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Abstract

This is a collection of my works on verification problems for systems with
infinite state spaces. It mostly contains results in the following three areas:

e The decidability and computational complexity of model checking prob-
lems for systems with infinite state spaces.

e The relationship between model checking and semantic equivalence
checking.

e The decidability and computational complexity of checking semantic
equivalences between systems with infinite state spaces.

This collection begins with a short summary titled “On Verification Prob-
lems for Systems with Infinite State Spaces”, which gives a general overview
over the subject. Then follow the papers that contain the details.

Notice: In order to make this thesis self-contained, some material has been
included that has already appeared in my dissertation. In detail, the situation
is as follows.

The papers number 2 and 6 (see the table of contents) contain material
from my dissertation (in slightly extended and modified form). The other
papers numbers 3,4,5,7,8,9,10,11 and 12 are new and have nothing in common
with my dissertation.

Now we make the same distinction for all theorems that appear in the
summary chapter of this thesis. The theorems 1,2 and 10 appeared already
(or follow from results) in my dissertation. The other theorems 3-9 and
11-23 are new.

The few papers and theorems that overlap with my dissertation are clearly
marked in the table of contents and in chapter 1 (the summary chapter).
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Abstract. This is a short summary of most of my work on verification
problems for systems with infinite state spaces. It mostly describes results
in the following three areas:
— The decidability and computational complexity of model checking
problems for systems with infinite state spaces.
— The relationship between model checking and semantic equivalence
checking.
— The decidability and computational complexity of checking semantic
equivalences between systems with infinite state spaces.
In order to make it easier to distinguish my own work from that of
other authors, all citations of my own work will be in bold face. The
three theorems (number 1,2 and 10) that are already contained in my
dissertation are explicitly marked.

1 Abstract Models for Infinite-State Systems

Since general programming languages are Turing-powerful, verification problems
for them are undecidable. Therefore, abstract system models have been intro-
duced that can model most of the behavior of full programs, but still retain the
decidability of most of their verification problems. While some abstractions are
finite-state, others still generate systems with infinitely many reachable states.
Examples are systems with unbounded creation of new parallel processes, sys-
tems which call subroutines (unbounded recursion), systems with unbounded
data structures (like counters or buffers), or combinations of all these.

1.1 Bisimulation

The abstract systems models generate (possibly infinite) labeled transition graphs,
i.e., directed graphs whose nodes represent states and whose arcs represent tran-
sitions which are labeled with atomic actions. The underlying semantics of these



systems is given by the following semantic equivalences. We consider the seman-
tic equivalences weak bisimilarity and strong bisimilarity [Mil89] over transition
systems.

Definition 1. The action T is a special ‘silent’ internal action. The extended
transition relation ‘=’ is defined by E = F iff either E = F and a = 7, or

a,

ELE SE' L F for some i,j € Ny, E', E" € G. A binary relation R over
states (of processes) is a weak bisimulation iff whenever (E,F) € R then for
every a € Act: if E-% E' then there is F = F' s.t. (E',F') € R and if F % F'
then there is E = E' s.t. (E',F') € R. Processes E,F are weakly bisimilar,
written E ~ F, iff there is a weak bisimulation relating them. Strong bisimulation
is defined similarly with = instead of =. Processes E, F are strongly bisimilar,
written E ~ F, iff there is a strong bisimulation relating them.

Bisimulation equivalence can also be described by bisimulation games [Sti98,
Tho93] between two players. One player, the ‘attacker’, tries to prove that two
given processes are not bisimilar, while the other player, the ‘defender’, tries to
frustrate this. In every round of the game the attacker chooses one process and
performs an action. The defender must imitate this move and perform the same
action in the other process (possibly together with several internal r-actions in
the case of weak bisimulation). If one player cannot move then the other player
wins. The defender wins every infinite game. Two processes are bisimilar iff the
defender has a winning strategy and non-bisimilar iff the attacker has a winning
strategy.

1.2 Process Rewrite Systems

Many classes of systems that have been studied by other authors and myself can
be described in the formalism of process rewrite systems, that has been defined
in [May00c].

Let Act = {a,b,c,...} and Const = {¢, X,Y, Z, .. .} be disjoint countably infinite
sets of actions and process constants, respectively. The class of general process
expressions G is defined by E ::= €| X | E||E | E.E, where X € Const and e is a
special constant that denotes the empty expression. Intuitively, ‘.” is a sequential
composition and ‘||" is a parallel composition. We do not distinguish between
expressions related by structural congruence which is given by the following
laws: ¢ and ‘||’ are associative, ||’ is commutative, and ‘€’ is a unit for ‘.” and
P

A process rewrite system (PRS) [May00c] is specified by a finite set A of rules
which have the form E % F, where E,F € G, E # ¢ and a € Act. Const(A)
and Act(A) denote the sets of process constants and actions which are used in
the rules of A, respectively (note that these sets are finite). Each process rewrite
system A defines a unique transition system where states are process expressions
over Const(A). Act(A) is the set of labels. The transitions are determined by A
and the following inference rules (remember that ‘||’ is commutative):



(ES5F)eA ESE ESE
ESF EF % E'F E||F % E'|F

We extend the notation E % F to elements of Act* in a standard way. Moreover,
we say that F' is reachable from E if E 5 F for some w € Act*.

Various subclasses of process rewrite systems can be obtained by imposing cer-
tain restrictions on the form of the rules. To specify those restrictions, we first
define the classes S and P of sequential and parallel expressions, composed of all
process expressions which do not contain the ‘||” and the *.” operator, respectively.
We also use ‘1’ to denote the set of process constants.

PRS (G,G)

/N

PAD (S,G) PAN (P,G)

VAV

PDA (S,S) PA (1,G) PN (P,P)

NN/

BPA (1,S) BPP (1,P)

N/

FS(11)

Fig. 1. The PRS-Hierarchy

The hierarchy of process rewrite systems is presented in Fig. 1; the restrictions
are specified by a pair (4, B), where A and B are the classes of expressions which
can appear on the left-hand and the right-hand side of rules, respectively.
Many of these (A4, B)-PRS correspond to widely known models like Petri nets,
pushdown processes, context-free processes and others.

1. A (1,1)-PRS is a finite-state system. Every process constant corresponds
to a state and the state space is bounded by |Const(A)|. Every finite-state
system can be encoded as a (1,1)-PRS.

2. (1,5)-PRS are equivalent to context-free processes (also called “Basic Pro-
cess Algebra (BPA)”) [BE97, Esp97]. They are transition systems associated
with Greibach normal form (GNF) context-free grammars in which only left-
most derivations are permitted.



3. It is easy to see that pushdown automata can be encoded as a subclass
of (9,5)-PRS (with at most two constants on the left side of rules). Cau-
cal [Cau92| showed that any unrestricted (S, S)-PRS can be presented as a
pushdown automaton (PDA), in the sense that the transition systems are
isomorphic up to the labeling of states. Thus (5, S)-PRS are equivalent to
pushdown processes, the processes described by pushdown automata.

4. (P, P)-PRS are equivalent to Petri nets. Every constant corresponds to a
place in the net and the number of occurrences of a constant in a term
corresponds to the number of tokens in this place. This is because we work
with classes of terms modulo commutativity of parallel composition. Every
rule in A corresponds to a transition in the net.

5. (1, P)-PRS are equivalent to communication-free nets, the subclass of Petri
nets where every transition has exactly one place in its preset [BE97, Esp97].
This class of Petri nets is equivalent to Basic Parallel Processes (BPP)
[Chr93].

6. (1,G)-PRS are equivalent to PA-processes, a process algebra with sequen-
tial and parallel composition, but no communication (see, e.g., [BK85] or
[May01, May97b, May97c]).

7. (P,G)-PRS are called PAN-processes in [May97a]. It is a common gener-
alization of Petri nets and PA-processes and it is strictly more general than
both of them (e.g., PAN can describe all Chomsky-2 languages while Petri
nets cannot).

8. (9,G)-PRS are a common generalization of pushdown processes and PA-
processes. They are called PAD (PA + PD) in [MayO01].

9. The most general case is (G, G)-PRS (here simply called PRS). PRS have
been introduced in [May00c]. They subsume all the previously mentioned
classes.

It was also shown in [May00c] that PRS are equivalent to ground AC rewrite
systems, modulo some coding. (Ground rewrite systems are rewrite systems with
only ground terms, i.e., terms without free variables. This means rewriting with-
out substitution. Ground AC rewrite systems are ground rewrite systems on
terms that can contain an associative and commutative operator.) However,
normally ground AC rewrite systems are not used to describe labeled transition
systems, since their rewrite rules are normally not labeled with atomic actions.
The two main results about PRS in [May00c]| are the following.

Theorem 1. [May00c] (already appeared in my dissertation [May98])
The PRS-hierarchy is strict with respect to bisimulation equivalence.

This means that all subclasses of PRS in the hierarchy are different from each
other w.r.t. bisimulation. If there is an arc from a lower class to a higher one, then
the higher one is strictly more expressive (there is a process in the higher class
that is not bisimilar to any process in the lower class). Note that this theorem
does not carry over to language equivalence, since, e.g., BPA and pushdown
automata both describe the class of context-free languages.



Theorem 2. [May00c] (already appeared in my dissertation [May98])
The reachability problem for PRS is decidable.

The algorithm that decides this problem uses a reduction to a nested reachability
problem for both Petri nets [May84] and pushdown automata. It uses the facts
that the reachability problem was already known to be decidable for these classes
of systems.

2 Model Checking VASS and Lossy VASS

One of the most important and most widely known models in the PRS-hierarchy
are (P,P)-PRS, which are equivalent to vector addition systems with states
(VASS) or Petri nets. In [BM99] the decidability of several model checking
problems for VASS and some related models has been studied.

An important concept in this context is the notion of lossiness. It was first
defined to model communication through unreliable channels. The main example
are lossy fifo-channel systems, which are systems of finite-state processes that
communicate through lossy fifo-channels (buffers) of unbounded length. These
lossy fifo-channels are unreliable, because they can spontaneously lose messages.
Since normal (non-lossy) fifo-channel systems are Turing-powerful, automatic
analysis of them is restricted to special cases [BH97]. However, lossy fifo-channel
systems are not Turing-powerful, since reachability and some safety-properties
are decidable for them [AJ93, CFI196, ABJ98].

If one abstracts from the order of the messages in the communication channel,
but considers only their numbers and types, then one obtains lossy VASS, or
lossy counter machines (if one allows tests for zero). Here lossiness means that
the value in a Petri net place or counter can spontaneously decrease at any time.
Normal VASS, lossy VASS and lossy counter machines are very different from
each other w.r.t. the decidability of model checking problems [BM99]. One
example is the decidability of model checking with the temporal logic EF (a
fragment of computation-tree logic (CTL); see Subsection 3.1).

Theorem 3. [BM99]
Model checking with the temporal logic EF is decidable for lossy VASS and lossy
counter machines, but undecidable for normal VASS.

However, for different temporal logics the situation can be reversed, as the fol-
lowing theorem shows.

Theorem 4. [BM99]
Model checking with the temporal logic LTL is decidable for normal VASS and
lossy VASS, but undecidable for lossy counter machines.

The complete results in [BM99] are very detailed (and quite technical). They
concern much more expressive logics than just EF and LTL. The two theorems



above are just special cases of these results that illustrate the difference between
VASS and lossy counter machines.

Some even more general results about the decidability of various problems for
lossy counter machines have been achieved in [May00d].

Theorem 5. [May00d]
Termination is decidable for classic lossy counter machines.

Theorem 6. [May00d]
Universal termination (i.e., termination for every input) is undecidable for all
types of lossy counter machines.

Theorem 7. [May00d]
Boundedness is undecidable for all types of lossy counter machines.

These undecidability results for lossy counter machines have many applications,
since the underlying principle is very general. For example, the undecidability of
the boundedness problem for reset Petri nets (Petri nets with special reset-arcs
that can reset a place to zero, but not test for zero) follows as a corollary from
these results. This is because reset Petri nets correspond to a special type of
lossy counter machine [May00d].

There are other applications in the area of parameterized verification problems.
In a parameterized verification problem one tries to show the correctness of a
whole (possibly infinite) class of systems, not just a single instance. An example
is a communication network P(n) with an arbitrary number n of components (see
below). The following theorem (which follows from the results on lossy counter
machines) shows that most liveness problems are undecidable for parameterized
systems.

Theorem 8. [May00d]
A parameterized verification problem is undecidable if it satisfies the following
conditions:

1. It can encode an n-space-bounded lossy counter machine (for some lossiness
relation) in such a way that P(n) corresponds to the initial configuration
with n in one counter and 0 in the others.

2. It can check for the existence of an infinite run.

The technique of Theorem 8 is used in [EFM99] to show the undecidability
of the fairness problem for broadcast communication protocols. These are sys-
tems of n indistinguishable communicating finite-state processes. The rules for
communication are as follows:

1. Two processes can communicate directly by handshake.
2. One process can broadcast a message, which is received (immediately) by all
other n — 1 processes.



Every message sent or received by a process can change its internal state, which
in turn defines what actions it can perform and how it reacts to messages. The
rules for communication are defined independently from the number n of pro-
cesses in the system. If one considers processes with k£ internal states then any
configuration of the broadcast protocol with n processes can be described by
a tuple (my, mg,...,my) where m; is the number of processes in state i and
Z?Zl m; = n. Every such m; can be seen as the content of a counter which is
bounded by n. A broadcast can cause all processes in a certain state to change to
another state. This can be used to reset such a simulated space-bounded counter
to zero. Note however, that no test for zero is possible. The problem if such a
broadcast protocol terminates (i.e., for every number n of processes the system
terminates) is undecidable, because it satisfies the conditions of Theorem 8 (the
lossiness relation used here is reset-lossiness). Thus all fairness properties, like
those expressible in the temporal logics CTL [CE81, Eme94]) and LTL (linear-
time temporal logic [Pnu77]), are undecidable as well.

