� volume

	� of LNCS� Springer Verlag�
����

��

Weak Bisimilarity between Finite�State

Systems and BPA or Normed BPP is

Decidable in Polynomial Time

Anton��n Ku�cera a��� Richard Mayr b��

aFaculty of Informatics� Masaryk University� Botanick�a ��a� ����� Brno� Czech

Republic� E�mail� tony�fi�muni�cz

bLIAFA � Universit�e Denis Diderot � Case 	�
� � �� place Jussieu� F�	���
 Paris

Cedex ��� France� E�mail� mayr�liafa�jussieu�fr

Abstract

We prove that weak bisimilarity is decidable in polynomial time between �nite�state
systems and several classes of in�nite�state systems� context�free processes �BPA�
and normed Basic Parallel Processes �normed BPP�� To the best of our knowledge�
these are the �rst polynomial algorithms for weak bisimilarity problems involving
in�nite�state systems�

Key words� concurrency� in�nite�state systems� process algebras� veri�cation�
bisimulation

� Introduction

Recently� a lot of attention has been devoted to the study of decidability
and complexity of veri�cation problems for in�nite�state systems ���������	
We consider the problem of weak bisimilarity between certain in�nite�state
processes and �nite�state ones	 The motivation is that the intended behavior
of a process is often easy to specify
by a �nite�state system�� but a �real
 im�
plementation can contain components which are essentially in�nite�state
e	g	�
counters� bu�ers� recursion� creation of new parallel subprocesses�	 The aim is

� On leave at the Institute for Informatics� Technical University Munich� Supported
by the Alexander von Humboldt Foundation and by the Grant Agency of the Czech
Republic� grant No� ��	
��
�����
� Supported by DAAD Post�Doc grant D
�

�

���

Preprint submitted to Elsevier Preprint � December ����

to check if the �nite�state speci�cation and the in�nite�state implementation
are semantically equivalent� i	e	� weakly bisimilar	

We concentrate on the classes of in�nite�state processes de�nable by the syn�
tax of BPA
Basic Process Algebra� and normed BPP
Basic Parallel Pro�
cesses� systems	 BPA processes
also known as context�free processes� can be
seen as simple sequential programs
due to the binary operator of sequential
composition�	 They have recently been used to solve problems of data��ow
analysis in optimizing compilers ����	 BPP ��� model simple parallel systems

due to the binary operator of parallel composition�	 They are equivalent to
communication�free nets� the subclass of Petri nets ���� where every transition
has exactly one input�place ����	 A process is normed i� at every reachable
state it can terminate via a �nite sequence of computational steps	

Although the syntax of BPA and BPP allows to de�ne simple in�nite�state
systems� from the practical point of view it is also important that they can give
very compact de�nitions of �nite�state processes
i	e	� the size of a BPA�BPP
de�nition of a �nite�state process F can be exponentially smaller than the
number of states of F�see the next section�	 As our veri�cation algorithms
are polynomial in the size of the BPA�BPP de�nition� we can
potentially�
verify very large processes	 Thus� our results can be also seen as a way how
to overcome the well�known problem of state�space explosion	

The state of the art� Baeten� Bergstra� and Klop ��� proved that strong
bisimilarity ���� is decidable for normed BPA processes	 Simpler proofs have
been given later in �������� and there is even a polynomial�time algorithm
����	 The decidability result has later been extended to the class of all
not
necessarily normed� BPA processes in ����� but the best known algorithm is
doubly exponential ���	 Decidability of strong bisimilarity for BPP processes
has been established in ���� but the associated complexity analysis does not
yield an elementary upper bound
although some deeper examination might in
principle show that the algorithm is elementary�	 Strong bisimilarity of BPP
has been shown to be co�NP �hard in ����	 However� there is a polynomial�time
algorithm for the subclass of normed BPP ����	 Strong bisimilarity between
normed BPA and normed BPP is also decidable ���	 This result even holds
for parallel compositions of normed BPA and normed BPP processes ����	
Recently� this has even been generalized to the class of all normed PA�processes
����	

For weak bisimilarity� much less is known	 Semidecidability of weak bisimila�
rity for BPP has been shown in ����	 In ���� it is shown that weak bisimilarity is
decidable for those BPA and BPP processes which are �totally normed

a pro�
cess is totally normed if it can terminate at any moment via a �nite sequence
of computational steps� but at least one of those steps must be �visible
� i	e	�
non�internal�	 Decidability of weak bisimilarity for general BPA and BPP is

�

open� those problems might be decidable� but they are surely intractable
as�
suming P �� NP �	 Weak bisimilarity of
normed� BPA is PSPACE �hard ����	
An NP lower bound for weak bisimilarity of BPP has been shown by St�r��brn�a
in ����	 This result has been improved to �p

��hardness by Mayr ���� and very
recently to PSPACE �hardness by Srba in ����	 Moreover� the PSPACE lower
bound for weak bisimilarity of BPP in ���� holds even for normed BPP	

The situation is dramatically di�erent if we consider weak bisimilarity between
certain in�nite�state processes and �nite�state ones	 This study is motivated
by the fact that the intended behavior of a process is often easy to specify

by a �nite�state system�� but a �real
 implementation can contain compo�
nents which are in�nite�state
e	g	� counters� bu�ers� recursion� creation of
new parallel subprocesses�	 It has been shown in ���� that weak bisimilarity
between BPP and �nite�state processes is decidable	 A more general result
has recently been obtained in ����� where it is shown that many bisimulation�
like equivalences
including the strong and weak ones� are decidable between
PAD and �nite�state processes	 The class PAD ������� strictly subsumes not
only BPA and BPP� but also PA ��� and pushdown processes	 The result in
���� is obtained by a general reduction to the model�checking problem for the
simple branching�time temporal logic EF� which is decidable for PAD ����	
As the model�checking problem for EF is hard
for example� it is known to
be PSPACE �complete for BPP ���� and PSPACE �complete for BPA ���������
this does not yield an e�cient algorithm	

Our contribution� We show that weak
and hence also strong� bisimilarity
is decidable in polynomial time between BPA and �nite�state processes� and
between normed BPP and �nite�state processes	 To the best of our knowl�
edge� these are the �rst polynomial algorithms for weak bisimilarity with
in�nite�state systems	 Moreover� the algorithm for BPA is the �rst example
of an e�cient decision procedure for a class of unnormed in�nite�state sys�
tems
the polynomial algorithms for strong bisimilarity of ������� only work
for the normed subclasses of BPA and BPP� respectively�	 Due to the afore�
mentioned hardness results for the �symmetric case

when we compare two
BPA or two
normed� BPP processes� we know that our results cannot be
extended in this direction	 A recent work ���� shows that strong bisimilarity
between pushdown processes
a proper superclass of BPA� and �nite�state
ones is already PSPACE �hard	 Furthermore� weak bisimilarity remains com�
putationally intractable
DP �hard� even between processes of one�counter nets
and �nite�state processes ����
one�counter nets are computationally equiva�
lent to the subclass of Petri nets with at most one unbounded place and can
be thus also seen as very simple pushdown automata�	 Hence� our result for
BPA is rather tight	 The question whether the result for normed BPP can
be extended to the class of all
not necessarily normed� BPP processes is left
open	 It should also be noted that simulation equivalence with a �nite�state
process is co�NP �hard for BPA�BPP processes ����� EXPTIME �complete for

�

pushdown processes ����� but polynomial for one�counter nets ����	

The basic scheme of our constructions for BPA and normed BPP processes is
the same	 The main idea is that weak bisimilarity between BPA
or normed
BPP� processes and �nite�state ones can be generated from a �nite base of
�small
 size and that certain in�nite subsets of BPA and BPP state�space can
be �symbolically
 described by �nite automata and context�free grammars�
respectively	 A more detailed intuition is given in Section �	 An interesting
point about this construction is that it works although weak bisimulation is
not a congruence w	r	t	 sequential composition� but only a left congruence	
In Section �� we propose a natural re�nement of weak bisimilarity called
termination�sensitive bisimilarity which is a congruence and which is also
decidable between BPA and �nite�state processes in polynomial time	 The re�
sult demonstrates that the technique which has been used for weak bisimilarity
actually has a wider applicability�it can be adapted to many �bisimulation�
like
 equivalences	 Finally� we should note that our aim is just to show that the
mentioned problems are in P� although we do compute the degrees of bound�
ing polynomials explicitly� our analysis is quite simple and rough	 Moreover�
both presented algorithms could be easily improved by employing standard
techniques	 See the �nal section for further comments	

� De�nitions

We use process rewrite systems ���� as a formal model for processes	 Let Act �
fa� b� c� � � �g and Const � fX� Y� Z� � � �g be disjoint countably in�nite sets of
actions and process constants� respectively	 The class of process expressions E
is de�ned by

E ��� � j X j EkE j E�E

where X � Const and � is a special constant that denotes the empty expres�
sion	 Intuitively� ��
 is sequential composition and �k
 is parallel composition	
We do not distinguish between expressions related by structural congruence
which is given by the following laws� ��
 and �k
 are associative� �k
 is commu�
tative� and ��
 is a unit for ��
 and �k
	

A process rewrite system ���� is speci�ed by a �nite set of rules which have
the form E

a
� F � where E� F � E and a � Act 	 Const
 � and Act
 � denote

the sets of process constants and actions which are used in the rules of �
respectively
note that these sets are �nite�	 Each process rewrite system
de�nes a unique transition system where states are process expressions over
Const
 �� Act
 � is the set of labels� and transitions are determined by

�

and the following inference rules
remember that �k
 is commutative��

E
a
� F � �
E

a
� F

E
a
� E �

E�F
a
� E ��F

E
a
� E �

EkF
a
� E �kF

We extend the notation E
a
� F to elements of Act� in the standard way	 F is

reachable from E if E
w
� F for some w � Act�	

Sequential and parallel expressions are those process expressions which do not
contain the �k
 and the ��
 operator� respectively	 Finite�state� BPA� and BPP
systems are subclasses of process rewrite systems obtained by putting certain
restrictions on the form of the rules	 Finite�state� BPA� and BPP allow only
a single constant on the left�hand side of rules� and a single constant� sequen�
tial expression� and parallel expression on the right�hand side� respectively	
The set of states of a transition system which is generated by a �nite�state�
BPA� or BPP process is restricted to Const
 �� the set of all sequential ex�
pressions over Const
 �� or the set of all parallel expressions over Const
 ��
respectively	

Example � Let � fZ
z
� Z�Z

i
� I�Z� I

i
� I�I� I

d
� �g be a process

rewrite system� We see that is a BPA system� a part of the transition system
associated to which is reachable from Z looks as follows�

Ζ Ι.Ζ Ι.Ι.Ζ Ι.Ι.Ι.Ζ

z

i

d d

i i

d

If we replace each occurrence of the ��� operator with the �k� operator� we obtain
a BPP system which generates the following transition system �again� we only
draw the part reachable from Z��

Ζ Ζ || Ι Ζ || Ι || Ι Ζ || Ι || Ι || Ι

i

d d

i i

d

z z z z

A process is normed i� at every reachable state it can
successfully� terminate
via a �nite sequence of computational steps	 For a BPA or BPP process� this
is equivalent to the condition that for each constant X � Const
 � of its
underlying system there is some w � Act� such that X

w
� �	 We call such

constants X with this property normed	

The semantical equivalence we are interested in here is weak bisimilarity ����	
This relation distinguishes between �observable
 and �internal
 moves
compu�

�

tational steps�� the internal moves are modeled by a special action which is
denoted ��
 by convention	 In what follows we consider process expressions
over Const
 � where is some �xed process rewrite system	

De�nition � The extended transition relation �
a
�� is de�ned by E

a
� F i	

either E � F and a � � � or E
� i

� E � a
� E �� � j

� F for some i� j � N� �
E �� E �� � E�

A binary relation R over process expressions is a weak bisimulation i	 when

ever
E� F � � R then for each a � Act�

� if E
a
� E � then there is F

a
� F � such that
E �� F �� � R� and

� if F
a
� F � then there is E

a
� E � such that
E �� F �� � R�

Processes E� F are weakly bisimilar� written E � F � i	 there is a weak bisi

mulation relating them�

Weak bisimilarity can be approximated by the family of �i relations� which
are de�ned as follows�

� E �� F for every E� F
� E �i�� F i� E �i F and the following conditions hold�
� if E

a
� E � then there is F

a
� F � such that E � �i F

�

� if F
a
� F � then there is E

a
� E � such that E � �i F

�

It is worth noting that �i is not an equivalence for i � �� as it is not transitive	
It is possible to approximate weak bisimilarity in a di�erent way so that the
approximations are equivalences
see �����	 However� we do not need this for
our purposes	

Let ! be a �nite�state system with n states� f� g � Const
!�	 It is easy to
show that the problem whether f � g is decidable in O
n�� time	 First we
compute in O
n�� time the transitive closure of the transition system w	r	t	
the

�
� transitions and thus obtain a new system in which

a
� is the same as

a
� in the old system	 Then it su�ces to decide strong bisimilarity of f and
g in the new system	 This can be done in O
n� logn� time� using partition
re�nement techniques from ����	

Sometimes we also consider weak bisimilarity between processes of di	erent
process rewrite systems� say and !	 Formally� and ! can be considered
as a single system by taking their disjoint union	

�

� BPA Processes

In this section we prove that weak bisimilarity is decidable between BPA and
�nite�state processes in polynomial time	

Let E be a BPA process with the underlying system � F a �nite�state process
with the underlying system ! such that Const
 ��Const
!� � 		 We assume

w	l	o	g	� that E � Const
 �	 Moreover� we also assume that for all f� g �
Const
!�� a � Act such that f �� g or a �� � we have that f

a
� g implies

f
a
� g � !	 If those �

a
�
 transitions are missing in !� we can add them

safely	 Adding these transitions does not change the weak bisimilarity relation
among the states	 In order to do this it su�ces to compute
in cubic time�
the transitive closure of ! w	r	t	 the � transitions	 These extra transitions do
not in�uence our complexity estimations� as we always consider the worst case
when ! has all possible transitions	 The condition that a �� � is there because
we do not want to add new transitions of the form f

�
� f � because then

our proof for weak bisimilarity would not immediately work for termination�
sensitive bisimilarity
which is de�ned at the end of this section�	

We use upper�case letters X� Y� � � � to denote elements of Const
 �� and lower�
case letters f� g� � � � to denote elements of Const
!�	 Greek letters �� �� � � � are
used to denote elements of Const
 ��	 The size of is denoted by n� and the
size of ! by m
we measure the complexity of our algorithm in
n�m��	

The set Const
 � can be divided into two disjoint subsets of normed and
unnormed constants
remember that X � Const
 � is normed i� X

w
� �

for some w � Act��	 Note that it is decidable in O
n�� time if a constant is
normed	 The set of all normed constants of is denoted Normed
 �	 In our
constructions we also use processes of the form �f � they should be seen as
BPA processes with the underlying system
 !	

Intuition� Our proof can be divided into two parts� �rst we show that the
greatest weak bisimulation between processes of and ! is �nitely repre�
sentable	 There is a �nite relation B of size O
nm��
called bisimulation base�
such that each pair of weakly bisimilar processes can be generated from that
base
a technique �rst used by Caucal ����	 Then we show that the bisimulation
base can be computed in polynomial time	 To do that� we take a su�ciently
large relation G which surely subsumes the base and �re�ne
 it
this re�ne�
ment technique has been used in ��������	 The size of G is still O
nm��� and
each step of the re�nement procedure possibly deletes some of the elements
of G	 If nothing is deleted� we have found the base
hence we need at most
O
nm�� steps�	 The re�nement step is formally introduced in De�nition �
we
compute the expansion of the currently computed approximation of the base�	
Intuitively� a pair of processes belongs to the expansion i� for each

a
� move

of one component there is a
a
� move of the other component such that the

�

resulting pair of processes can be generated from the current approximation
of B	 We have to overcome two problems�

�	 The set of pairs which can be generated from B
and its approximations� is
in�nite	

�	 The set of states which are reachable from a given BPA state in one �
a
�

move is in�nite	

We employ a �symbolic
 technique to represent those in�nite sets
similar to
the one used in ����� taking advantage of the fact that they have a simple
reg�
ular� structure which can be encoded by �nite�state automata
see Theorem �
and ���	 This allows to compute the expansion in polynomial time	

De�nition � A relation K is well�formed i	 it is a subset of the relation G
de�ned by

G �

Normed
 � �Const
!��� Const
!��

Const
 �� Const
!��

Const
!�� Const
!��

f�g � Const
!��

Note that the size of any well
formed relation is O
nm�� and that G is the
greatest well
formed relation�

One of the well�formed relations is of special importance	

De�nition � The bisimulation base for and !� denoted B� is de�ned as
follows�

B� f
Y f� g� j Y f � g� Y � Normed
 �g

 f
X� g� j X � gg

 f
f� g� j f � gg

 f
�� g� j � � gg

As weak bisimilarity is a left congruence w	r	t	 sequential composition� we
can �generate
 from B new pairs of weakly bisimilar processes by substitution

it is worth noting that weak bisimilarity is not a right congruence w	r	t	
sequencing�to see this� it su�ces to de�ne X

�
� X� Y

�
� �� Z

a
� Z	 Now

X � Y � but XZ �� Y Z�	 This generation procedure can be de�ned for any
well�formed relation as follows�

De�nition � Let K be a well
formed relation� The closure of K� denoted

�

Cl
K�� is the least relation M which satis�es the following conditions�

��� K �M �
��� if
f� g� � K and
�� f� �M � then
�� g� �M �
�
� if
f� g� � K and
�h� f� �M � then
�h� g� �M �
��� if
Y f� g� � K and
�� f� �M � then
Y �� g� �M �
��� if
Y f� g� � K and
�h� f� �M � then
Y �h� g� �M �
��� if
�� g� �M and � contains an unnormed constant� then
��� g��
��h� g� �

M for every � � Const
 �� and h � Const
!��

Note that Cl
K� contains elements of just two forms "
�� g� and
�f� g�	
Clearly Cl
K� �

S
�

i��Cl
K�
i where Cl
K�� � K and Cl
K�i�� consists of

Cl
K�i and the pairs which can be immediately derived from Cl
K�i by the
rules �"� of De�nition �	

Although the closure of a well�formed relation can be in�nite� its structure is in
some sense regular	 This fact is precisely formulated in the following theorem�

Theorem � Let K be a well
formed relation� For each g � Const
!� there
is a �nite
state automaton Ag of size O
nm�� constructible in O
nm�� time
such that L
Ag� � f� j
�� g� � Cl
K�g
 f�f j
�f� g� � Cl
K�g�

PROOF� We construct a regular grammar of size O
nm�� which generates
the mentioned language	 Let Gg �
N�#� �� g� where

� N � ff j f � Const
!�g
 fUg
� # � Const
 �
 Const
!�
� � is de�ned as follows�
� for each
�� h� � K we add the rule h� �	
� for each
f� h� � K we add the rules h� f � h� f 	
� for each
Y f� h� � K we add the rules h� Y f� h� Y f 	
� for each
X� h� � K we add the rule h � X and if X is unnormed� then
we also add the rule h� XU 	

� for eachX � Const
 �� f � Const
!� we add the rules U � XU � U � X�
U � f 	

A proof that Gg indeed generates the mentioned language is routine	 Now we
translate Gg to Ag
see� e	g	� �����	 Note that the size of Ag is essentially the
same as the size of Gg� Ag is non�deterministic and can contain ��rules	

It follows immediately that for any well�formed relation K� the membership
problem for Cl
K� is decidable in polynomial time	 Another property of Cl
K�
is speci�ed in the lemma below	

�

Lemma 	 Let
�f� g� � Cl
K�� If
�h� f� � Cl
K�� then also
��h� g� �
Cl
K�� Similarly� if
�� f� � Cl
K�� then also
��� g� � Cl
K��

PROOF� We just give a proof for the �rst claim
the second one is similar�	
Let
�f� g� � Cl
K�i	 By induction on i	

� i � �	 Then
�f� g� � K and we can immediately apply the rule � or � of
De�nition �
remember that � can be ��	

� Induction step� Let
�f� g� � Cl
K�i��	 There are three possibilities
cf	
De�nition ��	
I	 There is r such that
�f� r� � Cl
K�i�
r� g� � K	 By induction hypothesis
we know
��h� r� � Cl
K�� hence
��h� g� � Cl
K� due to the rule � of
De�nition �	

II	 � � Y � and there is r such that
Y r� g� � K�
�f� r� � Cl
K�i	 By induc�
tion hypothesis we have
��h� r� � Cl
K�� and hence also
Y ��h� r� �
Cl
K� by the rule � of De�nition �	

III	 � � �� where
�� g� � Cl
K�i and � contains an unnormed constant	
Then
���h� g� � Cl
K� by the last rule of De�nition �	

The importance of the bisimulation base is clari�ed by the following theorem	
It says that Cl
B� subsumes the greatest weak bisimulation between processes
of and !	

Theorem
 For all �� f� g we have � � g i	
�� g� � Cl
B�� and �f � g i	

�f� g� � Cl
B��

PROOF� The �if
 part is obvious in both cases� as B contains only weakly
bisimilar pairs and all the rules of De�nition � produce pairs which are again
weakly bisimilar	 The �only if
 part can� in both cases� be easily proved by
induction on the length of �
we just show the �rst proof� the second one is
similar�	

� � � �	 Then
�� g� � B� hence
�� g� � Cl
B�	
� � � Y �	 If Y is unnormed� then Y � g and
Y� g� � B	 By the rule �
of De�nition � we obtain
Y �� g� � Cl
B�	 If Y is normed� then Y �

w
� �

for some w � Act � and g must be able to match the sequence w by some
g

w
� g� such that � � g�	 By substitution we now obtain that Y g� � g	

Clearly
Y g�� g� � B� and
�� g�� � Cl
B� by induction hypothesis	 Hence

�� g� � Cl
B� due to the rule � of De�nition �	

The next de�nition formalizes one step of the �re�nement procedure
 which
is applied to G to compute B	 The intuition is that we start with G as an

��

approximation to B	 In each re�nement step some pairs are deleted from the
current approximation	 If in a re�nement step no pairs are deleted any more
then we have found B	 The next de�nition speci�es the condition on which
a given pair is not deleted in a re�nement step from the currently computed
approximation of B	

De�nition � Let K be a well
formed relation� We say that a pair
X� g� of
K expands in K i	 the following two conditions hold�

� for each X
a
� � there is some g

a
� g� such that
�� g�� � Cl
K�

� for each g
a
� g� there is some X

a
� � such that
�� g�� � Cl
K�

The expansion of a pair of the form
Y f� g��
f� g��
�� g� in K is de�ned in the
same way�for each �

a
�� move of the left component there must be some �

a
��

move of the right component such that the resulting pair of processes belongs
to Cl
K�� and vice versa �note that �

�
� ��� The set of all pairs of K which

expand in K is denoted by Exp
K��

The notion of expansion is in some sense �compatible
 with the de�nition of
weak bisimulation	 This intuition is formalized in the following lemma	

Lemma �� Let K be a well
formed relation such that Exp
K� � K� Then
Cl
K� is a weak bisimulation�

PROOF� We prove that every pair
�� g��
�f� g� of Cl
K�i has the property
that for each �

a
�
 move of one component there is a �

a
�
 move of the other

component such that the resulting pair of processes belongs to Cl
K�
we
consider just pairs of the form
�f� g�� the other case is similar�	 By induction
on i	

� i � �	 Then
�f� g� � K� as K � Exp
K�� the claim follows directly from
the de�nitions	

� Induction step� Let
�f� g� � Cl
K�i��	 There are three possibilities�
I	 There is an h such that
�f� h� � Cl
K�i�
h� g� � K	

Let �f
a
� �f
note that � can be empty� in this case we have to

consider moves of the form f
a
� f �	 It is done in a similar way as below�	

As
�f� h� � Cl
K�i� we can use the induction hypothesis and conclude
that there is h

a
� h� such that
�f� h�� � Cl
K�	 We distinguish two cases�

�� a � � and h� � h	 Then
�f� h� � Cl
K� and as
h� g� � K� we obtain

�f� g� � Cl
K� due to Lemma �	 Hence g can use the move g

�
� g	

�� a �� � or h �� h�	 Then there is a transition h
a
� h�
see the beginning

of this section� and as
h� g� � K� by induction hypothesis we know that
there is some g

a
� g� such that
h�� g�� � Cl
K�	 Hence�
�f� g�� � Cl
K�

due to Lemma �	
Now let g

a
� g�	 As
h� g� � K� there is h

a
� h� such that
h�� g�� �

��

Cl
K�	 We distinguish two possibilities again�
�� a � � and h� � h	 Then �f can use the move �f

�
� �f � we have

h� g�� � Cl
K� and
�f� h� � Cl
K�� hence also
�f� g�� � Cl
K�	
�� a �� � or h �� h�	 Then h

a
� h� and as
�f� h� � Cl
K�i� there is �f

a
� �f

or �f
a
� f �� it is handled in the same way� such that
�f� h�� � Cl
K�	

Hence also
�f� g�� � Cl
K� by Lemma �	
II	 � � Y � and there is h such that
Y h� g� � K�
�f� h� � Cl
K�i	

Let Y �f
a
� ��f 	 As
Y h� g� � K� we can use induction hypothesis and

conclude that there is g
a
� g� such that
�h� g�� � Cl
K�	 As
�f� h� �

Cl
K�� we obtain
��f� g�� � Cl
K� by Lemma �	
Let g

a
� g�	 As
Y h� g� � K� by induction hypothesis we know that Y h

can match the move g
a
� g�� there are two possibilities�

�� Y h
a
� �h such that
�h� g�� � Cl
K�	 Then also Y �f

a
� ��f 	 As

�f� h� � Cl
K�� we immediately have
��f� g�� � Cl
K� as required	

�� Y h
a
� h� such that
h�� g�� � Cl
K�	 The transition Y h

a
� h� can be

�decomposed
 into Y h
x
� h� h

y
� h� where x � a
 y � � or x � �
 y � a	

If y � � and h� � h� we are done immediately because then Y �
a
� �

and as
h� g���
�� h� � Cl
K�� we also have
�� g�� � Cl
K� as needed	

If y �� � or h� �� h� there is a transition h
y
� h�	 As
�f� h� � Cl
K�i�

due to induction hypothesis we know that there is some �f
y
� �f
or

�f
y
� f �� this is handled in the same way� with
�f� h�� � Cl
K�	 Clearly

Y �f
a
� �f 	 As
h�� g���
�f� h�� � Cl
K�� we also have
�f� g�� � Cl
K�	

III	 � � �� where � contains an unnormed constant and
�� g� � Cl
K�i	
Let �

a
� ��	 Then �� � �� and �

a
� �	 As
�� g� � Cl
K�i� there is

g
a
� g� such that
�� g�� � Cl
K� due to the induction hypothesis	 Clearly

� contains an unnormed constant� hence
��� g�� � Cl
K� by the last rule
of De�nition �	
Let g

a
� g�	 As
�� g� � Cl
K�i� there is �

a
� � such that
�� g�� � Cl
K�

and � contains an unnormed constant	 Hence �
a
� �� and
��� g�� � Cl
K�

due to the last rule of De�nition �	

The notion of expansion allows to approximate B in the following way� B� � G�
Bi�� � Exp
Bi�	

Theorem �� There is a j � N� bounded by O
nm��� such that Bj � Bj���
Moreover� Bj � B�

PROOF� Exp
viewed as a function on the complete lattice of well�formed
relations� is monotonic� hence the greatest �xed�point exists and must be
reached afterO
nm�� steps� as the size of G isO
nm��	 We prove that Bj � B	

���
 First� let us realize that B � Exp
B�
it follows immediately from De��
nition �� De�nition �� and Theorem ��	 The inclusion B � Bj can be proved

��

by a simple inductive argument� clearly B � B�� and if B � Bi� we also have
B � Bi�� by de�nition of the expansion and the fact B � Exp
B�	

���
 As Exp
Bj� � Bj� we know that Cl
Bj� is a weak bisimulation due to
Lemma ��	 Thus� processes of every pair in Bj are weakly bisimilar	

In other words� B can be obtained from G in O
nm�� re�nement steps which
correspond to the construction of the expansion	 The only thing which remains
to be shown is that Exp
K� is e�ectively constructible in polynomial time	 To
do that� we employ a �symbolic
 technique which allows to represent in�nite
subsets of BPA state�space in an elegant and succinct way	

Theorem �� For all X � Const
 �� a � Act
 � there is a �nite
state au

tomaton A�X�a� of size O
n�� constructible in O
n�� time such that L
A�X�a�� �

f� j X
a
� �g

PROOF� We de�ne a left�linear grammar G�X�a� of size O
n�� which gen�
erates the mentioned language	 This grammar can be converted to A�X�a�

by a standard algorithm known from automata theory
see� e	g	� �����	 Note
that the size of A�X�a� is essentially the same as the size of G�X�a�	 First� let
us realize that we can compute in O
n�� time the sets M� and Ma consist�
ing of all Y � Const
 � such that Y

�
� � and Y

a
� �� respectively	 Let

G�X�a� �
N�#� �� S� where

� N � fY a� Y � j Y � Const
 �g
 fSg	 Intuitively� the index indicates
whether the action �a
 has already been emitted	

� # � Const
 �
� � is de�ned as follows�
� We add the production S � Xa to �� and if X

a
� � then we also add the

production S � �	
� For every transition Y

a
� Z� � � �Zk of and every i such that � � i � k

we test whether Zj
�
� � for every � � j � i	 If this is the case� we add to

� the productions

Y a � ZiZi�� � � �Zk and Y
a � Z�

i Zi�� � � �Zk

� For every transition Y
�
� Z� � � �Zk of and every i such that � � i � k

we do the following�
We test whether Zj

�
� � for every � � j � i	 If this is the case� we

add to � the productions

Y a � Za
i Zi�� � � �Zk� Y

� � Z�
i Zi�� � � �Zk and Y

� � ZiZi�� � � �Zk

We test whether there is a t � i such that Zt
a
� � and Zj

�
� � for

every � � j � i� j �� t	 If this is the case� we add to � the productions

Y a � Z�
i Zi�� � � �Zk and Y

a � ZiZi�� � � �Zk

The fact that G�X�a� generates the mentioned language is intuitively clear and

��

a formal proof of that is easy	 The size of G�X�a� is O
n
��� as contains O
n�

basic transitions of length O
n�	

The crucial part of our algorithm
the �re�nement step
� is presented in the
proof of the next theorem	 Our complexity analysis is based on the following
facts� Let A �
Q�#� �� q�� F � be a non�deterministic automaton with ��rules�
and let t be the total number of states and transitions of A	

� The problem whether a given w � #� belongs to L
A� is decidable in
O
jwj � t� time	

� The problem whether L
A� � 	 is decidable in O
t� time	

Theorem �� Let K be a well
formed relation� The relation Exp
K� can be
e	ectively constructed in O
n�m	� time�

PROOF� First we construct the automata Ag of Theorem � for every g �
Const
!�	 This takes O
nm�� time	 Then we construct the automataA�X�a� of
Theorem �� for allX� a	 This takes O
n�� time	 Furthermore� we also compute
the set of all pairs of the form
f� g��
�� g� which belong to Cl
K�	 It can be
done in O
m�� time	 Now we show that for each pair of K we can decide in
O
n�m�� time whether this pair expands in K	

The pairs of the form
f� g� and
�� g� are easy to handle� there are at most m
states f � such that f

a
� f �� and at mostm states g� with g

a
� g�� hence we need

to check only O
m�� pairs to verify the �rst
and consequently also the second�
condition of De�nition �	 Each such pair can be checked in constant time�
because the set of all pairs
f� g��
�� g� which belong to Cl
K� has already
been computed at the beginning	

Now let us consider a pair of the form
Y� g�	 First we need to verify that for
each Y

a
� � there is some g

a
� h such that
�� h� � Cl
K�	 This requires

O
nm� tests whether � � L
Ah�	 As the length of � is O
n� and the size
of Ah is O
nm��� each such test can be done in O
n�m�� time� hence we
need O
n�m�� time in total	 As for the second condition of De�nition ��
we need to �nd out whether for each g

a
� h there is some X

a
� � such that

�� h� � Cl
K�	 To do that� we simply test the emptiness of L
A�X�a���L
Ah�	
The size of the product automaton is O
n�m�� and we need to perform only
O
m� such tests� hence O
n�m�� time su�ces	

Pairs of the form
Y f� g� are handled in a similar way� the �rst condition of
De�nition � is again no problem� as we are interested only in the �

a
�
 moves

of the left component	 Now let g
a
� g�	 An existence of a �good

a
� move of

��

Y f can be veri�ed by testing whether one of the following conditions holds�

� L
A�Y�a�� � ffg � L
Ag�� is nonempty	

� Y
a
� � and there is some f

�
� f � such that
f �� g�� � Cl
K�	

� Y
�
� � and there is some f

a
� f � such that
f �� g�� � Cl
K�	

All those conditions can be checked in O
n�m�� time
the required analysis
has been in fact done above�	 As K contains O
nm�� pairs� the total time
which is needed to compute Exp
K� is O
n�m	�	