Theorem 9. [EFM99]
All liveness problems for parameterized broadcast communication protocols are
undecidable.

In the same way, similar results can be proved for parameterized problems about
systems with bounded buffers, stacks, etc.

It should be noted however, that not all verification problems for parameterized
systems are undecidable. Many safety problems are still decidable for parame-
terized systems. For example, it has been shown in [EFM99] that some safety
problems for parameterized broadcast communication protocols can be solved
by a decidable backwards reachability analysis (while a forwards reachability
analysis cannot possibly be effective).

3 Model Checking with the Temporal Logic EF and
Characteristic Formulae

3.1 Model Checking with EF

The temporal logic EF is a simple, but natural fragment of computation-tree
logic [CE81, Eme94]. Instead of the general “until” operator of CTL it has the
operator EF, where FF' & means “there is a reachable state where @ holds”.

It has been shown in [May01] that model checking with the temporal logic EF
is decidable for many more classes of infinite-state systems than for most other
branching-time temporal logics. The most important result of [May01] is the
following;:

Theorem 10. [MayO01] (already appeared in my dissertation [May98])
The model checking problem for the temporal logic EF and the process class of
(S,G)-PRS (also called PAD) is decidable.



Since model checking Petri nets with EF was already known to be undecidable
[Esp97], this result establishes the border of decidability of EF model checking
in the PRS-hierarchy. Note that model checking with other branching-time tem-
poral logics like CTL or modal pu-calculus is only decidable for purely sequential
systems (like pushdown automata), but undecidable for systems that contain
parallelism (like BPP, Petri nets, PA or PAD) [Esp97].

PRS (G,G)

PAD (S,G\PAN (P,G)

Fig. 2. The border of the decidability of model-checking with the temporal logic EF.

The proof of Theorem 10 (see [May01]) is done by a tableau construction. If the
process satisfies the formula then a finite proof of this is constructed, otherwise
the tableau stops and fails after a finite number of steps. The complexity of the
tableau-construction is very high (k-times exponential for formulae of nesting
depth k), although this model checking problem is only known to be PSPACE-
hard. For the subclass of (1,P)-PRS (BPP), model checking with EF is known
to be PSPACE-complete [May96, May98]. Pushdown automata ((S,S)-PRS)
are also a subclass of PAD ((S,G)-PRS). Model checking pushdown automata
with EF is also PSPACE-complete [Wal00].

For PA-processes ((1,G)-PRS), another subclass of PAD, a quite different model
checking algorithm has later been given by Lugiez and Schnoebelen [LS98]. Their
algorithm uses tree-automata to represent infinite sets of reachable configura-
tions of PA-processes. However, the complexity of their algorithm is the same
as that of the tableau construction, and, according to Lugiez and Schnoebelen,
their algorithm cannot be generalized to the full class of PAD-processes.



3.2 Characteristic Formulae

It has been shown in [JKMO1] that the results about the decidability of model
checking problems with the logic EF can be used to show the decidability of
certain bisimulation problems. In [JKMO1] the decidability of bisimulation-like
equivalences between infinite-state processes and finite-state ones was studied.
The motivation is that the intended behavior of a process is often easy to specify
(by a finite-state system), but a ‘real’ implementation can contain components
which are essentially infinite-state (e.g., counters, buffers). The aim of formal
verification is to check if the finite-state specification and the infinite-state im-
plementation are semantically equivalent (i.e., bisimilar).

It has turned out that there is a connection between checking of (strong or weak)
bisimulation equivalence and model checking, via the so-called characteristic
formulae. A characteristic formula for a finite-state system F' (w.r.t. strong or
weak bisimulation) describes this system completely (modulo strong or weak
bisimulation). In the following we only consider weak bisimulation, since strong
bisimulation is a special case of it. A characteristic formula @z of a finite-state
system F has the property that for any general transition system G (where G
can be infinite) we have

GrF — G|:¢F

Therefore, one can reduce the equivalence problem G ~ F' to a model checking
problem. The question was, if (and how) one can construct a characteristic for-
mula for a given finite-state system. It had already been known that one can
construct characteristic formulae in the modal p-calculus [SI94]. The problem
with this was that p-calculus model checking is undecidable for so many classes
of infinite-state systems.

In [JKMO1] it was shown that one can effectively construct characteristic for-
mulae even in the simple temporal logic EF.

Theorem 11. [JKMO1]

For every finite-state system F one can effectively construct a characteristic
formula ®p (w.r.t. weak bisimulation), where ®p is a formula in the temporal
logic EF.

By combining this theorem with Theorem 10, one immediately gets the following
result.

Theorem 12. [JKMO1]
Weak bisimilarity of a PAD-process (an (S,G)-PRS) and a finite-state system is
decidable.

Similar theorems follow for other classes of systems with a decidable EF-model
checking problem, e.g., lossy counter machines (see Theorem 3).



4 Semantic Equivalence Checking

In the area of formal verification, some of most important semantic equivalences
are strong and weak bisimulation equivalence (see Section 1), and simulation
equivalence (with is defined indirectly via the notion of simulation preorder).
The three most common problems about semantic equivalence checking with
infinite-state systems are the following:

EQUIVALENCE CHECKING OF INFINITE-STATE AND FINITE-STATE SYSTEMS.

Instance: A description of an infinite-state system a and a finite-state system
F.

Question: Are o and F strongly bisimilar/weakly bisimilar/simulation equiva-
lent ?

SEMANTIC FINITENESS

Instance: A description of an infinite-state system a.
Question: Does there exist a finite-state system F' s.t. a and F' are strongly
bisimilar/weakly bisimilar/simulation equivalent ?

EQUIVALENCE CHECKING OF TWO INFINITE SYSTEMS

Instance: A description of two infinite-state systems a and (3.
Question: Are o and [ strongly bisimilar/weakly bisimilar/simulation equiva-
lent ?

4.1 Comparing Infinite-State and Finite-State Systems

As shown in Subsection 3.2, some cases of the first problem (equivalence check-
ing of infinite-state and finite-state systems w.r.t. weak bisimulation) can be
reduced to a model checking problem with the logic EF for the infinite-state
system. However, the complexity of the algorithms one obtains in this way is of-
ten unnecessarily high. Specialized algorithms can give much better complexity
bounds. For example, while model checking context-free processes (BPA) with
EF is PSPACE-complete, weak bisimilarity of BPA and finite-state systems is
polynomial [KMO02c].

Theorem 13. [KMO02c]
Weak bisimilarity of BPA and finite-state systems is decidable in polynomial
time.

A similar theorem for a subclass of BPP has also been shown in [KMO02c].
Normed BPP are the subclass of BPP, for which from every reachable state
there is a terminating computation.

Theorem 14. [KMO02c]

Weak bisimilarity of normed BPP and finite-state systems is decidable in poly-
nomial time.

10



For general BPP the exact complexity of this problem is still open. However, it
is known to be decidable in polynomial space [KMO02c].

It has been shown in [May00b] that the polynomial algorithms for BPA do not
carry over to general pushdown automata.

Theorem 15. [MayO00b]
Weak bisimilarity of pushdown automata with a certain small fixed finite-state
system (with only 3 states), is PSPACE-hard.

The same problem for strong bisimilarity is also PSPACE-hard, but fixed-
parameter tractable (for fixed finite-state systems).

Theorem 16. [MayO00b]

Strong bisimilarity of pushdown automata with finite-state systems is PSPACE-
hard. However, the required time is only polynomial in the size of the pushdown
automaton and exponential in the size of the finite-state system.

Very recently, a PSPACE upper bound for these two problems has been shown
in [KMO02a). So they are indeed PSPACE-complete.

4.2 Semantic Finiteness

Although there are many results about the decidability and complexity of the se-
mantic finiteness problem (for various process classes and semantic equivalences),
the picture is only partially clear, i.e., many open questions remain. Here we will
only mention some of the most important results. For a more general overview
see [May00a, May00b, KM02b, KM99]. Jancar and Esparza showed that
semantic finiteness of Petri nets is decidable (and EXPSPACE-hard) for strong
bisimulation, but undecidable for weak bisimulation [JE96]. Burkart, Caucal and
Steffen showed that semantic finiteness of BPA is decidable for strong bisimula-
tion [BCS96].

Decidability of semantic finiteness of pushdown automata is an open question,
but the following lower bound has been shown in [MayO00b].

Theorem 17. [May00b]
Semantic finiteness of pushdown automata w.r.t. strong (or weak) bisimulation
is PSPACE-hard.

The known lower bounds for Basic Parallel Processes (BPP) are not as high as
those for general Petri nets.

Theorem 18. [May00a]

Semantic finiteness of Basic Parallel Processes (BPP) is co-N"P-hard w.r.t.
strong bisimulation and IIY-hard w.r.t. weak bisimulation.

11



Very recently, both these lower bounds for Basic Parallel Processes have been
improved to PSPACE by Jiri Srba in [Srb02]. However, the proofs in [Srb02] use
many of the techniques from [May00a, MayO00b].

There are only two results about semantic finiteness w.r.t. simulation equiv-
alence. It is undecidable for Petri nets [JM95] and for PA-processes [KM99,
KMO02b].

Theorem 19. [KM99, KMO02b]
Semantic finiteness of PA-processes w.r.t. simulation equivalence is undecidable.

4.3 Comparing Infinite-State Systems

While simulation preorder/equivalence is undecidable between all classes of infinite-
state systems in the PRS-hierarchy [KM99, KMO02b], some bisimulation prob-
lems are decidable. For example, it is known that strong bisimulation equiv-
alence is decidable for Basic Parallel Processes (BPP) [CHM93], context-free
processes (BPA) [BCS95], normed PA-processes [HJ99] and even pushdown au-
tomata [S98, Sti01]. (However, strong bisimilarity of Petri nets is undecidable
[Jan94].)

Almost no upper complexity bounds are known for the decidable strong bisim-
ulation problems, but a few lower bounds are known.

Theorem 20. [May00a]
Strong bisimilarity of Basic Parallel Processes (BPP) is co-NP-hard.

This complexity bound has very recently been improved to PSPACE by Srba in
[Srb02].

Another very recent result in [KIM02a] improves the already established PSPACE
lower bound for strong bisimilarity of pushdown automata.

Theorem 21. [KMO02a]
Strong bisimilarity of pushdown automata is EXPTIME -hard.

Unlike for strong bisimilarity, very little is known about the decidability of weak
bisimilarity between infinite-state systems. The known lower bounds for strong
bisimilarity carry over, of course, but the decidability of most weak bisimulation
problems is open.

5 Parameter-passing Systems

While many known classes of infinite-state systems are in the PRS-hierarchy,
there are also some important ones outside it, like, e.g., (lossy) FIFO-channel
systems (see [BH97, ABJ98]).

Another process class outside the PRS-hierarchy are the so-called BPA(Z)-
processes. They have been defined in [BHMO1] as an extension of BPA. The

12



intuition for this was as follows. Context-free processes (BPA) have been used for
dataflow analysis in recursive procedures with applications in optimizing com-
pilers [EK99]. However, BPA can only model the mutual calling structure of
recursive procedures, not how data is passed between them. Therefore, a more
refined model called BPA(Z) has been introduced, that can model not only
recursive dependencies, but also the passing of an integer parameter to a sub-
routine. Moreover, this parameter can be tested against conditions expressible in
Presburger arithmetic. This new and more expressive model can still be analyzed
automatically. One can use one-counter machines to describe sets of reachable
configurations of BPA(Z). The aim was to use this symbolic representation of
sets of states to compute the sets of successors and predecessors of given states.
This can be used to verify safety-properties.

Theorem 22. [BHMO1]
The Post™ (the set of successors) of a set of BPA(ZL)-configurations described
by a 1-CM can be effectively constructed.

Theorem 23. [BHMO1]

The Pre* (set of predecessors) of a regular set of BPA(ZL)-configurations can
be effectively constructed. However, the Pre® of a set of BPA(ZL)-configurations
described by a 1-CM cannot be represented by a 1-CM in general and has an
undecidable membership problem.

These results have been used in [BHMO1] to model check BPA(ZZ)-processes
with a logic called ISL.

6 Conclusion

In conclusion it can be said that, for the verification of systems with infinite
state spaces, some areas are much better understood than others.

— For model checking infinite-state systems, the picture is already relatively
clear. The decidability and complexity of most model checking problems for
infinite-state systems is known (at least for those classes of processes in the
PRS-hierarchy). The remaining open questions here are the following:

e The exact complexity of the reachability problem for general Petri nets.
e The exact complexity of the EF-model checking problem for PA-processes.

Another very interesting open question in this area is, if there exists a poly-
nomial algorithm for model checking finite-state systems with the full modal
p-calculus. However, this is not really a problem about infinite-state systems.
— In the area of semantic equivalence checking, the picture is not so complete.
e Checking semantic equivalence of an infinite-state and a finite-state sys-
tem is still the best-understood part of this area. The decidability and
complexity of most of these problems is known, due to Theorem 11 and

other results.