As the BPA process E
introduced at the beginning of this section� is an
element of Const
 �� we have that E � F i�
E� F � � B	 To compute B�
we have to perform the computation of the expansion O
nm�� times
see
Theorem ���	 This gives us the following main theorem�

Theorem �� Weak bisimilarity is decidable between BPA and �nite
state
processes in O
n	m
� time�

� Termination
Sensitive Bisimilarity

As we already mentioned in the previous section� weak bisimilarity is not a
congruence w	r	t	 sequential composition	 This is a major drawback� as any
equivalence which is to be considered as �behavioral
 should have this prop�
erty	 We propose a solution to this problem by designing a natural re�nement
of weak bisimilarity called termination
sensitive bisimilarity	 This relation re�
spects some of the main features of sequencing which are �overlooked
 by weak
bisimilarity� consequently� it is a congruence w	r	t	 sequential composition	 We
also show that termination�sensitive bisimilarity is decidable between BPA and
�nite�state processes in polynomial time by adapting the method of the pre�
vious section	 It should be noted right at the beginning that we do not aim
to design any new �fundamental
 notion of the theory of sequential processes

that is why the properties of termination�sensitive bisimilarity are not stud�
ied in detail�	 We just want to demonstrate that our method is applicable to a
larger class of bisimulation�like equivalences and the relation of termination�
sensitive bisimilarity provides a
hopefully� convincing evidence that some of
them might be interesting and useful	

In our opinion� any �reasonable
 model of sequential behaviors should be able
to express
and distinguish� the following �basic phenomena
 of sequencing�

� successful termination of the process which is currently being executed	 The
system can then continue to execute the next process in the queue�

��

� unsuccessful termination of the executed process
deadlock�	 This models a
severe error which causes the whole system to �get stuck
�

� entering an in�nite internal loop
cycling�	

The di�erence between successful and unsuccessful termination is certainly
signi�cant	 The need to distinguish between termination and cycling has also
been recognized in practice� major examples come� e	g	� from the theory of
operating systems	

BPA processes are a very natural model of recursive sequential behaviors	
Successful termination is modeled by reaching ��
	 There is also a �hidden

syntactical tool to model deadlock�note that by the de�nition of BPA systems
there can be an X � Const
 � such that does not contain any rule of the
form X

a
� �
let us call such constants unde�ned�	 A state X� models the

situation when the executed process reaches a deadlock�there is no transition

no computational step� from X�� the process is �stuck
	 It is easy to see that
we can safely assume that contains at most one unde�ned constant
the
other ones can be simply renamed to X�� which is denoted � by convention
���	 Note that � is unnormed by de�nition	 States of the form �� are called
deadlocked	

In the case of �nite�state systems� we can distinguish between successful and
unsuccessful termination in a similar way	 Deadlock is modeled by a distin�
guished unde�ned constant �� and the other unde�ned constants model suc�
cessful termination	

Note that � � � by de�nition of weak bisimilarity	 As ��
 represents a successful
termination� this is de�nitely not what we want	 Before we de�ne the promised
relation of termination�sensitive bisimilarity� we need to clarify what is meant
by cycling� intuitively� it is the situation when a process enters an in�nite
internal loop	 In other words� it can do ��
 forever without a possibility to do
anything else or to terminate
either successfully or unsuccessfully�	

De�nition �� The set of initial actions of a process E� denoted I
E�� is
de�ned by I
E� � fa � Act j E

a
� F for some Fg� A process E is cycling i	

every state F which is reachable from E satis�es I
F � � f�g�

Note that it is easily decidable in quadratic time whether a given BPA process
is cycling� in the case of �nite�state systems we only need linear time	

De�nition �� We say that an expression E is normal i	 E is not cycling�
deadlocked� or successfully terminated�

A binary relation R over process expressions is a termination�sensitive bisi�

��

mulation i	 whenever
E� F � � R then the following conditions hold�

� if one of the expressions E� F is cycling then the other is also cycling�
� if one of the expressions E� F is deadlocked then the other is either normal
or it is also deadlocked�

� if one of the expressions E� F is successfully terminated then the other is
either normal or it is also successfully terminated�

� if E
a
� E � then there is F

a
� F � such that
E �� F �� � R�

� if F
a
� F � then there is E

a
� E � such that
E �� F �� � R�

Processes E� F are termination�sensitive bisimilar� written E � F � i	 there is
a termination
sensitive bisimulation relating them�

Termination�sensitive bisimilarity seems to be a natural re�nement of weak
bisimilarity which better captures an intuitive understanding of �sameness
 of
sequential processes	 It distinguishes among the phenomena mentioned at the
beginning of this section� but it still allows to ignore internal computational
steps to a large extent	 For example� a deadlocked process is still equivalent to
a process which is not deadlocked yet but which necessarily deadlocks after a
�nite number of � transitions
this example also explains why the �rst three
conditions of De�nition �� are stated so carefully�	

The family of �i approximations is de�ned in the same way as in case of weak
bisimilarity� the only di�erence is that�� relates exactly those processes which
satisfy the �rst three conditions of De�nition ��	 The following theorem follows
immediately from this de�nition	

Theorem �	 Termination
sensitive bisimilarity is a congruence w�r�t� se

quential composition�

The technique which has been used in the previous section also works for
termination�sensitive bisimilarity	

Theorem �
 Termination
sensitive bisimilarity is decidable between BPA and
�nite
state processes in O
n	m
� time�

PROOF� First� all assumptions about and ! which were mentioned at the
beginning of Section � are also safe w	r	t	 termination�sensitive bisimilarity�
note that it would not be true if we also assumed the existence of a � �loop
f

�
� f for every f � Const
!�	 Now we see why the assumptions about !

are formulated so carefully	 The only thing which has to be modi�ed is the
notion of well�formed relation� it is de�ned in the same way� but in addition
we require that processes of every pair which is contained in a well�formed
relation K are related by ��	 It can be easily shown that processes of pairs
contained in Cl
K� are then also related by ��	 In other words� we do not

��

have to take care about the �rst two requirements of De�nition �� in our
constructions anymore� everything works without a single change	

The previous proof indicates that the �method
 of Section � can be adapted to
other bisimulation�like equivalences	 See the �nal section for further comments	

� Normed BPP Processes

In this section we prove that weak bisimilarity is decidable in polynomial time
between normed BPP and �nite�state processes	 The basic structure of our
proof is similar to the one for BPA	 The key is that the weak bisimulation
problem can be decomposed into problems about the single constants and
their interaction with each other	 In particular� a normed BPP process is
�nite w	r	t	 weak bisimilarity i� every single reachable process constant is
�nite w	r	t	 weak bisimilarity	 This does not hold for general BPP and thus
our construction does not carry over to general BPP	

Example �� Consider the unnormed BPP that is de�ned by the following
rules�

Xi

ai��
�� XikYi� Yi

ai�� � for � � i � n� �

Xn
a��� XnkYn� Yn

an�� �

Then the process X�kX�k � � � kXn is �nite w�r�t� bisimilarity� but every subpro

cess �e�g� X�kX�kX
 or every single constant Xi� is in�nite w�r�t� bisimilarity�

Even for normed BPP� we have to solve some additional problems	 The bisi�
mulation base and its closure are simpler due to the normedness assumption�
but the �symbolic
 representation of BPP state�space is more problematic
see
below�	 The set of states which are reachable from a given BPP state in one
�
a
�
 move is no longer regular� but it can be in some sense represented by
a CF�grammar	 In our algorithm we use the facts that emptiness of a CF
language is decidable in polynomial time� and that CF languages are closed
under intersection with regular languages	

Let E be a BPP process and F a �nite�state process with the underlying
systems and !� respectively	 We can assume w	l	o	g	 that E � Const
 �	
Elements of Const
 � are denoted by X� Y� Z� � � �� elements of Const
!� by
f� g� h� � � � The set of all parallel expressions over Const
 � is denoted by
Const
 �� and its elements by Greek letters �� �� � � � The size of is denoted
by n� and the size of ! by m	

��

In our constructions we represent certain subsets of Const
 �� by �nite au�
tomata and CF grammars	 The problem is that elements of Const
 �� are
considered modulo commutativity� however� �nite automata and CF gram�
mars of course distinguish between di�erent �permutations
 of the same word	
As the classes of regular and CF languages are not closed under permutation�
this problem is important	 As we want to clarify the distinction between �

and its possible �linear representations
� we de�ne for each � the set Lin
��
as follows�

Lin
X�k � � � kXk� � fXp��� � � �Xp�k� j p is a permutation of the set f�� � � � � kgg

For example� Lin
XkY kZ� � fXY Z� XZY� Y XZ� Y ZX� ZXY� ZY Xg	 We
also assume that each Lin
�� contains some
unique� element called canonical
form of Lin
��	 It is not important how the canonical form is chosen� we need
it just to make some constructions deterministic
for example� we can �x some
linear order on process constants and let the canonical form of Lin
�� be the
sorted order of constants of ��	

De�nition �� A relation K is well�formed i	 it is a subset of G �
Const
 �

f�g� � Const
!�� The bisimulation base for and !� denoted B� is de�ned
as follows�

B� f
X� f� j X � fg
 f
�� f� j � � fg

De�nition �� Let K be a well
formed relation� The closure of K� denoted
Cl
K�� is the least relation M which satis�es

��� K �M �
��� if
X� g� � K�
�� h� �M � and f � gkh� then
�kX� f� � M �
�
� if
�� g� � K�
�� h� �M � and f � gkh� then
�� f� �M �

The family of Cl
K�i approximations is de�ned in the same way as in Section �	

Lemma �� Let
�� f� � Cl
K��
�� g� � Cl
K�� fkg � h� Then
�k�� h� �
Cl
K��

PROOF� Let
�� f� � Cl
K�i	 By induction on i	

� i � �	 Then
�� f� � K and we can immediately apply the rule � or � of
De�nition ��	

� Induction step� Let
�� f� � Cl
K�i��	 There are two possibilities	
I	 � � Xk� and there are r� s such that
X� r� � K�
�� s� � Cl
K�i� and
rks � f 	 Clearly rkskg � h� hence also skg � t for some t	 By induction

��

hypothesis we have
�k�� t� � Cl
K�	 Now
Xk�k�� h� � Cl
K� due to
the second rule of De�nition ��
note that rkt � h�	

II	
�� r� � Cl
K�i and there is some s such that
�� s� � K and rks � f 	
As rkskg � h� there is some t such that rkg � t	 By induction hypothesis
we obtain
�k�� t� � Cl
K�� and hence
�k�� h� � Cl
K� due to the third
rule of De�nition ��	

Again� the closure of the bisimulation base is the greatest weak bisimulation
between processes of and !	

Theorem �� Let � � Const
 ��� f � Const
!�� We have that � � f i	

�� f� � Cl
B��

PROOF� The �if
 part is obvious	 The �only if
 part can be proved by induc�
tion on length
��	

� � � �	 Then
�� f� � B	
� � � Xk�	 As is normed and Xk� � f � there are w� v � Act� such that
Xk�

w
� �� Xk�

v
� X	 The process f must be able to match the sequences

w� v by entering weakly bisimilar states�there are g� h � Const
 � such
that � � g� X � h� and consequently also f � gkh
here we need the fact
that weak bisimilarity is a congruence w	r	t	 the parallel operator�	 Clearly

X� h� � B and
�� g� � Cl
B� by induction hypothesis� hence
Xk�� f� �
Cl
B� by De�nition ��	

The closure of any well�formed relation can in some sense be represented by
a �nite�state automaton� as stated in the next theorem	 For this construction
we �rst need to compute the set f
fkg� h� j fkg � hg	 We consider the parallel
composition of the �nite�state system with itself� i	e	� the states of this system
are of the form fkg	 Let our new system be the union of this system with the
old system	 The new system has size O
m�� and its states are of the form fkg
or h	 Then we apply the usual cubic�time partition re�nement algorithm to
decide bisimilarity on the new system
see Section ��	 This gives us the set
f
fkg� h� j fkg � hg in O
m�� time	

Theorem �� Let K be a well
formed relation� For each g � Const
!� there
is a �nite
state automaton Ag of size O
nm� constructible in O
nm� time
such that the following conditions hold�

� whenever Ag accepts an element of Lin
��� then
�� g� � Cl
K�
� if
�� g� � Cl
K�� then Ag accepts at least one element of Lin
��

��

PROOF� We design a regular grammar of size O
nm� such that L
Gg� has
the mentioned properties	 Let Gg �
N�#� �� S� where

� N � Const
!�
 fSg
� # � Const
 �
� � is de�ned as follows�
� for each
X� f� � K we add the rule S � Xf 	
� for each
�� f� � K we add the rule S � f 	
� for all f� r� s � Const
!�� X � Const
 � such that
X� r� � K� f � rks
we add the rule s� Xf 	

� for all f� r� s � Const
!� such that
�� r� � K� f � rks we add the rule
s� f 	

� we add the rule g � �	

The �rst claim follows from an observation that whenever we have � � Lin
��
such that �f is a sentence of Gg� then
�� f� � Cl
K�	 This can be easily
proved by induction on the length of the derivation of �f 	 For the second
part� it su�ces to prove that if
�� f� � Cl
K�i� then there is � � Lin
�� such
that �f is a sentence of Gg	 It can be done by a straightforward induction on
i	

It is important to realize that if
�� g� � Cl
K�� then Ag does not necessarily
accept all elements of Lin
��	 For example� if K � f
X� f��
Y� r��
Z� h�g�
Const
!� � ff� g� h� r� sg with fkr � s� skh � g� and fkh �� p for any p �
Const
!�� thenAg accepts the stringXY Z but not the stringXZY 	 Generally�
Ag cannot be �repaired
 to do so
see the beginning of this section�� however�
there is actually no need for such �repairs
� because Ag has the following nice
property�

Lemma �� Let K be a well
formed relation such that B � K� If � � g� then
the automaton Ag of �the proof of� Theorem �� constructed for K accepts all
elements of Lin
���

PROOF� Let Gg be the grammar of the previous proof	 First we prove that
for all s� r� f � Const
!�� � � Const
 �� such that � � r� skr � f there is a
derivation s�� �f in Gg for every � � Lin
��	 By induction on length
��	

� � � �	 As � � r� the pair
�� r� belongs to B	 Hence s� f by de�nition of
Gg	

� Let length
�� � i $ � and let X� � Lin
��	 Then � is of the form Xk�
where � � Lin
��	 As Xk� � r and is normed� there are u� v � Const
!�
such that X � u� � � v� and ukv � r	 Hence we also have skukv � f � thus
sku � t for some t � Const
!�	 As X � u� the pair
X� u� belongs to B	

��

Clearly s� Xt by de�nition of Gg	 As � � v and vkt � f � we can use the
induction hypothesis and conclude t�� �f 	 Hence s�� X�f as required	

Now let � � g	 As is normed� there is some r � Const
!� such that � � r	
Hence
�� r� � B and S � r by de�nition of Gg	 Clearly rkg � g and due to
the above proved property we have r �� �g for every � � Lin
��	 As g � �

is a rule of Gg� we obtain S � r �� �g � �	

The set of states which are reachable from a given X � Const
 � in one �
a
�

move is no longer regular� but it can� in some sense� be represented by a CF
grammar	

Theorem �� For all X � Const
 �� a � Act
 � there is a context
free gram

mar G�X�a� in

GNF �Greibach normal form� i�e�� with at most � variables at
the right hand side of every production� of size O
n�� constructible in O
n��
time such that the following two conditions hold�

� if G�X�a� generates an element of Lin
��� then X
a
� �

� if X
a
� �� then G�X�a� generates at least one element of Lin
��

PROOF� Let G�X�a� �
N�#� �� X
a� where

� N � fY a� Y � j Y � Const
 �g
 fSg
� # � Const
 �
� � is de�ned as follows�
� the rule S � Xa is added to �	
� for each transition Y

a
� Z�k � � � kZk of we add the rule

Y a � Z�
� � � �Z

�
k

if k � �� we add the rule Y a � ��	
� for each transition Y

�
� Z�k � � � kZk of we add the rule

Y � � Z�
� � � �Z

�
k

if k � �� we add Y � � ��	 Moreover� if k � � then for each � � i � k we
also add the rule

Y a � Z�
� � � �Z

a
i � � �Z

�
k

� for each Y � Const
 � we add the rule

Y � � Y 	

The fact that G�X�a� satis�es the above mentioned conditions follows directly
from its construction	 Note that the size of G�X�a� isO
n�� at the moment	 Now
we transform G�X�a� to ��GNF by a standard procedure of automata theory

see �����	 It can be done in O
n�� time and the size of resulting grammar is
O
n��	

��

The notion of expansion is de�ned in a di�erent way
when compared to the
one of the previous section�	

De�nition �	 Let K be a well
formed relation� We say that a pair
X� f� �
K expands in K i	 the following two conditions hold�

� for each X
a
� � there is some f

a
� g such that � � L
Ag�� where � is the

canonical form of Lin
���
� for each f

a
� g the language L
Ag� � L
G�X�a�� is non
empty�

A pair
�� f� � K expands in K i	 f
a
� g implies a � � � and for each f

�
� g

we have that � � L
Ag�� The set of all pairs of K which expand in K is denoted
by Exp
K��

Theorem �
 Let K be a well
formed relation� The set Exp
K� can be com

puted in O
n��m�� time�

PROOF� First we compute the automata Ag of Theorem �� for all g �
Const
!�	 This takes O
nm�� time	 Then we compute the grammars G�X�a�

of Theorem �� for all X � Const
 �� a � Act 	 This takes O
n�� time	 Now
we show that it is decidable in O
n��m
� time whether a pair
X� f� of K
expands in K	

The �rst condition of De�nition �� can be checked in O
n�m�� time� as there
are O
n� transitions X

a
� �� O
m� states g such that f

a
� g� and for each

such pair
�� g� we verify whether � � L
Ag� where � is the canonical form
of Lin
��� this membership test can be done in O
n�m� time� as the size of
� is O
n� and the size of Ag is O
nm�	

The second condition of De�nition �� is more expensive	 To test the emptiness
of L
Ag� � L
G�X�a��� we �rst construct a pushdown automaton P which rec�
ognizes this language	 P has O
m� control states and its total size is O
n	m�	
Furthermore� each rule pX

a
� q� of P has the property that length
�� � ��

because G�X�a� is in ��GNF	 Now we transform this automaton to an equivalent
CF grammar by a well�known procedure described� e	g	� in ����	 The size of
the resulting grammar is O
n	m��� and its emptiness can be thus checked in
O
n��m�� time
cf	 �����	 This construction has to be performed O
m� times�
hence we need O
n��m
� time in total	

Pairs of the form
�� f� are handled in a similar
but less expensive� way	 As
K contains O
nm� pairs� the computation of Exp
K� takes O
n��m�� time	

The previous theorem is actually a straightforward consequence of De�ni�
tion ��	 The next theorem says that Exp really does what we need	

��

Theorem �� Let K be a well
formed relation such that Exp
K� � K� Then
Cl
K� is a weak bisimulation�

PROOF� Let
�� f� � Cl
K�i	 We prove that for each �
a
� � there is some

f
a
� g such that
�� g� � Cl
K� and vice versa	 By induction on i	

� i � �	 Then
�� f� � K� and we can distinguish the following two possibili�
ties�

�� � � X

Let X
a
� �	 By De�nition �� there is f

a
� g such that � � L
Ag� for

some � � Lin
��	 Hence
�� g� � Cl
K� due to the �rst part of Theo�
rem ��	
Let f

a
� g	 By De�nition �� there is some string w � L
Ag��L
G�X�a��	

Let w � Lin
��	 We have X
a
� � due to the �rst part of Theorem ��� and

�� g� � Cl
K� due to Theorem ��	

�� � � �

Let f
a
� g	 Then a � � and � � L
Ag� by De�nition ��	 Hence
�� g� �

Cl
K� due to Theorem ��	
� Induction step� Let
�� f� � Cl
K�i��	 There are two possibilities	
I	 � � Xk� and there are r� s such that
X� r� � K�
�� s� � Cl
K�i� and
rks � f 	
Let Xk�

a
� �	 The action �a
 can be emitted either by X or by �	 We

distinguish the two cases	
�� Xk�

a
� �k�	 As
X� r� � K and X

a
� �� there is some r

a
� r�

such that
�� r�� � Cl
K�	 As rks � f and r
a
� r�� there is some f

a
� g

such that r�ks � g	 To sum up� we have
�� r�� � Cl
K��
�� s� � Cl
K��
r�ks � g� hence
�k�� g� � Cl
K� due to Lemma ��	
�� Xk�

a
� Xk		 As
�� s� � Cl
K�i and �

a
� 	� there is s

a
� s� such

that
	� s�� � Cl
K�	 As rks � f and s
a
� s�� there is f

a
� g such that

rks�� � g	 Due to Lemma �� we obtain
Xk	� g� � Cl
K�	

Let f
a
� g	 As rks � f � there are r

x
� r�� s

y
� s� where x � a
 y � � or

x � �
 y � a such that r�ks� � g	 As
X� r� � K�
�� s� � Cl
K�i� there

are X
x
� �� �

y
� 	 such that
�� r���
	� s�� � Cl
K�	 Clearly Xk�

a
� �k	

and
�k	� g� � Cl
K� due to Lemma ��	
II	
�� r� � Cl
K�i and there is some s such that
�� s� � K and rks � f 	

The proof can be completed along the same lines as above	

Now we can approximate
and compute� the bisimulation base in the same
way as in the Section �	

Theorem �� There is a j � N � bounded by O
nm�� such that Bj � Bj���
Moreover� Bj � B�

��

PROOF� ���
 It su�ces to show that Exp
B� � B	 Let
�� f� � B	 Then
� � f � and � � X for some X � Const
 � or � � �	 We show that
X� f�
expands in B
a proof for the pair
�� f� is similar�	

Let X
a
� �	 As X � f � there is f

a
� g such that � � g	 Let � be the canonical

form of Lin
��	 Due to Lemma �� we have � � L
Ag�	

Let f
a
� g	 As X � f � there is X

a
� � such that � � g	 Due to Theorem ��

there is � � Lin
�� such that � � L
G�X�a��	 Moreover� � � L
Ag� due to
Lemma ��	 Hence� L
Ag� � L
G�X�a�� is nonempty	

���
 It follows directly from Theorem ��	

Theorem �� Weak bisimilarity between normed BPP and �nite
state pro

cesses is decidable in O
n��m
� time�

PROOF� By Theorem �� the computation of the expansion of Theorem ��

which costs O
n��m�� time� has to be done O
nm� times	

� Conclusions

We have proved that weak bisimilarity is decidable between BPA processes
and �nite�state processes in O
n	m
� time� and between normed BPP and
�nite�state processes in O
n��m
� time	 It may be possible to improve the al�
gorithm by re�using previously computed information� for example about sets
of reachable states� but the exponents would still be very high	 This is because
the whole bisimulation basis is constructed	 To get a more e�cient algorithm�
one could try to avoid this	 Note however� that once we have constructed B

for a BPA�nBPP system and a �nite�state system !� and the automaton
Ag of Theorem ��Theorem ��
for K � B and some g � Const
!��� we can
decide weak bisimilarity between a BPA�nBPP process � over and a pro�
cess f � Const
!� in time O
j�j��it su�ces to test whether Af accepts �

observe that there is no substantial di�erence between Af and Ag except for
the initial state�	

The technique of bisimulation bases has also been used for strong bisimilarity
in �������	 However� those bases are di�erent from ours� their design and the
way how they generate �new
 bisimilar pairs of processes rely on additional
algebraic properties of strong bisimilarity
which is a full congruence w	r	t	
sequencing� allows for unique decompositions of normed processes w	r	t	 se�
quencing and parallelism� etc	�	 The main di�culty of those proofs is to show
that the membership in the �closure
 of the de�ned bases is decidable in polyno�

��

mial time	 The main point of our proofs is the use of �symbolic
 representation
of in�nite subsets of BPA and BPP state�space	

We would also like to mention that our proofs can be easily adapted to other
bisimulation�like equivalences� where the notion of �bisimulation�like
 equiva�
lence is the one of ����	 A concrete example is termination�sensitive bisimilarity
of Section �	 Intuitively� almost every bisimulation�like equivalence has the al�
gebraic properties which are needed for the construction of the bisimulation
base� and the �symbolic
 technique for state�space representation can also be
adapted	 See ���� for details	

References

�	� J�C�M� Baeten� J�A� Bergstra� and J�W� Klop� Decidability of bisimulation
equivalence for processes generating context�free languages� Journal of the

Association for Computing Machinery� ��������
�� 	����

��� J�C�M� Baeten and W�P� Weijland� Process Algebra� Number 	
 in Cambridge
Tracts in Theoretical Computer Science� Cambridge University Press� 	����

��� A� Bouajjani� J� Esparza� and O� Maler� Reachability analysis of pushdown
automata� application to model checking� In Proceedings of CONCUR
�	�
volume 	��� of Lecture Notes in Computer Science� pages 	���	��� Springer�
	����

��� O� Burkart� D� Caucal� and B� Ste�en� An elementary decision procedure for
arbitrary context�free processes� In Proceedings of MFCS
��� volume ��� of
Lecture Notes in Computer Science� pages �������� Springer� 	����

��� O� Burkart and J� Esparza� More in�nite results� Electronic Notes in Theoretical

Computer Science� �� 	����

��� D� Caucal� Graphes canoniques des graphes alg�ebriques� Informatique
Th�eorique et Applications �RAIRO�� �������������� 	����

��� I� �Cern�a� M� K�ret��nsk�y� and A� Ku�cera� Comparing expressibility of normed
BPA and normed BPP processes� Acta Informatica� �������������� 	����

�
� S� Christensen� Decidability and Decomposition in Process Algebras� PhD thesis�
The University of Edinburgh� 	����

��� S� Christensen� Y� Hirshfeld� and F� Moller� Bisimulation is decidable for all
basic parallel processes� In Proceedings of CONCUR
��� volume �	� of Lecture
Notes in Computer Science� pages 	���	��� Springer� 	����

�	�� S� Christensen� H� H�uttel� and C� Stirling� Bisimulation equivalence is decidable
for all context�free processes� Information and Computation� 	�	�	���	�
� 	����

��

�		� J� Esparza� Petri nets� commutative context�free grammars� and basic parallel
processes� In Proceedings of FCT
��� volume ��� of Lecture Notes in Computer

Science� pages ��	����� Springer� 	����

�	�� J� Esparza� Decidability of model checking for in�nite�state concurrent systems�
Acta Informatica� ���
��	��� 	����

�	�� J� Esparza and J� Knoop� An automata�theoretic approach to interprocedural
data��ow analysis� In Proceedings of FoSSaCS
��� volume 	��
 of Lecture Notes
in Computer Science� pages 	����� Springer� 	����

�	�� J�F� Groote� A short proof of the decidability of bisimulation for normed BPA
processes� Information Processing Letters� ���	���	�	� 	����

�	�� Y� Hirshfeld� Bisimulation trees and the decidability of weak bisimulations�
Electronic Notes in Theoretical Computer Science� �� 	����

�	�� Y� Hirshfeld and M� Jerrum� Bisimulation equivalence is decidable for normed
process algebra� In Proceedings of ICALP
��� volume 	��� of Lecture Notes in

Computer Science� pages �	����	� Springer� 	����

�	�� Y� Hirshfeld� M� Jerrum� and F� Moller� A polynomial algorithm for deciding
bisimilarity of normed context�free processes� Theoretical Computer Science�
	�
�	���	��� 	����

�	
� Y� Hirshfeld� M� Jerrum� and F� Moller� A polynomial algorithm for deciding
bisimulation equivalence of normed basic parallel processes� Mathematical

Structures in Computer Science� ����	����� 	����

�	�� J�E� Hopcroft and J�D� Ullman� Introduction to Automata Theory� Languages�

and Computation� Addison�Wesley� 	����

���� H� H�uttel and C� Stirling� Actions speak louder than words� Proving bisimilarity
for context�free processes� In Proceedings of LICS
�
� pages �����
�� IEEE
Computer Society Press� 	��	�

��	� P� Jan�car� A� Ku�cera� and R� Mayr� Deciding bisimulation�like equivalences
with �nite�state processes� In Proceedings of ICALP
��� volume 	��� of Lecture
Notes in Computer Science� pages �����		� Springer� 	��
�

���� A� Ku�cera� E�ective decomposability of sequential behaviours� Theoretical

Computer Science� ����	�����	�
�� �����

���� A� Ku�cera� E�cient veri�cation algorithms for one�counter processes� In
Proceedings of ICALP ����� volume 	
�� of Lecture Notes in Computer Science�
pages �	����
� Springer� �����

���� A� Ku�cera� On simulation�checking with sequential systems� In Proceedings of

ASIAN ����� Lecture Notes in Computer Science� Springer� ����� To Appear�

���� A� Ku�cera and R� Mayr� Simulation preorder on simple process algebras� In
Proceedings of ICALP
��� volume 	��� of Lecture Notes in Computer Science�
pages �����	�� Springer� 	����

��

���� R� Mayr� Weak bisimulation and model checking for basic parallel processes�
In Proceedings of FST�TCS
��� volume 		
� of Lecture Notes in Computer

Science� pages

���� Springer� 	����

���� R� Mayr� Strict lower bounds for model checking BPA� Electronic Notes in

Theoretical Computer Science� 	
� 	��
�

��
� R� Mayr� On the complexity of bisimulation problems for basic parallel
processes� In Proceedings of ICALP ����� volume 	
�� of Lecture Notes in

Computer Science� pages ������	� Springer� �����

���� R� Mayr� On the complexity of bisimulation problems for pushdown automata�
In Proceedings of IFIP TCS ����� volume 	
�� of Lecture Notes in Computer

Science� Springer� �����

���� R� Mayr� Decidability of model checking with the temporal logic EF� Theoretical
Computer Science� ����� To appear�

��	� R� Mayr� Process rewrite systems� Information and Computation� 	���	������
�
�� �����

���� R� Milner� Communication and Concurrency� Prentice�Hall� 	�
��

���� F� Moller� In�nite results� In Proceedings of CONCUR
��� volume 			� of
Lecture Notes in Computer Science� pages 	����	�� Springer� 	����

���� R� Paige and R� Tarjan� Three partition re�nement algorithms� SIAM Journal

of Computing� 	����������
�� 	�
��

���� D�M�R� Park� Concurrency and automata on in�nite sequences� In Proceedings

�th GI Conference� volume 	�� of Lecture Notes in Computer Science� pages
	���	
�� Springer� 	�
	�

���� J�L� Peterson� Petri Net Theory and the Modelling of Systems� Prentice�Hall�
	�
	�

���� J� Srba� Complexity of weak bisimilarity and regularity for BPA and BPP�
In Proceedings of EXPRESS ����� Electronic Notes in Theoretical Computer

Science� �����

��
� J� St�r��brn�a� Hardness results for weak bisimilarity of simple process algebras�
Electronic Notes in Theoretical Computer Science� 	
� 	��
�

���� I� Walukiewicz� Model checking CTL properties of pushdown systems� In
Proceedings of FST�TCS ����� Lecture Notes in Computer Science� Springer�
����� To appear�

��

On the Complexity of Bisimulation Problems for

Pushdown Automata

Richard Mayr

LIAFA � Universit�e Denis Diderot � Case ���� � �� place Jussieu�
F������ Paris Cedex ��	 France	 E�mail
 mayr�liafa�jussieu�fr

Phone
 ��� � �� �� �� �	� Fax
 ��� � �� ��
� ��

Abstract� All bisimulation problems for pushdown automata are at
least PSPACE �hard	 In particular� we show that ��� Weak bisimilarity
of pushdown automata and
nite automata is PSPACE �hard� even for
a small
xed
nite automaton� ��� Strong bisimilarity of pushdown au�
tomata and
nite automata is PSPACE �hard� but polynomial for every

xed
nite automaton� ��� Regularity �
niteness� of pushdown automata
w	r	t	 weak and strong bisimilarity is PSPACE �hard	

Keywords� Pushdown automata� bisimulation� veri�cation� complexity

� Introduction

Bisimulation equivalence plays a central role in the theory of process algebras
����� The decidability and complexity of bisimulation problems for in�nite�state
systems has been studied intensively �see ���� for a survey	� While many algo�
rithms for bisimulation problems have a very high complexity� only few lower
bounds are known� Jan
car ���� ��� showed that strong bisimilarity of two Petri
nets ���� and weak bisimilarity of a Petri net and a �nite automaton is un�
decidable� St
r
�brn
a ���� showed that weak bisimilarity for Basic Parallel Pro�
cesses �BPP	 is NP�hard and weak bisimilarity for context�free processes �BPA	
is PSPACE �hard� �BPA are a proper subclass of pushdown automata�	 How�
ever� it is still an open question whether these two problems are decidable� So
far� the only known lower bound for a decidable bisimulation problem was an
EXPSPACE �lower bound for strong bisimilarity of Petri nets and �nite automata
����� that follows from the hardness of the Petri net reachability problem �����

For bisimulation problems where one compares an in�nite�state system with a
�nite�state one� much more is known about the decidability and complexity than
in the general case of two in�nite�state systems ����� Also the complexity can be
much lower� In particular� weak �and strong	 bisimilarity of a BPA�process and
a �nite automaton is decidable in polynomial time ����� while weak bisimilarity
of two BPA�processes is PSPACE �hard �����

However� this surprising result does not carry over to general pushdown au�
tomata� We show that strong and weak bisimilarity of a pushdown automaton

�

and a �nite automaton is PSPACE �hard� �These problems were already known
to be in EXPTIME �����	 For weak bisimilarity this hardness result holds even
for a small �xed �nite automaton� while the same problem for strong bisimilar�
ity is polynomial in the size of the pushdown automaton for every �xed �nite
automaton� These results also yield a PSPACE lower bound for strong bisim�
ilarity of two pushdown automata� a problem that has recently been shown to
be decidable by S
enizergues ���� �the proof in ���� uses a combination of two
semidecision procedures and does not yield any complexity measure	�

The problem of bisimilarity is also related to the problem of language equiv�
alence for deterministic systems� e�g�� the problem of language equivalence for
deterministic pushdown automata ����� See Section � for details�

Furthermore� we prove a PSPACE lower bound for the problem of regularity
��niteness	 of pushdown automata w�r�t� weak and strong bisimilarity�

Thus no bisimulation problem for pushdown automata is polynomial �unless
PSPACE is P	� This shows that there is a great di�erence between pushdown
automata and BPA� although they describe exactly the same class of languages
�Chomsky��	�

� De�nitions

Let Act � fa� b� c� � � �g and Const � f��X� Y� Z� � � �g be disjoint countably in�nite
sets of actions and process constants� respectively� The class of general process
expressions G is de�ned by E ��� � jX j EkE j E�E� whereX � Const and � is a
special constant that denotes the empty expression� Intuitively� ��� is a sequential
composition and �k� is a parallel composition� We do not distinguish between
expressions related by structural congruence which is given by the following
laws� ��� and �k� are associative� �k� is commutative� and ��� is a unit for ��� and
�k��
A process rewrite system �PRS	 ���� is speci�ed by a �nite set � of rules which

have the form E
a
� F � where E�F � G� E �� � and a � Act � Const��	 and

Act��	 denote the sets of process constants and actions which are used in the
rules of �� respectively �note that these sets are �nite	� Each process rewrite
system � de�nes a unique transition system where states are process expressions
over Const��	� Act��	 is the set of labels� The transitions are determined by �
and the following inference rules �remember that �k� is commutative	�

�E
a
� F 	 � �

E
a
� F

E
a
� E�

E�F
a
� E��F

E
a
� E�

EkF
a
� E�kF

We extend the notation E
a
� F to elements of Act� in a standard way� Moreover�

we say that F is reachable from E if E
w
� F for some w � Act��

Various subclasses of process rewrite systems can be obtained by imposing cer�
tain restrictions on the form of rules� To specify those restrictions� we �rst de�ne
the classes S and P of sequential and parallel expressions� composed of all pro�
cess expressions which do not contain the �k� and the ��� operator� respectively�
We also use ��� to denote the set of process constants�

�

PDA (S,S) PN (P,P)

BPA (1,S)

FS (1,1)

BPP (1,P)

PAN (P,G)PAD (S,G)

PRS (G,G)

PA (1,G)

Fig� �� A hierarchy of PRS

The hierarchy of process rewrite systems is
presented in Fig� �� the restrictions are speci�
�ed by a pair �A�B	� where A and B are the
classes of expressions which can appear on the
left�hand and the right�hand side of rules� re�
spectively� This hierarchy contains almost all
classes of in�nite state systems which have been
studied so far� BPA �Basic Process Algebra�
also called context�free processes	� BPP �Basic
Parallel Processes	� and PA�processes are well�
known ���� PDA correspond to pushdown au�
tomata �as proved by Caucal in ���	� PN cor�
respond to Petri nets� PRS stands for �Process
Rewrite Systems�� PAD and PAN are arti�cial
names made by combining existing ones �PAD
� PA�PDA� PAN � PA�PN	�

We consider the semantical equivalences weak
bisimilarity and strong bisimilarity ���� over transition systems generated by
PRS� In what follows we consider process expressions over Const��	 where � is
some �xed process rewrite system�

De�nition �� The action � is a special �silent� internal action� The extended
transition relation �

a
�� is de�ned by E

a
� F i� either E � F and a � � � or

E
� i

� E� a
� E�� �j

� F for some i� j � IN�� E
�� E�� � G� A binary relation R over

process expressions is a weak bisimulation i� whenever �E�F 	 � R then for every

a � Act� if E
a
� E� then there is F

a
� F � s�t� �E�� F �	 � R and if F

a
� F � then

there is E
a
� E� s�t� �E�� F �	 � R� Processes E�F are weakly bisimilar� written

E � F � i� there is a weak bisimulation relating them� Strong bisimulation is

de�ned similarly with
a
� instead of

a
�� Processes E�F are strongly bisimilar�

written E � F � i� there is a strong bisimulation relating them�

Bisimulation equivalence can also be described by bisimulation games between
two players� One player� the �attacker�� tries to prove that two given processes
are not bisimilar� while the other player� the �defender�� tries to frustrate this�
In every round of the game the attacker chooses one process and performs an
action� The defender must imitate this move and perform the same action in
the other process �possibly together with several internal � �actions in the case of
weak bisimulation	� If one player cannot move then the other player wins� The
defender wins every in�nite game� Two processes are bisimilar i� the defender
has a winning strategy and non�bisimilar i� the attacker has a winning strategy�

Note that context�free processes �BPA	 correspond to the subclass of pushdown
automata �PDA	 where the �nite control has size �� Although BPA and PDA
describe the same class of languages �Chomsky��	� BPA is strictly less expressive
w�r�t� bisimulation�

�

� Hardness of Weak Bisimulation Problems

In this section we show lower bounds for problems about weak bisimulation� We
consider the following two problems�

Weak bisimilarity of pushdown automata and finite automata

Instance� A pushdown automaton P and a �nite automaton F �
Question� P � F �

Weak Finiteness of Pushdown Automata

Instance� A pushdown automaton P �
Question� Does there exist a �nite automaton F s�t� P � F �

We show that both these problems are PSPACE �hard� The proof is done by a
reduction from the PSPACE �complete problem if a single tape� linearly space�
bounded� nondeterministic Turing�machineM accepts a given input w� There is
a constant k s�t� if M accepts an input w then it has an accepting computation
that uses only k � jwj space� For any such M and w we construct a pushdown
automaton P s�t�

� If M accepts w then P is not weakly bisimilar to any �nite automaton�
� If M doesn�t accept w then P is weakly bisimilar to the �nite automaton F
of Figure ��

s�

�

s�

s�

a �

Fig� �� The �nite automaton F
with initial state s��

The construction of P is as follows� Let n ��
k � jwj � � and � be the set of tape symbols
of M � Con�gurations of M are encoded as se�
quences of n symbols of the form v�qv� where
v�� v� � �� are sequences of tape symbols of
M and q is a state of the �nite control of M �
The sequence v� are the symbols to the left
of the head and v� are the symbols under the
head and to the right of it� �v� can be empty�
but v� can�t�	 Let p� be the initial control�
state of P and let the stack be initially empty�
Initially� P is in the phase �guess� where it guesses an arbitrarily long sequence
c��c�� � � ��cm of con�gurations ofM �each of these ci has length n	 and stores
them on the stack� The pushdown automaton can guess a sequence of length n
by n times guessing a symbol and storing it on the stack� The number of symbols
guessed �from � to n	 is counted in the �nite�control of the pushdown automa�
ton� The numberm is not counted in the �nite�control� since it can be arbitrarily
large� The con�guration cm at the bottom of the stack must be accepting �i�e��
the state q in cm must be accepting	 and the con�guration c� at the top must
be the initial con�guration with the input w and the initial control�state of M �
All this is done with silent � �actions� At the end of this phase P is in the control
state p� Then there are two possible transitions� ��	 p

�
� p�A where the special

symbol A �� � is written on the stack and the guessing phase starts again� ��	

p
�
� pverify where the pushdown automaton enters the new phase �verify��

�

In the phase �verify� the pushdown automaton P pops symbols from the stack
�by action �	� At any time in this phase it can �but need not	 enter the special
phase �check�� For a �check� it reads three symbols from the stack� These symbols
are part of some con�guration ci� Then it pops n � � symbols and then reads
the three symbols at the same position in the next con�guration ci�� �unless the
bottom of the stack is reached already	� In a correct computation step from ci
to ci�� the second triple of symbols depends on the �rst and on the de�nition
of M � If these symbols in the second triple are as they should be in a correct
computation step of M from ci to ci�� then the �check� is successful and it goes
back into the phase �verify�� Otherwise the �check� has failed and P is in the
control�state fail � Here there are two possible transitions� ��	 fail

�
� p�� In the

control�state p� the stack is ignored and the pushdown automaton from then
on behaves just like the state s� in the �nite automaton F of Figure �� ��	

fail
�
� p�� In the control�state p� again the stack is ignored and from then on

the pushdown automaton behaves just like the state s� in the �nite automaton
F of Figure �� The intuition is that if the sequence of con�gurations represents
a correct computation of M then no �check� can fail� i�e�� the control�state fail
cannot be reached� However� if the sequence isn�t a correct computation then
there must be at least one error somewhere and thus the control�state fail can
be reached by doing the �check� at the right place�

So far� all actions have been silent � �actions� The only case where a visible action
can occur is the following� The pushdown automaton P is in phase �verify� or
�check� �but not in state fail 	 and reads the special symbol A from the stack�
Then it does the visible action �a� and goes to the control�state pverify � If P
reaches the bottom of the stack while being in phase �verify� or �check� then it
is in a deadlock�

Lemma �� If M accepts the input w then P is not weakly bisimilar to any �nite

automaton�

Proof� We assume the contrary and derive a contradiction� Assume that there
is �nite automaton F � with k states s�t� P � F �� Since M accepts w� there
exists an accepting computation sequence c � c��c�� � � ��cm where all ci are
con�gurations of M � c� is the initial con�guration of M with input w� cm is
accepting and for all i � f�� � � � �m� �g ci � ci�� is a correct computation step
of M �

P can �by a sequence of � �steps	 reach the con�guration � �� pverify �cA	
k��c�

Since c is an accepting computation sequence of M � none of the checks can fail�
Thus � can only do the following sequence of actions� �mn�m���a�mn�m��	k���

We assumed that P � F �� Thus there must be some state f of F � s�t� � � f � Since
F � has only k states� it follows from the Pumping Lemma for regular languages
that � �� f and we have a contradiction� ut

Lemma �� Let F be the �nite automaton from Figure �� If M doesn�t accept

the input w then P � F �

Proof� Since there is no accepting computation of M on w� any reachable con�
�guration of P belongs to one of the following three sets�

�

�� Let C� be the set of con�gurations of P where either P is in phase �guess� or
P is in phase �verify� or �check� s�t� a check can fail before the next symbol
A is popped from the stack� i�e� the control�state fail can be reached with
only � �actions�

�� Let C� be the set of con�gurations of P where either the �nite control of P is
in state p� or P is in phase �verify� or �check�� there is at least one symbol A
on the stack and no check can fail before the next symbol A is popped from
the stack� i�e� the control�state fail cannot be reached with only � �actions�
but possibly after another �a� action�

�� Let C� be the set of con�gurations of P where either the �nite control of P
is in state p� or P is in phase �verify� or �check�� there is no symbol A on the
stack and no check can fail� i�e� the control�state fail cannot be reached�

The following relation is a weak bisimulation�

f���� s�	 j �� � C�g � f���� s�	 j �� � C�g � f���� s�	 j �� � C�g

We consider all possible attacks�

�� Note that no �� � C� can do action �a��
� If the attacker makes a move from a con�guration in C� with control�
state fail to p��p� then the defender responds by a move s�

�
� s��s��

These are weakly bisimilar to p��p� by de�nition� If the attacker makes

a move ��
�
� ��� with ��� �

�
� � C� then the defender responds by doing

nothing� If the attacker makes a move ��
�
� ��� with �� � C� and

�� � C� �this is only possible if there is at least one symbol A on the

stack	 then the defender responds by making a move s�
�
� s�� If the

attacker makes a move ��
�
� ��� with �� � C� and �� � C� �this is only

possible if there is no symbol A on the stack	 then the defender responds

by making a move s�
�
� s��

� If the attacker makes a move s�
�
� s��s� then the defender makes a

sequence of � �moves where a �check� fails and goes �via the control�state
fail 	 to a con�guration with control�state p��p�� This is weakly bisimilar
to s��s� by de�nition�

�� If �� is a con�guration with control�state p� then this is bisimilar to s� by
de�nition�
� If the attacker makes a move ��

�
� ��� with ��� �

�
� � C� then the defender

responds by doing nothing� If the attacker makes a move ��
a
� ��� �this

is only possible if the symbol A is at the top of the stack	 then the
control�state of ��� is qverify and �

�
� � C�� Thus the defender can respond

by s�
a
� s��

� If the attacker makes a move s�
a
� s� then the defender responds as

follows� First he makes a sequence of � �moves ��
��

� ��� that pops symbols
from the stack without doing any �check� until the special symbol A is at
the top� Then he makes a move ���

a
� ���� � By de�nition the control�state

of ���� is qverify and �
��
� � C��

�

�� A con�guration �� � C� can never reach a con�guration where it can do
action �a�� The only possible action is � � Thus �� � s��

Since the initial con�guration of P is in C� and the initial state of F is s�� we
get P � F � ut

Theorem �� Weak bisimilarity of pushdown automata and �nite automata is

PSPACE�hard� even for the �xed �nite automaton F of Figure ��

Proof� By reduction of the acceptance problem for single tape nondeterministic
linear space�bounded Turing machines� LetM � w� P and F be de�ned as above� If
M accepts w then by Lemma � P is not weakly bisimilar to any �nite automaton
and thus P �� F � If M doesn�t accept w then by Lemma � P � F � ut

Theorem �� Weak �niteness of pushdown automata is PSPACE�hard�

Proof� By reduction of the acceptance problem for single tape nondeterministic
linear space�bounded Turing machines� LetM � w� P and F be de�ned as above� If
M accepts w then by Lemma � P is not weakly bisimilar to any �nite automaton
and thus not weakly �nite� If M doesn�t accept w then by Lemma � P � F and
thus P is weakly �nite� ut

� Hardness of Strong Bisimulation Problems

Strong bisimilarity of pushdown automata and finite automata

Instance� A pushdown automaton P and a �nite automaton F �
Question� P � F �

We show that this problem is PSPACE �hard in general� but polynomial in the
size of P for every �xed �nite automaton F � The PSPACE lower bound is shown
by a reduction of the PSPACE �complete problem of quanti�ed boolean formulae
�QBF	� Let n � IN and let x�� � � � � xn be boolean variables� W�r� we assume that
n is even� A literal is either a variable or the negation of a variable� A clause is
a disjunction of literals� The quanti�ed boolean formula Q is given by

Q �� 	x�
x� � � �	xn��
xn�Q� � � � � �Qk	

where the Qi are clauses� The problem is if Q is valid� We reduce this problem
to the bisimulation problem by constructing a pushdown automaton P and a
�nite automaton F s�t� Q is valid i� P � F �

�

F is de�ned as follows� The initial state is s��

s�i
x�i��
�� s��i��� for � � i � n��� �

s�i
�x�i��
�� s��i��� for � � i � n��� �

s�i
x�i��
�� t��i��� for � � i � n��� �

s�i
�x�i��
�� t��i��� for � � i � n��� �

t�i
x�i��
�� t��i��� for � � i � n��� �

t�i
�x�i��
�� t��i��� for � � i � n��� �

sn
a
�� u

u
c
�� u

tn
a
�� u

tn
a
�� wn

wi
c
�� wi�� for � � i � n

Note that� unlike in the previous section� the size of F is not �xed� but linear in
n� Figure � illustrates the construction�

Now we de�ne the pushdown automaton P � Initially the stack is empty and the
initial control�state is p�� For � � j � k and � � l � n we de�ne Qj�Xl	 i� Xl

makes the clause Qj true and Qj� �Xl	 i� �Xl makes Qj true� The transitions of
P are as follows�

p�i
x�i��
�� p��i���X�i��X�i�� for � � i � n��� �

p�i
x�i��
�� p��i���

�X�i��X�i�� for � � i � n��� �

p�i
�x�i��
�� p��i���X�i��

�X�i�� for � � i � n��� �

p�i
�x�i��
�� p��i���

�X�i��
�X�i�� for � � i � n��� �

p�i
x�i��
�� r��i��� for � � i � n��� �

p�i
�x�i��
�� r��i��� for � � i � n��� �

pn
a
�� qj for � � j � k

q�
c
�� q�

qjXl
c
�� qjXl for � � j � k� � � l � n if Qj�Xl	�

qjXl
c
�� qj for � � j � k� � � l � n if
Qj�Xl	�

qj �Xl
c
�� qj �Xl for � � j � k� � � l � n if Qj� �Xl	�

qj �Xl
c
�� qj for � � j � k� � � l � n if
Qj� �Xl	�

Additionally we de�ne for � � i � n��� � that in the control�state r�i the stack
is ignored and the systems behaves just like t�i in the system F of Figure ��

Lemma 	� If Q is not valid then P �� F �

Proof� If Q is not valid then
x�	x� � � �
xn��	xn�
Q� � � � ��
Qk	 and the at�
tacker has the following winning strategy� The attacker chooses the values for the
variables with the odd indices by doing actions xi or �xi in the �nite automaton
F and goes from s� to sn� The defender can respond in two di�erent ways� ��	 If
the defender goes into a control�state r�i for some i then the attacker can easily

�

s� s� s� s� s� sn

x���x�

t� t� t� t�

u

c

tn

a

a

� � �

wnwn��wn��wn��w�w�

t��

x���x�

� � � � � �

� � �

ax���x� x���x�

x���x�

c c c c

Fig� �� Reducing QBF to strong bisimulation	

win� since r�i behaves like t�i and s�i �� t�i for every i� ��	 If the defender stays
in the �p�domain� of control�states� he is forced to store the attacker�s choices
for the variables with odd indices on the stack� However� he can make his own
choices for the variables with even indices and also stores them on the stack�
Finally� the defender reaches the control�state pn and the stack contains an as�
signment of values to all n variables� Since Q is not valid� there exists at least
one Qj with � � j � k that is not satis�ed by this assignment� Now the attacker

changes sides and makes the move pn
a
� qj in the pushdown automaton P � The

defender can only respond by making the move sn
a
� u in the system F � Now

the pushdown automaton P can do the action �c� only n times� while system F
in state u can do it in�nitely often� Thus the attacker can win� It follows that
P �� F � ut

Lemma
� If Q is valid then P � F �

Proof� Let C be a content of the stack and thus a �possibly incomplete	 assign�
ment of values to variables� Let Qi�C	 be true i� C makes clause Qi true� Let
Q�C	 ��

V
��i�k Qi�C	� Let QX �C	 be true i� C can be completed to a C

� s�t�
Q�C �	� If Q is valid then the following relation is a strong bisimulation�

f�p�iC� s�i	 j � � i � n�� � QX �C	g � f�p�iC� t�i	 j � � i � n�� �
QX �C	g �
f�r�iC� t�i	 j � � i � n��g � f�qjC� u	 j � � j � k � Qj�C	g � f�q�C� u	g �
f�qjC�wi	 j � � j � k � � � i � n �
Qj�C	 � length�C	 � ig

Since �p��� s�	 is in this relation� we get P � F � ut

Theorem �� Strong bisimilarity of pushdown automata and �nite automata is

PSPACE�hard�

Proof� Directly from Lemma � and Lemma �� ut

Corollary �� Strong bisimilarity of pushdown automata is PSPACE�hard�

Note that Theorem � is not a corollary of Theorem �� For weak bisimilarity
the hardness result holds even for the small �xed �nite automaton of Figure ��
However� strong bisimilarity of a pushdown automaton P and a �nite automaton
F is polynomial in the size of P for every �xed F �

�

Theorem �
� Let F be a �xed �nite automaton� For every pushdown automaton

P the problem if P � F requires only polynomial time in the size of P �

Proof� Using the construction from ���� one can reduce the problem P � F to
a model checking problem in the temporal logic EF �a fragment of CTL	� One
can e�ectively construct Hennessy�Milner Logic formulae � and 	 that depend
only on F s�t�

P � F �� �P j� �	 � �P j�
EF 		

where the modal operator EF denotes reachability� Let n be the size of �the
description of	 P and m the maximum of the nesting�depth of � and 	 � �The
total size of � and 	 can be O��m	�	 Let P � be a state that is reachable from
P � It depends only on the control state of P and P � and on the �rst m stack
symbols of P and P � if they satisfy � and 	 � respectively� There are only n
di�erent possibilities for the control state and nm di�erent possibilities for the
�rst m stack symbols� For each of these nm�� con�gurations we check if it
satis�es � or 	 � Each of those checks can be done in O�nm	 time� Also for each
� of these nm�� con�gurations we check if P can reach a con�guration �
 for
some
� �
 represents the stack contents below the �rst m stack symbols� It does
not matter for � and 	 �	 Each of those �generalized	 reachability�checks can be
done in O�n�m�	 time ���� Therefore the whole property above can be checked
in O�n�m��m�	 time� Thus the problem is polynomial in n� the size of P � but
exponential in m� �To be precise� m depends only on F and can be made linear
in the number of states in F �����	 ut

Now we consider the strong �niteness problem�

Strong Finiteness of Pushdown Automata

Instance� A pushdown automaton P �
Question� Does there exist a �nite automaton F s�t� P � F �

We show that this problem is PSPACE �hard by a reduction of QBF� Let Q� P
and F be de�ned just as before in the hardness proof of strong bisimilarity� As
shown before� Q is valid i� P � F � We now construct a pushdown automaton
P � s�t� P � is �nite w�r�t� strong bisimilarity i� P � F � The initial con�guration
of P � is p�Z� The transition rules are

p�
a�

� p�C

p�
a�

� q�

q�C
b
�

� q�

q�C
c�

� p�

q�Z
b�

� q�Z

q�Z
c�

� s�

Note that if P � is in control�state p� or s� then it behaves like P and F � respec�
tively�

��

Lemma ��� If P �� F then P � is in�nite w�r�t� strong bisimilarity�

Proof� There are in�nitely many non�bisimilar reachable states q�CiZ for all
i � IN� It su ces to show that q�CiZ �� q�CjZ for i � j� The attacker has
the following winning strategy� He does action b� exactly j times �the defender
can respond in only one way	 and the new state in the bisimulation game is
�q�Ci�jZ� q�Z	� Then the attacker does action c� and after the defender�s response
the new state is �p�C

i�j��Z� s�	� Since P �� F � the attacker can win� ut

Lemma ��� If P � F then P � is �nite w�r�t� strong bisimilarity�

Proof� Let the �nite automaton F � with initial state s� be de�ned by

s�
a�

� s�

s�
a�

� t�

t�
b�

� t�

t�
c�

� s�

where s� is the initial state of F � If P � F then p�CiZ � s�� q�CjZ � t��
p�C

kZ � s� and s� � s� and thus P
� � F �� ut

Theorem ��� Strong �niteness of pushdown automata is PSPACE�hard�

Proof� It follows from Lemmas ���� �� and �� that Q is satis�able i� P � F i�
P � is �nite w�r�t� strong bisimilarity� ut

It might seem that Theorem � is a corollary of Theorem ��� However� a careful
inspection reveals a slight di�erence� The proof of Theorem � shows that the
question if� given a pushdown automaton P � !Is P weakly bisimilar to any �nite
automaton with at most � states �" is PSPACE �hard� The same question for
strong bisimilarity is polynomial� because of Theorem ��� �These results still
hold if the number � in the question above is replaced by any other integer
k � �� For weak bisimilarity the question is PSPACE �hard in the size of P � For
strong bisimilarity it is polynomial in the size of P and exponential in k�	 So�
while in general the �niteness problem for a pushdown automaton P is PSPACE �
hard for both weak and strong bisimilarity� the modi�ed question !Is P �nite
and small �" is PSPACE �hard for weak bisimilarity� but polynomial for strong
bisimilarity� To conclude� �niteness w�r�t� weak bisimilarity is hard in a slightly
stronger sense�

� Conclusion

We have shown that all bisimulation problems for pushdown automata are at
least PSPACE �hard� Thus no bisimulation problem for pushdown automata is
polynomial �unless PSPACE � P	� It is interesting to compare these results
with the results for context�free processes �BPA	� which describe exactly the

��

same class of languages �Chomsky��	� Strong and weak bisimilarity of BPA and
�nite automata can be decided in polynomial time ����� This shows that there is
a signi�cant di�erence between pushdown automata and context�free processes
�BPA	 as far as �branching�time equivalences� like strong and weak bisimulation
are concerned� Intuitively� the reason for this is that� due to their �nite control�
pushdown automata have a limited power of self�test that context�free processes
lack�

The problem of bisimulation equivalence is related to the problem of language
equivalence for deterministic systems� e�g�� the problem of language equivalence
for deterministic pushdown automata �dPDA	� which has been shown to be de�
cidable in ����� However� the relationship is more complex than it seems� because
of the presence of ��transitions in PDAs� �Real�time� PDAs are PDAs without ��
transitions� We denote them by rPDA� We denote real�time deterministic PDAs
as rdPDA� We can distinguish �ve problems�

�� For rdPDA� strong bisimilarity and trace�language equivalence coincide� �The
problem of trace�language equivalence can easily be reduced to terminal�
language equivalence on rdPDA�	 This problem is also equivalent to strong
bisimilarity of dPDA� because the ��transitions don�t matter for strong bisim�
ilarity� Language equivalence on rdPDA has been shown to be decidable in
����� Neither an upper complexity bound nor a lower complexity bound is
known�

�� Strong bisimilarity for PDA and rPDA� These problems are equivalent� be�
cause the ��transitions don�t matter for strong bisimilarity� Decidability of
strong bisimilarity for PDA has been shown in ����� No upper complexity
bound is known� Theorem � gives a PSPACE lower bound�

�� Language equivalence of dPDA� This is equivalent to weak bisimilarity of
dPDA� if one renames the ��transitions to � �transitions� The problem is
decidable by ����� Neither an upper complexity bound nor a lower complexity
bound is known�

�� Weak bisimilarity for PDA� It is an open question if this problem is decidable�
A PSPACE lower bound has been shown in ���� �even for BPA	� Theorem �
shows that even the asymmetric problem of weak bisimilarity of a PDA and
a �small �xed	 �nite automaton is PSPACE �hard�

�� Language equivalence for PDA and rPDA� These problems are inter�reducible
and undecidable by �����

��

1

2

5

3

4

Fig� �� Bisimulation vs� languages

Figure � shows the relationships between
these �ve problems� The hardness results of
this paper hold only for bisimilarity of non�
deterministic PDA �i�e�� problems number
� and �	 and thus they don�t yield a lower
bound for the problem of language equiva�
lence of dPDA �problem number �	� In par�
ticular� it is easy to see that language equiv�
alence of a dPDA and a deterministic �nite
automaton is polynomial �unlike bisimilar�
ity for nondeterministic systems� see Theo�
rem �	� It still cannot be ruled out that a
polynomial algorithm for language equiva�
lence of dPDA might exist�

Two lower bounds for bisimulation problems about Petri nets have not been
mentioned explicitly in the literature so far� They concern the problems of
strong bisimilarity of a Petri net and a �nite automaton and �niteness of a
Petri net w�r�t� strong bisimulation� It can easily be shown that these problems
are EXPSPACE �hard by a reduction of the problem if a given place in a Petri
net can ever become marked� �This problem is polynomially equivalent to the
reachability problem for Petri nets ���� and thus EXPSPACE �hard �����	

The following table summarizes known results about the complexity of bisimula�
tion problems for several classes of in�nite�state systems� The di�erent columns
show the results about the following problems� strong bisimilarity with �nite au�
tomata� strong bisimilarity of two in�nite�state systems� weak bisimilarity with
�nite automata and weak bisimilarity of two in�nite�state systems� New results
are in boldface�

� F � � F �

FS P ��� ��� P ��� ��� P ��� ��� P ��� ���

BPA P ���� � ��EXPTIME ��� P ���� PSPACE �hard ����

PDA
� EXPTIME ����
PSPACE�hard

decidable ����
PSPACE�hard

� EXPTIME ����
PSPACE�hard

PSPACE �hard ����

BPP � PSPACE ����
decidable ���
co�NP�hard ����

� PSPACE ����
NP�hard ����
�
p

�
�hard ����

PA decidable ���� co�NP�hard ���� decidable ���� PSPACE �hard ����

PAD
decidable ����
PSPACE�hard

PSPACE�hard
decidable ����
PSPACE�hard

PSPACE �hard ����

PN
decidable ���� ���
EXPSPACE �hard

undecidable ���� undecidable ���� undecidable ����

PAN EXPSPACE �hard undecidable ���� undecidable ���� undecidable ����

PRS EXPSPACE �hard undecidable ���� undecidable ���� undecidable ����

��

The following table summarizes results about the problems of strong and weak
�niteness� New results are in boldface�

strong �niteness weak �niteness

BPA � ��EXPTIME ��� �� �

PDA PSPACE�hard PSPACE�hard

BPP
decidable ����
co�NP�hard ����

�p
� �hard ����

PA co�NP�hard ���� �p
� �hard ����

PAD PSPACE�hard PSPACE�hard

PN
decidable ����
EXPSPACE �hard

undecidable ����

PAN�PRS EXPSPACE �hard undecidable ����

Some more results are known about the restricted subclasses of these systems
that satisfy the �normedness condition� �e�g� ���� �� �� ���	� Normedness means
that from every reachable state there is a terminating computation� This condi�
tion makes many bisimulation problems much easier� e�g�� strong bisimilarity of
normed BPP is decidable in polynomial time ����� while it is at least co�NP�hard
in the general case ����� Also for normed systems �niteness w�r�t� strong bisim�
ilarity coincides with boundedness ����� while this doesn�t hold in the general
case�

Acknowledgment� Thanks to Colin Stirling for helpful discussions�

References

��� J	C	M	 Baeten and W	P	 Weijland	 Process algebra	 Cambridge Tracts in Theo�
retical Computer Science� ��� ����	

��� J	 Balcazar� J	 Gabarro� and M	 Santha	 Deciding bisimilarity is P�complete	
Formal Aspects of Computing� �
�������� ����	

��� A	 Bouajjani� J	 Esparza� and O	 Maler	 Reachability analysis of pushdown au�
tomata
 application to model checking	 In International Conference on Concur�
rency Theory �CONCUR����� volume ���� of LNCS	 Springer Verlag� ����	

��� O	 Burkart� D	 Caucal� and B	 Ste�en	 An elementary bisimulation decision pro�
cedure for arbitrary context�free processes	 In MFCS���� volume ��� of LNCS	
Springer Verlag� ����	

��� O	 Burkart� D	 Caucal� and B	 Ste�en	 Bisimulation collapse and the process
taxonomy	 In U	 Montanari and V	 Sassone� editors� Proceedings of CONCUR����
volume ���� of LNCS	 Springer Verlag� ����	

��� D	 Caucal	 On the regular structure of pre
x rewriting	 Journal of Theoretical
Computer Science� ���
������ ����	

��� S	 Christensen� Y	 Hirshfeld� and F	 Moller	 Bisimulation equivalence is decidable
for Basic Parallel Processes	 In E	 Best� editor� Proceedings of CONCUR ���
volume ��� of LNCS	 Springer Verlag� ����	

��

��� Y	 Hirshfeld and M	 Jerrum	 Bisimulation equivalence is decidable for normed
process algebra	 In Proc	 of ICALP���� volume ���� of LNCS	 Springer Verlag�
����	

��� Y	 Hirshfeld� M	 Jerrum� and F	 Moller	 A polynomial algorithm for decid�
ing bisimilarity of normed context�free processes	 Theoretical Computer Science�
���
�������� ����	

���� Y	 Hirshfeld� M	 Jerrum� and F	 Moller	 A polynomial�time algorithm for de�
ciding bisimulation equivalence of normed Basic Parallel Processes	 Journal of
Mathematical Structures in Computer Science� �
�������� ����	

���� J	E	 Hopcroft and J	D	 Ullman	 Introduction to Automata Theory
 Languages and
Computation	 Addison Wesley� ����	

���� P	 Jan�car	 Undecidability of bisimilarity for Petri nets and some related problems	
Theoretical Computer Science� ���
�������� ����	

���� P	 Jan�car and J	 Esparza	 Deciding
niteness of Petri nets up to bisimulation	 In
F	 Meyer auf der Heide and B	 Monien� editors� Proceedings of ICALP���� volume
���� of LNCS	 Springer Verlag� ����	

���� P	 Jan�car� A	 Ku�cera� and R	 Mayr	 Deciding bisimulation�like equivalences with

nite�state processes	 In Proc	 of ICALP���� volume ���� of LNCS	 Springer
Verlag� ����	

���� P	 Jan�car and F	 Moller	 Checking regular properties of Petri nets	 In Insup Lee
and Scott A	 Smolka� editors� Proceedings of CONCUR���� volume ��� of LNCS	
Springer Verlag� ����	

���� A	 Ku�cera	 Regularity is decidable for normed PA processes in polynomial
time	 In Foundations of Software Technology and Theoretical Computer Science
�FST�TCS����� volume ���� of LNCS	 Springer Verlag� ����	

���� A	 Ku�cera and R	 Mayr	 Weak bisimilarity with in
nite�state systems can be
decided in polynomial time	 In Proc	 of CONCUR���� volume ���� of LNCS	
Springer Verlag� ����	

���� R	 Lipton	 The reachability problem requires exponential space	 Technical Re�
port ��� Department of Computer Science� Yale University� January ����	

���� R	 Mayr	 On the complexity of bisimulation problems for Basic Parallel Processes	
In Proc	 of ICALP�
���� volume � of LNCS	 Springer Verlag� ����	

���� R	 Mayr	 Process rewrite systems	 Information and Computation� ������
��������
����	

���� R	 Milner	 Communication and Concurrency	 Prentice Hall� ����	
���� F	 Moller	 In
nite results	 In Ugo Montanari and Vladimiro Sassone� editors�

Proceedings of CONCUR���� volume ���� of LNCS	 Springer Verlag� ����	
���� M	 Oyamaguchi� N	 Honda� and Y	 Inagaki	 The equivalence problem for real�time

strict deterministic languages	 Information and Control� ��
������� ����	
���� R	 Paige and R	 Tarjan	 Three partition re
nement algorithms	 SIAM Journal of

Computing� �����
�������� ����	
���� J	L	 Peterson	 Petri net theory and the modeling of systems	 Prentice�Hall� ����	
���� G	 S�enizergues	 The Equivalence Problem for Deterministic Pushdown Automata

is Decidable	 In Proceedings of ICALP���� volume ���� of LNCS� pages �������	
Springer Verlag� ����	

���� G	 S�enizergues	 Decidability of bisimulation equivalence for equational graphs of

nite out�degree	 In Proc	 of FOCS���	 IEEE� ����	

���� J	 St�r��brn�a	 Hardness results for weak bisimilarity of simple process algebras	
Electronic Notes in Theoretical Computer Science �ENTCS�� ��� ����	

��

On the Complexity of Bisimulation Problems for
Basic Parallel Processes

Richard Mayr

LIAFA - Université Denis Diderot - Case 7014 - 2, place Jussieu,
F-75251 Paris Cedex 05. France. E-mail: mayr@liafa.jussieu.fr

Abstract. Strong bisimilarity of Basic Parallel Processes (BPP) is decidable, but
the best known algorithm has non-elementary complexity [7]. On the other hand,
no lower bound for the problem was known. We show that strong bisimilarity of
BPP is co-NP-hard.
Weak bisimilarity of BPP is not known to be decidable, but an NP lower bound
has been shown in [31]. We improve this result by showing that weak bisimilarity
of BPP is �p

�
-hard.