13



e For checking semantic finiteness, only partial results are known. In par-
ticular, the known upper and lower complexity bounds often do not
match.

e For checking semantic equivalences (except weak bisimulation) between
two infinite-state systems, the decidability of most problems is known.
However, the exact computational complexity of most of these problems
is open.

e Very little is yet known about checking weak bisimulation equivalence
between two infinite-state systems, except for a few lower bounds. The
problem is that this seems to require techniques to cope with infinitely
branching graphs. The known methods for strong bisimulation do not
carry over to weak bisimulation.

The future of this research area seems to require efforts in two directions. First,
one can develop methods to solve the open questions mentioned above. Sec-
ond, and perhaps even more importantly, one should develop efficient semi-
algorithmic techniques for the verification of infinite-state systems, like, e.g.,
acceleration methods. These do not guarantee a solution in every case, but they
can quickly find solutions for most problems that occur.
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Abstract

Many formal models for infinite-state concurrent systems are equiv-
alent to special classes of rewrite systems. We classify these models
by their expressiveness and define a hierarchy of classes of rewrite
systems. We show that this hierarchy is strict with respect to bisim-
ulation equivalence.

The most general and most expressive class of systems in this hi-
erarchy is called Process Rewrite Systems (PRS). They subsume Petri
nets, PA-Processes and pushdown processes and are strictly more ex-
pressive than any of these. Intuitively, PRS can be seen as an extension
of Petri nets by subroutines that can return a value to their caller. We
show that the reachability problem is decidable for PRS. It is even
decidable if there is a reachable state that satisfies certain properties
that can be encoded in a simple logic. Thus PRS are more expressive
than Petri nets, but not Turing-powerful.



1 Introduction

Petri nets and process algebras are two kinds of formalisms used to build
abstract models of concurrent systems. These abstract models are used for
verification, because they are normally smaller and more easily handled than
full programs. Formal models should be simple enough to allow automated
verification, or at least computer-assisted verification. On the other hand
they should be as expressive as possible, so that most aspects of real programs
can be modeled.

Many different formalisms have been proposed for the description of infinite-
state concurrent systems. Among the most common are Petri nets, Basic
Parallel Processes (BPP), context-free processes (BPA) and pushdown pro-
cesses. BPP are equivalent to communication-free nets, the subclass of Petri
nets where every transition has exactly one place in its preset. PA-Processes
[BK85, Kuc, May97b] are the smallest common generalization of BPP and
BPA. PA-processes, pushdown processes and Petri nets are mutually incom-
parable.

We present a unified view of all these formalisms by showing that they can
be seen as special subclasses of rewrite systems. Such unified representations
have already been used by Stirling, Caucal and Moller [Cau92, Mol96], but
only for purely sequential or purely parallel systems. Here we generalize this
to systems with both sequential and parallel composition.

Basically, the rewriting formalism is first order prefix-rewrite systems on pro-
cess terms without substitution and modulo commutativity and associativity
of parallel composition and associativity of sequential composition. The most
general class of these systems will be called Process Rewrite Systems (PRS).
All the previously mentioned formalisms can be seen as special cases of PRS,
and PRS is strictly more general (see Theorem 4.14). Intuitively, PRS can
be seen as an extension of Petri nets by subroutines that can return a value
to their caller. As PRS is a very expressive model, model checking with
any temporal logic (except Hennessy-Milner logic) is undecidable for it (see
Section 7). However, we show that the reachability problem is decidable for
PRS. The interesting point here is that PRS is strictly more general than
Petri nets, but still not Turing-powerful.

The rest of the paper is structured as follows. In Section 2 we define process

terms and the rewriting formalism. We describe a hierarchy of subclasses of
it, which we call the PRS-hierarchy. Section 3 explains the intuition for the



various classes in the PRS-hierarchy. In Section 4 we show that the PRS-
hierarchy is strict with respect to bisimulation. In Section 5 we show that the
reachability problem is decidable for PRS. Section 6 generalizes this result to
reachability of certain classes of states that are described by state formulae.
The paper closes with a section that summarizes the results.

2 Terms and Rewrite Systems

Many classes of concurrent systems can be described by a (possibly infinite)
set of process terms, representing the states, and a finite set of rewrite rules
describing the dynamics of the system.

Definition 2.1 Let Act = {a,b,...} be a countably infinite set of atomic
actions and Const = {¢, X,Y, Z, ...} a countably infinite set of process con-
stants. The process terms that describe the states of the system have the
following form:

tu=c| X | tity | ti|to
where € is the empty term, X € Const is a process constant (used as an
atomic process in this context), “||” means parallel composition and “.”
means sequential composition. Parallel composition is associative and com-
mutative. Sequential composition is associative. Let 7 be the set of process
terms.
Convention 1: We always work with equivalence classes of terms modulo
commutativity and associativity of parallel composition and modulo asso-
ciativity of sequential composition. Also we define that e.t = t = t.e and
tl|e = t.
Convention 2: We defined that sequential composition is associative. How-
ever, when we look at terms we think of it as left-associative. So when we
say that a term ¢ has the form t,.t5, then we mean that ¢, is either a single
constant or a parallel composition of process terms.
The size of a process term is defined as the number of occurrences of constants
in it plus the number of occurrences of operators in it.

size(e) = 0

size(X) = 1
size(ty.ty) = size(ty) + size(tz) + 1
size(ty||te) = size(t) + size(t2) + 1

3



For a term t the set Const(t) is the set of constants that occur in ¢.

=0

= {X}

= Const(ty) U Const(ts)
= Const(t,) U Const(t2)

Const (e
Const(X
Const(t,.ty
Const(t||ts

~— — e’ e

The dynamics of the system is described by a finite set of rules A of the form
(t; % t) where t; and t, are process terms and a € Act is an atomic action.
The finite set of rules A induces a (possibly infinite) labeled transition system
with relations % with a € Act. For every a € Act, the transition relation -
is the smallest relation that satisfies the following inference rules.

(t, > tz) € A t = th t >t
t =ty tlts = thl[ts tity = th .ty

where ¢y, t5,1],t, are process terms. Note that parallel composition is com-
mutative and thus the inference rule for parallel composition also holds with
t; and t, exchanged.

Since A is finite, the generated LTS is finitely branching. (For some classes
of systems (e.g. Petri nets) the branching-degree is bounded by a constant
that depends on A. For other classes (e.g. PA) the branching-degree is finite
at every state, but it can get arbitrarily high.) Also every single A uses only

a finite subset Const(A) := U(h&tz)eA(Const(tl) U Const(ty)) of constants

and only a finite subset Act(A) = U( A{a} of atomic actions. Thus

tli>t2)e
for every A only finitely many of the generated transition relations =% for
a; € Act are nonempty. (Those for which a; € Act(A)). Still the generated
transition system can be infinite. (Consider the analogy: Every labeled Petri
net has only finitely many transitions and uses only finitely many different
atomic actions, but the state space can be infinite.) The relation < is gen-
eralized to sequences of actions in the standard way. Sequences are denoted
by o.

Remark 2.2 There is no operator “+7 for nondeterministic choice in the
process terms, because this is encoded in the set of rules A! There can be
several rules with the same term on the left hand side. It is also possible that
several rules are applicable at different places in a term. The rule that s
applied and the position where it is applied are chosen nondeterministically.
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Also there is no such thing as action prefizes in the process terms. The atomic
actions are introduced by the rules.

Many common models of systems fit into this scheme. In the following we
characterize subclasses of rewrite systems. The expressiveness of a class
depends on what kind of terms are allowed on the left hand side and right
hand side of the rewrite rules in A.

Definition 2.3 (Classes of process terms)
We distinguish four classes of process terms:

1 Terms consisting of a single process constant like X.

S Terms consisting of a single constant or a sequential composition of process
constants like X.Y. 7.

P Terms consisting of a single constant or a parallel composition of process
constants like X||Y]|Z.

G General process terms with arbitrary sequential and parallel composition
like (X.(Y]|2))||W.

Also let € € S, P,G, but € ¢ 1. It is easy to see the relations between these
classes of process terms: 1 C S, 1 C P, S C G and P C G. S and P are
incomparable and SN P =1U {¢}.

We characterize classes of process rewrite systems (PRS) by the classes of
terms allowed on the left hand sides and the right hand sides of rewrite rules.

Definition 2.4 (PRS)
Let o, f € {1, S, P,G}. A («, 3)-PRS is a finite set of rules A where for every
rewrite rule (I = r) € A the term [ is in the class « and [ # € and the term

r is in the class § (and can be €). The initial state is given as a term ¢, € .
A (G, G)-PRS is simply called PRS.

Remark 2.5 W.l.o.g. it can be assumed that the initial state ty of a PRS is
a single constant. There are only finitely many terms ty,. .., t, s.t. to — t;.
If ty is not a single constant then we can achieve this by introducing o new
constant Xo and new rules Xo < t; and declaring Xy to be the initial state.



(e, 3)-PRS where « is more general than  or incomparable to 3 (for example
a = G and = 5) do not make any sense. This is because the terms that are
introduced by the right side of rules must later be matched by the left sides
of other rules. So in a (G, S)-PRS the rules that contain parallel composition
on the left hand side will never be used (assuming that the initial state is a
single constant). Thus one may as well use a (S, 5)-PRS. So we restrict our
attention to («, #)-PRS with o C 3.

Figure 1 shows a graphical description of the hierarchy of (a, 3)-PRS.

Many of these (a, 3)-PRS correspond to widely known models like Petri nets,
pushdown processes, context-free processes and others.

1. A (1,1)-PRS is a finite-state system. Every process constant corre-
sponds to a state and the state space is bounded by |Const(A)|. Every
finite-state system can be encoded as a (1,1)-PRS.

2. (1,5)-PRS are equivalent to context-free processes (also called “Basic
Process Algebra (BPA)”) [BE97, Esp97]. They are transition systems
associated with Greibach normal form (GNF) context-free grammars
in which only left-most derivations are permitted.

3. It is easy to see that pushdown automata can be encoded as a sub-
class of (S,S5)-PRS (with at most two constants on the left side of
rules). Caucal [Cau92] showed that any unrestricted (S,S5)-PRS can
be presented as a pushdown automaton (PDA), in the sense that the
transition systems are isomorphic up to the labeling of states. Thus
(S,S)-PRS are equivalent to pushdown processes, the processes de-
scribed by pushdown automata.

4. (P, P)-PRS are equivalent to Petri nets. Every constant corresponds
to a place in the net and the number of occurrences of a constant
in a term corresponds to the number of tokens in this place. This is
because we work with classes of terms modulo commutativity of parallel
composition. Every rule in A corresponds to a transition in the net.

5. (1, P)-PRS are equivalent to communication-free nets, the subclass of
Petri nets where every transition has exactly one place in its preset
[BE97, Esp97]. This class of Petri nets is equivalent to Basic Parallel
Processes (BPP) [Chr93].



PRS (G,G)

PAD (S,G) PAN (P,G)
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Figure 1: The PRS-hierarchy.



6. (1,G)-PRS are equivalent to PA-processes, a process algebra with se-
quential and parallel composition, but no communication (see [BK85,
May97b, Kuc]).

7. (P,G)-PRS are called PAN-processes in [May97a]. It is the smallest
common generalization of Petri nets and PA-processes and it is strictly
more general than both of them (e.g. PAN can describe all Chomsky-2
languages while Petri nets cannot).

8. (S,G)-PRS are the smallest common generalization of pushdown pro-
cesses and PA-processes. They are called PAD (PA + PD) in [May98].

9. The most general case is (G,G)-PRS (here simply called PRS). PRS
have been introduced in [May97c|. They subsume all the previously
mentioned classes.

3 The Intuition

In this section we explain the general intuition for the definition of («a, 3)-
PRS, i.e. what does it mean that parallel/sequential/arbitrary composition
is allowed in terms on the left/right hand sides of rules?

If parallel composition is allowed on the right hand side of rules, then there
can be rules of the form ¢ % t||t,. This means that it is possible to create
processes that run in parallel. The rule can be interpreted that, by action
a, the process t becomes the process ¢; and spawns off the process ¢, or vice
versa.

If sequential composition is allowed on the right hand side of rules, then
there are rules of the form ¢t % t,.t,. The interpretation is that process t
calls a subroutine #; and becomes process t,. It resumes its execution when
the subroutine ¢; terminates.

If arbitrary sequential and parallel composition is allowed on the right hand
side of rules then both parallelism and subroutines are possible.

If parallel composition is allowed on the left hand side of rules, then there
are rules of the form ¢,||t, < ¢. This can be interpreted as synchroniza-
tion/communication of the parallel processes t; and t5. This is because this
action can only occur if both #; and ¢, change in a certain defined way.



If sequential composition is allowed on the left hand side of rules, then there
can be rules of the form #).t, % t' and t/.t, < ¢”. The intuition is that a
process ¢ called a subroutine ¢; and became process t, by a rule ¢t % t;.t,.
The subroutine may in its computation reach a state t| or t{. Now one of
these rules is applicable. This means that the result of the computation of
the subroutine affects the behavior of the caller when it becomes active again,
since the caller can become ¢’ or t”. The interpretation is that the subroutine
returns a value to the caller when it terminates.

If arbitrary sequential and parallel composition is allowed on the left hand
sides of rules then both synchronization and returning of values by sub-
routines are possible. It will be shown in Section 5 that rules with nested
sequential and parallel composition (on the left side or the right side) do not
increase the expressiveness. It suffices to have systems of rules where every
single rules only contains either sequential or parallel composition.

4 The PRS-Hierarchy is Strict

The question arises if this hierarchy of («, 3)-PRS is strict. For the de-
scription of languages this is not the case, because for example context-free
processes (BPA) and pushdown processes (PDA) both describe exactly the
Chomsky-2 languages. However, the hierarchy is strict with respect to bisim-
ulation equivalence. Bisimulation equivalence [Mil89] is a finer equivalence
than language equivalence. It is defined as follows:

Definition 4.1 A binary relation R over the states of a labeled transition
system is a bisimulation iff

V(s1,52) € RVa € Act. (51 = s = Jsy = sh. st Rsh) A
(59 = s, = Js; = s). s Rs))

Two states s; and ss are bisimilar iff there is a bisimulation R such that
s1Rsy. This definition can be extended to states in different transition sys-
tems by putting them ‘side by side’ and considering them as a single transi-
tion system. It is easy to see that there always exists a largest bisimulation
which is an equivalence relation. It is called bisimulation equivalence or
bisimilarity and it is denoted by ~.



Definition 4.2 A class of processes A is more general than a class of pro-
cesses B with respect to bisimulation iff the following two conditions are
satisfied:

1. For every B-process there is a semantically equivalent A-process:
Vie B.3t e At/ ~ t

2. There is an A-process that is not bisimilar to any B-process:
de AVt e B.t £t

It has already been established in [BCS96, Mol96] that the classes of finite-
state systems, BPP, BPA, pushdown systems, PA and Petri nets are all
different with respect to bisimulation. For PAD, PAN and PRS this remains
to be shown.

The proof has two parts: First we show that there is a pushdown process
that is not bisimilar to any PAN-process. Then we show that there is a Petri
net that is not bisimilar to any PAD-process.

Definition 4.3 Consider the following pushdown system:

UX % UAX UA % UAA UA % UB.A
UX % UBX UB % UB.B UB % UAB
UX % VX UA 5 V.A UB % V.B
UXxX % wx UA 4% waA UB % wW.B
VA & VvV Vv.B 5 v VX SV
WA & W wB % w wx Low

with the initial state U.X. The execution sequences of this system are as
follows: First it does a sequence of actions in {a,b}* and then one of two
things:

W

1. A “¢”, the sequence in reverse and finally a “e”.

2. A “d”, the sequence in reverse and finally a “f”.

Now we show that this pushdown system is not bisimilar to any PAN-process.
First we need several definitions and lemmas.

10



Definition 4.4 Let ¢t be an arbitrary process and o a sequence of actions.
The runs of ¢ are its computations of maximal length. We define that
only(t, o) is true iff the following conditions are satisfied:

e All runs of ¢ are finite.

e All these runs do the sequence of actions o.

Lemma 4.5 (Dickson’s Lemma [Dic13])
Given an infinite sequence of vectors My, My, M, ... in IN¥ there are i < j
s.t. M; < M; (< taken componentwise).

Remember that P is the class of process terms that contain only parallel
composition; see Def. 2.3.

Lemma 4.6 For every PAN A there is a sequence o € {a,b}* s.t. no « € P
satisfies any of the following two conditions:

Cond1 (o,a): Ja. a5 . A only(ae, oe)
Cond2(0,a): Jag. a % ag A only(ag, of)

Proof We assume the contrary and derive a contradiction. So we assume
that there is a PAN A s.t. for every o; := a'b (i € IN) there is an o € P s.t.
Condl1 (o;, a') or Cond2(c;, ).

There must be an infinite subsequence of at,o?,... where Condl(o;, ') is
always satisfied or an infinite subsequence of a!, o2, ... where Cond2(o;, o)
is always satisfied. W.r. we assume that there is an infinite subsequence
where CondlI(o;,a') is always satisfied. Now we only regard this infinite
subsequence. Since A is finite, there are only finitely many different rules in
A that are marked with the action c. Let (t; = t}),..., (t, — t) be those
rules. (Note that ¢; € P for every i, because A is a PAN. However, ¢, need
not be in P.) It follows that one of these rules must be used infinitely often
to obtain ol from af. Let this rule be (¢, — t}) for some k € {1,...,n}.
Thus there is an infinite subsequence of the sequence o', o?, ... where only
this rule is used to obtain o’ from o’. Now we consider only this infinite
subsequence.

We regard the sequence o' of the « that satisfy Condl. Const(A) is finite
and o' € P. Moreover, all ; only contain constants from the finite set

11



Const(A). Thus we can apply Dickson’s Lemma. By Dickson’s Lemma
there are j, 5’ € IN s.t. 5' > j and o/ > o (this means o/ = o/ || for some
p € P).

For both o/ and o' the rule (t; - t}) is used to obtain o, of'. Thus o/ =
te|ly for some v € P and o = t,[|y. Also we have o/ = /(|3 = t;||7]|3 and
e §c||7||’ﬂ = oJ||8. By Condl we have only(c?, oje) and only(al ,oje€).
However, o/ also enables the sequence oje. This is a contradiction. [ |

Lemma 4.7 For every PAN A there is a sequence ¥ € {A, B}* s.t. no pro-
cess term t (w.r.t. A) is bisimilar to the pushdown system U.X.X of Def. 4.3.

Proof We assume the contrary and derive a contradiction. Assume that
there is a PAN A s.t. for every sequence ¥ € {A, B}* there is a term ¢(X)
s.t. t(X) ~ UX.X. For every X let t(X) be the smallest term that has this
property.

For any sequence ¥ € {A, B}* let 0(X) be the sequence of actions a and b
that is obtained by converting Y to lowercase letters.

It follows from the definition of bisimulation that no process that has only
finite computations can be bisimilar to a process that has an infinite compu-
tation. Thus by Def. 4.3 it follows that for every sequence ¥ € {A, B}* and
every state ¢(X) the following properties hold:

C There is a state t.(X) s.t. t(X) < t.(X) and t.(X) ~ V.X.X and thus
only(t:(3), o(S)e).

D There is a state t4(2) s.t. £(3) % t4(2) and t4(X) ~ W.X.X and thus
only(t4(%), o(3)f).

For every ¢(X) the action ¢ disables the action d and vice versa. Thus the
actions ¢ and d must both occur in the same subterm « of ¢(X) and o € P.
(This is because in a PAN no single action can change two separate subterms.
For example in the term (¢;.t5)||t3 (where ¢;, t2 and t3 are not €) no single
action can change both ¢; and t3.) Let o be the maximal parallel subterm of
t(X) where the actions ¢ or d occur. This means that « is part of a subterm of
the form a.f or af|(5.7), but not of the form al| for some 3 € P. It follows
that o cannot immediately synchronize with the rest of the term ¢(3).

We have that o <% a. and o % ay. Let ¢(X)[a — o] be the term that one
gets by replacing this one particular « in #(X) by «/. (Not every subterm
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« is replaced by o/ !) This means that t.(X) = ¢(X)[a = « and t4(2) =
t(X) [ = ayl.

Without restriction we now assume that ¥ begins with A (the other case is
symmetric). Then ¢(X). (¢(X)4) must enable action a, but not action b. We
show that the action @ must be enabled by a subterm of ¢(X). (£(X)4) that is
different from «, (ay). We assume the contrary and derive a contradiction.
In this case the rest of t(X), (£(X)4), without a, (cg), enables neither a nor b.
It follows that the rest of t(X),. (£(X)4) cannot do action a or b before a.. ()
terminates. If o, (og) does not terminate then by Lemma 4.6 the conditions
C and D cannot be satisfied for some ¥, a contradiction. If a. (o) does
terminate then for some suffixes o', 0" of o(X) we get only(t(X)[a — €], 0'e)
and only (t(X)[ac — €], 0" f). Again this is a contradiction.

Thus the action a must be enabled at a subterm of #(X). (¢(X)4) that is
different from a, (o). As we have ¢(X) ~ U.L.X and U.X.X % U.B.X.X

there must be a ¢’ s.t. t % ¢ and #' ~ U.B.X.X. This action b must occur in
a, because the rest of ¢() cannot do b. Thus @ % o and ' = #(3)[a — o).
We have U.B.X.X 5 V.B.X.X. As the rest of ¢ (without o) cannot do
action ¢ we get o/ = o and t(X)[a — o] ~ V.B.X.X. However now the
rest of the term #(X)[a — "] (without «”) can do action a, but V.B.X.X
cannot. Thus ¢(X)[a — o] # V.B.X.X and we have a contradiction. |

Lemma 4.8 The pushdown system U.X of Def. 4.3 is not bisimilar to any
PAN A with initial state ty.

Proof We assume the contrary and derive a contradiction. Assume that
there is a PAN A with initial state ¢y s.t. tg ~ U.X. Let ¥ be the sequence
from Lemma 4.7. (Note that ¥ depends on A.) The process U.X can reach
the state U.X.X. Thus ¢ty must be able to reach a state ¢ s.t. t ~ U.X.X. By
Lemma 4.7 such a term ¢ does not exist, a contradiction. [ |

It follows directly that the pushdown system from Def. 4.3 is not bisimilar
to any PA-process either. However, as PAD and PRS subsume pushdown
processes, it is a PAD and PRS-process. Thus PAD is strictly more general
then PA and PRS is strictly more general than PAN. PAD subsumes BPP
and BPP is incomparable to pushdown systems. Thus PAD is also more
general than pushdown processes. Now we show that there is a Petri net
that is not bisimilar to any PAD-process.
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Definition 4.9 Consider the following Petri net (given as a (P, P)-PRS).

X % X||A|B XS5y Y[|ASY Y|BLY
XA z X|BS% z YA Z Y|B-% z

The initial state is X||Al|B.

Lemma 4.10 If there is a PAD-process that is bisimilar to the state X||A||B
of the Petri net of Def. 4.9, then there is also a pushdown process that is
bisimilar to X||A||B.

Proof Let A be a PAD and @ the initial state s.t. Q ~ X||A||B. W.r. we can
assume that @ is a single constant (see Def. 2.4). We construct a pushdown
process (an (5, 5)-PRS) A’ that is also bisimilar to X||A||B.

First we show that in every reachable state of A of the form (¢,]|t2).t3 (t5 can
be €) t; or t, must be deadlocked.

Assume that there is a state (t1||t2).t3 that is reachable from ). Then a state
M must be reachable from X||A||B s.t. (t1]|t2).ts ~ M. There are two cases:

1. If M is deadlocked then ¢; and ¢, must be deadlocked.

9. If M is not deadlocked then there is an M’ s.t. M -% M’ and M’ is
deadlocked. By the definition of PAD a single action d can only change
t, or ty, but not both. Thus either ¢; or ¢, must be deadlocked.

Thus if parallel composition occurs in a state that is reachable from @), then
all but one part of it must be deadlocked. Since () is a single constant,
parallel composition can only be introduced by PAD-rules. If such a rule
has the form (u = ui]|luz) € A for some action z, then u; or uy must be
deadlocked. W.r. let u; be deadlocked. However, the term u;.t for some term
t is not necessarily deadlocked. Thus in A’ we replace the rule (u = uy|jus)
by the rule u = uy.u;. The new system is equivalent up to bisimulation. (We
assume w.r. that us cannot influence u;. This means that there is no rule in
A’ whose left hand side is v,.v7; where vy is a nonempty suffix of uy and vy is
a nonempty prefix of u;. This can be achieved by renaming of constants in
uy and A’ if necessary.)

The other case where parallel composition occurs in a rule in A is when a
Z

rule has the form v = wuy.(uz||us).uy, where uy or uy can be €. There are two

cases:
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1. If uy can terminate then the term (us||us) can become active. Therefore
up or uz must be deadlocked. W.r. let uy be deadlocked. Then in
A’ we replace this rule by the rule u = uj.us.us.us. Note that usy
is deadlocked, but wus.u4 is not necessarily deadlocked. (We assume
w.r. that u; cannot influence us and w3 cannot influence uy. This can
be achieved by renaming of constants in u; and uz and A’ if necessary.)

2. If u; cannot terminate then in A’ we replace this rule by the equivalent
rule u = uy.

Thus we get a new system A’ that is equivalent to A up to bisimulation,
but A’ does not contain parallel composition. Thus, if the preconditions are
satisfied, the (S, 5)-PRS A’ with initial state ) is bisimilar to X ||A||B. This
is the pushdown process that we are looking for. [ |

Definition 4.11 Let A be a («, 3)-PRS for o, 5 € {1,S, P,G} and t, the
initial state. The language generated by this system is the set of all sequences
o s.t. It. ty =t and ¢t is deadlocked.

Lemma 4.12 If a process t is bisimilar to a pushdown process then the lan-
guage generated by t is a context-free language.

Proof Directly from Def. 4.1 and the definition of pushdown processes. ®

Lemma 4.13 The Petri net of Def. 4.9 is not bisimilar to any PAD-process.

Proof We assume the contrary and derive a contradiction. If there is a PAD-
process that is bisimilar to the Petri net of Def. 4.9, then by Lemma 4.10
there is a pushdown process that is bisimilar to this Petri net. Then by
Lemma 4.12 the Petri net of Def. 4.9 generates a context-free language L.
By the definition of this Petri net L is

{g"coc | m>0Aoe{a,b}* N#o=m~+1AN#0o=m+1} U
{g"d | m =0} U

m>0A o€ {ab}*A
g"cod |

Ho<m+1AN#Ho<m+1AN#,0+H#H0<2m+1

It follows that L N g*ca*d* = {g™ca™'b™™ |m > 0}. By applying the
pumping lemma for context-free languages [HU79] it is easy to show that L
is not context-free. Thus we have a contradiction. [
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It follows that PAD and PAN are incomparable and PRS is strictly more
general than PAD. By combining these results with the other results above
we get the following theorem.