Finally, we show that the problems if a BPP is regular (i.e., finite) w.r.t. strong
and weak bisimilarity are co-NP-hard and �

p
�

-hard, respectively.

1 Introduction
Bisimulation equivalence plays a central role in the theory of process algebras [25].
The decidability and complexity of bisimulation problems for infinite-state systems has
been studied intensively (see [26] for a survey). While many algorithms for bisimulation
problems have a very high complexity, only few lower bounds are known.
The state of the art. Strong bisimilarity of two Petri nets and weak bisimilarity of a
Petri net and a finite automaton is undecidable [13, 14]. Weak bisimilarity for Basic
Parallel Processes (BPP) is NP-hard and weak bisimilarity for context-free processes
(BPA) is PSPACE -hard [31]. However, it is still an open question whether these prob-
lems are decidable.
Some lower bounds for decidable bisimulation problems have been shown in [23].
Strong (and weak) bisimilarity between pushdown automata (PDA) and finite automata
is PSPACE -hard, finiteness of PDA w.r.t. weak and strong bisimilarity also PSPACE -
hard. Finally, both strong bisimilarity of Petri nets and finite automata and finiteness of
Petri nets w.r.t. strong bisimilarity are EXPSPACE -hard. (See the table in Section 5
for a summary of all results on the complexity of bisimulation problems.)
Basic Parallel Processes (BPP) were introduced by Christensen [6] as the fragment
of CCS [25] without communication, restriction and relabeling. They are equivalent
to communication-free nets [8], the subclass of Petri nets [28] where every transition
has exactly one input-place with arc-weight one. While strong (and weak) bisimilar-
ity are undecidable for Petri nets [13], strong bisimilarity is decidable for BPP (i.e.,
communication-free nets) [7]. However, the algorithm in [7] has non-elementary com-
plexity and, to the best of our knowledge, no better algorithm has been found since then.
In spite of this, no lower bound for the problem has been found either.
However, there is a polynomial algorithm for bisimilarity on the restricted subclass of
normed BPP [12]. (A process is normed iff from every reachable state there is a ter-
minating computation.) Thus, it was conjectured that a polynomial algorithm should
also exist for general (unnormed) BPP. This belief was reinforced by the fact that many
other problems for BPP are polynomial: boundedness [17], termination, liveness, (par-
tial) deadlock reachability and (partial) livelock reachability [21, 22]. (On the other

hand there are also hard problems for BPP: reachability is NP-complete [8], some
model checking problems are PSPACE -complete [20, 22] or even undecidable [9].)
Our contribution. We show that strong bisimilarity for BPP is co-NP-hard (thus prov-
ing the above mentioned conjecture wrong). We also show that weak bisimilarity for
BPP is �p

� -hard, thus improving a previously established NP lower bound [31]. Fi-
nally, we show that the problem if a BPP is regular (i.e., finite) w.r.t. strong and weak
bisimilarity is co-NP-hard and �p

� -hard, respectively.

2 Definitions

Let Act � fa� b� c� � � �g and Const � f��X� Y� Z� � � �g be disjoint countably infinite
sets of actions and process constants, respectively. The class of general process expres-
sions G is defined by E ��� � j X j EkE j E�E, where X � Const and � is a special
constant that denotes the empty expression. Intuitively, ‘�’ is a sequential composition
and ‘k’ is a parallel composition. We do not distinguish between expressions related by
structural congruence which is given by the following laws: ‘�’ and ‘k’ are associative,
‘k’ is commutative, and ‘�’ is a unit for ‘�’ and ‘k’.
A process rewrite system (PRS) [24] is specified by a finite set� of rules which have the
formE

a
� F , whereE�F � G,E �� � and a � Act . Const��� and Act��� denote the

sets of process constants and actions which are used in the rules of�, respectively (note
that these sets are finite). Each process rewrite system � defines a unique transition
system where states are process expressions overConst���. Act��� is the set of labels.
The transitions are determined by � and the following inference rules (remember that
‘k’ is commutative):

�E
a
� F � � �

E
a
� F

E
a
� E�

E�F
a
� E��F

E
a
� E�

EkF
a
� E�kF

We extend the notation E
a
� F to elements of Act� in a standard way. Moreover, we

say that F is reachable from E if E
w
� F for some w � Act�.

PDA (S,S) PN (P,P)

BPA (1,S)

FS (1,1)

BPP (1,P)

PAN (P,G)PAD (S,G)

PRS (G,G)

PA (1,G)

Fig. 1. A hierarchy of PRS

Various subclasses of process rewrite systems can
be obtained by imposing certain restrictions on the
form of rules. To specify those restrictions, we first
define the classes S and P of sequential and par-
allel expressions, composed of all process expres-
sions which do not contain the ‘k’ and the ‘�’ op-
erator, respectively. We also use ‘1’ to denote the
set of process constants. The hierarchy of process
rewrite systems is presented in Fig. 1; the restric-
tions are specified by a pair �A�B�, where A and
B are the classes of expressions which can ap-
pear on the left-hand and the right-hand side of
rules, respectively. This hierarchy contains almost
all classes of infinite state systems which have been
studied so far; BPA (Basic Process Algebra, also
called context-free processes), BPP (Basic Parallel
Processes), and PA-processes are well-known [1],

PDA correspond to pushdown automata (as proved by Caucal in [5]), PN correspond
to Petri nets, PRS stands for ‘Process Rewrite Systems’, PAD and PAN are artificial
names made by combining existing ones (PAD = PA+PDA, PAN = PA+PN).
Here we study Basic Parallel Processes (BPP) that correspond to process rewrite sys-
tems of type �1� P �.
We consider the semantical equivalences weak bisimilarity and strong bisimilarity [25]
over transition systems generated by PRS.

Definition 1. The action � is a special ‘silent’ internal action. The extended transition

relation ‘
a
�’ is defined byE

a
� F iff eitherE � F and a � � , orE

� i

� E�
a
� E��

�j

� F
for some i� j � IN�,E�� E�� � G. A binary relationR over process expressions is a weak
bisimulation iff whenever �E�F � � R then for every a � Act: if E

a
� E� then there

is F
a
� F � s.t. �E�� F �� � R and if F

a
� F � then there is E

a
� E� s.t. �E�� F �� � R.

Processes E�F are weakly bisimilar, written E � F , iff there is a weak bisimulation
relating them. Strong bisimulation is defined similarly with

a
� instead of

a
�. Processes

E�F are strongly bisimilar, written E � F , iff there is a strong bisimulation relating
them. The largest (strong or weak) bisimulation is an equivalence relation.

Bisimulation equivalence can also be described by bisimulation games [30, 32] between
two players. One player, the ‘attacker’, tries to prove that two given processes are not
bisimilar, while the other player, the ‘defender’, tries to frustrate this. In every round of
the game the attacker chooses one process and performs an action. The defender must
imitate this move and perform the same action in the other process (possibly together
with several internal � -actions in the case of weak bisimulation). If one player cannot
move then the other player wins. The defender wins every infinite game. Two processes
are bisimilar iff the defender has a winning strategy and non-bisimilar iff the attacker
has a winning strategy.

3 Hardness of Strong Bisimilarity for BPP
STRONG BISIMILARITY OF BPP

Instance: Two BPP processes P� and P�.
Question: P� � P� ?

This problem has been shown to be decidable in [7]. However, the algorithm relies on
Dickson’s Lemma for termination and therefore the algorithm is not primitive recursive.
A polynomial algorithm for bisimilarity on the restricted subclass of normed BPP has
been described in [12], which led to the conjecture that the general problem was also
polynomial. We prove this conjecture wrong by proving a co-NP lower bound. Thus
no polynomial algorithm for strong bisimilarity of BPP can exist, unless P � NP .
First we give an intuition why the general (unnormed) problem is so hard, using the ter-
minology of communication-free Petri nets. The problem if a place in a communication-
free net is unbounded (i.e., if there are reachable states that put arbitrarily high num-
bers of tokens on it) is easily decidable in polynomial time [17]. However, it is not
so easy to determine if the number of tokens on a place really matters w.r.t. bisim-
ilarity, i.e., if states with different numbers of tokens on this place are really differ-
ent w.r.t. bisimilarity (i.e., non-bisimilar). First we consider the simple example �:

X
a
� XkY� X

a
� �� Y

a
� �� Z

a
� Z. The process �X��� is infinite w.r.t. bisimilarity

(since it has infinitely many non-bisimilar reachable states). However, �XkZ��� is fi-
nite w.r.t. bisimilarity, since �XkZ��� � �Z���. We say that in the process �XkZ���
the subprocess �Z��� masks the infiniteness of �X���. In particular, the subprocess
Z has the effect that the number of subprocesses Y doesn’t matter for bisimilarity,
since �Y nkZ��� � �Y mkZ��� for any n�m � IN. Now consider the new system
�� �� � � fZ

a
� �g. The process �XkZ���� is infinite w.r.t. bisimilarity, because

�XkZ����
a
� �X����. We say that by this transition the subprocess X is unmasked.

Of course, this is only a very trivial example of masking and unmasking. In general the
question if a process can be unmasked (i.e., if a place matters w.r.t. bisimilarity) isNP-
hard. Later in this section we use a more complex example of masking and unmasking
to prove this.

For the subclass of normed BPP, finiteness w.r.t. bisimilarity coincides with bounded-
ness. Thus for normed BPP finiteness w.r.t. bisimilarity is decomposable into properties
of subprocesses and decidable in polynomial time. In particular, for normed BPP, the
parallel composition of two infinite processes yields an infinite process. For general
BPP it is different. The parallel composition of infinite processes (w.r.t. bisimilarity)
can yield a process that is finite w.r.t. bisimilarity. Thus, finiteness (or infiniteness)
w.r.t. bisimilarity of a BPP process cannot be decomposed into properties of subpro-
cesses in general. The following example shows this. Let � be

Xi

ai��
�� XikYi� Yi

ai�� � for � � i � n� �

Xn
a��� XnkYn� Yn

an�� �

Then the processX�kX�k � � � kXn is finite w.r.t. bisimilarity, but every subprocess (e.g.
X�kX�kX�) is infinite w.r.t. bisimilarity.

Now we are ready to prove the co-NP lower bound for strong bisimilarity of BPP. We
do this by a polynomial reduction of 3-SAT to the negation of the problem. Let n � IN
and let x�� � � � � xn be boolean variables. A literal is either a variable or the negation of
a variable. A clause is a disjunction of 3 literals. Let Q �� Q� 	 � � � 	Qk be a boolean
formula in 3-CNF over x�� � � � � xn with k clauses. We construct BPPs P� and P� s.t. Q
is satisfiable iff P� �� P�. The set of transition rules � is defined as follows.

For every i � f�� � � � � ng we have Xi
xi� Xi��k�i where �i is a parallel composition

of constants defined as follows: For every j � f�� � � � � kg let Aj be in �i iff the first
literal of Qj is �xi. For every j � f�� � � � � kg let Bj be in �i iff the second literal of
Qj is �xi. For every j � f�� � � � � kg let Cj be in �i iff the third literal of Qj is �xi. For

every i � f�� � � � � ng we have Xi
�x�� Xi��k�i where �i is a parallel composition of

constants defined as follows: For every j � f�� � � � � kg let Aj be in �i iff the first literal
of Qj is xi. For every j � f�� � � � � kg let Bj be in �i iff the second literal of Qj is xi.
For every j � f�� � � � � kg let Cj be in �i iff the third literal of Qj is xi. The intuition is
that by action xi/�xi one chooses the value true/false for the variable xi. Q is satisfiable
iff the assignment of values to the variables can be chosen in such a way that for every
j � f�� � � � � kg at least one of the constants fAj � Bj � Cjg does not appear.

�xn

Zk��Yk

Xn��

Z�

Wj

� � �

d � fal� bl� cl j l � kg

x� �x�

X�

Xn

A� B� C� Ak Bk Ck

b�a� c� ak bk ck

xn

Wk

ck

e

for � � j � k

� � �

Zj��Yj

a�

b�

c�

d

cj

ak

bk

aj��

bj��

cj��

	

aj

bj

d

X�

d � fal� bl� cl j l � jg

� � �all

all
abc

all
abc

all
abc

abc

Fig. 2. � in Petri net notation. ‘All abc’ means all actions ai� bi� ci for every i � f�� � � � � kg.

The other transition rules are as follows:

Aj

aj
� Aj for � � j � k

Bj

bj
� Bj for � � j � k

Cj

cj
� Cj for � � j � k

Xi

dj
� Xi for � � i � n� �, � � j � k, dj � faj � bj � cjg

Xn��
e
� Y�k � � � kYk

Yj
dj
� Zj��kWj for � � j � k, dj � faj � bj � cjg

Wj
dl�Wj for � � j � k, � � l � j, dl � fal� bl� clg

Zj

dj
� � for � � j � k, dj � faj � bj � cjg

Zk��
�
� Zk��

Figure 2 gives a rough description of � in Petri net notation. Let P� �� �X�kZ�� ��
and P� �� �X�� ��.

Lemma 2. If Q is satisfiable then P� �� P�.

Proof. We show that the attacker has the following winning strategy. Since Q is satisfi-
able, there exists an assignment of variables that makes Q true. The attacker can choose
this assignment by performing the corresponding actions xi or �xi for � � i � n in
either P� or P�. Then the attacker does the action e. The defender can only respond by
doing exactly the same. This yields the new states P �

� and P �

� with P �

� � P �

�kZ�. For
every j � f�� � � � � kg there is at least one constant Dj � fAj � Bj � Cjg that does not
appear in P �

� or P �

�. Let dj be the action corresponding to Dj , e.g. if D� � B� then
d� � b�.

The attacker performs the action d� by the rule Z�

d�� � in P �

�. Since neither D� nor Z�

occurs in P �

� the defender can only respond by Y�
d�� Z�kW�. Let the resulting states

be P ��

� and P ��

� . Now the attacker performs Z�

d�� � in P ��

� to which the defender can

only respond by Y�
d�� Z�kW� in P ��

� and so on with Zj , dj for � � j � k. In the end

the defender is forced to perform the transition Yk
dk� Zk��kWk. Now the action 	 is

enabled in one process (by the constant Zk��), but not in the other. Thus the attacker
can win and P� �� P�. ut

Lemma 3. If Q is not satisfiable then P� � P�.

Proof. Let AS (for ‘assignments’) be the set of subterms containing only constants
Aj � Bj � Cj for � � j � k. We call a term t � AS a faulty assignment iff there is at least
onem � f�� � � � � kg s.t. all three constantsAm� Bm� Cm occur in t. We call the minimal
such m the index of t, denoted ind�t�. Let FAS be the set of faulty assignments. Since
Q is not satisfiable, every assignment t that is created by performing one of each pair
of actions x�/�x� . . .xn/�xn is a faulty assignment. Any incomplete assignment t� that is
created by an incomplete prefix of choices from x�/�x� . . .xj /�xj (with j � n) must in
the end become a faulty assignment once all choices from x�/�x� . . .xn/�xn have been
made. Let IFAS j be the set of these incomplete faulty assignments created by choosing
one of each pair of actions x�/�x� . . .xj /�xj . Let Oj be the set of terms containing only
constants Yl�Wl� Zl� Zl�� with l � j. To keep the notation simple we define W� �� �.
The symmetric closure of the following relation is a bisimulation.

f�XiktkZu
� � XiktkZv

� � j � � i � n 	 t � IFAS i�� 	 u� v � IN�g �
f�Xn��ktkZu

� � Xn��ktkZv
� � j t � FAS 	 u� v � IN�g �

f�Y�k � � � kYkktkZu
� � Y�k � � � YkktkZ

v
� � j t � FAS 	 u� v � IN�g �

f�Yjk � � � kYkkWj��ktk
� Yj��k � � � kYkktkZj��kWjk
�� j
t � FAS 	 j � � � ind�t� 	
�
� � Oj��g �
f�Yjk � � � kYkktkWj��k
� Yj��k � � � kYkktkWjk
�� j
t � FAS 	 j � � � ind�t� 	
�
� � Oj��g �
f�Yj��k � � � kYkktkZj��kWjk
� Yj��k � � � kYkktkWjk
�� j
t � FAS 	 j � � � ind�t� 	
�
� � Oj��g �
f�WjkZu

j��kYj��k � � � kYkk
kt� WjkZu
j��kYj��k � � � kYkk

�kt� j
u � f�� �g 	 t � FAS 	 � � j � k 	
�
� � Oj��g

Since �X�kZ�� X�� is in this relation, we get P� � P�. ut

Theorem 4. Strong bisimilarity of BPP is co-NP-hard.
Proof. Directly from Lemma 2 and Lemma 3 and the NP-completeness of 3-SAT.

Note that both P� and P� are bounded, i.e., they have only finitely many reachable
states. It is easy to see that in general the number of reachable states of P��P� is expo-
nential in the size of the description of �. Moreover, the number of reachable states of
P��P� is even exponential up to strong bisimilarity, i.e., they generally have an expo-
nential number of non-bisimilar reachable states. Let t � FAS . Analogously to the def-
inition of the index of t we define ind ��t� as the maximal m s.t. all three Am� Bm� Cm

appear in t. Consider the reachable states Xn��kt�kt�, where t�kt� � FAS encodes
a faulty assignment and the constants Aj � Bj � Cj in t� have j � ind ��t�kt�� and the
constants Aj � Bj � Cj in t� have j � ind ��t�kt��. In particular ind ��t�kt�� � ind ��t��.
While the particular structure of t� does not matter for bisimilarity (as long as t� �
FAS), the structure of t� does. We have Xn��kt�kt� �� Xn��kt�kt�� for every t�� �� t�.
Since there are in general exponentially many different such t�� it follows that P��P�
is at least exponential w.r.t. strong bisimilarity. Thus, our construction does not yield a
lower bound for the problem of strong bisimilarity of a BPP and a finite-state process
(with polynomially many states). It seems to be impossible to prove a lower bound for
this asymmetric problem, since whenever one encodes a sufficiently complex problem
(e.g. SAT) into a BPP, this BPP is never bisimilar (neither strongly nor weakly) to any
finite-state system of polynomial size (although it can be bisimilar to a finite-state sys-
tem of exponential size). Thus, we conjecture that strong and weak bisimilarity of a
BPP and a finite-state system is decidable in polynomial time. (Is is known that strong
and weak bisimilarity of a normed BPP and a finite-state system is polynomial [18]).
Now we consider the strong finiteness problem.

STRONG FINITENESS OF BPP

Instance: A BPP process P .
Question: Does there exist a finite-state system F s.t. P � F ?

Finiteness w.r.t. strong bisimilarity is decidable even for general Petri nets [14], and this
result carries over immediately to communication-free nets (i.e., BPP). However, the al-
gorithm in [14] consists of two semidecision procedures and gives no upper bound on
the complexity. For general Petri nets one gets an EXPSPACE lower bound by reduc-
ing the problem if a given place can ever become marked to the finiteness problem. For
general Petri nets the problem if a given place can ever become marked isEXPSPACE -
hard [19, 28]. For communication-free nets (i.e., BPP) this is different. While the reach-
ability problem is NP-complete for communication-free nets [8], it is easy to see that
the problem if a given place can ever become marked in a communication-free net is
polynomial. Thus, one does not obtain a lower bound for the strong finiteness problem
of BPP that way.
It is clear that a constructive solution to the problem, i.e., constructing the finite-state
system F if it exists, must require at least exponential time. This is because there are
BPPs s.t. the smallest finite-state system F that is bisimilar to them has an exponential
number of states (in the size of the description of the BPP). However, it is not immedi-
ately clear if a simple yes/no answer to the strong finiteness problem must be as hard.
The following theorem shows this.

Theorem 5. Strong finiteness of BPP is co-NP-hard.

Proof. By a polynomial reduction of 3-SAT to strong infiniteness. Let the formula Q
and the set of rules � be defined as before and let �� �� � � fXn��

p
� Xn��kZ�g.

We show that the process X� w.r.t. the set of rules ��, denoted �X�� �
��, is infinite

w.r.t. strong bisimilarity iff Q is satisfiable.

 If Q is satisfiable then there are infinitely many reachable states Y�k � � � kYkk
kZm
�

for every m � IN�, where
 is a term that encodes a satisfying assignment of Q.
This means that
 is a parallel composition of constantsAj � Bj � Cj where for every
j � f�� � � � � kg at least one of the constants Aj � Bj � Cj does not occur in
. How-
ever, for every m� �� m� we have Y�k � � � kYkk
kZ

m�

� �� Y�k � � � kYkk
kZ
m�

� ,
because the attacker has a winning strategy similar to the one in Lemma 2. Thus
�X�� �

�� is infinite w.r.t. strong bisimilarity.

� Let ��� �� � � fXn��
p
� Xn��g. The process �X�� �

��� has finitely many reach-
able states. (However, �X�� �

��� has an exponential (in the size of ���) number of
non-bisimilar reachable states.) If Q is not satisfiable then �X�� �

�� � �X�� �
���

and is thus finite w.r.t. bisimilarity. The bisimulation relation is the same as in
Lemma 3. ut

The previous construction shows that the problem if a place can be unmasked (i.e.,
made to count w.r.t. bisimulation) is NP-hard. Here this particular place was Z�.

4 Hardness of Weak Bisimilarity for BPP

WEAK BISIMILARITY OF BPP

Instance: Two BPP processes P� and P�.
Question: P� � P� ?

It is still an open question if this problem is decidable. It has been shown to be semide-
cidable in [8], using the facts that weak bisimulation equivalence on BPPs is semilinear
(since it is a congruence on a finitely generated commutative semigroup) and that it is
decidable if a given semilinear relation on a BPP is a weak bisimulation. AnNP lower
bound for this problem has been shown in [31] (by reduction of a variant of the bin-
packing problem), and the co-NP lower bound of Theorem 4 carries over immediately
to weak bisimilarity. Here we prove a �p

� -lower bound (in the polynomial hierarchy)
that subsumes these results.
Let Q �� Q� 	 � � � 	 Qk be a boolean formula in 3-CNF over the boolean variables
x�� � � � � xn� y�� � � � � yn with k clauses. We construct BPP processes P�, P� s.t. P� � P�
iff ��x�� � � � � xn���y�� � � � � yn�Q. Since this problem is �p

� -complete, we get a �p
� -

lower bound for the problem of weak bisimilarity.
Let �i be a parallel composition of constants in fQ�� � � � � Qkg s.t. constant Qj appears
in �i iff xi makes clause Qj true (i.e., xi appears positively in Qj). Let �i be a parallel
composition of constants in fQ�� � � � � Qkg s.t. constant Qj appears in �i iff �xi makes
clause Qj true (i.e., xi appears negatively in Qj). Let
i be a parallel composition of
constants in fQ�� � � � � Qkg s.t. constant Qj appears in
i iff yi makes clause Qj true.
Let
i be a parallel composition of constants in fQ�� � � � � Qkg s.t. constant Qj appears

in
i iff �yi makes clause Qj true. The set of transition rules � is defined by

Xi
xi� Xi��k�i for � � i � n

Xi
�xi� Xi��k�i for � � i � n

X �

i

xi� X �

i��k�i for � � i � n

X �

i

�xi� X �

i��k�i for � � i � n

Xn��
a
� Y�k � � � kYn

X �

n��

a
� Y�k � � � kYn

X �

n��

a
� Z

Yi
�
�
i for � � i � n

Yi
�
�
i for � � i � n

Qj

qj
� Qj for � � j � k

Z
qj
� Z for � � j � k

Let P� �� �X�� �� and P� �� �X �

�� ��.

Lemma 6. If ��x�� � � � � xn���y�� � � � � yn�Q is false then P� �� P�.
Proof. If ��x�� � � � � xn���y�� � � � � yn�Q is false then ��x�� � � � � xn���y�� � � � � yn�
Q.
The attacker chooses these values for x�� � � � � xn by choosing xi��xi. The defender can
only copy these moves. Then the attacker chooses the transition X �

n��

a
� Z. The de-

fender can only respond by Xn��
a
� Y�k � � � kYn and then a sequence of silent � -

actions ending in a state t. By definition of � and since ��x�� � � � � xn���y�� � � � � yn�
Q
there will be at least one action qj (with � � j � k) that is not enabled by t (and cannot
made to be enabled by � -moves). However, all qj are enabled by Z. Thus, the attacker
has a winning strategy and P� �� P�. ut

Lemma 7. If ��x�� � � � � xn���y�� � � � � yn�Q then P� � P�.
Proof. The attacker can choose the assignment for x�� � � � � xn. The defender can only
imitate these choices. If the attacker chooses the transition Xn��

a
� Y�k � � � kYn or

X �

n��

a
� Y�k � � � kYn then the defender can respond in such a way that the two pro-

cesses become equal and the defender wins. If the attacker chooses X �

n��

a
� Z then

the defender can (by a long internal move of � -actions) choose the values for y�� � � � � yn
on his side. Since ��x�� � � � � xn���y�� � � � � yn�Q there are choices for y�� � � � � yn s.t. in
the resulting state all actions q�� � � � � qk are permanently enabled. Since q�� � � � � qk are
also permanently enabled by Z in the other process and all other actions are not, the
defender wins. Thus, the defender has a winning strategy and P� � P�. ut

Theorem 8. Weak bisimilarity of BPP is �p
� -hard.

Proof. Directly from Lemma 6 and Lemma 7.

WEAK FINITENESS OF BPP

Instance: A BPP process P .
Question: Does there exist a finite-state system F s.t. P � F ?

We show that the weak finiteness problem for BPP is also �p
� -hard by using the pre-

viously defined processes P� and P� and constructing a new process P that is weakly

finite iff P� � P�. Let �� be � � � , where � is the following set of transition rules:
I

�
� IkC I

�
� � C

c
� � D

c
� E D

c
� E� D

e
� X�kS

D
e
� X �

�kS E
c
� E E�

c
� E� E

e
� X�kS E�

e
� X �

�kS S
c
� S

Let P �� �IkD����.

Lemma 9. If P� �� P� then P is not weakly finite.

Proof. P has infinitely many non-weakly-bisimilar states DkC i for all i � IN. It suf-
fices to show that DkCj �� DkCi for j � i. The attacker has the following winning
strategy. He does action c exactly i�� times inDkCj and reaches the state DkCj�i��.
The defender can respond in different ways in DkC i, but the reached state will always
be either EkCk or E�kCk for some k � i. In the first case the attacker does the tran-
sition D

e
� X �

�kS. The defender can only respond by E
e
� X�kS and the new state

in the bisimulation game is �X �

�kSkC
j�i��� X�kSkCk�. This is not weakly bisimilar,

because P� �� P�. The second case is symmetric with X� and X �

� exchanged. ut

Lemma 10. If P� � P� then P is weakly finite.

Proof. Let � � be � whereX �

� is replaced byX� and��� �� ��� �. Since P� � P� and
weak bisimilarity is a congruence on BPP, we get P � �IkD���� � �IkD�����. It is
easy to see that �IkD����� � �E�����, because S

c
� S. Thus P � �E�����. However,

�E����� has only finitely many reachable states. ut

Theorem 11. Weak finiteness of BPP is �p
� -hard.

Proof. By Lemmas 6, 7, 9 and 10. ut

5 Conclusion
The following table summarizes known results about the complexity of bisimulation
problems for several classes of infinite-state systems. New results are in boldface.

� F � � F �

FS P [2, 27] P [2, 27] P [2, 27] P [2, 27]

BPA P [18] � ��EXPTIME [3] P [18] PSPACE -hard [31]

PDA
� EXPTIME [15]
PSPACE -hard [23]

decidable [29]
PSPACE -hard [23]

� EXPTIME [15]
PSPACE -hard [23]

PSPACE -hard [31]

BPP � PSPACE [15]
decidable [7]
co-NP-hard

� PSPACE [15] �
p

� -hard

PA decidable [15] co-NP-hard decidable [15] PSPACE -hard [31]

PAD
decidable [15]
PSPACE -hard [23]

PSPACE -hard [23]
decidable [15]
PSPACE -hard [23]

PSPACE -hard [31]

PN
decidable [16, 15]
EXPSPACE -hard

undecidable [13] undecidable [13] undecidable [13]

PAN EXPSPACE -hard undecidable [13] undecidable [13] undecidable [13]

PRS EXPSPACE -hard undecidable [13] undecidable [13] undecidable [13]

The different columns in the table above show the results about the following prob-
lems: strong bisimilarity with finite automata, strong bisimilarity of two infinite-state
systems, weak bisimilarity with finite automata and weak bisimilarity of two infinite-
state systems.
The following table summarizes results about the problems of strong and weak finite-
ness. New results are in boldface.

strong finiteness weak finiteness

BPA � ��EXPTIME [4, 3] ?

PDA PSPACE -hard [23] PSPACE -hard [23]

BPP
decidable [14]
co-NP-hard

�
p

�-hard

PA co-NP-hard �
p

�-hard

PAD PSPACE -hard [23] PSPACE -hard [23]

PN
decidable [14]
EXPSPACE -hard

undecidable [14]

PAN/PRS EXPSPACE -hard undecidable [14]

Some more results are known about the restricted subclasses of these systems that sat-
isfy the ‘normedness condition’ (e.g. [12, 11, 10, 17, 18]).

References

[1] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in Theoretical Com-
puter Science, 18, 1990.

[2] J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is P-complete. Formal Aspects
of Computing, 4:638–648, 1992.

[3] O. Burkart, D. Caucal, and B. Steffen. An elementary bisimulation decision procedure for
arbitrary context-free processes. In MFCS’95, volume 969 of LNCS. Springer Verlag, 1995.

[4] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process taxonomy.
In U. Montanari and V. Sassone, editors, Proceedings of CONCUR’96, volume 1119 of
LNCS. Springer Verlag, 1996.

[5] D. Caucal. On the regular structure of prefix rewriting. Journal of Theoretical Computer
Science, 106:61–86, 1992.

[6] S. Christensen. Decidability and Decomposition in Process Algebras. PhD thesis, Edin-
burgh University, 1993.

[7] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalence is decidable for Basic
Parallel Processes. In E. Best, editor, Proceedings of CONCUR 93, volume 715 of LNCS.
Springer Verlag, 1993.

[8] J. Esparza. Petri nets, commutative context-free grammars and Basic Parallel Processes.
In Horst Reichel, editor, Fundamentals of Computation Theory, volume 965 of LNCS.
Springer Verlag, 1995.

[9] J. Esparza and A. Kiehn. On the model checking problem for branching time logics and Ba-
sic Parallel Processes. In CAV’95, volume 939 of LNCS, pages 353–366. Springer Verlag,
1995.

[10] Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is decidable for normed process
algebra. In Proc. of ICALP’99, volume 1644 of LNCS. Springer Verlag, 1999.

[11] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisimilarity
of normed context-free processes. Theoretical Computer Science, 158:143–159, 1996.

[12] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial-time algorithm for deciding bisimu-
lation equivalence of normed Basic Parallel Processes. Journal of Mathematical Structures
in Computer Science, 6:251–259, 1996.

[13] P. Jančar. Undecidability of bisimilarity for Petri nets and some related problems. Theoret-
ical Computer Science, 148:281–301, 1995.

[14] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to bisimulation. In F. Meyer
auf der Heide and B. Monien, editors, Proceedings of ICALP’96, volume 1099 of LNCS.
Springer Verlag, 1996.

[15] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equivalences with finite-state
processes. In Proc. of ICALP’98, volume 1443 of LNCS. Springer Verlag, 1998.

[16] P. Jančar and F. Moller. Checking regular properties of Petri nets. In Insup Lee and
Scott A. Smolka, editors, Proceedings of CONCUR’95, volume 962 of LNCS. Springer
Verlag, 1995.

[17] A. Kučera. Regularity is decidable for normed PA processes in polynomial time. In Foun-
dations of Software Technology and Theoretical Computer Science (FST&TCS’96), volume
1180 of LNCS. Springer Verlag, 1996.

[18] A. Kučera and R. Mayr. Weak bisimilarity with infinite-state systems can be decided in
polynomial time. In Proc. of CONCUR’99, volume 1664 of LNCS. Springer Verlag, 1999.

[19] R. Lipton. The reachability problem requires exponential space. Technical Report 62,
Department of Computer Science, Yale University, January 1976.

[20] R. Mayr. Weak bisimulation and model checking for Basic Parallel Processes. In Founda-
tions of Software Technology and Theoretical Computer Science (FST&TCS’96), volume
1180 of LNCS. Springer Verlag, 1996.

[21] R. Mayr. Tableau methods for PA-processes. In D. Galmiche, editor, Analytic Tableaux
and Related Methods (TABLEAUX’97), volume 1227 of LNAI. Springer Verlag, 1997.

[22] R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-State Sys-
tems. PhD thesis, TU-München, 1998.

[23] R. Mayr. On the complexity of bisimulation problems for pushdown automata. 2000.
[24] R. Mayr. Process rewrite systems. Information and Computation, 156(1):264–286, 2000.
[25] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[26] F. Moller. Infinite results. In Ugo Montanari and Vladimiro Sassone, editors, Proceedings

of CONCUR’96, volume 1119 of LNCS. Springer Verlag, 1996.
[27] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal of Computing,

16(6):973–989, 1987.
[28] J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, 1981.
[29] G. Sénizergues. Decidability of bisimulation equivalence for equational graphs of finite

out-degree. In Proc. of FOCS’98. IEEE, 1998.
[30] C. Stirling. The joys of bisimulation. In Proc. of MFCS’98, volume 1450 of LNCS, pages

142–151. Springer Verlag, 1998.
[31] J. Střı́brná. Hardness results for weak bisimilarity of simple process algebras. Electronic

Notes in Theoretical Computer Science (ENTCS), 18, 1998.
[32] W. Thomas. On the Ehrenfeucht-Fraı̈ssé game in theoretical computer science. In Proc. of

TAPSOFT’93, volume 668 of LNCS, pages 559–568. Springer Verlag, 1993.

Simulation Preorder over Simple Process Algebras

Antonı́n Kučera1

Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic

and

Richard Mayr2

Institut für Informatik, TU München, Arcisstr. 21, 80290 München, Germany

E-mail: tony@fi.muni.cz; mayrri@in.tum.de

We consider the problem of simulation preorder/equivalence between infinite-

state processes and finite-state ones. First, we describe a general method how

to utilize the decidability of bisimulation problems to solve (certain instances of)

the corresponding simulation problems. For certain process classes, the method

allows to design effective reductions of simulation problems to their bisimulation

counterparts and some new decidability results for simulation have already been

obtained in this way.

Then we establish the decidability border for the problem of simulation pre-

order/equivalence between infinite-state processes and finite-state ones w.r.t. the

hierarchy of process rewrite systems. In particular, we show that simulation pre-

order (in both directions) and simulation equivalence are decidable in �������

between pushdown processes and finite-state ones. On the other hand, simulation

preorder is undecidable between PA and finite-state processes in both directions.

These results also hold for those PA and finite-state processes which are deter-

ministic and normed, and thus immediately extend to trace preorder. Regularity

(finiteness) w.r.t. simulation and trace equivalence is also shown to be undecidable

for PA.

Finally, we prove that simulation preorder (in both directions) and simulation

equivalence are intractable between all classes of infinite-state systems (in the hi-

erarchy of process rewrite systems) and finite-state ones. This result is obtained by

showing that the problem whether a BPA (or BPP) process simulates a finite-state one

is ������ -hard, and the other direction is co-��-hard; consequently, simulation

equivalence between BPA (or BPP) and finite-state processes is also co-��-hard.

1

2 KUČERA AND MAYR

Key Words: concurrency, simulation equivalence, infinite-state systems

1. INTRODUCTION

We study the decidability and computational complexity of checking simulation preorder
and equivalence between certain infinite-state systems and finite-state ones. The motivation
is that the intended behavior of a process can often be easily specified by a finite-state
system, while the actual implementation may contain components which are infinite-state
(e.g., counters, buffers, recursive procedures). The task of formal verification is to prove
that the specification and the implementation are equivalent.

The same problem has been studied recently for strong and weak bisimilarity [14, 23, 16,
13], and it has been shown that these equivalences are not only decidable, but also tractable
between certain infinite-state processes and finite-state ones. Those issues (namely the
complexity ones) are dramatically different from the ‘symmetric’ case when we compare
two infinite-state processes. Here we consider (and answer) analogous questions for
simulation, establishing both the decidability and tractability border w.r.t. the hierarchy of
process rewrite systems [25] (see Fig. 2).

The state of the art: Simulation preorder/equivalence is known to be undecidable for
BPA [9] and BPP [11] processes. An interesting positive result is [1] which shows that
simulation preorder (and hence also equivalence) is decidable for one-counter nets, which
are ‘weak’ one-counter automata where the counter cannot be tested for zero explicitly
(one-counter nets are computationally equivalent to the subclass of Petri nets with at most
one unbounded place). A simpler proof has been given later in [17] where it is also
shown that simulation preorder/equivalence for ‘general’ one-counter automata is already
undecidable. Simulation with finite-state systems has been first studied in [16]; in contrast
to the ‘symmetric’ case, simulation preorder between Petri nets and finite-state processes
is decidable in both directions. Moreover, a related problem of regularity (finiteness) of
Petri nets w.r.t. simulation equivalence is proved to be undecidable. Recently, it has been
shown in [21] that simulation preorder between one-counter nets and finite-state processes
is decidable in polynomial time in both directions (while, for example, weak bisimilarity
between one-counter nets and finite-state processes is still intractable—a �� -hardness
results for this problem has been demonstrated in [20]). Moreover, in [21] it is also shown
that simulation equivalence between one-counter automata and finite-state processes is
already co-��-hard.

Our contribution: In Section 3 we study the relationship between bisimilarity and
simulation equivalence. Our effort is motivated by a general trend that problems for
bisimilarity (equivalence, regularity) are often decidable, but the corresponding problems
for simulation equivalence are not. We propose a method how to use existing algorithms
for ‘bisimulation’ problems to solve certain instances of the corresponding (and possibly
undecidable) ‘simulation’ ones. Such techniques are interesting from a practical point of
view, as only small instances of undecidable problems can be solved in an ad-hoc fashion,
and some kind of computer support is necessary for problems of ‘real’ size. Recently, the

�On leave at the Institute for Informatics, Technical University Munich, Germany. Supported by a Research
Fellowship granted by the Alexander von Humboldt Foundation and by the Grant Agency of the Czech Republic,
grant No. 201/00/0400.

�This work was partly supported by DAAD Post-Doc grant D/98/28804.

SIMULATION OVER PROCESS ALGEBRAS 3

method has also been used in [15] to reduce certain simulation problems for one-counter
nets to the corresponding bisimulation problems for one-counter automata (which had been
known to be decidable); some new decidability results have been obtained in this way.

In Section 4 we establish the decidability border of Fig. 2. First we prove that
simulation preorder between pushdown processes (PDA) and finite-state ones is decid-
able in ������� in both directions. Consequently, simulation equivalence is also in
������� . Then we show that simulation preorder between PA and finite-state processes
is undecidable in both directions. It is rather interesting that the undecidability results
hold even for those PA and finite-state processes which are deterministic and normed.
Simulation equivalence between such processes is decidable (it coincides with bisimilarity
[14]); however, as soon as we allow just one nondeterministic state in the PA processes,
simulation equivalence becomes undecidable. We also show that all the obtained unde-
cidability results can be formulated in a ‘stronger’ form—it is possible to fix a PA or a
finite-state process in each of the mentioned undecidable problems. Then we demonstrate
that regularity of (normed) PA processes w.r.t. simulation equivalence is also undecidable.
Again, it contrasts with regularity w.r.t. bisimilarity for normed PA processes, which is
decidable in polynomial time [19]. All of the obtained undecidability results also hold for
trace preorder and trace equivalence, and therefore they might be also interesting from a
point of view of ‘classical’ automata theory (see the last section for further comments).

In Section 5 we concentrate on the complexity issues for simulation preorder and equiva-
lence with finite-state processes. We prove that the problem whether a BPA (or BPP) process
simulates a finite-state one is ����	� -hard, and the other direction is co-��-hard. Con-
sequently, simulation equivalence between BPA (or BPP) and finite-state processes is also
co-��-hard. Hence, the main message of this section is that simulation with finite-state
systems is intractable for all classes of infinite-state systems of the hierarchy shown in
Fig. 2. It contrasts sharply with the complexity issues for strong and weak bisimilarity; for
example, weak bisimilarity between BPA and finite-state processes, and between normed
BPP and finite-state processes is in � [23].

In the last section we give a summary of existing results in the area of comparing infinite-
state systems with finite-state ones and discuss language-theoretic aspects of the obtained
results.

2. DEFINITIONS

In concurrency theory, a process is typically defined to be a state in a transition system
(which is a general and widely accepted model of discrete systems).

���������� ��	� A transition system is a triple � � ������� where � is a set of
states, � is a set of actions, and� � � ��� � is a transition relation.

As usual, we write �
�
� � instead of ��� �� �� � � and we extend this notation in the

natural way to elements of ��. We say that a state � is reachable from a state � iff �
�
� �

for some � � ��. Furthermore, � is said to be image-finite iff for all � � � and � � � the
set �� � �

�
� �	 is finite; � is deterministic if each such set is of size at most �.

4 KUČERA AND MAYR

f g h

b c

a a a a

b b c b cc

a a

FIG. 1. Processes � , �, and �

2.1. Trace, Simulation, and Bisimulation Equivalence
In this paper we compare infinite-state processes with finite-state ones w.r.t. certain ‘lev-

els’ of their semantical sameness. Those ‘levels’ are formally defined as certain preorders
and equivalences over the class of all processes (i.e., states in transition systems).

We start with trace preorder and trace equivalence, which are very similar to the ‘clas-
sical’ notions of language inclusion and language equivalence of automata theory.

���������� ���� Let � � ������� be a transition system. We say that � � �
� � is
a trace of a process � � � iff �

�
� �� for some �� � �. Let ����� be the set of all traces of

�. We write �
� � iff ����� � �����. Moreover, we say that � and � are trace equivalent,
written � �� �, iff ����� � �����.

In concurrency theory, trace equivalence is usually considered as being too coarse.
A plethora of finer ‘behavioral’ equivalences have been proposed (see, e.g., [30] for an
overview). Simulation and bisimulation equivalence are of special importance and their
accompanying theory has been developed very intensively.

���������� ��
� Let � � ������� be a transition system. A binary relation
� � � � � is a simulation if whenever ��� �� � � then for each � � �
�

if �
�
� ��� then �

�
� �� for some �� such that ���� ��� � �

A symmetric simulation is called a bisimulation. A process � is simulated by a process �,
written �
� �, if there is a simulation � such that ��� �� � �. We say that � and � are
simulation equivalent, written � �� �, iff �
� � and �
� �. Similarly, we say that � and �
are bisimilar (or bisimulation equivalent), written � � �, iff there is a bisimulation relating
them.

It follows immediately from Definition 2.2 and 2.3 that trace equivalence is coarser than
simulation equivalence which is coarser than bisimilarity. Moreover, these containments
are proper. To see this, consider the processes �� 	�
 of Fig. 1. Obviously � � � 	 ��
.
Furthermore, � �� 	 but � ���
 ��� 	, and � �� 	 ��
 �� � .

���
�� ��	� All of the introduced equivalences can also be used to relate states of
different transition systems. Formally, we can consider two transition systems to be a single
one by taking their disjoint union.

SIMULATION OVER PROCESS ALGEBRAS 5

Another natural (and studied) problem is the decidability of regularity (i.e., ‘semantical
finiteness’) of processes w.r.t. a given behavioral equivalence.

���������� ���� A process � is regular w.r.t. bisimulation (or simulation, trace)
equivalence iff there is a finite-state process � such that � � � (or � �� � , � �� � ,
respectively).

2.2. Process Rewrite Systems
In this paper, we use the syntax of process rewrite systems [25] to describe processes.

This model is especially suitable for our purposes as it allows to define most of the known
(i.e., studied) classes of infinite-state systems in a uniform and succinct way. Similar
formalisms for describing processes are used in [3]. However, process rewrite systems
have the advantage that they can also describe classes of systems, like PA, that contain both
the operators for sequential and parallel composition. A formal definition is as follows:
Let �
� � ��� �� ��

	 and 	
��� � ����� ��

	 be countably infinite sets of actions
and process constants, respectively. The set of general process expressions, denoted �, is
defined by the following abstract syntax equation:

� ��� � � � � �
� � �
�

Here � ranges over 	
��� and � denotes the empty expression. Intuitively, the ‘
’
operator corresponds to a sequential composition, while the ‘
’ operator models a simple
form of parallelism. In the rest of this paper we do not distinguish between expressions
related by structural congruence which is the smallest congruence relation over process
expressions such that the following laws hold:

� associativity for ‘
’ and ‘
’
� commutativity for ‘
’
� ‘�’ as a unit for ‘
’ and ‘
’.

���������� ���� A process rewrite system is a finite set � of rules which are of
the form �

�
� � , where � � �
� and ��� � �, � �� � are process expressions. The

(finite) sets of process constants and actions which are used in the rules of � are denoted
by 	
������ and �
����, respectively.

Each system � determines a unique transition system where states are process expres-
sions over 	
������, the set of labels is �
����, and transitions are determined by � and
the following inference rules (remember that ‘
’ is commutative):

��
�
� � � � �

�
�
� �

�
�
� ��

�
�
�
� ��
�

�
�
� ��

�
�
�
� ��
�

All notions and properties of transition systems can be also used for processes of process
rewrite systems in the following sense: We say that a process � of � has a property � iff
the part of the transition system generated by � which is reachable from� has the property
�. (Observe that, e.g., � can be deterministic even if the transition system generated by �

is not deterministic.)

6 KUČERA AND MAYR

PDA (S,S) PN (P,P)

BPA (1,S)

FS (1,1)

BPP (1,P)

PAN (P,G)PAD (S,G)

PRS (G,G)

PA (1,G)

decidability

tractability

FIG. 2. A hierarchy of process rewrite systems with the decidability/tractability border for simulation with
finite-state processes

Various subclasses of process rewrite systems can be obtained by imposing certain
restrictions on the form of the rules. To specify those restrictions, we first define the classes
� and � of sequential and parallel expressions, composed of all process expressions which
do not contain the ‘
’ and the ‘
’ operator, respectively. For short, we also use � to denote
the set 	
��� � ��	. A hierarchy of process rewrite systems is presented in Fig. 2; the
restrictions are specified by a pair �����, where � and � are the classes of expressions
which can appear on the left-hand and the right-hand side of rules, respectively 3. The set
of states of a system � which belongs to the subclass determined by ����� is then formed
by all expressions of � which contain only the constants of 	
������. (In Fig. 2 we also
indicated the decidability/tractability border for simulation preorder and equivalence with
finite-state systems which is established in the following sections.) This hierarchy contains
a variety of widely studied classes of infinite state systems; BPA, BPP, and PA processes
are well-known [2], PDA correspond to pushdown processes (as proved by Caucal in [6]),
PN correspond to Petri nets (see, e.g., [29]), etc.

It can be shown that the hierarchy of Fig. 2 is strict w.r.t. bisimulation semantics [25];
for example, there is a PN process for which there is no bisimilar PAD process, there is a
PDA process for which there is no bisimilar BPA or BPP process, etc.

Sometimes we also work with the subclass of normed process rewrite systems; a process
� of� is normed if�

�
� � for some� � �
�� (intuitively, this condition means that� can

successfully terminate). A system � is normed if each of its processes is normed. Observe
that for every PA (and hence also BPA, BPP, or FS) system � we have that � is normed
iff each � � 	
������ is normed. The extra condition of normedness can substantially
simplify certain bisimilarity-problems; for example, regularity w.r.t. bisimilarity is easily

�It has been shown in [25] that it does not make much sense to consider those restricted classes where � is
more general than � or incomparable to �. Therefore, we only study the subclasses for which � � �.

SIMULATION OVER PROCESS ALGEBRAS 7

decidable for normed PA processes in polynomial time [19], while the general problem is
open and seems to be complicated. However, normedness is not a particular advantage
when one tries to solve problems related to simulation equivalence, as we shall see in the
next sections.

2.3. Minsky Machines
Almost all undecidability results in this paper are obtained by reduction from the halting

problem for Minsky counter machines.

���������� ���� A counter machine� with nonnegative counters ��� ��� � � � � �� is a
sequence of instructions

� � INS�
� � INS�
...
� � � � INS���
� � ����

where each INS� (� � �� ��

� � � �) is in one of the following two forms (assuming
� � �� ��� ��� � �, � � � � �)

� �� �� �� � �� ���� �

� �� �� � 	 ���	 ���� �� ��
� ��� �� �� � �� ���� ����

The halting problem, i.e., the question whether or not�will reach its ���� instruction,
is undecidable even for Minsky machines with two counters initialized to zero [27].

3. THE RELATIONSHIP BETWEEN SIMULATION AND BISIMULATION
EQUIVALENCE

In this section we concentrate on the relationship between simulation and bisimulation
equivalence. It is a general trend that decidability results for bisimulation equivalence are
positive, while the ‘same’ problems for simulation equivalence are undecidable. Major
examples of that phenomenon come from the area of equivalence-checking (bisimilarity
is decidable in various classes of infinite-state processes, while simulation equivalence is
not), and from the area of regularity-testing (finiteness up to bisimilarity is often decidable,
while finiteness up to simulation equivalence is not). BPP and BPA are examples for this
[7, 5, 13], and some new examples will be also given in Section 4.

Now we propose a method which allows to ‘reduce’ certain simulation problems to their
bisimulation counterparts. Although this ‘reduction’ is not effective in general (it cannot
be expected), it works effectively for some (interesting) classes of infinite-state processes.

����������
�	� For every image-finite transition system � � ������� we define
the transition system ��� � � ����� ��� where �� is given by

�
�
�� � iff �

�
� � and �� � � � ��

�
� � � �
� �� �� �
� �

Observe that ��� � is obtained from � by deleting certain transitions (only those are
preserved which are maximal w.r.t. simulation preorder). As � is image-finite, for each

8 KUČERA AND MAYR

transition �
�
� � there is a ‘maximal’ transition �

�
�� �� such that �
� �

�. As we often need
to distinguish between processes ‘� of � ’ and ‘� of ��� �’, we denote the latter one by � �.

����

�	� Let � � ������� be an image-finite transition system. For each � � �
we have that � �� ��.

Proof. Obviously ��
� �. For the other direction, let us define the relation� � ���
as follows:

� � ���� ��� � �
� �	

We prove that � is simulated by �� in�. Clearly ��� ��� � �; it remains to show that when-
ever ��� ��� � � and �

�
� ��, then there is a transition��

�
�� ��� with ���� ���� � �. As �
�

�, there is at least one�-successor of�which simulates ��. Let�� be the maximal one of those
�-successors w.r.t. simulation preorder (see above); then ��

�
�� ��� and ���� ���� � � as re-

quired.

�������
�	� Let �� � ��������, �� � �������� be image-finite transition
systems, � � ��, � � ��. We have that � �� � iff �� � ��.

Proof. The ‘��’ is obvious, as bisimilarity is finer than simulation equivalence and
� �� ��, � �� �� by Lemma 3.1. For the other direction, we show that the following
relation � � �� � �� is a bisimulation:

� � ����� ��� � �� �� ��	

It clearly suffices because ���� ��� � �. By the definition of bisimulation, we must show
that for each ��

�
�� ��� there is a ��

�
�� ��� with ����� �

�
�� � � and vice versa (we

only show the first part; the other one is symmetric). Let ��
�
�� ���. As �� �� ��,

we also have ��
� �� and hence �� must be able to ‘match’ the move ��
�
�� ���

by performing some ��
�
�� ��� with ���
� �

�
�. Now it suffices to show that ���
�

���. As �� �� ��, we also have ��
� �� and hence the move ��
�
�� ��� must be

matched by some ��
�
�� ���� with ���
� �

��
�. To sum up, we have ���
� �

�
�
� �

��
�

and hence ���
� ���� — but it also means that ����
� ��� by Definition 3.1 and

Lemma 3.1. We obtain ���
� �
�
�
� �

��
�
� �

�
�, hence ���
� �

�
� as required.

��
����
�	� Let us consider the processes �� 	�
 of Fig. 1. We see that � �� 	,
but � �� 	. According to Theorem 3.1, it should hold that �� � 	� — and it is indeed the
case since 	� has only one �-successor (the ‘middle’ one; the other two �-transitions lead
to ‘strictly weaker’ states and therefore they are deleted).

The previous theorem also says that if we are to decide simulation equivalence between
processes � and � of �� and ��, we can instead check bisimilarity between processes �� and
�� of����� and�����, respectively. Similarly, if we are interested whether � is regular w.r.t.
simulation equivalence, we can try to construct ��� � and check the regularity of � � w.r.t.
bisimilarity. This concept has recently been used in [15] where it is shown that the system
��� � is effectively constructible for transition systems generated by labeled Petri nets with

SIMULATION OVER PROCESS ALGEBRAS 9

at most one unbounded place. More precisely, for each such net � which determines a
transition system � one can effectively construct a one-counter automaton� such that the
transition system which is generated by � is exactly ��� � (up to isomorphism). As a
number of ‘bisimulation’ problems for one-counter automata are known to be decidable
[12], some new (positive) decidability results for simulation on the restricted class of Petri
nets have been obtained in this way.

It is also possible to attack undecidable simulation problems with the help of Theorem 3.1.
For example, simulation equivalence is known to be undecidable for BPP processes [11],
while bisimilarity is decidable [7]. Therefore, the system ��� �, where � is generated by a
BPP system, cannot be effectively definable in the BPP syntax in general. However, one
can design a rich subclass of BPP systems where it is possible (by putting certain effectively
checkable restrictions on BPP systems); see [22] for details.

In this paper, we use Theorem 3.1 to obtain a decidability result for PA processes (see
Section 4).

4. THE DECIDABILITY BORDER

In this section we establish the decidability border of Fig. 2. We show that simulation
preorder (in both directions) and simulation equivalence with finite-state processes are
decidable for PDA processes in ������� . It is possible to reduce each of the mentioned
problems to the model-checking problem for an (almost) fixed formula of the alternation-
free modal !-calculus [18] and therefore we can apply the result of [31, 4] which says that
model-checking the alternation-free modal!-calculus for PDA processes is in������� .

Then we turn our attention to PA processes. We prove that, in contrast to the BPA and
BPP subclasses, simulation preorder is undecidable between PA processes and finite-state
ones in both directions. Moreover, simulation preorder is undecidable even if we consider
those PA and finite-state processes which are deterministic and normed. Thus, our unde-
cidability results immediately extend to trace preorder (which coincides with simulation
preorder on deterministic processes). It is worth noting that simulation equivalence be-
tween deterministic PA and deterministic finite-state processes is decidable, as it coincides
with bisimilarity which is known to be decidable [14]. However, as soon as we allow just
one nondeterministic state in the PA process, simulation equivalence with finite-state pro-
cesses becomes undecidable (there is even a fixed normed deterministic finite-state process
� such that simulation equivalence with � is undecidable for PA processes). The same
applies to trace equivalence.

Finally, we also prove that regularity (finiteness) of PA processes w.r.t. simulation and
trace equivalence is undecidable, even for the normed subclass of PA. Again, the role of
nondeterminism is very special as regularity of normed deterministic PA processes w.r.t.
simulation and trace equivalence coincides with regularity w.r.t. bisimilarity, which is
easily decidable in polynomial time [19]. However, just one nondeterministic state in the
PA process suffices to make the undecidability proof possible.

������� ��	� Simulation preorder is decidable between PDA processes and finite-
state ones in ������� (in both directions).

Proof. Let� be a PDA process with the underlying system� and� a finite-state process
with the underlying system
. We construct another PDA system � �, two processes ���

10 KUČERA AND MAYR

of ��, and a formula of the alternation-free modal !-calculus such that �
 � � iff
� �� , and �
� � iff � �� .

We can safely assume that the set 	
������ can be partitioned into two disjoint subsets
	
���
���� and ���
����, and that the rules of � are of the form ��

�
� "#, where

�� " � 	
���
����, � � ���
����, and # � ���
�����. (It has been shown in [6]
that PDA systems generate the same class of transition systems (up to isomorphism)
as pushdown automata, and that each PDA system can be effectively transformed into an
‘equivalent’ pushdown automaton in such a way that the increase in size is only polynomial.)
The system �� is constructed as follows:

� 	
���
����� �� 	
���
����� 	
����
�� �	� �	

� ���
����� �� ���
���� � ���	 where �� �� ���
����

� for every rule ��
�
� "# of � and every� � 	
����
� we add the rule ����� 	��

�
�

�"��� ��# to ��

� for every rule �
�
� $ of
, every � � 	
���
����, and every � � ���
����� we

add the rule ����� ���
�
� ���$� 	�� to ��

Intuitively, the system �� alternates the moves of � and
; the ‘	’ and ‘�’ stored in the
finite control indicate whose turn it is. The new bottom symbol �� is added so that �
cannot ‘get stuck’ just due to the emptiness of the stack.

Let us consider a property of processes which can be informally described as follows:
a process � satisfies iff for all � and �

�
� � � there is a move � �

�
� � �� such that the

state � �� also satisfies . This (recursively defined) property can be expressed in the modal
!-calculus [18] by putting

 � %�

��
���

�������

�

where� � �
������
��
� (note that� is finite). Intuitively, the recursion is ‘translated’
into an explicit fixed-point definition. The problem whether a PDA process satisfies is
decidable in ������� [31, 4].

Let � be of the form �#. Keeping the intuitive interpretation of in mind, it is easy

to see that �#
� � iff ��� �� 	�#�� �� , and similarly�
� �# iff ��� �� ��#�� �� .

������
�� ��	� Simulation equivalence between PDA and finite-state processes is
decidable in ������� .

���
�� ���� Recently, it has been shown in [21] that the problem whether a PDA
process can simulate a finite-state one, and the problem whether a PDA and a FS process
are simulation equivalent, are both ������� -hard. Hence, the reduction to the model-
checking problem with used in the proof of Theorem 4.1 is an essentially optimal decision
algorithm. The issue seems to be different with bisimilarity, which is known to be ‘only’
����	� -hard between PDA and FS processes [24]; in fact, we conjecture that even weak
bisimilarity [26] between PDA and FS processes is a ����	� -complete problem.

Now we show that simulation preorder between PA and FS processes is already unde-
cidable in both directions, even if those processes are deterministic and normed.

SIMULATION OVER PROCESS ALGEBRAS 11

������� ���� Let � be a deterministic PA process and � a deterministic finite-state
process. It is undecidable whether �
� � .

Proof. Let� be an arbitrary Minsky machine with two counters initialized to� ����.
We construct a deterministic PA process � and a deterministic finite-state process � such
that �
� � iff the machine� does not halt.

Let� �� ����
�� ��
�� ��
�� ���
�� ��
�� ��
�	. The underlying system of � is defined
by the following rules:

��
������� ��� ��

������ &�
��� &�
������ &�
&�� &�

������ ��

��
������� ��� ��

������ &�
��� &�
������ &�
&�� &�

������ �

We define � � �&��

�
���
 �&
��

�
���, where &��

� , � � ��� �	, denotes a sequential
composition of �� copies of the constant &�.

The underlying system of� corresponds to the finite control of�. For every instruction
of the form

� � �� �� �� � �� ���� ��

we have a rule �	
������ �	� . For every instruction of the form

� � �� �� � 	 ���	 ���� �� ��
� ��� �� �� � �� ���� ����

we have rules �	
������� �	� and �	

������ �	�� . Then we add a new constant ' and rules
'

�
� ' for every � � �. Finally, we complete the system of � in the following way:

For every constant ��, except for the one which corresponds to the (label of the) halting
instruction of �, and every � � �, if there is no rule � �

�
� �� for any �� , then add a rule

��
�
� ' . The process � corresponds to the initial state of �, i.e., � � ��.

The state of � corresponds to the contents of the counters of � and the state of �
corresponds to the state of the finite control of �. A simulation step corresponds to a
computational step of �.

The only problem is that � may do steps that do not correspond to steps of the counter
machine, e.g.,� does a step ��
� when the current state in� expects ��
�. In all these cases
the construction of the system of � ensures that � can (and must) respond by a step that
ends in the state' . After such a step � can simulate anything. It is easy to see that � �
� �

iff � can force � to enter the state corresponding to ���� via a sequence of moves which
correspond to the correct simulation of �. Hence, �
 � � iff the machine � does not
halt.

���
�� ��
� Theorem 4.2 still holds under the additional condition that the underlying
systems of both the PA process and the finite-state one are normed. We can make the PA
system normed by adding the following rules:

��

��� �� &�

��� ��

��

��� �� &�

��� �

To make sure that � can simulate the actions (�� (�, we add the rules)

��� ' and

)

��� ' for every constant) of the system of � (including '). Then, the system of

12 KUČERA AND MAYR

� is made normed by adding the rule '

� �. It is easy to see that � and � are still

deterministic, and still satisfy the property that �
� � iff the machine� does not halt.

The halting problem is undecidable even for Minsky machines with two counters initial-
ized to zero. The construction of � is then independent of �. Furthermore, there exists
a universal Minsky machine ��; the halting problem for �� (with given input values) is
undecidable, and the construction of � is independent of those input values. Hence we can
conclude:

������� ��
� There is a normed deterministic PA process � and a normed determin-
istic finite-state process � such that

�the problem whether�
� � for a given (normed and deterministic) finite-state process
� is undecidable,
�the problem whether �
� � for a given (normed and deterministic) PA process � is

undecidable.

The other direction of simulation preorder is also undecidable, as we prove in the next
theorem.

������� ���� Let � be a deterministic PA process and � a deterministic finite-state
process. It is undecidable whether �
� � .

Proof. Let� be an arbitrary Minsky machine with two counters initialized to� ����.
We construct a deterministic PA process � and a deterministic finite-state system � such
that �
� � iff the machine� does not halt.

Let � �� ����
�� ��
�� ��
�� ���
�� ��
�� ��
�� �	. For the construction of � we start
with the same PA system as in Theorem 4.2 and extend it by the following rules, which
handle all the behaviors that are ‘illegal’ in a given state of � w.r.t. the counter values it
represents.

��
������ ��� &�

������� ���

��
������ ��� &�

������� ���

��
�
�� �� for every � � ����
�� ��
�� ��
�� �	�

��
�
�� �� for every � � ����
�� ��
�� ��
�� �	

The intuition is that an illegal step that concerns the counter � (with � � ��� �) always
introduces the symbol ��, and from then on everything can be simulated. We define
� � �&��

�
���
 �&
��

�
��� (where &��

� , � � ��� �	, denotes a sequential composition of
�� copies of the constant &�). Note that � is deterministic; a term that contains both ��

and �� can do the action � in two different ways, but the result is always the same.
The system of � corresponds to the finite control of �. For every instruction of the

form

� � �� �� �� � �� ���� ��

we have a rule �	
������ �	� . For every instruction of the form

� � �� �� � 	 ���	 ���� �� ��
� ��� �� �� � �� ���� ����

SIMULATION OVER PROCESS ALGEBRAS 13

we have rules �	
������� �	� and �	

������ �	�� . For the unique instruction

� � ����

we add the rule ��
�
� ��. Note that a reachable state of � cannot do �, unless it

contains �� or ��. We let � � ��. A simulation step now corresponds to a compu-
tational step of �. It follows that � �
� � iff � can reach the ‘halting’ state �� via
a sequence of legal steps that correspond to steps of the Minsky machine (and do not

introduce the symbol �� or �� in �). Thus �
� � iff the machine� does not halt.