Theorem 4.14 The PRS-hierarchy is strict with respect to bisimulation.

5 The Reachability Problem

In this section we show that the reachability problem is decidable for PRS.
Thus PRS are not Turing-powerful.

REACHABILITY

Instance: A PRS A with initial state ¢y and a given state ¢.
Question: I[s the state ¢ reachable from ¢y 7 Formally: Is there a sequence
of actions o s.t. tg — ¢ ?

For Petri nets reachability is decidable and EXPSPACE-hard [May84, Lip76].
Here we show that reachability is decidable for PRS by reducing the problem
to the reachability problem for Petri nets. As the atomic actions are not
important for reachability, we’ll ignore them for the rest of this section and
write just ¢, — t, instead of t; = t,.

We prove the decidability of reachability in two steps. First we show that it
suffices to decide the problem for a special class of PRS, the PRS in transitive
normal form (see below). Then we solve the problem for this subclass of PRS.

Definition 5.1 For a PRS A and process terms t,t' € T we define
t=2t = ot St

where o is a sequence of applications of rules in A. If A is fixed, then we
just write ¢ > t'.

A is in normal form iff all rules in A are in normal form. A rule is in normal
form if it has one of the following two forms:

Par-Rule X || X =Y or X = Yj[|[Yo or X — Y.

Seq-Rule X;.Xo Y or X - Y,.Y,0or X —» Y.
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where X, Y, X;,Y; are process constants and Y can be €.

The only rules that are both seq-rules and par-rules are of the form X — Y.

The following relations >2 . and >%, are technicalities used in the proofs.

t >0t i< Jo.t 31 and all rules used in o are par-rules from A

t>5,t 1< Jo.t 51 and all rules used in o are seq-rules from A

A PRS A is in transitive normal form iff it is in normal form and for all
X, Y € Const
X=2Y = (X=Y)eA

Proposition 5.2 Let A be a PRS in transitive normal form and ty,ty pro-
cess terms that do not contain the operator for sequential composition. It 1s
decidable if t, >ﬁw ts.

Proof This follows directly from the decidability of the reachability problem
for Petri nets [May84]. |

The reachability problem for PRS is reducible to the reachability problem
for PRS in normal form.

Lemma 5.3 Let A be a PRS and t,,t, € T .

Then a PRS A" in normal form and terms t| and t,, can be effectively con-
structed s.t.  A', t) and t), use only constants from the finite set V' (with
Const(A) C V' C Const) and t; =2 t, <= ) =" t).

Proof For any rule (u; — uy) in A let
norm(uy — ug) = size(uy) + size(us)

Let k; be the number of rules (u; — uy) in A that are not in normal form and
norm(u; — uy) = i. Let n be the maximal i s.t. k; # 0. (n exists because A
is finite). We define Norm(A) := (k,, kn—1, - - ., k1). These norms are ordered
lexicographically. A is in normal form iff Norm(A) = (0,...,0). Now we
describe a procedure that transforms A into a new PRS A’ and terms ¢y, t5
into #, ¢, s.t. Norm(A') <jep Norm(A) and t; =2 t, <= ) =2,
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Remember that sequential composition is left-associative. This means that
the term X.Y.Z is (X.Y").Z. It has the subterms X, Y, Z and X.Y, but not
Y.Z. However, the term X.(Y'||Z) has a subterm Y||Z.

If Norm(A) # (0, ...,0) then there is a rule in A that is not in normal form.
Take a non-constant subterm ¢ of this rule and replace every subterm ¢ in
A and in ¢; and t; by a new constant X. Then add two rules X — ¢ and
t — X. This yields a new set of rules A’ and #| and ¢,. By the definition of
Norm and size we get Norm(A') < Norm(A). The constant X serves as
an abbreviation for the term ¢. There are only two problems:

1. A rule is applicable to a subterm of ¢, but not to X. For example
t =Y.Z.W and there is a rule Y.Z — V. In this case the rule X — ¢
must be applied first. So the term X can be rewritten to V.W in two
steps.

2. During the rewriting a subterm ¢ is created. However, the rule that con-
tains ¢ as a subterm on the left side is no longer applicable, because the
subterm ¢ has been replaced by X. For example let t = Y||Z, the initial
state is (W||Z).W and there are rules W — Y and (Y||Z2)W — V.
By the above algorithm the rule (Y||Z).W — V has been transformed
into X.W — V and rules X — Y||Z and Y||Z — X have been added.
The initial state (W||Z).W can be rewritten to (Y||Z).W, but now the
changed rule X.W — V' is not applicable. However, by applying the
new rule Y||Z — X first we get X.IW and can finally rewrite the term
to V.

Thus we get
t =2t = =N

By repeating this algorithm we finally get a set of rules A” and terms ¢/ and
5 s.t. Norm(A") = (0,...,0) and

t1 >‘A 1 <— tlll >—A” tg
A" is in normal form. ]

The following lemma will be used to prove the correctness of the algorithm
in Lemma 5.5.
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Lemma 5.4 Let A be a PRS in normal form. If there are constants X,Y
st. X =2 Y and (X = Y) ¢ A, then there are also constants X', Y with
(X' =Y)¢Aand X' =5, Y or X' =0, Y.

Proof It follows from the preconditions that we can choose a pair of con-
stants X', Y’ s.t. (X' = Y’') ¢ A and X’ 5 Y’ for a sequence o of minimal
length. More precisely the length of ¢ is minimal over the choice of X', Y’
and o.

Now we show that X' »2 Y’ or X' =5 Y'. We do this by assuming the
contrary and deriving a contradiction. We say that a rule is trivial if it
has the form (X" — Y"). We assume that o contains both seq-rules and

par-rules that are nontrivial. There are two cases:

1. The last nontrivial rule in ¢ is a par-rule. If a seq-rule Z; — Z5.Z;
occurs in o then there is a subsequence o’ of ¢ and a constant Zj

S.t. Zy.43 i,> Z4. This contradicts the minimality of the length of o.

2. The last nontrivial rule in o is a seq-rule. This seq-rule must have the
form Z,.Zy — Z. The first nontrivial par-rule that occurs in ¢ must
have the form Z' — Z{||Z}. Then there is a subsequence o' of o and
a constant Z" s.t. Z' 2 Z". This contradicts the minimality of the
length of o.

Thus o consists either only of applications of par-rules (and thus X' >ﬁw Y’)

or only of seq-rules (and thus X' =% _Y7). [ ]

seq

Lemma 5.5 Let A be a PRS in normal form. Then a PRS A’ in transitive
normal form can be effectively constructed s.t.

th,tz eT. t1 PA, 1o <— >A (2

Proof It suffices to find all pairs of constants X, Y s.t. X =2 Y and to add
the rules (X — Y) to A. By Lemma 5.4 it suffices to check X »2. Y and
X »5, Y. Thisis decidable because of Proposition 5.2 and the decidability of
the reachability problem for pushdown processes (see [BEM97]). Lemma 5.4
basically says that while there are new rules to add we can find at least one
to add.

The algorithm is as follows:
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A’ := A; flag := true;
While flag do
flag := false;
For every pair of constants X, Y with (X —Y) ¢ A’ do
If X >pAa'r Y or X >5Aelq Y then (A" :=A'"U (X — Y); flag := true) fi;
od;

od;

Theorem 5.6 The reachability problem is decidable for PRS. The complez-
ity is polynomially equivalent to reachability for Petri nets.

Proof Let A be a PRS and t,t, € 7. The question is if t; =% t,.

We construct a new PRS A’ by adding new constants X; and X, and rules
X, — t; and t, — Xy. It follows that t; =2 t, < X; =2 X,. Then we
use Lemma 5.3 and transform A’ into a PRS A” in normal form. Normally
the terms X, Xy would also change in this transformation, but since they
are single constants they stay the same. This procedure adds at most 2k
new rules, where k is the number of non-constant strict subterms of rules
in A. Thus k¥ = O(n?) and size(A’) is polynomial in size(A). We get
t; =2ty < X; =2" X,. Then we use Lemma 5.5 to transform A” into a
PRS A" in transitive normal form. It follows that t; =2 t, < X; =2" X,.
Since |Const(A)] = O(n) there are O(n?) pairs of constants. Thus the
algorithm of Lemma 5.5 uses O(n?) instances of the reachability problem for
Petri nets and for pushdown processes in every instance of the loop. The
loop is done at most O(n?) times. Thus it uses at most O(n?*) instances of
the reachability problem for Petri nets and pushdown processes. Since A"
is in transitive normal form we have

11 >A t, & X4 >Am X, & (X1 — XQ) e A"

The condition (X; — X5) € A" is trivial to check.

The reachability problem for pushdown processes is polynomial [BEM97].
The algorithm for PRS uses only polynomially many instances of Petri net
reachability. Since PRS are more general than Petri nets, it follows that
reachability for PRS is polynomially equivalent to Petri net reachability. m
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6 The Reachable Property Problem

In the previous section the problem was if one given state is reachable. Here
we consider the question if there is a reachable state that has certain proper-
ties. We call this problem the reachable property problem. Unlike for reach-
ability, the atomic actions are important for this problem. Properties are
described by state formulae that have the following syntax:

q)::a|—|<1>|<1>1/\<1>2|<1>1v<1>2

The denotation [®] of a state formula ® is a (possibly infinite) set of process
terms.

[a] = {t|3t.t5t}
[-®] = T —[2]
[[(I)]_ N (bg]] = |I(b1:|] N |I(I)2:|]
[[@1 V (I)Q]] = [[(I)l]] U [[@2]]
To simplify the notation we use sets of actions. Let A := {ay,...,ax} C Act.
[A] = [a]...n[ak]
[-A] = [-a]n...N[-ag]

By transformation to disjunctive normal form every state-formula ® can be
written as (A1 A —=By) V...V (A, A —B,), where A;, B; C Act.

We consider the question if there is a reachable state that satisfies a given
state formula. To express this problem, we define another operator.

[OC®] := {t| o, t'. t 5>t € [P]}

Note that state-formulae do not contain the operator . Let ¢ € T be a
process term. For ¢ € [®] we also write ¢t = ©.

REACHABLE PROPERTY PROBLEM

Instance: A PRS A with initial state ¢, and a state-formula .
Question: t) = OP ?

We prove the decidability of the reachable property problem for PRS in two

steps. First we show that it suffices to solve the problem for PRS in transitive
normal form.
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Lemma 6.1 Let A be a PRS that uses only constants from the finite set
Const(A) C Const, and let ty € T be a process term.

Then a PRS A" in normal form and a term tj can be effectively constructed

s.t. for every state formula @, ty = O with respect to A iff t, = OP with
respect to A'.

Proof We use the same algorithm to transform A and ¢ as in Lemma 5.3.
The new rules that are added are labeled with the new (silent) action 7, that
doesn’t occur in P.

The only problem that remains is that if a subterm ¢ is replaced by a new
constant X, then X does not enable the same actions as ¢t. Thus, for example,
the new system might satisfy a formula <&(—a), although the original doesn’t.
The solution is as follows: Compute the set of actions {by,...,b,,} that are

enabled by the term ¢ in w.r.t. A. Then add new rules X L X, ..., X b X
This must be done after every step where a subterm a replaced by a constant.

Then the new system A’ ¢; satisfies exactly the same formulae O® as the
old one. n

Lemma 6.2 Let A be a PRS in normal form. Then a PRS A" in transitive
normal form can be effectively constructed s.t. for every term t and every
state-formula @, t = ® w.rt A iff t =@ w.r.t Al

Proof We use the same algorithm as in Lemma 5.5. The only difference is
that we label the newly added rules with the special (silent) action 7 that
does not occur in any state-formula. [ |

Remark 6.3 By Lemma 6.1 and Lemma 6.2 it follows that it suffices to
solve the reachable property problem for PRS in transitive normal form. Let
there be a PRS A in transitive normal form with initial state ty and ® a
state-formula. The problem is if to | O®. As ® can be transformed into
disjunctive normal form and

LE OBV By) <= t=O(®) Vi O(®y)

it suffices to show decidability for formulae of the form O(A A —B), where
A, B C Act.
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The following definition and lemma by Jancar [Jan90] are used to show the
effectiveness of the procedures check and check’ that are used to show the
decidability of the reachable property problem.

Definition 6.4 For a given Petri net /N the set Ly of formulae is defined as
follows:

e There is one variable M that stands for a marking of the net.
e A term is either

— a term M (p) where p is a place, or
— a constant ¢ € IN, or

— of the form t; + t9.
e A formula is either

— an atomic formula t; <t or t; < t, where 1, ¢, are terms, or

— of the form f1& f, where fi, fo are formulae.

For a concrete marking M, f(M) denotes the instance of f with this M. The
semantics is natural.

Lemma 6.5 ([Jan90))
For a Petri net N with initial marking My it s decidable if there is a reachable
marking M s.t. f(M).

Definition 6.6 Let C' C Const and t € P. Let h be a function s.t. h(C,t)
is true iff ¢ contains only constants from C and false otherwise.

Let A be a PRS in transitive normal form, X € Const and let A, A’, B be
finite sets of actions. Let j be a mapping j : 24 — 260t

check(X, j, A', B) iff there exists at € P s.t. X =5t and

par

(t=tlllceanste) Nt E(AAN=B) A N\ h(§(C)t)

Cce24

and the additional constraint that ¢t € Const = t' =e.
check' (X, A, B) iff there exists at € P s.t. X =% t and t ¢ Const and

t=(AN-B)
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Lemma 6.7 The functions check and check' are decidable.