���
�� ���� Theorem 4.4 still holds under the additional condition that the underlying
systems of both the PA process and the finite-state one are normed. The system of � is
made normed by introducing the rules)

� � for every constant) of the system of � . To

assure that � can always simulate the action (, we add the rules

��

� �� &�

� �� ��

� �

To make the system of � normed, it now suffices to add the following:

��
�
� �� &�

�
� �� ��

�
� �

It is easy to see that � and � are still deterministic and satisfy the property that �
� �

iff the machine� does not halt.

The following theorem can be proved in the same way as Theorem 4.3.

������� ���� There is a normed deterministic PA process � and a normed determin-
istic finite-state process � such that

�the problem whether�
� � for a given (normed and deterministic) finite-state process
� is undecidable,
�the problem whether �
� � for a given (normed and deterministic) PA process � is

undecidable.

We have seen that simulation preorder is undecidable between deterministic PA processes
and deterministic finite-state ones in both directions. However, simulation equivalence
(as well as any other equivalence of the linear time/branching time spectrum of [30]) is
decidable for such a pair of processes, because it coincides with bisimilarity which is known
to be decidable [14]. With the help of Theorem 3.1, we can extend the decidability result
to all (not only deterministic) finite-state processes.

������� ���� Simulation equivalence is decidable between deterministic PA pro-
cesses and (arbitrary) finite-state ones.

Proof. As simulation preorder between finite-state processes is decidable, the system
��� � (see Definition 3.1) can be effectively constructed for any finite-state system� . More-
over, if � is deterministic then ��� � � � . As bisimilarity between PA and FS processes is

decidable [14], we can apply Theorem 3.1.

14 KUČERA AND MAYR

The decidability result of Theorem 4.6 is rather tight—in the next theorem we prove that
simulation equivalence becomes undecidable as soon as we consider PA processes with
just one nondeterministic state.

������� ���� There is a fixed normed deterministic finite-state process � such that
the problem whether � �� � for a given normed PA process � is undecidable.

Proof. We reduce the second undecidable problem of Theorem 4.3 to the problem
if � �� � . Let � � be a normed deterministic PA process, � be the fixed determin-
istic normed finite-state system derived from the finite control of the universal Min-
sky machine as in Theorem 4.3. We construct a normed PA process � and a fixed
deterministic normed finite-state process � such that � �
� � iff � �� � . It suf-
fices to define � by �

�
� � , and � by �

�
� � �, �

�
� � . It follows immedi-

ately that � �� � iff � �
� �
�. Note that � is not deterministic; however, it con-

tains only one state (the � itself) where an action can be done in two different ways.

���
�� ���� All undecidability results for simulation preorder which have been
proved in this section immediately extend to trace preorder, because trace preorder co-
incides with simulation preorder in the class of deterministic processes. The argument of
Theorem 4.7 carries over to trace equivalence as well.

Now we prove that regularity w.r.t. simulation and trace equivalence is undecidable for
normed PA processes with at least one nondeterministic state. It is interesting that regularity
of normed deterministic PA processes w.r.t. any equivalence of the linear time/branching
time spectrum of [30] is easily decidable in polynomial time, as it coincides with regularity
w.r.t. bisimilarity which is known to have this property [19]. To see that a deterministic
process � is regular w.r.t. bisimilarity iff it is regular w.r.t. any equivalence � which is
not finer than bisimilarity and not coarser than trace equivalence (all equivalences of [30]
fulfill this requirement), it suffices to realize that

� if � is regular w.r.t. bisimilarity, then � � � for some finite-state process � , which
means that � � � as � is not finer than bisimilarity;

� if � is regular w.r.t. �, then � � � for some finite-state process � . It means that
� �� � , because � is not coarser than trace equivalence. Now we can use the standard
subset construction [10] to obtain a deterministic finite-state system � � such that � �� �

�.
As both � and � � are deterministic and trace equivalent, they are also bisimilar and hence
� � � �.

������� ���� Regularity w.r.t. simulation and trace equivalence is undecidable for
normed PA processes.

Proof. Let� be an arbitrary Minsky machine with two counters initialized to� ����.
We construct a normed PA process * such that * is regular w.r.t. simulation (and trace)
equivalence iff � does not halt.

Let � and � be the processes constructed in the proof of Theorem 4.2, modified in the
same way as in Remark 4.3. The underlying system of* is obtained by taking the disjoint
union of the system of � and � , and extending it with the rules *

�
� � , *

�
� � (note that

SIMULATION OVER PROCESS ALGEBRAS 15

the resulting system is normed). If � does not halt (i.e., if �
� �), then * is regular
w.r.t. simulation and trace equivalence, because * �� �

� where the system of � � is the
one of � extended with � � �

� � . To complete the proof, we need to show that if � halts,
then * is not trace equivalent to any finite-state process. Let � be the sequence of actions
which corresponds to the correct simulation of � by the process � . The process � can
perform the sequence �, but it has to enter the ‘halting’ state �� from which it can only
emit the actions (�� (� (see the proof of Theorem 4.2 and Remark 4.3). In particular, it
means that � does not have any trace of the form � � where � � ���
 �� ��
�	�. On the
other hand, � can perform any trace of the form � ��
 	� ��

	
� where � � IN. Suppose

there is a finite-state process � with � states such that * �� �. Then � must have a
trace �� ��
�� ��

�
� , and hence it can also perform the sequence �� ��
 �� ��

�
� for any

� � IN (here we use a well-known ‘pumping’ argument from the theory of finite automata
[10]). However, * does not have this property—each trace of * which is of the form
�� � where � � ���
�� ��
�	� must satisfy the condition that � � is a trace of � . If we
choose � � ��������� � � � �, then obviously � cannot do the sequence � ��
 �� ��

�
� .

Hence �� ��
�� ��

�
� is a trace of � but not a trace of *, and we have a contradiction.

5. THE TRACTABILITY BORDER

In this section we show that the problem whether a BPA process simulates a finite-state
one is ����	� -hard. The reverse preorder is shown to be co-��-hard. Consequently,
we also obtain co-��-hardness of simulation equivalence between BPA and finite-state
processes. All hardness proofs can be easily adapted so that they also work for BPP
processes. As simulation preorder and equivalence are easily decidable for finite-state
processes in polynomial time, the tractability border for simulation preorder/equivalence
with finite-state systems of Fig. 2 is established.

������� ��	� Let � be a BPA process, � a finite-state process. The problem whether
�
� � is ����	� -hard.

Proof. We show����	� -hardness by a reduction of the����	� -complete problem
QBF. Let � � IN and (��

 � (�� be boolean variables. We assume (without restrictions)
that � is even. A literal is either a variable or the negation of a variable. A clause is a
disjunction of literals. The quantified boolean formula* is given by

* �� �(��(�

�(���(���*� �

 �*��

where the *� are clauses. The problem is if * is valid.
We reduce this problem to the simulation problem. Let us define a finite-state system

with constants ��� ��� ���

 � �	� *�� *��

 � *� consisting of the following rules:

� ���

���� ������� for each 	 � � � �+�� �

� ���
�
���� ������� for each 	 � � � �+�� �

� �	
����	
�� *� for each � � � � �

� *�

�
�� *� for each � � � � �

We also define a BPA system � with constants ����� ���

 � �	��� ��� ���

 � �	��

which has the rules

16 KUČERA AND MAYR

� �

���� �
�����
��� for each 	 � � � �+�� �

� �

���� �
�����
��� for each 	 � � � �+�� �

� �
�
���� �
�����
��� for each 	 � � � �+�� �

� �
�
���� �
�����
��� for each 	 � � � �+�� �

� �
����	
�� �

� ��

�
�� �� for all 	 � � � � � �, � � � � � such that the literal (�

occurs in the clause *�

� ��

�
�� � for all 	 � � � �� �, � � � � �

� ��

�
�� �� for all 	 � � � � � �, � � � � � such that the literal
(�

occurs in the clause *�

� ��

�
�� � for all 	 � � � �� �, � � � � �

Intuitively, the process �� guesses the assignment for variables with even index. � stores
this assignment and adds its own assignment for the variables with odd index. After the ac-
tion
��
� it is checked if the assignment satisfies the formula. It follows immediately from
the construction of� that the assignment satisfies the formula iff the state which encodes the
assignment can do each action "� infinitely many times. If * holds, then ��
� � because
� can choose the ‘correct’ assignment for variables with the odd index and then perform
each "� infinitely many times. If * does not hold, then �� �
� � because �� can ‘force’ �
to reach an assignment for which some *� is false; then it starts to perform "� repeatedly

and� inevitably reaches � from which there are no moves. Hence,* is valid iff� �
� � .

������� ���� Let � be a BPP process, � a finite-state process. The problem whether
�
� � is ����	� -hard.

Proof. The ����	� -hardness proof of Theorem 5.1 carries over directly. We

use the same rules for � with parallel composition instead of sequential composition.

������� ��
� Let � be a BPA process, � a finite-state process. The problem whether
�
� � is co-��-hard.

Proof. We reduce the ��-complete problem SAT to the problem if � �
 � � . Let
� � IN and (��

 � (�� be boolean variables. A literal is either a variable or the negation
of a variable. A clause is a disjunction of literals. The formula* is given by

* �� *� �

 �*�

where the *� are clauses. The problem is if * is satisfiable.
We define a BPA system�with constants�� � ���

 � �	� ��� ���

 � �	��� ��� ���

 � �	��

as follows:

� ��
�
�� ����
�� for each 	 � � � �� �

� ��
�
�� ����
�� for each 	 � � � �� �

� �	
����	
�� �

� ��

�
�� � for all 	 � � � � � �, � � � � � such that the literal (�

occurs in the clause *�

SIMULATION OVER PROCESS ALGEBRAS 17

� ��
�
�� � for each 	 � � � �� �

� ��

�
�� � for all 	 � � � � � �, � � � � � such that the literal
(�

occurs in the clause *�

� ��
�
�� � for each 	 � � � �� �

Now we define a finite-state system
 with constants �� ��� ���

 � �� by

� �
�
�� �

� �
����	
�� �� for each � � � � �

� ��

�
�� �� for all � � � � �, � � � � � such that � �� �

� ��
�
�� �� for all � � � � �

If * is satisfiable then there is an assignment that satisfies all clauses *� . Then �

cannot simulate ��, because �� can choose this assignment and then it can perform
a sequence of actions where each "� is present (the sequence can also contain some
‘auxiliary’ occurrences of �); � cannot match this sequence because no � � can do ev-
ery action "� . If * is not satisfiable then in every assignment some *� is not true.

Then � can simulate �� by going to the state �� . Hence, * is valid iff �� �
� � .

������� ���� Let � be a BPP process and � a finite-state process. The problem
whether �
� � is co-��-hard.

Proof. The proof is similar to the one of Theorem 5.3. The rules for � are like in
Theorem 5.3 with parallel composition instead of sequential composition.
 is defined

in the same way, but we also add the rules �
�
�� ' and �

��� ' for every � �
� � �, and '

�� ' for every (� �"��

 � "�� �� ��
��
�	. Intuitively, if some �

or "� is emitted before �� completes the guess (i.e., before
��
� is emitted), � goes

to ' where it can simulate everything. Again we have that * is valid iff � � �
� � .

������
�� ��	� The problems of simulation equivalence between BPA and finite-state
processes, and between BPP and finite-state processes are co-��-hard.

Proof. Let � be a BPA (or BPP) process and � a finite-state process. Let � � be
defined by the rules � � �

� � and � � �
� � and � � be defined by the rule � � �

�

� . Then � � �� �
� iff �
� � . The results follow from Theorem 5.3 and 5.4.

���
�� ���� All of the obtained hardness results are also valid under the normedness
assumption. Observe that the BPA systems constructed in the proof of Theorem 5.1 and
Theorem 5.3 are normed; the finite-state systems used in those proofs can be made normed
by adding the transitions *�

�
� � for all � � � � � (in the case of Theorem 5.1), and

��
�
� � for all � � � � � (in the case of Theorem 5.3). This extension does not influence

the validity of any argument used in our proofs.

6. SUMMARY AND CONCLUSIONS

Table 1 summarizes the known decidability results in the area of equivalence/preorder
checking between infinite-state processes and finite-state ones. The results which have been

18 KUČERA AND MAYR

obtained in this paper are in boldface. In the case of trace preorder/equivalence/regularity
we distinguish between deterministic infinite-state processes (left column) and general ones
(right column); finite-state systems can be considered as deterministic here, because the
subset construction [10] preserves trace equivalence.

TABLE 1

A summary of known decidability results
BPA BPP PA PDA PN

� FS yes [8] yes [7] yes [14] yes [28] yes [16]
reg. � yes [5] yes [13] ? ? yes [13]
�� FS YES yes [16] NO YES yes [16]
FS �� YES yes [16] NO YES yes [16]
�� FS YES yes [16] NO YES yes [16]
reg. �� ? ? NO ? no [16]
�� FS yes yes yes [16] yes [16] NO NO yes yes yes [16] yes [16]
FS�� yes no yes [16] yes [16] NO no yes no yes [16] yes [16]
�� FS yes no yes [16] yes [16] yes [14] no yes no yes [16] yes [16]
reg. �� yes no yes [13] ? ? no yes no yes [13] no [16]

The results for trace preorder/equivalencemight be also interesting from the point of view
of automata theory (trace preorder and equivalence are closely related to language inclusion
and equivalence, respectively). All ‘trace’ results for BPA and PDA are consequences of
the ‘classical’ ones for language equivalence (see [10]). It is interesting to compare those
decidability issues with the ones for PA, especially in the deterministic subcase. Trace
preorder with finite-state systems tends to be decidable for deterministic processes; PA
is the only exception. At the same time, trace equivalence with finite-state systems is
decidable for deterministic PA. The PA processes we used in our undecidability proofs
are parallel compositions of two deterministic and normed BPA processes (which can be
seen as deterministic CF grammars). The parallel composition corresponds to the shuffle
operator on languages [10]. Thus, our results also bring some insight into the power of
shuffle on (deterministic) CF languages.

Interesting open questions are left in the area of regularity-testing. We can conclude
that all of the ‘?’ problems are at least semidecidable, as it is possible to enumerate all
finite-state systems and decide equivalence with them.

ACKNOWLEDGMENT
We would like to thank Javier Esparza who observed the idea of the proof of Theorem 4.1.

REFERENCES

1. P.A. Abdulla and K. Čerāns. Simulation is decidable for one-counter nets. In Proceedings of CONCUR’98,
volume 1466 of Lecture Notes in Computer Science, pages 253–268. Springer, 1998.

2. J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1990.

3. Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors. Handbook of Process Algebra, pages 545–623.
Elsevier, 2001.

4. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: application to model
checking. In Proceedings of CONCUR’97, volume 1243 of Lecture Notes in Computer Science, pages
135–150. Springer, 1997.

5. O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process taxonomy. In Proceedings of
CONCUR’96, volume 1119 of Lecture Notes in Computer Science, pages 247–262. Springer, 1996.

SIMULATION OVER PROCESS ALGEBRAS 19

6. D. Caucal. On the regular structure of prefix rewriting. Theoretical Computer Science, 106:61–86, 1992.

7. S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is decidable for all basic parallel processes. In
Proceedings of CONCUR’93, volume 715 of Lecture Notes in Computer Science, pages 143–157. Springer,
1993.

8. S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decidable for all context-free processes.
Information and Computation, 121:143–148, 1995.

9. J.F. Groote and H. Hüttel. Undecidable equivalences for basic process algebra. Information and Computation,
115(2):353–371, 1994.

10. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley, 1979.

11. H. Hüttel. Undecidable equivalences for basic parallel processes. In Proceedings of TACS’94, volume 789 of
Lecture Notes in Computer Science, pages 454–464. Springer, 1994.

12. P. Jančar. Decidability of bisimilarity for one-counter processes. Information and Computation, 158(1):1–17,
2000.

13. P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to bisimilarity. In Proceedings of ICALP’96,
volume 1099 of Lecture Notes in Computer Science, pages 478–489. Springer, 1996.

14. P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equivalences with finite-state processes.
Theoretical Computer Science, 258(1–2):409–433, 2001.

15. P. Jančar, A. Kučera, and F. Moller. Simulation and bisimulation over one-counter processes. In Proceedings
of STACS 2000, volume 1770 of Lecture Notes in Computer Science, pages 334–345. Springer, 2000.

16. P. Jančar and F. Moller. Checking regular properties of Petri nets. In Proceedings of CONCUR’95, volume
962 of Lecture Notes in Computer Science, pages 348–362. Springer, 1995.

17. P. Jančar, F. Moller, and Z. Sawa. Simulation problems for one-counter machines. In Proceedings of
SOFSEM’99, volume 1725 of Lecture Notes in Computer Science, pages 404–413. Springer, 1999.

18. D. Kozen. Results on the propositional �-calculus. Theoretical Computer Science, 27:333–354, 1983.

19. A. Kučera. Regularity is decidable for normed PA processes in polynomial time. In Proceedings of
FST&TCS’96, volume 1180 of Lecture Notes in Computer Science, pages 111–122. Springer, 1996.

20. A. Kučera. Efficient verification algorithms for one-counter processes. In Proceedings of ICALP 2000, volume
1853 of Lecture Notes in Computer Science, pages 317–328. Springer, 2000.

21. A. Kučera. On simulation-checking with sequential systems. In Proceedings of ASIAN 2000, volume 1961 of
Lecture Notes in Computer Science, pages 133–148. Springer, 2000.

22. A. Kučera and R. Mayr. Simulation preorder on simple process algebras. Technical report TUM-I9902,
Institute for Informatics, TU-Munich, 1999.

23. A. Kučera and R. Mayr. Weak bisimilarity with infinite-state systems can be decided in polynomial time. In
Proceedings of CONCUR’99, volume 1664 of Lecture Notes in Computer Science, pages 368–382. Springer,
1999.

24. R. Mayr. On the complexity of bisimulation problems for pushdown automata. In Proceedings of IFIP
TCS’2000, volume 1872 of Lecture Notes in Computer Science, pages 474–488. Springer, 2000.

25. R. Mayr. Process rewrite systems. Information and Computation, 156(1):264–286, 2000.

26. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

27. M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

28. D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second order logic. Theoretical
Computer Science, 37(1):51–75, 1985.

29. W. Reisig. Petri Nets—An Introduction. Springer, 1985.

30. R.J. van Glabbeek. The linear time—branching time spectrum. In Proceedings of CONCUR’90, volume 458
of Lecture Notes in Computer Science, pages 278–297. Springer, 1990.

31. I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Computation,
164(2):234–263, 2001.

��������� �	
�������� �
 �	��
���	

�
��	��
	� ���� ��	 ���	�	
 ��
��	�	

����� ����		�
� � ��
�� ��������� � ������� ���� ���

������ � ����	
���
	 �	��� ���	
�� � ���	 ���� � �� ����	 �����	�� ������� ��
��

�	�	 ��! �
���	!

��	��
�"	�� �# ��"���	
 $��	��	� ��%	
�����&�'������	
���(�
	�%�
'�
)	�
'	��*�	+�	
����)	%! ���� ���,��� �
	�%�
'�)	
"��(!

��������

������������ 	��
����� �
��� ���� ���� ���� ��� ������� �������� �� ��
������ 	���

������ ���� �		��
������ �� �	��������
��	����� � !" #� �������
� � ���� ��$���
�����
�����
����� ����
�� ����� ��� ���� ��
������ ��	�����
���% ��� ���� ���
	������ �� �� ������� 	�������� �� � ����������" &�������% ���� 	��������
�� ��
������ �������
��������� ��	�������� �� ���������� ���������
" '��� ��� ��� ����
��	������� �����
�� ����� �� �������� ��������
����" #� ��$�� ����	�� (��&% �
���
���� �� (�
������ ��
����� ���� ��)� ������� ������� �� ��	��% �� ���
����
���� ��
��$��������� ��
�����" #� ���� ���� ��� ����� ���� ��� �� ��

�������
�� � ��� ��
������
��$��������� ���
����� �� � ����	�� (��&
�� �� �*�
������

������
���" '�� �
	� ���� �� 	����
������� �� � ������� ���
�� �� �*�
������
���
����
��� �� ����" +������% ��� �
	� �� � ��� ���
����� �� � ����	�� (��&
�����
�� ��	�������� �� � ����	�� (��& �� ������� ��� ��� �� ����
������ ���������	
	������" '��� �� ������	 � ��� ���	���� ����
 ����� �� ����������������
������
��
����� ��"�" ��
����� ���
� ���
������� ��
� ���� ���
����� ������� ��
�������
��� ��
������� ���� �� ��
�
������ �� ������� �,!� ����
�� �� ���� �� ���
����
	��	������ ��
����� ��� ���� ���� ��� ������
��
)��� 	������ �� ��
������"

*	(&�
��- -���$
�����% &���� ���
)���% ������������ ���
�����

� �� �������� ������
� �� ���� 	�	�� �		����� �� ��� 	��
������� �� &.�/ 011("
'��� ���) ��� 	�������� ��		����� �� ��� 2���	��� ���������� ����3�
� �����
�
4/' (,,,�0,150�
� ������	������ ������"

."��� ���
	��	�- �����������	�

������ ������
���33����%

������������	�

������ ������ +���������%
��������������������������������� �6�
���� &����"

�������� ��	
����� ��
������� ������� �� ������� ����

� ���������	��

������� ����� �	
����
	 ��� ��
���
	 	
���
�� ������� ��������
����
�
 �
��
������	� �
���� ������
���
�
�
����
�� ������� ����	
�� ��������� ������
������ �	��������
�� ����	 �������� ��������
����
�
 �
�� ���� ���������
�� ����������� �
��
��	���
�
	����
�� ��������
����
�
 �� �
�����	
�	� ����

�	 ��
���
	 ����!�
����� "�� �#
��	�� ��� �
���

����� �

 �

��� ��������
����������� �� ���

��� ��
�
 ����
�� ��� �
 $�
�% ���!���
����� �� ��� ��
���

�	�� &�	�����
	
	��������
�� ��
��
��	���
�
	���� �
�� ���� ��������� ��
���
��
������ ������'�� �� �(�� "�� ���� �������� ��
���
	 ����!�
���� �� ��
��Æ����� �� �������� �&�)*�
��� &������ �	����
+,
	�� �
		�� �����#��
���
���������-� ��� ����	
�� �
 ��������
����
�
 �������
 !���� ������	� �&�
�
�� ���� ����
�� �
�
.��
�
	���� �� ��������� ���������� ����
��	��
�����
�� ������'��� �����	��� �/��

0�� ��
����� �
 �&� �� ��
� �� �� ���
 ���� �#�������� ����	
�� ���������
����������� 1� �
� ����	 ��������� ������������ ������� ����������� ��� ���
��� �
����� �
 �
�
 ������� ���������� �� ��2����� ����
���� �

 ���������
���� ��2����� �
�
�������

��
��� � �������� �	�
�������
 �������� ����� �
 ��������� ����������
������ � ��� � � �	��	 ���� �� ����
�� ������ �� ��
������ ���� ����� ��
������� ����

�)�-� �
 � � �/ �)�-� �
 3�� �	�� �)�-

�
 4�� �	�� �)� 5 �- ���� �)�5 �-

���� �)�� 3-

���� �)�-

�
 ��� ������ �� ������
 ��������� � ����	 ��� ���������� �	�� ��������� � ����
����� �� ������� ������� � ����� ����� � ���	 �� ���� ������ �� ����������
�������� � !" �����
�� �	��� ���������� ������ ������ �	���

0���� �� ��!��
 ��� ���� �#�������� ����	 �
		�� �&�)�- ��
� �#�����
�&� ����
� ������� �
�
������ &���������
�� ��� �
		�� ����
� �������
�
�
����� ��
� �
� �� ������� ����!��
�� �
���� �� ������������ 6� 	����
�����	��� �� ��� ������� �
�
������ ���
��� ��� ���	� ���� ��� ����	
�		 0���
��� �����
�� �
��
		 ����	��� �������
�	�� �&�)�- ��
 ���������� ���
����� �#������������
��
����
���
�
	��
��	���� 7� ��� ��� �
�� �� �� ����
���� �#�������� ��
� �&�
�� �
� ����	 ����
������ �

�		 �����
��� 7�
��� ����� �
�� �� �� ���		 ����	� ������ ���� ��
� ���� ����!�
���� ����	���

���� �&�)�- ��
� �����
�	�� "�� ��� ����!�
���� �
 �

��� ����������� �� ��
�
�����	
�	� ���
�	 �� �
��
 �����	�� ���������
���� �
 ���� �
 ���!���
�����

3

�� �� ��
�	� �� �2������	� ��������� ���������
����� �
 ��� !���)��� ��� �

������������-
�� ��� !����)��� ��� �
 ����������- �

 ����� ��� �
 ���!���
�
������ 6��	� !����
����
�
 ��Æ��
�� ���������� ���� �
 ���!���
����� �

�&��
 ���� �#��������
���
	��� �� ������
�� �&�)�-� 6� ��!�� �������
��89�
 ��� �	
�� �
 ��������� �
������ ��
� �
�� ������� �������
� ������
�� �������� ���� �
 ���!���
����� �
 �&�)�-� 6� ���� ��
� ��� !����)��� ���
�
 ����������- �

 ��� ��������� ��
 ������� ��89 �
� �� �2������	� ����
��������� 0�� !���)��� ��� �
 ������������- �

 ����	
� ��� �
� �� �2������	�
�����������
� ��		� :������� ��� !��� �

 ��� ��������� ��
 ������� ��89
�
���� �� ����������� ��
 ������� ��89 �� �����
	
�� �
�
� �������
�	�
���������� ����	���

6� ����	��
 ��� ������
	 	���� �
��� �� ������
	�������� ������� �
������
��
� �
� �� ���� �� �������� ���������� �
 �&�)�-� �� ��������� ��� ����	� ��
��� ������������	��� �
 ��� !���� ���� ���� ����	�� �� 1�
��
 ��
	� �� ������
	
������� ������� �
������ �;��<� �� ���� ��
� ��� ����	��������� ����	�� ��
�����
�	��

� ������

6� ��!�� �&�)�-�
� �#������� �
 �&��
�
�
����
�� ����	
�� ���������
���������� ����
� ������� �
�
������

&���������
��������� �� ��� !��������� ������ �
 �������� ����
�������
��
	���
� ��������)���� ���� �=�4�3�-�

����	�	�� � " �#��� !������
�� ��������� �)	��

 � 	�- �� �� �$�������� ��
!������
�� ����	����� �
 ���� ������� ������ �	� ��������� �������� �� � ��
����
�������� �� %�����&��� �	�� �������� �$����� �
��� ��������� 	��

 � 	� �
 ����
����
��� " ��� � �
 � ����������� ����
�� ������� �� !������
�� ��&����� �
 �	���
�$���� � �#��� !������
�� ��������� �)	��

 � 	�- ���	 �	��)	��

 � 	�- � � �'
�)	��

 � 	�- �� �����

&��������� ��!�
�	� ����
��
	�� �����
� ���������� �����

����	�	�� � (� ��&�� ������� �����	 ��>������ ��))� �� �������� ���&
���#
����� �
 ���������� �)) ��� &���� ��%������ �
 �	�
��� ��)	�-��)	�-

��)	�-
���	 � � <� �	��� �	� �� ��� �������
��� �
���� &���� ��� ��� �	� 	� � � ���
����
���� �*	� �������� ��� ���� +��������� ��
��, ��� ��� �� ��������� -����
������� ��
�

 ��� ���� �� ������ �))� *	� �������� � ������� �	� ����� ��#
%������

����	�	�� � .�� "�� ? ��� �� �� ��

� ��� ����� ? ��� �� ��

� �� ���#

�

/���� ���� �

������ ��� ������� �����
���� ������������� " !"���)��@- ��

���� �� �� ������� ���&
������� � ��	��� � �� �� �))� ��� � &���� ��� @ �

����������� ������� ����� �
 �	�
���

�)	-
�
�� ��)��-��)��-

��)��-� �)	-

�	���

� � � ������ � � ���� 	 �� �
��� �������� �
 ���� ����
���
� �� � ���

 � ��
 �� � ������
� 0�� ����� � � ���

 � �� �� �� �� �$�������� �
 ��� �
 �	�
�������
 ���

�����
	 �� ? 	�
�� ���� �������� 	� � �� ��
	 �� ? 	 5 	�
�� ���� �������� 	� � ��

� �)	- �� � ����� !������
�� ����������

1��� �	�� � ��� �� <� �� �	�� ���� �	� ���� 	�� �	�
��� �)	-
�
�� �� �)	-�

(� ������ �	� &���� ��� �
 ��������� ���� �� @ �� �����)@- ��� �	� &����
��� �
 ������� ���� �� @ �� "��)@-� *	��� ������� ����� ������ � ����������
�������� �� �)) �� ���&$#��������
 ��
������� 0�� ��� � �� 	��� �)�-�

�
���

��)��-��)��-

��)��-� �
 �	��� �� � ������� ����

�)	-
�
�� ��)��-��)��-

��)��-� �)	-

���	 �	�� �	�
�������
 ���������� ��� �����&���

� �)�-
� �
 �� ? 	� �	�� �� ? 	��
� �
 �� ? 	 5 	� �	�� �� ? � 5 	��

�� �	�
�������
 �� ��� ���� �	� �������� ���
 �
 �
�
���

�� ���� ��

��
��� � *	� !������
�� ���������� ��� �� ���� �� �������� ���� ����������

�� �	� ����������� �
 ������ ��
�� �	� ����

�)	-
�
� �)	 � =-�)	 5 �-� ��	
 	 � 4

��� ���� �� ������� �� �)) �������
 ���	 �)�- �	��� � �� �� ����� 2 ��� ���������
�� 3� 0���	������� �� ��� ��� !������
�� ���������� �� �$����� ����� ���	 ���#
������ �� �	� ��
�#	��� ����� ��
�� �	� ���� �)(-

�
� �)3-�)�=- ��� �� �$�������

�� �)	-
�
� �)3-�)�=-� 	 ? (� �� �	�
�������
 �� ��������� ��� ����� ���	

��������� �� �	� ��
�#	��� ���� �� � �	���	��� ���������

��
��� � �
 ��� �$����� �	� ����� !"��� �� �������
 ��� ����
�� �����#
����� ������� �
 ��� ������ !"������� �� ������� *����
#�����
��� ������� ��

�

��� �������� � 4����� 5#������� ���	��� ��� �	� ����� �	�� ��� ��� ������
�	� 	�����
 ������� �
 � 4�����#5 ������� ���	��� �� �	� ����	������� �������
�
 � !"�������
�
 ��� �$����� �	� ����� �� �������
 �������������� ��� �������� �� �	� ���
����
�� ���������� �� ������� *����
#�����
�� �� ����� *	�� �� ������� �� �	��
���� ��� ��� ������ ��� �������� ���� ��� �� -6����#�����
� *�� �������� �	��
	��� ������� �� ��� �� ��� ����������� �� ��� ������� 	�����
 3

������ *	���
��� ����&������ ��������
�� �	��� �$�������� �
 !"��� ������ ������������

����	�	�� � (� ��� �	�� � !"��� �� �� ����
	
��� �
 �� ���� �������� �	�

�������
 �	��� ����� �
 ������

�)	-
�
����)��-��)��-� �)	-

�)	-
�
���)�-� �)	-

�)	-
�
�� �� �)	-

�	��� �� ��� �� ��� �$��������� ��� �)	- �� � ����� !������
�� ��������� �� ��
7�
� 8�

(� ���� �	� ����� �
 �	� �	��� ���� �����
���� ��� �	� &��� ��� ����� ������
���
�����

��
��� �� �� ���� �� ��� �	��
������ !"��� ��� �� ��������� �� !"���
�� ������
��� ��� ��� �$����� �	� ���� ��%������ �
 ������� ��'�����
���
�� ���	 �	� ������������ �
 ���� ��$������ ���������� .��
 ����� ��� ����� ����
������� �	��� ������ 0�� �$����� �	� ���
 ���� �)	-

�
� �)	5�-
�)	�3-
�)	5

=- �� �������� �� �)	-
�
� � �)	-
�)	 5 =- ��� � �)	-

�
� �)	 5 �-
�)	 � 3-�

�
 ��� �� ���� ���������� �� �	� ��� �
 ����	���� ���&
�������� �
 �	� ���
����
 !"��� �	�� ��� 	�� �� &���� ��� �	� ������������ ���&
�������� �	�� �������
��$������ ���������� �� ���� ���� ��� ��)������ 8 �	�� �	�� �� ��������� (� ����
�	�� �	�� �	� ��� �
 ����	���� ���&
�������� �
 � !"��� �� ������
��� ���
�� ����������� �� � �#����� 9#�4 �� ������� ���� �
 9#������� ���	����� *	���
�#����� 9#�4� ��� ������ ����� ����	����:����� ���	 &���� ��������� *	���
�� &���� ��� �	� ������������ ���&
�������� �� ��Æ��� �� ����	����:� ���	 �	�
&���� ��������� �	�� ������� �$����� ��� ��%������ ��� ���������
 ��$������
����������

1� �� �	�
� ��
�
 �&�)�- �
� ����	
��
 ��������� �
������ :������� ���
��� �
 ��
��
�	� ���!���
����� �

 �&�)�- �
���� �� ��������� ��
 ����
	
��������� �
������

��
��� ! �������� �	� !"��� ���	 /��� ��� ���� �)	-
�
� �)	 5 �-�)	-

��� ������� ����� �)<-� *	� ��� �
 ����	���� ���&
�������� ��� ��� ���������

��%������ �
 �	�
��� �)�-�)���-�)��3-

 �)<-
�� ��� � � 1A� *	� ���#

��
� ���������
 �
 �	��� ��%������ ������ �� �������� �� � ������ 9#�������

(

���	���� �� ������ 	�� �	� ����
�� ������� ��� ����� ���
�� �� ����� ���#
��
 �� �� ������ �� ��%������ �
 ; ��� 9�� *	� ������ �� �	�� ��� ������ ����
�	� �%������ �
 �	� ������� �
����� �	� ����� ���	��� �����
 �	� ������� �
 �	�
������� �����
 �	� �����

0�� �����
	 ����	�� �� ���� �
��� �� �� �������
 ���������
���� �
 ��� ��� �

��
��
�	� ��
��� �

 �&�)�-�

����	�	�� �" .�� @ �� �	� ��� �
 ����� �
 � !"��� ��� � � ���
��
� �

�)) ����������
 ���&
�������� �
 �	� !"����� (� ��&�� !�����)�- ? ��
 � !����)�- �� ������ �	� ��� �
 ��� ���������� �����	���� ���&
��������� �

�������� �
 � ������ @ �� ��� ����� !����)�- ? �
 � �� � �
 ���
�� *	���
!�����)�- �� ����������� ��&��� �� !���

�
�)�- ? !����)!���

���
�)�--
�� � � <�

 � !�����)�- �� ������ �	� ��� �
 ��� ���������� �����	���� ���&
��������� �

�������� �
 � ������ @� ���� !�����)�- ?