Proof Directly from Lemma 6.5, because par-rules correspond to Petri net
transitions. [

Definition 6.8 The function snd returns the nesting-depth of sequential
composition in a process term.

snd(e) = 0
snd(X) = 0
snd(ti||ta) = maz(snd(ty), snd(t2))
snd(ty.ty) = maz(snd(ty) + 1, snd(tz))

Definition 6.9 Let A be a PRS in transitive normal form, X € Const,
n € IN and A, B finite sets of actions.

Let reach(X,n, A, B) be true iff there exists a term ¢ s.t. t ¢ Const, X =2 t,
t = (AA—B) and the nesting-depth of sequential composition in ¢ is at most
n, i.e. snd(t) <n.

The function reachseq is defined like reach, except that the first rule applied
to X must be a seq-rule of the form X % Y.Z and Z is never changed
afterwards. (This implies that reachseq is only defined for n > 1.)

Now we describe recursive algorithms for reach and reachseq.

1 reach(X,n, A, B)

2 case n = 0:

3 return(check' (X, A, B));

4 case n > 0:

5 for every mapping j : 24 — 2995t and every A’ C A
6 if AU U C = A then

Cce24 A j(C)£D

7 if check(X,j, A’, B) then

8 it A\ N\ reachseq(X',n,C, B)) then return(true);
ce24 \X'cj(0)

9 return(false);

The function reachseq is only defined for arguments n > 1.
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1 reachseq(X,n, A, B)

2 forevery X — Y.Z

3 if reach(Y,n — 1, A, B) then return(true);
4 for every Y >= W

5 if W.Z = (AN —B) then return(true);
6 return(false);

Remark: Note that seq-rules of the form X.Y — Z (sequential composition
on the left side) are almost never used in the algorithm. The only exception
is in line 5 of the function reachseq where they might be needed to enable
some action in A. The reason why they are not used anywhere else is because
they are not needed since A is in transitive normal form.

Lemma 6.10 The above algorithms are correct and effective implementa-
tions of the functions reach and reachseq.

Proof By induction on n.

Base case: For reach the base case is n = 0. The correctness follows imme-
diately from the definition of the function check’ and Lemma 6.7. Note
that no seqg-rules are used, because A is in transitive normal form.

For reachseq the base case is n = 1. By definition the first rule applica-
tion must have the form X — Y.Z (as in line 2). Line 3 deals with the
case that Y alone develops into some term ¢t € P that satisfies AA —B
and Z does not play a role. However, ¢ must not be a single constant,
because otherwise it might be able to interact with Z via a seq-rule.
The function reach is called with argument n = 0 and just calls the
function check’ which guarantees that ¢ is not a single constant. In
line 4,5 we consider the case that Y is rewritten to a single constant
W (possibly Y itself) s.t. W.Z = (A A —B). Since A is in transitive
normal norm the condition in line 4 is trivial to check: either W =Y
or (Y — W) € A. Line 5 is there to deal with the case that some
seg-rule of the form W.Z % Z' is needed to enable some action a in A.

Step: In the function reach we split the set of actions A into subsets. The
special subset A" are the actions that should become enabled after ap-
plying only par-rules to X. The other subsets of actions are assigned
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sets of constants by the function j. These constants require further ap-
plication of seq-rules. By the function check we test for the reachability
of a state ¢t with

(t=tlllceanyte) Nt A AN=B) A N\ h(§(C)t)

Cce24

and the additional constraint that t € Const = t' = e.

The constants in the terms ¢, require further applications of seq-rules.
The additional constraint ensures that at least one ¢, is not € or ¢’ is not
a constant. This ensures that the reachable state that finally satisfies
(A A —B) is not a constant. (The applications of seq-rules in reachseq
always yield non-constant terms.)

Now for the correctness of reachseq: By definition the first rule applica-
tion must have the form X — Y.Z (as in line 2). Line 3 deals with the
case that Y alone develops into some term ¢t € P that satisfies AA —B
and Z does not play a role. However, ¢ must not be a single constant,
because otherwise it might be able to interact with Z via a seq-rule.
The function reach guarantees this and by induction hypothesis the
correctness follows. In line 4,5 we consider the case that Y is rewritten
to a single constant W (possibly Y itself) s.t. W.Z = (A A —B). Since
A is in transitive normal norm the condition in line 4 is trivial to check:
either W =Y or (Y — W) € A. Line 5 is there is deal with the case
that some seq-rule of the form W.Z % Z' is needed to enable some
action a in A. ]

Now we show that it suffices to consider terms with bounded nesting-depth
of sequential composition.

Lemma 6.11 Let A be a PRS in transitive normal form, X € Const(A)
and A, B C Act(A).

Then X &= O(A A —B) iff there is a term t s.t. X =2 t, t = (AA—B) and
snd(t) < |A] *|Const(A)].

Proof X is transformed into ¢t by applying rewrite rules from A. The
nesting-depth of sequential composition is only increased when a seq-rule of
the form Z — Z'.Z" is applied to some constant Z which is a subterm of
an intermediate term. In the end Z should be rewritten to a subterm ¢
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of of t that satisfies a part of the formula (A A —B). Thus this subterm
Z is required to satisfy &(A' A —B) for some A" C A. Let a chain be a
sequence of applications of rewrite rules s.t. every rule rewrites at least part
of the term which was introduced by the previous one. Consider a chain
and the sequence of constants Z; in it to which seq-rules are applied and
the sequence of formulae &(A; A —B) that the Z; are required to satisfy.
These subsets A] can never get bigger in a chain. Furthermore, if they get
smaller they must be subsets of previous ones. Therefore in any chain at
most |A| different formulae &(AL A —B) must be satisfied by constants Z; to
which seq-rules are applied. We can assume that in any chain no constant (to
which a seq-rule is applied) appears twice with the same formula, because
this means that a constant has been rewritten to a term containing this
constant without making any progress in the formula. It follows that any
chain contains at most |A| * |Const(A)| applications of seq-rules, because
there are only |Const(A)| different constants. Thus we get snd(t) < |A| *
| Const(A)]. |

Theorem 6.12 The reachable property problem s decidable for PRS.

Proof An instance is given by a PRS A, an initial state ¢y and a state-
formula ®. The question is if ¢, | G®. Without restriction we can assume
that t, is a single constant X. (Otherwise just add a rule X 5 t,.) By
Lemma 6.1 and Lemma 6.2 the problem can be reduced to a problem for
PRS in transitive normal form. By Remark 6.3 the problem can be reduced
to problems for formulae of the form G(AA —B). If X | G(A A —B) then
there are two cases:

1. X can reach a term Y € Const s.t. Y |= (A A —B). This can be easily
checked, because A is in transitive normal form. For every constant
Y € Const check if (X —Y) € Aand Y = (AA —B). Also check if
X E= (AN —B).

2. X canreach a term ¢t ¢ Const s.t. t = (AA—B). By Lemma 6.11 there
is such a t with snd(t) < |A|*|Const(A)|. Thus the condition can be
checked by computing reach(X, |A|*|Const(A)|, A, B). By Lemma 6.10
this can be done with the algorithms given above.

X = O(A A —B) iff one of those checks yields a positive answer. |
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Remark 6.13 This result can also be used to decide deadlock-freedom. Let
A be a PRS with initial state ty and Act(A) the (finite!) set of actions used
in A. A deadlock is reachable iff ty = <O(—Act(A)). Thus the system is
deadlock-free iff ty = O(—Act(A)).

7 Conclusion

The algorithms for the reachability problem and the reachable property prob-
lem for PRS rely on the reachability problem for Petri nets, which has a high
complexity (EXPSPACE-hard [May84, Lip76]). So it might seem that they
are not applicable in practice because of their very high complexity. However,
there are three arguments in their favor:

1. In many examples the system is not very large and the structure of the
Petri nets that are contained in them is often simple.

2. In a large PRS there may be many Petri nets as substructures, but
often each of these Petri nets is quite small. These Petri nets are either
not connected with each other at all, or their influence on each other
is very limited. Thus they yield small subproblems that can be solved
in acceptable time.

3. Finally, the reachability problem for Petri nets has been studied for
many years and ways of dealing with it have been developed. There
are semi-decision procedures that give yes/no/don’t know answers in
acceptable time [CH78, Mur89, ME96]. These algorithms mostly use
constraints to represent sets of states and approximate the behavior of
the system.

Therefore the algorithms of Section 5 and Section 6 can still be useful in
practice to verify systems that are modeled with PRS.

Process Rewrite Systems (PRS) is a very expressive model of infinite-state
concurrent systems that subsumes PAN, PAD, Petri nets, PA-processes,
pushdown processes, BPP and BPA. PRS extends Petri nets by introducing
an operator for sequential composition. This can be seen as the possibility
to call subroutines. The calling of subroutines is already possible in PAN-
processes. However, there is a major difference: In PAN subroutines that
terminate have no effect on their caller, while in PRS subroutines can return
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a value to the caller when they terminate. This is an important aspect in
modeling real programs. Thus PRS-processes can be used to model systems
that exceed the bounds of the expressiveness of Petri nets and PAN.

PRS is a very general model for concurrent systems. Thus model checking
with many temporal logics (EF, CTL, LTL, linear time p-calculus, modal
p-calculus) is undecidable for it. This is because EF is undecidable for Petri
nets [Esp97, BE97], CTL is undecidable for BPP [EK95] and LTL and the
linear time p-calculus are undecidable for PA-processes [BH96]. However,
PRS is not Turing powerful, since reachability is still decidable.

Finally, it should be noted that PRS are (roughly) equivalent to ground
AC rewrite systems (i.e. rewrite systems without substitution, but with an
associative and commutative operator). The general idea is that e.g. a
ground AC term Z(X +Y') (where ‘+’ is the associative and commutative
operator) corresponds to a PRS-term (X||Y").Z and vice versa.

Acknowledgments: [ thank Michaél Rusinowitch and Javier Esparza for
helpful discussions and three anonymous referees for their detailed comments.
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Model Checking Lossy Vector Addition Systems

Ahmed Bouajjani * *** Richard Mayr** ***

Abstract. Lossy VASS (vector addition systems with states) are defined
as a subclass of VASS in analogy to lossy FIFO-channel systems. They
can be used to model concurrent systems with unreliable communication.
We analyze the decidability of model checking problems for lossy systems
and several branching-time and linear-time temporal logics. We present an
almost complete picture of the decidability of model checking for normal
VASS, lossy VASS and lossy VASS with test for zero.

1 Introduction

VASS’s (vector addition systems with states) can model communicating systems
through unbounded unordered buffers, and hence they can be seen as abstractions
of fifo-channels systems, when the ordering between messages in the channels is
not relevant but only their number. Communicating systems are often analyzed
under the assumption that they communicate through unreliable channels. Hence,
we consider lossy models of communicating systems, i.e. models where messages
can be lost. Recent works are about lossy unbounded fifo-channels systems [AJ93,
AJ96, CFI96]. The reachability problem is decidable for these models, which
implies the decidability of the verification problem for safety properties. However,
liveness properties cannot be checked for lossy fifo-channel systems, unless for
very special ones like single eventualities. In particular, it is impossible to model
check lossy channel systems under fairness conditions. Here we study verification
problems for VASS and VASS with inhibitor arcs (counter machines) under the
assumption of lossiness, i.e. the contents of a place/counter can spontaneously
get lower at any time.

Using the approach introduced in [CFI96, ACJT96], it can be shown very easily
that the set pre*(S) of predecessors of any set of configurations S is effectively
constructible for lossy VASS even with inhibitor arcs, and that this set can be
represented by simple linear constraints (SC for short), where integer variables
can be compared only with constants. Moreover, for lossy VASS, the set post*(S)
of successors is SC definable and effectively constructible, but interestingly, for
lossy VASS with inhibitor arcs these sets are not constructible although they are
SC definable.

Local model checking, or simply model checking, consists in deciding whether a
given configuration of a system satisfies a given formula of a temporal logic, and
global model checking consists in constructing the set of all configurations that
satisfy a given formula. We address these problems for a variety of linear-time
and branching-time properties. We express these properties in a temporal logic,
called AL (Automata Logic), which is based on automata on finite and infinite
sequences to specify path properties (in the spirit of ETL), and the use of path
* VERIMAG, Centre Equation, 2 avenue de Vignate, 38610 Giéres, France.

** Institut fir Informatik, TU-Miinchen, Arcisstr. 21, D-80290 Miinchen, Germany.

*** Ahmed.Bouajjani@imag.fr, mayrri@informatik.tu-muenchen.de



quantifiers to express branching-time properties (like in ECTL* [Tho89]). The
basic state predicates in this logic are SC constraints.

Our main positive result is that for lossy VASS, the global model checking is
decidable for the logic JAL with only upward closed constraints, and dually for
VAL with downward closed constraints (VAL and JAL are the universal and ex-
istential positive fragments of AL. They subsume respectively the corresponding
well-known fragments VCTL* and 3CTL* [GL94] of the logic CTL*). When only
infinite paths are considered our decidability result also holds for normal VASS.
A corollary is that linear-time properties on finite and infinite paths (on infinite
paths only) are decidable for lossy VASS (normal VASS). We can even construct
the set of all the configurations satisfying these properties. This generalizes the
result in [Esp97] where only model checking is considered. Notice also that VAL
is strictly more expressive than all linear-time temporal logics.