�
��� !���

�
�)�-� �� �	� ���� ���

�� ��&�� !���)�- ? �� � �
 � �
 � ��
�� !����)�- ��� !��
�
�)�-
�� �	�

������������ �
 �������� �
 ��

� ����
���

6� ��!�� �����
	 �	
���� �

����
�
 ��
�
�� ���� �� ��� �������������� "��

	����
���� ��������
����
�
 �� ��� ��� ��!������� �
 ����

����	�	�� �� "� ����������
 ���	���� ��������� �"!7"
�� �	���� �� �
������ � ?)��B�@- �	��� � �� � &���� ��� �
 ������� ���������� B �� � &����
����� ���	���� ��� @ �� �	� ��� �
 ���������� ����� ���	 @
)� � B-� 3���

�

�

� ���&
������� ��
 ���	� ��� �� ���� � � � � � � B��
1
))�� �-� �)��� ��-�

 �)��� ��-�- � @ ����
�� ����� � � B� ��� ���!���
����
��� ��� ��
� ��������� ����������� �
 ��� ��� ����� �����

 � ���� ������
��
���� ��� ��
� ��������� ��������� �
 ��� ���� 1��������	��
� ��� ���!���
����
��� ��� ��� �&C� ��	���� ����������������
		�
 ��
������� ��	� �
 ���
���
))�� �-� �)��� ��-�

 �)��� ��-�-
��
���� ���� � ������ �� ��� ���!���
�����
���� �����

 � ���� �����
� ��� �
 �
��
� �����
	 ���!���
���� � ��
 ���� �
 ���!���
����� ���� ����
� ���� ��
� ��� ���	���� �
 �
�� ���� ��
�� ��� ���!���
����� ��
� ��	��� ��
��� �
 ��� ������
�� ����������)����� �
 ���
��� ��� �� �
�� �� ����������-�
6� ��!�� ��� ����	������� ���������
)��B�-�3���

�

������� ���!���
�����

�� ���� �
 ���!���
������ 1�
���
		�� � � �2 ��
 !����
�������)!����
�
#��
	 ��� �
 ������
�
�	� �����- �

 ��� �
 � ��
�����
��� �� "���
		��
� �� ��� ��
		��� ������ �
)� � B�-� 3���

�

���� ��
�D

� �� ���
�� ����� � � � � B��

/

� �
 � ��
� ������
�� ����������� �
 � ���� �� �
� �
 �� ����

 � ���
�� �� � �
�� �
�� � � � � �� ���� ��) ��

� �-�

0�� ��� �
 ������������ �

 ��� �
 ���!���
����� 8 �� ��!���
� �!���) - ?
�� � � � B� � � �

 �� ���

6� �
�
��
 ���
�������� ��
�� �� �� �
�� ������
��
� �����
	 ��
�� �� � � �
0��� ��� 	
���
�� �)�-
 B� �������� �� � �� ��!���
� ��� ��� �
 �����
	
��
�� �������� �
�� ����� � ��
����� �� ��
������� ���� �)�- ? �� � ���� �� �
�!���)����� �

�� � �� � B��-��

�� ����������
 9#������� ���	��� ��
�
����
��� ���� ��� ������� �������
����� �
� �� ������������ ������������ ��� ��
 �
	��
�� ������
�� <� ���
������
		�� &��������� ����� �� ��� ������� �
� �� ���
������

����	�	�� �� "� ����������
 9#������� ���	��� �"�4� �� � ����� � ?
)�� �@�-� �	��� �� �� � &���� ��� �
 ������ ��� @�
 ���3

����� �� � ���
�
 ���������� ������ �	��� "� ? �� D? �5 	 � 	 � �� � �� D? 	 � 	 � �� � �� ?
<� � ��)�- � �)�- �� � ����� !������
�� �����������

� ���&
������� �

� �89 ��
 ���	� ��� #� ���� � � ��
�� # � �� 1

)�� �)��� � D? �5 	�-�

 �)��� � D? �5 	�-�

)���� � D? 	
�
�-�

 �)�

�
��� � D? 	���-�)���� � ��)�--�

 �)�

��
��� � ����)�--�- � @�

���� ��� ���!���
���� ��� #� ��
� ��������� ����������� �
 ��� ��� ����� # 5
	���

 � ���� #5	��� ��

�
�� 	

�
��

 ��

�
��� 	����� ����� � #�

 ��

��
��� � #�� �������� ��
� ��)#-

�� ����
��
		 � � � � ���
�� ���� ��� ��
� ��������� ��������� �
 ��� #�� 1

)�� �)��� � D? �5 	�-�

 �)��� � D? �5 	�-�)���� � D? 	
�
�-�

 �)�

�
��� � D? 	���-�

)���� � � ? <-�

 �)�
��
���� � ? <-�)����� � ��)�--�

 �)�

���
���� � �����)�--�- � @�

���� ��� ���!���
���� ��� <� ��
� ��������� ����������� �
 ��� ��� ����� 	���

 �
���� 	��� ����� 	

�
���

 � ��

�
�� 	

�
��� ��

��
� � <��

 � ��

��
��� � <�� ������ � <��

 � ��

���
����� <�� ��������

��
� ��)<- �� ����
��
		 � � � � ����
�� ���� ��� ��
� ��������� ��������� �

��� <�� 1� ��� �
�� �
�
�
�� �&C�� �� ��!��
 ���� ��� ����	������� ���������

�� �!���) -�
6� �
�
��
�
�������� ��
�� �� ����
�� ������
��
� �����
	 ��
�� �� � �� �
0��� ��� 	
���
�� �)�-
 � �������� �� � �� ��!���
� ��� ��� �
 ����
��
	 ������� �
	��� # � �
�� ����� � ��
����� �� ��
������� ���� �)�- ?
�# � ���� #� � �!���)����� #

�� � #� � ��-��

6� ���� �� E���
 �= ��
� &��������� ����� �
� �� �	����
����

1
 �� �������� ��� ��� �
 ��
������� ��	�� ��
 ������ �
 �� ��� �"� �� ���
�
�� 9#������� ���	���� ���� &��������� ������ 0���� ����	������� ���������

)����-�)����- �� ��!��� �� ��� ������� �
�� 6� ��!�� !���$�)�� #� �

�- ?
�#� � � � ��� #� � ���� #���� ���� ��� ��� �

		 ������� �
	���
� ��
�� �� ��
��
�	�

=

���
 ���!���
���� ��� #��

&������� �������
����
�
)&8�- �
�� ���� ���������� �� 1�
��
 �� �;��

����	�	�� �� " ���	���� ������� ��������� �!�"� <=> �� � ���	���� ��#
������� �	�� �� ��
������ ���	 � &���� ������ �
 ��������#������� ��������
����������
 ����
���� �	��	 ��� �� ������������ ����������� ��� ������
�� ;�
" ������� �� �������� ������� �' �	��� �� � &$�� �������� 	 ���� �� ��� ������#
��
 ����������� �	� ������� ��� �	��
� �� ���� 	 ����� ������� ���������

��� ���������
�

A�� �� ��!��
 ��� �	
�� �
 ��������� �
������ ���� ��!���� ������ 0����
������� ��������� �
������ �������� ���	� ������� �������
� ��� ����� �

�����
�� �
� ����
�� ���� �� �����
���� �� �� ��� ������
	 ������� �������
��
����� ��� �������+� �
	��� ��������
		�� ���� �
�� �����
	 ����� ���
�	
�
�
����� 	��� &��������� ����� �� ��� �������� ������� ��������� �
������ ��		 ��
���� �� F������ � �� ��������� ���� �
 ��
��
�	� ���!���
����� �
 �&�)�-�

����	�	�� �� " �#����� 9#������� ���	��� % �� ��������� �� � &���� ��� �

������ �� �� ������� ����� �� � �� � &��� ����� �	 � �� � ���#��������
 �����

��� � �� ��� � ������� � �	�� �������� ��������� <� *	� ������� ���&
�������
��
���� �� �	� �����)��� <-� �� ����� ������ �
 ����� �
 �	�
��� �)�- �	���
� �� � ������ ��� �
 �
���� &���� ��� ��� � � � �� �� ����
�� ������� *	�
������������ 	��� �	�
�������

��� �% �� ��'�����
��� �	 ���
�����

�9�)� D � D? �5 �, ���� ��-
�5�)� D � D? �� �, ���� ��-
�3�)� D �� � � < ���� ���� �� ��	� ���� ���-�
�8�)� D �� � ? < ���� ���� �� ��	� ���� ���-�
�?�)� D @��� ����� �)�-
 �� � ? �
�� � ? & ���� ���� �� ��	� ���� ���-�
�A�)� D @��� ����� �)�-
 �� � ? �
�� � ? � ���� ���� �� ��	� ���� ���-�
�B�)� D �� �)�- ���� ���� �� ��	� ���� ���-� �	��� � �� � ����� !������
��

����������

�	��� � � ����� �� � ������ �������� ��� & � � �� �� ����
�� ���������

������� ��������� �
������ �
� �� ����������������� ����� ����� �
� �� �����
	
������������
� ��� �
�� ������	 ��
��� G
�� ��
�������
�� ��
 ��� ������	
��
�� �
� �� 	
��	�� ����
�
�����
������ 0�� ���
��
� �)%-
������� ��

 �
����� % �� ��� ��� �
 1FF �����
�� ��
� �� % ��
 ���
��� ��� �����
	
���!���
���� �� ��� ��
�� �	 �

1� ���
�		����� �� ��� �����
	 ������
�� ���
�����
�� ����
����� ����� �
�
�� ������� �� ��� ��
��
�� ����
�����
����� 6� ��� � D? �5')������������
��� ������� ��
 �����
�� '-� � D? ')������� ��� ������� ��
 ����� �����
��
'-
�� ��� ����
����
����)�-)������� ��� ������� ��
 ����������������
		�

4

������ �������-�

1� �� ��� �
�� �� ��� ��
� ��� ��� �
 ��
��
�	� ��
��� �
 G#
��	� ; �
� ��
��������� �� ���
�		����� ������� ��������� �
�����D

�� D
����)�-, ���� ��

�� D �
� ����� �)�-� �� � ? �
�� � ? � ���� ���� �� ��	� ����
���

�� D � D? �� �, ���� ��

�� D �� � ? < ���� ���� �	 ��	� ����
���

6��	� ������������ �
 ���� /)������� �����- �� �����
�� ��� �#�������� �����
�
 ��������� �
������� ���� �� ��� ��� �
��
�� ������������ �
 ���� =)&����
������ �����-� 0��
�		����� 	���
 ����� ��
� ������������ �
 ���� = �
� ��
�	����
���
��� ������� ��������� �
������ �
 ������
��� 6� ��� ���� ��	�

�
 ���������� ������
�� ���
�����

#�

� �� 0�� ����� �#����� 9#������� ���	��� % ���	 !������
�� �����
������ ������������ �
 ���� B�� �� �%�������� �#����� 9#������� ���	���% � ���	#
��� !������
�� ����� ��� �� �'�������� ����������� �C%�������� ����� �)%- ?
�)% �-��

������ ��� &���������
����	
 �
� �� ������� ��
 ����
	
��� ��
�
��
 ���	�
� ������
���� �
 	���
� ���>�
	�����
�� ����� �
 ��������	���� �� ��
�������� ��	� &���������
����	
� ���� ���
��� �
��
�	�� �� ��Æ��� �� ��������
����� �
 ���
���� � � 	� � � 	
�� 	��
�� �����
��� 	 � �� E�� & �� ���
��� �
 �����
��� 	 ���� �� ����� ������ & �� !����
�� ������� ��	� �� ���
&��������� ������
��� ���� ��% � E�� & � ? �	��

 � 	
�
 & �� ��� !���� ���
�
 �����
��� ���� �� ��������	��� ������ "�� ����� ������	 ��
�� � �
% �� ��!��

 ��� �
 ������	 ��
��� �
% � �
 ���
���)�� '��

 � '
- ����� '� � �<�

 � 	����

�� ����� � � ���

 � (�� A�� % � ����	
��� ��� ������
���� �
 % �� ����

�
� ��
� % � �� ��
 ��
��))� '��

 � '
- �2 % �� �� ��
��)
�� '� ? � ��� 	��

"�� �#
��	� �
 & � ? �3� (� ���� ��� ����))� �-
����	�
��))�� � 5 �- �
 % ���	��

���� ��� ����)))� �� 3-� �-
����	�
��)))�� <� �-� � 5 �- �
 % �� 0�� ��������	��� �����

���� ������ �����
	 �� % �� ���
��� ���� ��
���
���� �� ��� ������� �� ���
������	 ��
��� �
 % �� 0�� 	���
� ���>�
	��� �����
�� ���� �
���� �� �	����
���
"�� �#
��	� ��� ���� � � (�
� �� ���� �� ������������ ��� ������� �� (�
�������
�� � <
�� ��������������� �� (� 0���� ��� &��������� ����� �
� ��
�	����
���
��� % �� �

1� �� ��	�
 �
���� �
 ���������� �

 ������� ��89 ��
�� ��� �����
��� 	�
� ��
�����)��� ����
	 ���������- ��
��� ����� �� 	�
�)
�������� ��� ������ ��
��

;

� �� ��� �#
��	�
����-� 1� �� �
��� ���� ���������� �� ��
� ��� �����
���
����� �� 	�
�)����� �� F������ (-� ��� ��� ��������� �
�
	�
�� �� ���������
�
����� �� ���
�		����� 	���
�

#�

� �� .�� % �� � �#����� 9#�4 �	�� ����� �	� �����
��� ��
	� �� ��
��
" �#����� 9#�4 % � ��� �� ����������� �	�� ����� �	� �����
��� ��
� �� ��
	�
��� ������� �	� ���� ���
��
� �� % �

������)������- % � �
� ��� �
�� ������	 ��
���
� % �	��
 ��� �����
	
��
�� ���
��
 ��� !�
	 ��
�� �

�
	 � %

� ��
��� �� ���!���
����)���� <-� 1� �������

 �
	��
�� ��� �������
�� ���� �� �	 � 0��� �� ���� ��� ������
���� �
 % ��
�������)��
���� ��� �����
��� 	�
� �� �����- ����	 �� ��
���� ��� 1� ����� �
 ���
������� �
� �
	�� <� 1
 ���� �� ���� �� ��	
��
������� 1
 ��� ���� �� �����+�

������ �

A��� �� ���� ���� ����	�� ���������� �&C�
�� �89�� 1� ��� �
�� �
�
�
�� E���
 �(�� �
� ���� ���
�		����� 	���

�� �89�D

#�

� �� 0�� ����� ����������
 9#������� ���	���� ���	 !������
�� ������
�� �%�������� ����������
 9#������� ���	��� �� ���	��� !������
�� ����� ���
�� �'�������� ������������ �C%�������� ����� �)�- ? �)��-��

$%����
 � <9> -���� �� "!7" � ��� � ��
���� ��� �
 ���&
�������� ��
�!���)�- ��� ���������� �)�-� �� ��
���� ��� �'�������� ��������������

6���
� �&C� �� �
� �
��	� ����	
��
�
	����
���� ��������� �
����� ����
&��������� �����D "����� �� �	����
�� ��� &��������� ����� ���� E���
 �=�
0���� ���� ��� ��
�� �� �
� �
��	� ����	
�� ��� �������� ���
��� ��� &
�����
��
�� �
 ����	
� ���� �� &��������� ��!�
�	�)����	���
�- ��3�� �� ���
�� ���

�		�����D

&�������' �! .�� � �� �� ����������
 9#������� ���	��� ���	 !������
��
������ *	��� �)�- �� �'�������� !������
�� ��&������

0�� ��#� ����		
��
�		���
��� ���

�� ��
�
��
 ��������� �
����� �������

	����
���� ���������� ���������� �� ������������ �
 ��� �������� �
������

&�������' �" .�� � �� � 9#������� ���	��� ���	 !������
�� ������ �� �� �
�� ��� # � �� *	��� !���$�)�� #� �

�- �� �'�������� !������
�� ��&������

�<

� &��(�����	�) ��(��

1� ���� ������� �� ����� ���
�		����� �������D

$%����
 �� .�� @ �� � ��� �
 !"��� ����� �� ������
��� ��� % � �#
����� 9#������� ���	���� *	�� � �#����� 9#������� ���	���% � ���	 �)% �- ?
�*)���)�)%-- ��� �� �'�������� ������������

0� ����� ���� ������� �� �����
	�'� ��� ����
 �

 ������� �� ��� ����� �����
��
� ��� �*)�� �

 ����	
� ��� �
 ���!���
����� �

 ��������
����
��� ��
����	
�� 0��� ����
 ����
 �
���
���� ������� ����
�����
 !���� ������ �

��
��������
�� ��
��� �� ���
����
��� ������������ ���!���
������

6� �
���� ������	�
�
�� ���� ����
 �� �&�)�-� ���
��� ������� �����
��� ��

 ���!���
���� �
� ���
���
�
�� ����
�� �
	��� �
 ��� �
�
����� ��
��	����
�����
���� ��	��� 6� ���� ��� �� �
	��	
��
 &���������
����	
 �� ��
�
��
����'� ����� �
	���� 0���
		��� �� �� �	����
�� �����
���� ��	��
��� @� 0���
��
�� ��
� �����	� �������� �� ��	�� �� ���� �����
���� �
� ��� ���
���
�
	
���� 0���� �� �
�
��	� ��� �
���
���� �������

"����� �� ���� ��� �� ��
�
�����'�
��
 ����� � ��� ��� �# � �)#- ��
� ��

��
 &���������
����	
� 6� ��
��
��� ��� ��� �
 ��	�� @ ����
�
	����
����
��������� �
�����
�� ��� 8���		
�� �;�

#�

� �� .�� @ �� � ��� �
 !"��� ����� ��� � � ������� ��������� *	��
� !������
��
������ ��)#- ���	 �# � ��)#-� ? �# � �)#- ��

� �� ��� ��
�'�������� ������������

��**+, 6� ���������
�
	����
���� ��������� �
������ ���� &���������
����� ���� ��
� �)�- ? �# � �)#-��

� ��� ����� ���� �����
	 ������� �
	�� #
�
�
�
�������� ��� �2 �)#-��

� �� 0���� ��
��	� 8���		
�� �;�

6� ��������� � ?)�� �@�-
�
�		���D 0� �
�� ������� �����
�� � �
 ���
�&�)�- ��
�����
��
 ��
�� �
 �� �� � 0�� �����
	 ��
�� �
 � �� ��
�� ���

�������� ��
�� ��� @� �� ��� ��
		��� ��� ���� ��
�D
1
 @ ����
���
 ���������
���� ������� ��	� �)	-

�
�� ��)��-��)��-� �)	-�

����)�� � �)���
� *��-�)���

� *��-�)��� �)�--�- � @�)����� *��)� ? �� 3- �� � D?
�5	� �
 �� ? 	5	�
�� *�� �� � D? 	� �
 �� ? 	�-� 1
 @ ����
���
 ���������
����
������� ��	� �)	-

�
�� ��)��-� �)	-� ����)�� � �)���

� *��-�)��� �)�--�- � @�

)����� *�� �� � D? � 5 	� �
 �� ? 	 5 	�
�� *�� �� � D? 	� �
 �� ? 	�-� 1
 @
����
���
 �����
���� ��	� �)	-

�
�� �� �)	- ����)��� �)��� �)�--�- � @� �

1� ��
 �	�
�� ��
�
 ��� �
� ���� �����
	 ������� �
	�� # ��
�������� �2 �)#-
�
� ���
���
� ���� ��	�� �
 @� �

��

#�

� �� .�� @ �� � ��� �
 !"��� ����� ��� % � �#����� 9#������� ��#
�	��� �����������
 � ��� �
 ���&
��������� *	��� �� ��� �'�������� ��������� �
��� �
 ����� @� ���	��� ���������
 ����� ��� � �#����� 9#������� ���	��� % ��
���	 �	�� !�����)�)%-- D !������)�)% �--�

��**+, 0�� ����
 �� ���� �� ��� ������ "���� �� ���������
 �
����� % �

���� ��
� �)% �- ? �*)����)�)%--)����� @�
 @ �� ��� ��� �
 �����
���� ��	��
�� @-� ����% � �� ��� �	����� �
% ����� �����
���� ��	��� 0���� �� ��������� @�

������� �����
���� ��	�� ���� ��
� �*)���)�)%-- ? �*)�
�
��)�*)����)�)%---�

E�� �� !��� ���������% �D 0�� �
�����% ����������
 ��� �
 ���!���
������% �

���������� ��� �	����� �
 ���� ��� �����
��	��
���� �
 �����
���� ��	��� "�� �
��
��
�� � ��
��
 ��� ��
�������
��� ��� �����
	 ��
�� �� �� �� 0���� ��
�������
�� �������� �
 +,�)))�-)����� ���� ��� ������� �����������������
		� �� ����
�
	��-
��
 &��������� ���� ��)�- ����� ��
�
�����'��
		 ��� ������� �
	���
����� �
� �� ���
����
� ��
�� � ��
�		�����
 �
��
��� �� �� � ���� ��
�

		 ������� �����
��� ��
� �� ���� �
�� �
� ���
���
� ��
��	���� ��	�� �
 @�

6� ���
�� ��)�- �� !��� ������������
 ��������� �
����� ���� &���������
����� % �� ��������� ��� ������� ����
����� �
 %
�� ���� ����� 8���		
��
3<� % �� �� �����������
��� %
�
�		���D % �� �
� ��� �
�� ��
���
� % � �		
��
�������� ����� ��
�
 ������� �����
�� �
�� ���	
��� �� ��� �������������
&��������� ���� ��)	-)���� E���
 33-� 0��� ��)�- �� ��� &���������
����	

�� ��� ��
��	���� 8���		
�� 3< �� ��
�
�����'� ��� ��� !���$� ��)��� <� �-�

8	�
�	�� �)% �- ? �*)����)�)%--�

A��� �� ��������� @� ����� �������� ��	�� ����� �����������������
		� �����
��
� ������� �����
��� ��		 ���
���
� 	
��� ��
 �����
����� 7������	�� ��	�
��� !��� ������� �����
��
��� ��� 	�
� �
� ���
���
�� @� ����
���
		 ����
�����
���� ��	�� �
 @� "�����������
�� �
�� ���������
	 ������� ��	� �� @ �

���
���

�)	-
�
�� ��)��-��)��-� �)	-

��
�� ��� ��	�

�)	-
�
�� ��)��-� �)	-
 ���

)��-

�� @�� ����� ���
�� ��� &���������
����	
 �
 E���
 33� 8	�
�	�� �� �
��

�*)���)�)%-- ? �*)�
�
��)�*)����)�)%---� �

�3

6� ��� ���� 	���
 �� ����� 0������ 3�� 0� ���������
 ������� �
�����
% � ������������ �*)���)�)%--� �����
 ������� �
����� %
��
 ��� �

�&�)�- ��	�� @� �� ��Æ��� �� �������� @ ����� �����+� ����
�� �����
����
��	��� ��
��� ������ ��� ���
�	�� ������������
�� ��� ����������� ����
 �� �#�
�	
�� ��� �
�� ���
 ����
� �#
��	�D F������ �� �
��
 ��	� �
 ���
���
�)	-

�
�� �)	 5 �-�)	 � 3-� �)	- �� @
�� ���
����
��� % �� �
 ���

�		�����
���D

�������� � 	
 ����
 ����� � 	 � �

A����� ��
� ��� ������� �� ��� ������ ��
��� ��� ����� ������������ 0��� �� ���

 �����������)��� E���
 3(-� 6�
��
 ��� ��
�� �

�� �
�� ��
�������� ��
%
�� ���
��D

� �	 � � �� ���� �

��������

���
 ����

��

� 	
 �

� 	 � �

� �	 � � �� ���
 ����� � 	 � ��

���
 ����� � 	 � �

0�� ��
������� ����� ��� �
 �
 ��
���� ��� ������� �
	�� �� ����
 �
� ��
�
�
 � �� ��
� ���� �
�
����� 	 ���� � �� ��
� ���� �
�
����� 	� (� ����� �(
�� ��� ��2������ ������� �3
�� �� 0���� ��� ��
������� �������� ��� �������
�
	�� �� ��� �
	�� ��
���
��	��
���� �
 ��� ��	� ��
����� 3
�� ����� �)�-�
A�� �������� �����
�
 ��	� �)	-

�
�� �)	5�-�)	� 3- � �)	- �� @� "�		���

��� ��� �
�� �������	�
� ��
��� ��
��
 ��
��
�� �
�� ��
��������� 0���
��		 ���
��
 	���D

� �	 � � �� � ���� �

� �	 � � �� ���
 ����� � 	 � �� � �	 � � �� � ���� �

�������� ���
 ����� � 	 � � � 	
 �

��

� �	 � � �� ���
 ����� � 	 � ��

� 	 � �

���
 ����

1� �� �	�
� ��
� �� ���� �
� �� ��	�
��
 !���� ������ �
 ��
���)���
�� �
��
������� �����
��-
�� ��
��������� 1� ���
�		����� �� ���� ��� ���
�	�� ����

��

�
 ��� �
�� ��������

!���
 �
 *	����� 59

"���� �� ���� ��� �� ��
��
���
 ������� ��89 ����
 �����
	
���D

����	�	�� �� " �#����� 9#�4 % �� ���� �� �� �� �������
��� �'

� E0��� �	� ������� ����� �� �	��� �� ���� �� �����������
����)�-
���
 �� ���
� 1� ������������
� ���� �� �� �� ���
� "�� ������������
��� �� ��� �
 �	�
���
)�� D @��� ����� �)�-
 �� � ? �
�� � ? � ���� ���� �� ��	� ����
���-
��
)�� D @��� ����� �)�-
 �� � ? �
�� � �? � ���� ���� �� ��	� ����
���-
(� ���� �	�� ������������ &��� ����� �������������

� "�� ������������ ���	 � ���� �
 �	� ������� �� � < �� � ? <� ��� �
 �	�
���
)� D �� ��)�)�- ���� ���� �� ��	� ���� �

�-

9
������ �� �����
	
��� �����
 ������� �
	��� ��
�
� �����
�� ��	� ����
�
� ���� ��� �������
�� ��������� 6� �
� ����� ���
�		����� 	���
D

#�

� �� "�� �#����� 9#�4 % ��� �� �������� �� � �#����� 9#�4 % � ��
�������
��� �	��	 ������� �	� ���� ���
��
��

��**+, &������ ��� ���� ������������ ���� ��� ��>�����
��� �� �����
	� 0�
���������
 �
����� ����� �� ����� �� ��� �������
�� ���� ��
���
� ������
�� �
�� �� ��
�
�����'�
		 ��� ������� �
	��� ����� �
� �� ���
���� �� �
����

 �
��)������� ������-
��� ��� �����
	 ���!���
���� ���� <� ��
������ ��
��
��� 6� �
� ���������
 &���������
����	
 �)�-
�� ����)����� 8���		
�� 3<-�
0��� �� �
� ���������
 �
����� ���� ��
��� ��
�� ��
� ��>����� �� ���
�����
	
���)�� ������� ��� ������������� &��������� ���� ������ �
�� �����
�����������-� �� 	
��� ����� ������������ ��
�����
� �� �
 ���
���

)�� D �
� ����� �)�-
 �� � ? �
�� � ? & ���� ���� �� ��	� ����
���-

�
� �� ���	
��� ��

)�� D �
� ����� �)�-
 �� � ? �
�� � ? � ���� ���� ��� ��	� ����
���-

)��� D �� � ? & ���� ���� ������	� ����
���-

)���� D +,�)))�-, ���� ��-

0�� �
�� �� ����
�� ������������ ���� ���>�
������ �

��

0� ����� 0������ 3� �� �
�� �� ����� ��
� �����
 ��� @ �
 �&�)�- ��	��
��

 ������� ��������� �
�����% �� �
� ���������
 ������� ��������� �
�����
% � ���� �)% �- ? �*)���)�)%--� ���
��� �
 E���
 3� �� �
� ������� ��
�
@ ���� ��� ����
�� �����
���� ��	��� 6� ������� ��
� ��	�� �
 @
�� �� ����
	

���
�� ��
�% �� �� �����
	
���)E���
 3(-� 6� !��� ���� ��� ������������
�
 % �
�� ���� �� ����� ��
� �)% �- ? �*)���)�)%--�

������������ �
 % �

1� ���
�		����� �� ��		 ���� ��� �	����
�� �

		 ��� ������������)����
		 ��
��
���-� 0�� ������������ �
 % � �� ���� ��
����� ��
���
�� ������������ ��
��� �
����� % � 0�� �
��� ���
 �� ���
�		�����D G
�� ��	� �
 @ �
� ���	
��

������� �����
�� ��
� ��
�����
��� ��� �����
	 ��
�� �
 ���
����
��� % ��
����� ������� �����
���� 0����
���� ������������ �
�� �� ��
���� ��% � 0����
������������ �
�� �� ��
���
	�� ��� ������� �� ����� �� ����	
�� �������	� ���
��
��� �� ��� �
�
������� 0����
���� ��� ������� �
� �� �� ��
���� �� ����

�
�� ��
�

��� ��
���� ��� �����	� �� ��� �������
�� ���� �

 ��	� ��� �
	�� ��
��� �
��
� ��
���� 0�� �����
	
��� �
% ������� ��
� ��� ������� �� ��� ������
��
��� ��� ����� ������������� "����������� ���
��� �����
�� �� �����
����
��	��� ��	� �����	� ��
� �� ��� !��� ����� ������������ �
� �� ���	
����

E�� �� �� ��� �����
	 ��
�� �
 %
�� �� ��� ��
��

��� ��� �����
	 ��
��� 0�
����	�
� ��� �������
���� �� ��	� ���� ��� �� ���
� ����� ������������ ����

 ���� �
 ���
��� � ? �� 0�� �
�� �
� �� ����
�� � �? �� "�� �
�� �������
�����
�� � ��
��
 ��� ��
�� ��
��
� �����������

)�� D �
� ����� �)�-� �� � ? �
�� � ? � ���� ���� �� -

A���
�� �
�� ����� ��	� �
 ���
���

)�� D �
� ����� �)�-
 �� � ? �
�� � ? � ���� ���� ��-

�� %)���	����� ������������
���� ��
���-
��
�� �
�� ��	� �� @ �
 ���

�		�����
����� ��
�� ������������ �� % �� ���
�� % ��

� �)	-
�
�� ��)	 5 	�-� �)	-D

�� ��� �����������

)���
D � D? �� 	�, �� �)�- ���� ���� ��-

� �)	-
�
�� ��)	�-� �)	-D

�� ��� ������������)�� ��
 ��� ��
��-

�(

)���
D �� � ? 	� ���� ���� ��-

)�� D ���)�-, �� �)�- ���� ���� ��-

� �)	-
�
�� ��)	 5 	�-��)	 5 	�-� �)	-D

�� ��� ������������)�� ��
 ��� ��
��-

)���
D � D? �� 	� 5 	�, �
� ����� �)�-

�� � ? ��
�� � ? � ���� ���� ��-

)�� D � D? �� 	�, �� �)�- ���� ���� ��-

� �)	-
�
�� ��)	�-��)	 5 	�-� �)	-D

�� ����� ������������)��� � ���
�� ��� ��
���-

)���
D �� � ? 	� ���� ���� ���-

)��� D ���)�-, �
� ����� �)�-
 �� � ? ��
�� � ? � ���� ���� ���-

)��� D � D? �� 	�, �� �)�- ���� ���� ��-

� �)	-
�
�� ��)	 5 	�-��)	�-� �)	-D

�� ��� ������������)�� ��
 ��� ��
��-

)���
D � D? �� 	�, �
� ����� �)�-

�� � ? ��
�� � ? 	� ���� ���� ��-

)�� D �� �)�- ���� ���� ��-

� �)	-
�
�� ��)	�-��)	�-� �)	-D

�� ����� ������������)��� � ���
�� ��� ��
���-

)���
D �� � ? 	� ���� ���� ���-

)��� D �
� ����� �)�-
 �� � ? ��
�� � ? 	� ���� ���� ���-

)��� D ���)�-, �� �)�- ���� ���� ��-

F���� �����
�� ��	�
 !���� ������ �
 ������������ ��
�����
� ��
��
 !����
������ �
 ��	�� �� @� �� �� ������� ��
� ��	�
 !���� ������ �
 ������������
��

����� 1�% � 	���� ����
����� ��� ��
��� �� �
� �� ���
��� �� ��� �������������

����������� �
 % �

6� �
�� �� ���� ��
� �*)��)�)%-- ? �)% �-�

"����� �*)��)�)%--
 �)% �-D
6� ���� �� ��������� ��
� �*)���)�)%--
 �)% �-
��
		 � � 1A� �
�� �
��D
7������	�� �� �
�� �)%-
 �)% �- ���
��� % � �� ���
���� ��
����� ��
���
�� % � 1�������� ����D 8�������
� � � �*)��	��)�)%--� 0���� ����� �#����
�
�� � �*)���)�)%-- ���� �

� �� �� �� ��������� ���������� �
� � �)% �-� A���

�/

��� ������������ �
 % � ������� ��
� � � �)% �-� ���
���
�� �
�� ��	� �
 @
�����
�� ������������� ��
�������� �����
��
���� �� ���
�� % ��

F������ �)% �-
 �*)��)�)%--D
6� ����� ���� �� ��������� �� ��� ������ �
 ��� ������������)
���� �� %
�� ��� ������������- �
��� ��
�������� ���� �
 % �� E�� � � �)% �-� 1
 �� ���
����������� �� �
��� ��
�
�������� ��� �
 �� ���� � � �)%-
�� �����
���
� � �*)��)�)%--� A��� ������� ��
�
�
�������� ��� �
 � ��% � �
��� ����
��� ������������� 0����
��
		 �
���
� ��� ��������� �
 ��� ���� � ���� ��
�
 ���
��� ��)(-�

�� 0�� �
�����% � �
��� !��� ��� +,�)))�- �����������
��
����
� ����� ����������� �
 ���
���

)�� D �
� ����� �)�-
 �� � ? ��
�� � ? � ���� ���� ���
��	� ����
���-

0���� �����
�� �����
	 �
��� �� �������� ��������� �� ��� ��#� �����������
�
���� 6� ���� ��� ����
 �� ���
�	
�� ��� �
��� �		 ��� ������
�� ����
�
	��
����	�� F������ ��
� ��� ��#� ����������� �
��� �� ��� �
����� ��

)���
D � D? �� 	�, �� �)�- ���� ���� ��-

0����
���� �)(� 	�- �� ����� �� ������������ ����� ��
� ����������� �� % �

)�� D �
� ����� �)�-
 �� � ? �
�� � ? � ���� ���� ��-

�� ���� ������� �����
�� �� "���������� ����� ��
 ��	� �)	-
�
�� ��)	 5

	�-� �)	- �� @� ���
��� �
 � � �)% �- �� �
�� �)(� 	�-�
� � �)% �-

����
�
�������� ��� ����� �
��� 	��� ��� ������������ ��
� ��� ���
��
�� �� ��������� ����������� �)(� 	�-�

� � �*)��)�)%--
��
����������
�)(� 	�-�

� �� �)(-�
� ? �� 1�
�		���� ��
� � � �*)��)�)%--�

0��� 0������ 3� �� ������� �

��
��� �� (��� �	� ���
��
� �
 ����	���� ������ �
 ��� !"��� ��� ��
��������� �� � �#����� 9#�4� �	� �������� �� ��� �����)��� �#����� 9#�4�
�������� ���
��
�� �	�� ������ ��
�������� �� ��� !"���� �������� �	�
���
��
�

��)	-�)'�-�)'�-

 �)'�-�)	- � 	 � �� � � 1A� '��

 � '� � ��

�� �� ���� �� ��������� � �#����� 9#�4
�� �	�� ���
��
� ��� /��� �
����� �	�
������ �
 �	� '��� �������� �� !"���
�������� �	�� ���
��
�� ����� �� ������

���� �	� ������ �
 �	� ����������� ���� '� ���	��� �����
 �	� �����
�� 	� �	��	
�� ����� �
��� �� �	� ����

�=

0�� ����	�#��� �
 ������������
 ���������
���� �
 &���� ���� ��
� 	�
��
�
����
� ��� ����	�#��� �
 ��� ��
��
��	��� ����	��
�� �&�)�-� � �����
	 �
��
�
 ��� ��
��
��	��� ����	�� �� ��� ����	�� �
 ��� ����� ��
�� � �� ��
��
�	�

��� ��� �����
	 ��
���

������������	
 ��
 ������

��(�����- � �&�)�- @ ���� �����
	 ��
�� �)<-�
.��(�	��- �)<-�� � H

1� �� �	�
� ��
�
�� �&�)�- ���� &��������� ������
���� ��� ����	�#��� �

����
��
��	��� ��
� 	�
��
� ����
� ��
� �
 &���������
���������� 8�������

 �	����)����� �������
��� �
��
�	��- &���������
����	
 �
��
 �&�)�-
���� ��� ��	� �)	- � �� �)	-� 0��� �� �
�� �)<- �� � �2 � �� �����

&���������
��������� �� ����	���
�� ��� �	
��
�
��� -��3

��
�

� ��)��� ����-�
��
���� ��>�����
� 	�
�� ����	� �#�������
	 ����� A�� �� ��������
 ����������
�
�� �
 �&�)�- �������
�		 &��������� ������
����� 1� ��
�� (�� �
� �����
��� &��������� ������
���� �
� �� ���� �� ������ ��	�� ���� �����
��� �� ���
	�
���
�� ����� 6������ ��	�� ���� �����
��� �� ��� 	�
���
�� ���� �&�)�-
���	� ��� �� ���� ��
����
�	� 1� ���
�		����� ������� �� �� ��� ���
�		
&��������� ������
����� ��� �� �� ��� ��	�� ���� �����
��� �� ��� 	�
���
��
�����

$%����
 �� *	� �#����	������� �������
�� !"��� ���	���
��� !������
��
������������ ��� ����
 ����
�� ��������� �� �	� ��
�#	��� ����� �
 ������ �� �� #
	����

������ 6� ������ ��F�0 �� ����
��
��	���� E�� � D? ��

 �� ��

 ���	�
�
����	
 �� ��8A" ���� ' �	
���� ���� ��� �
��
�	�� ���

 � ��� 6�
���������
 �&�)�- @ ���� �����
	 ��
���)<- �����)<-��

� � �2� �� �
���!
�	��
E�� �� �� ��� .��� ����� ������� 6� ������
�
��������� �
 ���	�
� �
	���
�� ���

 � �� ��
 �
���
	 ������ � �� IJ���	 ������� ����� �� �� ���� �2 � ��
�������	� �� ��� 0�� ��� �
 ��	�� @ �� ��!���
�
�		���D

�)	- � �)	 5 �-

�)	- � ��)	 5 �-
��)	 5 �-

��)	 5 �-

��)	- � ��)	- �
 �� ������ �� �	
��� ���

��)	- � K��)	- �
 K�� ������ �� �	
��� ���

��)	- � ��)	 � ��-

��)<- � �

K��)	- � K��)	 � ��-

K��)!- � �
�� ����� ! � ���

 � �� � ��

�4

0���)	- �� ���� �� �����
 ������ 	 ��
� �������
�
��������� �� ���

 � ���
1

�		���
��� ��� ������������ ��
� ��)	- �� � �2 	 �������
�
���������
��
� �
��� �	
��� �� ����� ��)	- �� � �2 	 �������
�
��������� ����� ��
�� ����
�� K��)	-�� � �2 	 �������
�
��������� ����� �� ��

	��� 0��� ��
��� �)<-�� � �2 � �� �
���!
�	�� �� ��� .��� ����� ������ �� �). 	 	�� .-� ���
��'� �
 @ �� �)'�5 �� 	���-� �

� $%� &��(�����	/	�	�' �0 ����

1� ���� ������� �� ���� ��
� ��� !��� �

 ����	
� ��� �
 ���!���
�����)������

 �&�)�-- �� �2������	� �����������	�� :������� ��� !��� �

 ��� �
 ���!��
��
����� ��������� ��
 ������� ��89 �� ��� �����������	�� 1� �� ��� ����
���������
�	� ��
 ������� ��89 �� �����
	� ���	
� ����
�� ����� �� !����

����
�
� 6� ��!�� ��
� !����
����
�
 ������
		 ������� �����
��
�� ��	�

2����� �� �����	�� F�� �� ��� �����#� �
 �&�)�- �� ��������� ��� 	
���
��
)��-�
� ��)	�-�)	��-

 �)	�-�)	

�
�- � � � 1A�� ��
 	�� 	�� � ���

$%����
 � .�� @ �� � !"��� ��� � � &���� ���������� *	�� � �#�����
9#�4 % ��� �� �'�������� ����������� ���� % ? !����)�)�--�

������ G���� �	����� �� !����)�)�-- �
� �� ������� �� ���
��� ��)	-�
����� ��� �� �)	-��

��
� � �)�-� 0��� ����� ���� �#���
 ��
�� ! ��
� ���� ����� ��
 �
��
��� ��� �����
	 ��
�� !� �
 � �� ! 	
��	��

��
 �
��

��� ! ��
 !�
	 ��
�� �
 � 	
��	�� �� 6� ��������
)!����	� �
��- �
���
)�� !- ����� � � �����)@-
�� ! � ������)�-� E�� �� �� ��� !����
����
���
��
� �� ���
����
��� � �� �
���� ! ��� ��	� !�
	 ��
��� 6� ������� ��� ���
�
 �������� 	
�� ����� ����� �#����

 ���� �)	- ��

��
 � �)��-� "����
�� ������� ��� ������� ��89%� �� �����
	
��� ��
� ��������� !���

�)�)	--

� �� 0������ 3�� 0��� �� ������� ��� ������� �
 %� ���� ��� ����� ��

�
��
 ������� ��89 �� �����
	
���� 0�� ��� �
 ������� �
	���
� ��
�� ��
�
 %�
�� ����� %� ��� �� �������� �� &��������� ��!�
�	�
�� �2������	�
������
�	�)	��� �� 8���		
���� �;
�� 3<-� E�� ���� �� ��� �������������
��
�� &��������� ������
��� E�� ��� �� ��� !����
����
��� ��
� �� ���
����

��� � �� �
���� ! ��� �����
	 ��
��� 6� ��!�� %��� �� �� ��� ������� ��89
��
� ���
���
�
�		���D "���� ��
������ �)	- �2 ����)	-
�� ���� �� ���
���
	��� ���� E�� %� �� ��� ������� ��89 ��
�
������
		 ��>������ � ���� ��� ��
%� �� �2������	� �����������	�� �����
�� ����� �����	 � ��� ��� �
 	
�� ����
�)	- �� � �� &���������
�� �2������	� �����������	� �� E���
 33� 0���
!�
		� �� ���

% ?%� 	
�
���

%���

�;

�� % ? !����)�)�--� �

A�� �� �������� ��� ����	�� �
 ��� !��� �

 ��� �
 ���!���
����� ���������
��
 ������� ��89�

�����
���� �� !��� �� ������	 ����

��(�����- � �&�)�- @�
 ������� ��89 %
��
 ��
�� ��)<-
.��(�	��- ��)<- � !��

�
�)%- H

$%����
 �! 4������	�� �� !��� �
 �#����� 9#�4 �� ������������

��**+, 6� ������ ��� �������
�	� �
	���� ����	��
�� 9����� 3��������
�
������)���� ���� �������� �����
		� <- �� ��� ���������� �� !��� �

 ��
����� ��89� 0�� !��� ������
���� �� ��
���)<- � !��

�
�)%- �2 !���

�
�)��)<--�

�)%- �? �� E��% � ��
 9����� 3�������� �
������ 6� ��		 ��!�� ��� �&�)�-
@
�� ��� ������� ��89 % �� ����
 �
� ��
� �
�� �
 ���� ����	
���
 ��
������� �
�����
�� �������� ���� ����	
�� ��� 3�������� �
����� % ��

6� ��!�� ��� �&�)�- @ �� ����
 �
� ��
� �� �������	� ����	
��� ��� �
��
�
 ��� ������
���� �
 % � ��
� ��	�
2���� ��� !��� ������� ��� 0�� �������
�
�
����� �� ���� �� ����� ��� !��� ������� ���

� "�� ����� ����������� �
 % � �
 ���
���)� D �� D? �� 5 �, ���� �
�- �� �
��

 ��	� �)	-� � �)	 5 �-�)	-�
� "�� ����� ����������� �
 % � �
 ���
���
)� D �� �� ? < ���� ���� � � ��	� �� D? �� � �, ���� � ��- �� �
�� ��� ��	��
�)<-� � �)<-�)<-
�� �)	-� � ��)	 � �-�)	-� 	 � <�

� "�� ����� ����������� �
 % � �
 ���
���)� D �� D? �� 5 �, ���� �
�- �� �
��

 ��	� �)	-� � �)	-�)	-�
� "�� ����� ����������� �
 % � �
 ���
���
)� D �� �� ? < ���� ���� � � ��	� �� D? �� � �, ���� � ��- �� �
�� ��� ��	��
�)	-� � �)	-�)	-
�� �)	-� � ��)	-�)	-�

1� ��� 	
�� �
 �����
��� �
��� ��� �&�)�- ������� ��� ��������� ��
��� ���
���
�� ����� �������
���� ��� ������� ��� 0���� !���

�
�)��)<-- ����
���
		 �������

������
���� ��>������ �
% � ��
�����
� ��� �����
	 ������	 ��
�� ��
�� �����
	
������� �
	�� <� ���
	�� ���� ����� ����)�
 �� �
� ������� �����	� �� ���

����� �
��-� 0���� ��>������
�� ��
�
��� ����� �� 	�
��

0��� �� ��� ��� ������� ��89 % �� ����	
�� ��� ����� �
�� �
 ��� ������
�
���� �
 % � �����
2���� ��� ������ ������� ��� 0�� ������� �
 % �� ���� ��
����� ��� ������ ������� �� �
 %

�)����� �� �����
		� <-� % �������
		 �������

3<

�����
�� ��	� ������ ��� �����	��

� "�� ����� ����������� �
 % � �
 ���
���)� D �� D? �� 5 �, ���� �
�- ���

�
����� % ��
�� ��� ������ ��� ������� ��� ���� �� ������	 ��
�� � �
��
	�
��� ��� ������
	 ������� ����
�����

� "�� ����� ����������� �
 % � �
 ���
���
)� D �� �� ? < ���� ���� � � ��	� �� D? ��� �, ���� � ��- ��� �
����� % ��
��
��� ����� �����	� ����� �� ������ � �� � ��
�� ��
���� ��� ������	 ��
��

��������	� �� � �� � �� % ������� ��� ������� �����
�� 	�
��� ��� ������
	
������� ����
�����

� "�� ����� ����������� �
 % � �
 ���
���)� D �� D? �� 5 �, ���� �
�- ���

�
�����% �����
��� ��� ������
	 ������� �� �
�� ���� �� ��� ������	 ��
��
� ��

� "�� ����� ����������� �
 % � �
 ���
���
)� D �� �� ? < ���� ���� � � ��	� �� D? �� � �, ���� �

��- ��� �
����� %
������ �
 ��� ������
	 ������� �� <�
	 1
 ��� ������
	 ������� �� <� ���� �� ��
�� ��� ����� �����	
�� ������ �

�� �� � �� 1
 ���� ���� �� ���� �� ��� ������	 ��
�� � �� 1
 ��� ���� �� �����

�� ��L����� 0�� ������
	 ������� �� 	�
� ����
����� 0�� ������� ����� ��
��������

	 1
 ��� ������
	 ������� �� � < ���� �� ���������� ��� ������
	 ������� ��
�� ��
�� ��� ����� �����	
�� ������ �
 �� �� � ��� 1
 ���� ���� �� ���� ��
��� ������	 ��
�� � ��� 1
 ��� ���� �� �����
�� ��L����� 0�� ������� ����� ��
��������

0�� �
����� % ��	�
������ �� ��� !�
	 ������	 ��
�� �	 � ����� ��
	�� ���
!�
	 ��
�� �
 % �� ��
�� ��� �&�)�-
����� ����� ������
���� ��>������ �

%
�� ��
�
��� ����� �� 	�
�� 0��� �� ���
 ����������� �� E���
 �/�

0������� @
�� % ����	
�� ��� ������
���� �
 % �� @ ������� ��
� ��� ����
���
���� ���� �� ������� ���� ��� !��� ������� �� ���������� % ���� ��� �
��

�� ��� ������ �������
�� ������� ��
� ��	� ����� ��>������
��
�������
��
� ��� �� ��� !�
	 ��
�� �	 �
 %

��

F� �� ��� ��
� ��)<- � !����)%- �� !�����)��)<-- � �)%- �? � ��
% �
	���
�� ���� ��� ���������� ����	�� �� !��� �� �������
�	�� �

0������ 3; ���� ���
����
���
		� ���	� ��
� ��� !��� �

 ������� ��89
)������ @- �
���� �� ����������� ��
 ������� ��89� 1� 	�
��� ��� �������	�
��� ��
� ���� ������� ��89 �� L��� ��� �2������	� �����������	��)8
��� 	���
���� ������ ����� ��� ��� �
 ��
��
�	� ��
��� �

 �	
���� 	���� ������� �
�����
�� ����	���
�� ��� ��� �2������	� �����������	� �����- :������� ���
�		�����
������� ����� ��
� ��� !��� �

 ������� ��89 �� ���
 ������� ��89 ��
�����
	�

3�

$%����
 �" .�� @ �� � !"��� ��� % � �#����� 9#�4� *	��� �	� ���
!����)�)%-- ������ �� ����������� �� � �#����� 9#�4 ��
�������

��**+, E�� % � �� ��� 3�������� �
����� ��
�
������ �

�� ��	� �
 ���
�����
	 ������� �
	�� �� ��� !��� ������� �� ��
 ����� �
 3� ����� 3

�� ����
�������� ������� (� E�� @
�� % �� ��!���
� �� ��� ����
 �
 0������ 3;�

6�
����� ��
� !����)%- ���	� �� ����������� ��
 ������� ��89
�� ������

 �����
�������� 1
 ����� ����
 ������� ��89 ��
� ���������� !����)%- ����
����� ���	�
	�� �#���
 ������� ��89 ��
� ���������� !����)%-����)�- � � �
1A� ? ���)�- � �(� 1A
 � ? 3
�� 0��� ��
 �����
�������� ���
��� ��� ���
�� � �(� 1A
 � ? 3
� �� ��� &��������� ��!�
�	�� �

� $%� #�)	� ��� 	�(����	���	��(

6� ��!��
 	���� �
		�� 1FE)1������ F�>����� E����- ��
� �
� �� ���� ��
����
� ���������� �
 �&�)�-� 1� �� ����������� ���� 1FF)��� C�
� �-� 6� ��!��

 ������ �
 �
���

����� �

� 1FE
����	
 ��
 �&�)�-
�� ���� ��
� ���
����!�
���� ����	�� �� �����
�	��

E�� ����� ������ ��� ���L������ �
 1FF �� ��>������ �
 �����
��� ���
���� ��
�������� ��� ��������,
���
		� �����)��)	�-��)	�-

�
)	
-- ? ����

�
�
0���� ��� 	���� 1FE �� ��!���
�
�		���D

����	�	�� �� �).
������� 	��� �	�
�������
 �����$�

� D?)���

 � ��� � -

�	��� ���

 � �� ��� &���� �������� ���� �� ���	���� �
 ������� ����������
��� � �� ��)� � �-#��� !������
�� ���������� 0������� ��� ����������� ����
��%������ � �
 �	�
��� ��)	�-��)	�-

�
)	
-� �	��� �	� �����
������ ��#
������ �� ��&��� ��
�������

� �? � �' �	��� �$��� ����� ���

 � ��� ��������� ���

 � ���� ��� ����
���
	��

 � 	��� ���� � ? ����)	�-����)	�-

 ��������)	���-�� ���

� �� � ���

 � �� ��
 �� ������� �����)��-���
� �� ������� �����)��- ��� �)	��

 � 	���- �� �����

*	� ��� �
 ��%������ �	��	 �����
� �
������ � ��
���� �� ��� �� ? �� �� �? ���

1��������	�� 1FE
����	
� �����
� ����	
� �
������)�����
����
�
- ����	����

!���� ������ �
 ������� �
	��� �����
�� ������
���� ��
 &���������
����	
�

33

6� ��� 1FE
����	
� �� �����
� ���������� �� ��� ���!���
����� �
 ��� �������

�� ��� �� ����� ������
���� ��>������� ��� �����
	 ��� �
 �����!�
���� 	���
��� �� ����!�
����� "�� ����
���� ���� �&�)�-+�
�� ���� �� ����	 ���������
�����
�� ����
� ������� �
�
������
 �
���
	 >������� ��
� �
� ��
���� ��
������� ���� ��������� � �
� �� �
		�� ���� ���� �
	�� 	 �
���
����
 &����
������ ������
��� � � 0��� �
� �� �����!�� ��
����� ������� ����� ��
 ��
���

�	� ���!���
���� ������������� �� ��� �
����� �������)	-������� �����
�)	- ��	��� M���� 1FE
����	
�� �� �
� �����
� ���� ����	�# >�������� ����

� ������� �� �� ������	� ��
� ��� �#������� ��
�� �
 ��� ��������� �����
� �
�
����
�� ��� ����������� ������ �

 ��������� ���� ��� �
�� �
		��� �
�
���
���� 0��� ����������� �� ��� �
����� �������)	�-)���������-��)	�-�����

��
����� 	� ? 	��

0�� !��� ����	� �� ����� �� ��
� �� �
� ��
�
�����'� ��� �� �� ��
�� �
 ������
	
������� �������
����
�
� :������� �	������ �
 ��� ��
�� ��>������ ����
�
��!����
	��
���� ����� ���� �
� ����
��
�� �������� 0� ��
�
�����'� ����

!����
	��
���
� �	����� � � ��� �� �� �
� ������ ��� �������� �� � �� �����D

 ��������)����� ���
����- ������� 	� �� ���	
��� �� 	�)����� �	�- �����������
�

 �����	 ��)����� ��-� :����� �����
 ��� � �
 1FF� 	�� �� ������ ��� ��� �

		
��>������ �� � ������� �� ���� �
�� 6� �
� ��
�
�����'� ���� �� ����
 ������
	
������� �������
����
����

#�

� �� (� ��� ��������� � �������� ������� ������� ��������� % ����
� &���� ���	���� N ���	 �	�� ���� �� ? �)%-�

��**+, 0�� ������
	 ������� �������
����
���% ����	
��� ��>�����
		�
���
����
�
 ���

 � �� �� ����� �� ����� �
 ��� ����� �� �
 ��� ������� ����	
�
�
������ �
��� ��
���� ��)�� �
� �� �� ��
�
�������� ��
��-� ��� �
�����
��
��
 ��>����� �
 �����	� �� �� ��
�� ������ ����� 	����� �� �������������
������
	 ������� ��������� �
��� ��� ����� �
� ���� ����	���	� ��
�� ���
&���������
����	
 �
� �� ������ �� �����
 !���� ������ �
 ����� ������
	
������� ��������� �

A��� �� ��!��
 ������ �
 �
���

����� ������� �&�)�-+�
�� 1FE
����	
��

����	�	�� �� .��)���@- �� � !"��� ���	 ������� ���&
������� �� ��� ���
�
 ����� @� .�� � �� �� �).#
������� (� ��&�� �	��)���@- �����&�� �	�

������ � �' �� 	�� � ����	���� ���&
������� �	�� �����&�� � � 0�������

)���@- �? � �� �� � !�����)��-
 � �? �

0� ����� ��� �����
��	��� �
 ��� ����!�
���� ����	��)���@- �? � �
��
 �����

3�

�&�)�-)���@-
��

����	
 � �� ���� ���
�		����� ��!������
��
 	���
�

����	�	�� �� .�� � �� � ��� �
 �))� *	��� ��� �� �	� ��� �
 ��%������ � ���	
�	�� �	��� �$���� � ��%����� �� � � ���	 	� � 	 ����
��� ���	 �	�� � �� ��������

��� �� �� �������
 	� � 	 ����
��� ��� �������
 �	� ��������
 ����
��� ��
������

#�

� �� .��)���@- �� � !"��� ���	 ������� ���&
������� �� ��� ��� �

����� @� *	�� �� ��� ��������� � !�" % ���	 �	�� �)%- ? �*)���)��-���

��**+, "���� �� 0������ 3� �� ���������
 ������� ��89% ��
�
������
!�����)��-� 6� ���������
 &8�
��� % ��)�- ����� ��� �������� ����� ��
������ ��� �������)3- �������� �����������������
		� �#
��	� 	 ����� �
	���
�����
�� ����
��� �� ��� �������� "�� ����� ����
������ �� ���� 	
�������
	
������
	 ������� ��������)��
���� 	����� ��� ������� �
	��-� �

$%����
 �� .��)���@- �� � !"��� ���	 ������� ���&
������� �� ��� ���
�
 ����� @ ��� � ?)���

 � ��� � - �� �).#
������� *	� �������)���@- �? �
�� ����������

��**+, 8	�
�	�� �� �
�� �*)���)��- � ��� �� �? � �2 ��*)���)��- �
���� �� �? ��

����� ��
	�� �>���
	��� �� ��*)���)��-���� �
���� �� �? � ����� � �
���� ������
��

���� ��
� � � � ��������� 0��� �� ���� ��
� ��*)���)��-���� �
���� �� �? � ��

�����
�	�� 0���
�		���
��� E���
 �(� E���
 �3� ���

�� ��
� ��� ������
������� �

 8� 	
���
�� ����
 &8� 	
���
�� ��
 &8� 	
���
��)E���

(�� �
 �;�-�
�� 0������ (�3 �
 �;� ����� ��
��� ��
� ��� ��������� ����	�� �

&8� �� �����
�	�� �

"��
		�� �� ��������
������ ����������� ����	�� ���������� ���
�
	���� �

�&�)�-+�� 6��� ���� �� ����	 ��������� �����������
 �
���
	 >������� ��
�� ���� ��� ��� �

		 ��� ������	� �
	���
�� �����
 ����� ��������� �
� ��
�
		��� 9��� �����
		�� ��
�� ���������� �� �������
		 ��� ������	� �
	���
�
 ��� �������)	��

 � 	�- ���� ��
� ����� ��
 ��
��
�	� ���!���
���� �����
�
���!�� ���� ����� 1FE
����	
 � ?)���

 � ��	�� � -� 6� ���� ��
� ���� ���
�� �2������	� ����	���
��

$%����
 �� .��)���@- �� � !"��� ���	 ������� ���&
������� �� ��� ���
�
 ����� @� ��� ��� � �� �� �).
������� *	��� �	� ���

�)	��

 � 	�- � �
�� �� ? ����)	�-

 ����)	�-��	� � �*)�

�
�)��-
 � �? ��

�� �'�������� �����������

3�

��**+, �� �� ��� ����
 �
 0������ �/� �� �
� ���������
 &8� �����

�������'�� ��� 	
���
�� ��*)���)��-�� �
���� ��� 0���� ��� ����	�
�		���
��� ���

�� ��
� ��� &
���� ��
�� �

 &8� 	
���
�� �� ����	���
�)��� 0������ (��
�
 �;�-� �

� &�����(��

6� �
�� ����� ��
� �&�)�- ��
 ���� �#��������
�� ���� ��
	����� ����	

�� ��������� ���������� ��
� �&�� 0�� �����
�� ���� �����
��� �#���������
���� �� ��
�
 ��������
����
�
 ��������� ����)������� ��89- �� ������ ��
�������� ���� �
 ���!���
������ ���	� ����	� !����
����
�
 ��Æ��
�� �&��
��
 �����>������ ��� ��� �
 ������������ �� �� 	����� �2������	� �����������	�

�� �&�)�- �� �����
	� :������� ��� ��� �
 ���������� �� ���		 �2������	� ����
��������	� �� �&�)�-
�� ���� �
�� ����!�
���� ����	���
�� �����
�	�
��
�&�)�-� ����� ����	 �������� ���� 1FE� 0���� �&�)�- �
� �� ����
�� �����
!�
���� ����	��� 	��� �
�
.��
�
	����� ���� �&� �� ��� �#�������� �������
6� �#���� ��
� ��� ����	�� �
� �� �����
	�'�� �� ���� �#�������� ����	�)�����
��������
����
�
 ����
� ������� �
�
�����-� ��� ���� ���
�	� �
 ��� ����
���������� ��		 ������ ���� ����	�#�

��0������(

�(! �"
���33���% 7" 2�	����% ��� 8" &����" 6��
�������� �������� �� 	�������
��������9 �		��
����� �� �����
��
)���" 4� ���	
�������� ���#	
	��	 ��

�����

	��(/+	�
(0�12��34,�5% ������ (0:; �� �2�$" /	������ -�����%
(,,<"

�0! �"
����� ��� +" �����" =��	������� �>�������% 	��������� ���������
 ���
$���� ��������" 4� �
��! �# ����4,6% ������ (1?, �� �	���
	 2��	� ��
��"���	
 $��	��	% 	���� ;1@:;" /	�������-�����% (,, "

�;! 8"
��)��� ���
" /��*��" �������� 	��
�����9 ��������
��	������� ��� �����

��
)���" 4� �12��34,�% ������ 5; �� �2�$% 	���� ,5@((;" /	������ -�����%
(,,:"

�:! 8"
��)��� ���
" /��*��" &����
��
)��� ��� ���� ����� ���
��
���� ���
��$���� ��>������� 	��
�����" 4� �
��		���'� �# �����4,�% ������ (0? �� �2�$"
/	������ -�����% (,,<"

�?! 7" 2�	����% =" +�����% �" 6���������% ��� /" /
�����" 2Æ
���� ����������
��� �����
��
)��� 	������� �������" 4� �
��! �# ��7 ����% ������ (5?? ��
�2�$" /	������ -�����% 0111"

3(

� ! 7" 2�	���� ��� 7" A���	" �� �����������������
 �		���
� �� �����	��
������
�������� ��������" 4� �
��! �# ��$$��$4,,% ������ (?<5 �� �2�$% 	���� (:@;1"
/	������ -�����% (,,,"

�<! &" .����" '��
��	������ �� 	��������� ���������
 ���� ������� >�����$��
����������� ��	��" /+	�
	����� ��"���	
 $��	��	% (59(1?@(((% (,50"

�5! 2" B�����" /��
������ �� 	��������� ���������
 ��� ��� 	��������������
������
��" /+	�
	����� ��"���	
 $��	��	% ? 905,@;1(% (,55"

�,! 8" 4�����" 6��������������� �����
������ ��
����� ��� ����� ��
�����
	�������" ���
��� �# �+	 ��8% 0?9((@(;;% (,<5"

�(1! 8" 4�����% '"
�����% ��� 7" /�" 6��
�������� �������� ��� ���� ������ ��
��$���������� ���������� �������" 4� �
��! �# �12��3 ����% ������ (5<< ��
�2�$" /	������ -�����% 0111"

�((! 6" &���" C���
������ 	������� �� ����������
��	��������" 4� �
��! �# ��/�2

����% ������ (<< �� �2�$" /	������ -�����% 0111" 7������ ������� �� �		���
�� '�/"

�(0! 6" 7" ����)�" 8�
����������� ���������" ���
��� �# �+	 ��8% (;�:�9?<1@?5(%
(, "

�(;! 7" ��� D������% ������" 9���%��: �# /+	�
	����� ��"���	
 $��	��	- 7���"	 ��

��'�
��+"� ��� ��"��	 ��(" 2�������% (,,1"

�(:! 4" #���)����
�" �������� 	��
�����9 B���� ��� ������
��
)���" ��#�
"�����

��� ��"��������% (:�0�90;:@0 ;% 011("

3/