These decidability results break down if we relax any of the restrictions: model
checking becomes undecidable if we consider VAL or JAL formulae with both
downward and upward closed constraints, or if we consider lossy VASS with
inhibitor arcs. Also, even if we use only propositional constraints in the logic
(i.e., only constraints on control locations) the use of negation must be restricted:
model checking is undecidable for CTL and lossy VASS. However, it is decidable
for the fragments EF and EG of CTL even for lossy VASS with inhibitor arcs, but
surprisingly, global model checking is undecidable for EG and lossy VASS (while
it is decidable for EF and lossy VASS with inhibitor arcs). As a side effect we
obtain that normal VASS (Petri nets) and lossy VASS with inhibitor arcs (lossy
counter machines) are incomparable.

The missing proofs can be found in the full version of the paper.

2 Vector Addition Systems with States

Definition 1. A n-dim VASS S is a tuple (X, X, @Q,0) where X' is a set of action
labels, X is a set of variables such that |X| = n, @ is a finite set of control states,
0 is a finite set of transitions of the form (¢1,a, A, ¢2) where a € ¥, A € Z".

A configuration of S is a pair (g, @) where ¢ € @ and @ € IN". Let C(S) be the
set of configurations of S. Given a configuration s = (g, @), we let State(s) = ¢
and Val(s) = 4.

We define a transition relation — on configurations as follows: (g1, @) —
(g2, W2) iff AT = (q1,a,4,¢q2) € 9§, @2 = U + A. Let post, ({q1,d1)) (resp.
pre.((g2,U2))) denote the configuration (go,@s) (resp. (q1, 1)), i.e., the immedi-
ate successor (resp. predecessor) of (q1,u;) (resp. (g2, d=2)) by the transition 7.
Then, we let post (resp. pre) denote the union of the post,’s (resp. pre.’s) for all
the transitions 7 € 6. In other words, post((q, @) = {(¢’, @) : Ja € X. {q,d)
(¢ @)}, and pre((q, @) = {(¢', @) : 3a € Z. (¢, @) — (g, @)}. Let post* and
pre* be the reflexive-transitive closures of post and pre.

Given a configuration s, a run of the system S starting from s is a finite or infinite
sequence Sgaos1a; .. .S, such that s = s¢ and, for every i > 0, s; LI Si+1- We
denote by Rung(s,S) (resp. Runy(s,S)) the set of finite (resp. infinite) runs of
S starting from s.



A lossy VASS is defined as a VASS with a weak transition relation —> on
configurations. We define the relation = as follows: (g1, 1) == {qq, i) iff
36’1,612 S Wn, ’lIl Z ’11"1, <ql,l_[ll> i) <QQ,6(Z>, and ’11"2 Z ’L_[Z.

The weak transition relation induces corresponding notions of runs, successor
and predecessor functions defined by considering the weak transition relation
— instead of —.

Definition 2. We order vectors of natural numbers by (u1,...,u,) < (v1,...,0,)
iffvie{l,...,n}. u; <w;.

Given a set S C IN", we denote by min(S) the set of minimal elements of S
w.r.t. the relation <.

Let S C IN". Then, S is upward (resp. downward) closed iff Vi € IN". @ € S =
(Vi e IN™. ¢ > i (resp. ¥ < @) = ¥ € S). Given a set S C IN", we denote by St
(resp. SJ) the upward (resp. downward) closure of S, i.e., the smallest upward
(resp. downward) closed set which contains S.

Lemma3. Every set S C IN™ has a finite number of minimal elements. A set
is upward closed if and only if S = min(S)t. The union and the intersection of
two upward (resp. downward) closed sets is an upward (resp. downward) closed
set. The complement of an upward closed set is downward closed and vice-versa.

Definition 4 Simple constraints, upward/downward closed constraints.
Let X = {z1,...,z,} be a set of variables ranging over IN.

1. A simple constraint over X', SC for short, is any boolean combination of
constraints of the form z > ¢ where z € X and ¢ € IN U {c0}.

2. An upward closed (resp. downward closed) constraint over X', UC (resp. DC)
for short, is any positive boolean combination of constraints of the form z > ¢
(resp. ¢ < ¢) where z € X and ¢ € IN U {oo}.

Constraints are interpreted in the standard way as a subset of IN" (< is the usual
ordering and < is the strict inequality). Given a simple constraint £, we let [¢]
denote the set of vectors in IN" satisfying £. Notice that the constraints x < 0
and z > oo correspond to () and that > 0 and z < oo correspond to IN.

Definition 5. A set S is SC (resp. UC, DC) definable if there exists an SC (resp.
UC, DC) € such that S = [¢].

Definition 6 Normal forms. .
1. A canonical product is a constraint of the form ¢ < ¥ < 1,

2. A canonical upward closed product is a constraint of the form ZS z,
3. A canonical downward closed product is a constraint of the form 7 < 4,

where '€ IN" and @ € (IN U {oo})".
A SC (resp. UC, DC) in normal form is either (), or a finite disjunction of canonical
(resp. canonical upward closed, canonical downward closed) products.

Lemma 7. Every SC (resp. UC, DC) is equivalent to a SC (UC, DC) in normal
form.



Proposition 8. SC definable sets are closed under boolean operations, and UC
definable sets as well as DC definable sets are closed under union and intersection.
The complement of a UC definable set is a DC definable set and vice-versa. A
subset of IN"™ is UC definable (resp. DC definable) if and only if it is an upward
(resp. downward) closed set. A set is SC definable if and only if it is a boolean
combination of upward closed sets.

Let S = (X, X,Q,9) be a n-dim VASS with Q = {qi,-...,¢n}- Then, every set of
configurations of S is defined as a union C' = {¢1} x Sy U---U {gn} X Sy, where
the S;’s are sets of n-dim vectors of natural numbers. The set of configurations
C is SC (resp. UC, DC) definable if all the S;’s are SC (resp. UC, DC) definable.
We represent SC definable sets by simple constraints in normal form coupled
with control states. From now on, we consider a canonical product to be a pair
of the form (q,[ﬁ Z < @) where ¢ € Q). A simple constraint is either §) or a finite
disjunction of canonical products. We use SC(Q, X) (resp. UC(Q, X), DC(Q, X))
to denote the set of simple constraints (resp. upward closed, downward closed
constraints). We omit the parameters ) and X when they are known from the
context.

3 Computing Successors and Predecessors

Lemma9. The class SC is effectively closed under the operations post and pre
for any lossy VASS'’s.

Proof. These operations are distributive w.r.t. union. Hence, it suffices to con-
sider separately each transition 7 = (¢,a, 4, ¢’) and perform them on canonical
products:

1. post,((q,{ < T < @) = (¢, T < d+ A).

2. pre, (¢, [ < &< @) = (q,(( = A)NT < D),
where Vi, 7 € IN", @M ¥ is the vector such that Vi € {1,...,n}. (€N d); =
maz(ug,v;). O

Notice that for lossy VASS’s, the pre image of any set of configurations is upward
closed and its post image is downward closed. This also holds for pre* and post™*.

Theorem 10. For every n-dim lossy VASS S, and every n-dim SC set S, the set
pre*(S) is UC definable and effectively constructible.

Proof. Since the set pre*(S) is upward closed, by Proposition 8 we deduce that
it is UC definable. The construction of this set is similar to the one given in
[CFI96, ACJT96] for lossy channel systems. O

Theorem 11. For every n-dim lossy VASS S, and every n-dim SC set S, the set
post*(S) is DC definable and effectively constructible.

Proof. Since post*(S) is downward closed, by Proposition 8 we deduce that
post*(S) is DC definable. This set can be constructed using the Karp-Miller
algorithm for the construction of the coverability graph [KM69]. O



4 Automata and Automata Logic

We use finite automata to express properties of computations. These automata
are labeled on states and edges as well. State labels are associated with predicates
on the configurations of a given system and edge labels are associated with the
actions of the system.

Definition 12. Let A and X be two finite alphabets. A labeled transition graph
over (A, X) is a tuple G = (Q, @init, I, §) where @ is a finite set of states, gini
is the initial state, IT : ) — A is a state labeling function, § C Q x X' x @ is a
finite set of labeled transitions. We write ¢ —— ¢’ when (g, a,¢') € 6.

Given a state ¢, a run of G starting from ¢ is a finite or infinite sequence
Qo00q1a1¢q> ... such that go = q and Vi > 0. ¢; iy Qit1-

Definition 13 Automata on finite sequences. A finite-state automaton over
(4, X) on finite sequences is a tuple Ay = (Q, @init, II, 6, F') where (Q, @init, II,9)
is a labeled transition graph over (A4,X), and F C @ is a set of final states.
A finite sequence AgapAiar ... A\, € A(XA)* is accepted by Ay if there is a run
g0a0q1a1 - - . gy of Ay starting from g, such that Vi € {0,...,n}. II(g;) = A,
and g, € F. Let L(Ay) be the set of sequences in A(XA)* accepted by Ay.

Definition 14 Biichi w-automata. A finite-state Biichi automaton over (4, X)
is a tuple A, = (Q, init, 1,0, F) where (Q, ginit, II,0) is a labeled transition
graph over (4,Y), and F C @ is a set of repeating states. An infinite sequence
AoGoA1ay - .. Ay € (AX) is accepted by A, if there is a run ggapqiay ... of A,

starting from g;p;; such that Vi > 0. I1(g;) = A;, and OElo i >0.q; € F. We denote
by L(A,) the set of sequences in (AX)% accepted by A, .

Definition 15 Closed w-automata. A closed w-automaton is a Biichi automa-
ton Ay = (Q, Ginit, 11,9, F) such that F' = Q.

Remark. [Tho90] Biichi automata define w-regular sets of infinite sequences. They
are closed under boolean operations. Closed w-automata define closed w-regular
sets in the Cantor topology (the class F in the Borel hierarchy). They correspond
to the class of w-regular safety properties. Closed w-automata are closed under
intersection and union, but not under complementation.

We introduce an automata-based branching-time temporal logic called AL (Au-
tomata Logic). This logic is defined in the spirit of the extended temporal logic
ETL and is an extension of ECTL* [Tho89]. The logic AL is more expressive
than CTL and CTL*, and allows to express all co-regular linear-time properties
on finite and infinite computations.

Definition 16 Automata Logic. Given a set of control states () and a set of
variables X, we let F denote a subset of SC(Q,X'), and we let 7 range over
elements of F. Then, the set of AL(F) formulae is defined by the following
grammar:

pu=m]2p|pVeloAe | IAi (@1, 0m) [ VA (01,5 0m) |
AL (@1, om) | VAL (@1, - -+ 0m)



where A; (resp. A, ) is a finite-state automaton on finite (resp. infinite) sequences
over (A ={\,...,An},X). We consider standard abbreviations like =.

Definition 17. We use x to denote f or w. Let § = (X, X,Q,0) be a n-dim
(lossy) VASS, We define a satisfaction relation between configurations of S and
AL(F) as follows:

s = (q,€) iff State(s) = ¢ and Val(s) € [€]
sE-piff s fE @
sE@p Ve iff s =@ ors =@
sEeApiff s =1 and s = ¢
s = 3A(p1,- .-, 0m) f 3p = spag ... € Runy(s,S). 3o = \jyap ... € L(A).
o = lol and Vj. 0 < j < |o]. 5; = o,
s EVA(L1, . om) iEVp = soag - .. € Run,(s,S). Jo = Njyap ... € L(A,)
|lo| = |pl and V5. 0 < j < |p|. 55 =
For every formula ¢, let [p]s :={s € S|s = ¢}.

Definition 18 Fragments of AL. JAL(F) is the fragment of AL that uses only
constraints from F, conjunction, disjunction and existential path quantification.
VAL(F) is the fragment of AL that uses only constraints from F, conjunction,
disjunction and universal path quantification. Let X be (some fragment of) the
logic AL. Then Xy (resp. Xy, Xy.) denote the fragment of X where only automata
on finite sequences (resp. Biichi, closed w-automata) are used.

AL is a weaker logic than the modal p-calculus, but many widely known tem-
poral logics are fragments of AL. Every propositional linear-time property, in
particular LTL properties, can be expressed in AL. CTL* is a fragment of AL
since every path formula in CTL* corresponds to an LTL formula. Thus, CTL
is also a fragment of AL. Clearly, VAL and JAL subsume the positive universal
and existential fragments of CTL* denoted VCTL* and 3CTL* (notice that LTL
is a fragment of VCTL*).

We consider two fragments of CTL called EF and EG. The logic EF uses SC
predicates, boolean operators, the one-step next operator and the operator EF
which is defined by [EF¢] = pre*([¢]), The logic EG is defined like EF, except
that the operator EF is replaced by the operator EG, which is defined as follows:
s = EGy iff there exists a complete run that starts at s and always satisfies .
By a complete run we mean either an infinite run or a finite run ending in a
deadlock. We use the subscripts f or w to denote the fragments of these logics
obtained by interpreting their formulae on either finite or infinite paths only.
Then, it can be seen that EF = EFy C CTL; C CTL; C ALy. It can also be
seen that EG,, is a fragment of AL, but EG is not (due to the finite paths).

5 Model Checking
Definition 19 Model checking and global model checking problems.

1. The model checking problem is if s € [¢] ¢ for configuration s and formula .



2. The global model checking problem is whether for any formula ¢ the set [¢] ¢
is effectively constructible.

Lemma20. Let S be a lossy VASS. Then for every formula ¢ of the form
JAs (71, .., ™) where all the m; are SC, the set [p]g is SC definable and ef-
fectively constructible.

Proof. By a generalized pre* construction (see Theorem 10). a

Theorem 21. The global model checking problem for lossy VASS and the logic
ALy is decidable.

Proof. By induction on the nesting-depth and Lemma 20. a

The following results even hold for non-lossy VASS. The aim is to show decidabil-
ity of the global model checking problem for VASS and the logic 3AL,, (UC). We
define a generalized notion of configurations of VASS which includes the symbol
w. This symbol denotes arbitrarily high numbers of tokens on a place. It is used
as an abbreviation in the following way: (¢, (w,w,...,w, Trr1,...,Zn)) E @ :
< 3dny,...,nx € IN. {q,(n1,n2,..., Nk, Tt1,.-.,Zn)) = . (Of course the w
can occur at any position, e.g. (¢, (1, Z2,w, T4,w, Tg)).)

Lemma 22. Let S be a VASS and ¢ a formula of the form A, (71,...,7m)
where all the m; are in UC. Let s be a generalized configuration of S (i.e. it can
contain w). It is decidable if s |= .

Proof. (Sketch) First construct the Karp-Miller coverability graph [KM69]. Then
check for the existence of cycles in this graph that have an overall positive effect
of the fired transitions. These cycles may contain the same node several times.
This check is done with the help of Parikh’s Theorem. The property holds iff such
a cycle with overall positive effect exists, because it can be repeated infinitely
often. O

Lemma23. Let S be a VASS and ¢ a formula of the form A, (71,...,7m)
where all the m; are in UC. The set [¢]g is UC definable and effectively con-
structible.

Proof. [¢] g is upward closed, because all 7; are upward closed. Thus, it is char-
acterized by the finite set of its minimal elements (see Lemma 3). To find the
minimal elements, we use a construction that was described by Valk and Jantzen
in [VJ85]. The important point here is that we can use Lemma 22 to check the
existence of configurations that satisfy ¢. For example, if (g, (w, 22, x3)) |= ¢ then
we can check if (g, (n1,2z2,23)) E ¢ forn; =0, n; =1, n1 =2, ... until we find
the minimal ny s.t. {q, (n1,z2,23)) FE ¢. O

Theorem 24. The global model checking problem is decidable for VASS and the
logic 3AL,(UC).
Proof. By induction on the nesting-depth of the formula and Lemma 23. O

Theorem 25. The global model checking problem is decidable for lossy VASS and
the logic JAL(UC).



Proof. By induction on the nesting depth and Theorems 21 and 24. O

Theorem 26. The model checking problem for lossy VASS and AL, is decidable.

Proof. By induction on the nesting-depth of the formula and an analysis of all
computations which is finite by Dickson’s Lemma. ad

Theorem 27. Model checking lossy VASS with the logic EG is decidable.

Theorems 26 and 27 say that the model checking problem is decidable for a
lossy VASS and an EG-formula/ AL,.-formula ¢. However, in both cases the
set [¢]s is not effectively constructible (although it is SC definable). If it were
constructible then Lemma 20 could be used to decide model checking lossy VASS
with formulae of the form EF EG ,m, where 7 is a constraint in SC. However, this
problem has very recently been shown to be undecidable.

Proposition 28. Model checking lossy VASS with formulae of the form EFEG ,,
where w is a constraint in SC is undecidable.

Proof. This is a corollary of a more general undecidability result for lossy BPP
(Basic Parallel Processes), which follows (not immediately) from the result on
lossy counter machines in Proposition 30 (see [May98]). O

Remark. This undecidability result also implies undecidability of model checking
lossy VASS with the logic 3AL,,. One can encode properties of the form EF EG,w
in AL, in the following way: Let A, be an automaton with states ¢,q’, and
transitions ¢ — ¢, ¢ — ¢' and ¢’ — ¢' which are labeled with any action. The
predicate true is assigned to ¢ and the predicate 7 is assigned to ¢'. ¢ is the initial
state and ¢’ is the only repeating state. Let A/, be an automaton with only one
state g which is the initial state and repeating and a transition ¢ — ¢ with any
action. The predicate 7 is assigned to gq. Then for any lossy VASS s we have
sE EFEG,m < sl= A,(true,m) v A (7).

Lossy VASS can be extended with inhibitor arcs. This means introducing tran-
sitions that can only fire if some defined places are empty (i.e. they can test for
zero). Thus lossy VASS with inhibitor arcs are equivalent to lossy counter ma-
chines. Normal VASS with inhibitor arcs are Turing-powerful, but lossy VASS
with inhibitor arcs are not.

Theorem 29. For lossy VASS with inhibitor arcs
1. the global model checking problem is decidable for the logic ALy.
2. model checking is decidable for the logics AL,. and EG.

Inhibitor arcs can never keep a transition from firing, because one can just loose
the tokens on the places that inhibit it. However, after such a transition has fired,
the number of tokens on the inhibiting places is fixed and known exactly. Such
a guarantee is impossible to achieve in lossy VASS without inhibitor arcs. Thus
not all results for lossy VASS carry over to lossy VASS with inhibitor arcs.



Proposition 30. Let S be a lossy VASS with inhibitor arcs. It is undecidable if
there exists an initial configuration s s.t. there is an infinite run of (s,S).

Proof. This is a corollary of a more general undecidability result for lossy counter
machines in [May98]. The main idea is that one can enforce that lossiness occurs
only finitely often in the infinite run. O

Theorem 31. Model checking lossy VASS with inhibitor arcs with the logic LTL
s undecidable.

Proof. We reduce the problem of Proposition 30 to the model checking problem.
We construct a lossy VASS with inhibitor arcs S’ that does the following: First
it guesses an arbitrary configuration s of & doing only the atomic action a.
Then it simulates S on s doing only the atomic action b. Let A, be a Biichi-

automaton with initial state ¢ and repeating state ¢’ and transitions ¢ — ¢, ¢ LN q

and ¢ LN q'. Let s’ be the initial state of S’. We have reduced the question of
Proposition 30 to the question if (s',S") = A, (true, true). This question can be
expressed in LTL. O

It follows immediately that model checking lossy VASS with inhibitor arcs with
AL, (UC) is undecidable. It is interesting to compare this result with Proposi-
tion 28. For undecidability it suffices to have either inhibitor arcs in the system
or downward closed constraints in the logic. One can be encoded in the other and
vice versa. The set post*(s) is DC definable since it is downward closed. However,
it is not constructible for lossy VASS with inhibitor arcs (unlike for lossy VASS,
see Theorem 11).

Theorem 32. post*(s) is not constructible for lossy VASS with inhibitor arcs.

Proof. Boundedness is undecidable for reset Petri nets [DFS98]. This result car-
ries over to lossy reset Petri nets. Lossy VASS with inhibitor arcs can simulate
lossy reset Petri nets. It follows that boundedness is undecidable for lossy VASS
with inhibitor arcs and thus post*(s) is not constructible. O

6 Conclusion

We have established results for normal VASS and lossy VASS with inhibitor arcs
(lossy counter machines). Interestingly, it turns out that these two models are
incomparable. Moreover, all the positive/negative results we obtained for lossy
VASS with inhibitor arcs are the same as for lossy fifo-channel systems. Note
that lossy fifo-channel systems can simulate lossy VASS with inhibitor arcs, but
only with some additional deadlocks.

The following table summarizes the results on the decidability of model check-
ing for VASS, lossy VASS with test for zero, lossy VASS and lossy fifo-channel
systems. By ‘++4’ we denote the fact that for any formula ¢ the set [¢] is SC
definable and effectively constructible (global model checking), while ‘+’ means
that only model checking is decidable. We denote by — that model checking is
undecidable. The symbol ‘?’ denotes an open problem.



|L0gic || VASS |Lossy VASS—}—0|Lossy VASS|Lossy FIFO|

AL;JEF — [Esp97] ++ ++ [AJ93] | ++ [AJ93]
JAL,(UC)/LTL|[++ /+[Esp97] — ++ — [AJ96
JAL(UC) ? — ++ — [AJ96
AL,./EG — [EK95 + + [AJ93] + [AJ93]
JAL,/CTL — [EK95 — — — [AJ96]

The results in this table are new, except where references are given. For normal
VASS and LTL, decidability of the model checking problem was known [Esp97],
but the construction of the set [¢] is new. The results in [AJ93] are just about
EF and EG formulae without nesting, not for the full logics ALy and AL,..

Acknowledgment: We thank Peter Habermehl for interesting discussions.
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Appendix: Full version.

Model Checking Lossy Vector
Addition Systems

Ahmed Bouajjani ** Richard Mayr'*

Abstract

Lossy VASS (vector addition systems with states) are defined as a
subclass of VASS in analogy to lossy FIFO-channel systems. They
can be used to model concurrent systems with unreliable communica-
tion. We analyze the decidability of model checking problems for lossy
systems and several branching-time and linear-time temporal logics.
We present an almost complete picture of the decidability of model
checking for normal VASS, lossy VASS and lossy VASS with test for
Z€ero.

1 Introduction

Systems are usually modeled by finite control transition systems with dif-
ferent kinds of variables and data structures like counters, clocks, stacks,
fifo-channels, etc. One of the widely used models of concurrent systems is
the model of Petri nets which is equivalent to the model of vector addition
systems with states (VASS for short). These models can be considered as
particular cases of counter machines where tests to zero are forbidden (the
addition of inhibitor arcs gives them the full power of counter machines).
VASS’s can model communicating systems through unbounded unordered
buffers, and hence they can be seen as abstractions of fifo-channels systems,
when the ordering between messages in the channels is not relevant but only
their number. Actually, it is often the case that communicating systems must
be analyzed under the assumption that they communicate through unreli-
able channels. Hence, it is natural to consider lossy models of communicating

*VERIMAG, Centre Equation, 2 avenue de Vignate, 38610 Gieres, France.
tInstitut fiir Informatik, TU-Miinchen, Arcisstr. 21, D-80290 Miinchen, Germany.
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systems, i.e. models where messages can be lost. Several works have been
devoted recently to the analysis of lossy unbounded fifo-channels systems
[AJ93, AJ96, CFI96]. They have shown in particular that the reachability
problem is decidable for these models, which implies the decidability of the
verification problem for safety properties. They have also shown that, unfor-
tunately, liveness properties cannot be checked for lossy fifo-channel systems,
unless for very special ones like single eventualities. In particular, it is impos-
sible to model check lossy channel systems under fairness conditions. In this
paper, we study verification problems for VASS and VASS with inhibitor arcs
(counter machines) under the assumption of lossiness. Here lossiness means
that the contents of a place/counter can spontaneously get lower at any time.

Since verification is essentially based on reachability analysis, the first ques-
tion we address is whether given a set S of configurations, it is possible to
effectively construct the set pre*(S) of all its predecessors and the set post*(.S)
of all its successors. Using the approach introduced in [CFI96, ACJT96], it
can be shown very easily that the pre* image of any set of configurations
is effectively constructible for lossy VASS even with inhibitor arcs, and that
this set can be represented by simple linear constraints (SC for short), where
integer variables can be compared only with constants. Moreover, we show
that for lossy VASS, the post* images are SC definable and effectively con-
structible, but interestingly, for lossy VASS with inhibitor arcs these sets are
not constructible although they are SC definable. This means that safety
properties (at least) can be checked for VASS with both backward and for-
ward reachability analysis, while they can only be checked using backward
search for lossy VASS with inhibitor arcs (efficient but incomplete forward

analysis procedures could be applied following the approach presented in
[BGWW97, BH97, ABJ98|).

Then, the major part of the paper concerns model checking. We consider
two versions of this problem: local model checking, or simply model checking,
which consists in deciding whether a given configuration of a system satisfies
a given formula of a temporal logic, and global model checking which consists
in constructing the set of all configurations that satisfy a given formula. We
address these problems for a variety of linear-time and branching-time prop-
erties. For the sake of generality, we express these properties in a temporal
logic, called AL (Automata Logic), which is based on the use of automata on
finite and infinite sequences to specify path properties (in the spirit of ETL
[Wol83]), and the use of path quantifiers to express branching-time properties
(like in ECTL* [CGKS87, Tho89]). The basic state predicates in this logic are
SC constraints.

Our main positive result is that for lossy VASS, the global model checking is



decidable for the logic AL with only upward closed constraints, and dually
for VAL with downward closed constraints (VAL and JAL are the univer-
sal and existential positive fragments of AL. They subsume respectively the
corresponding well-known fragments VCTL* and JCTL* [GL94] of the logic
CTL*). Actually, we show that when only infinite paths are considered our
decidability result also holds for normal VASS. A corollary of these results is
that, since in VAL we use automata to define path properties, all co-regular
(w-regular) linear-time properties on finite and infinite paths (on infinite
paths only) are decidable for lossy VASS (normal VASS), and even more,
we can construct the set of all the configurations satisfying these properties.
This generalizes the result concerning VASS and w-regular properties given
in [Esp94| where only model checking is considered. Notice also that VAL is
strictly more expressive than all linear-time temporal logics.

These results are interesting since systems are often verified under abstrac-
tions, and it can be shown that, if a system S simulates a system C, then if
a VAL formula holds on the “abstract” system &, it also holds on the “con-
crete” system C. For instance, if we start with a (lossy) fifo-channel system,
we can abstract it to a VASS or a lossy VASS, and then check the property
we are interested in on the abstract model, and if it holds, we can deduce
that it holds on the original model.

Then we show that these decidability results break down if we relax any of
the restrictions we have on the system models and the logic: model check-
ing becomes undecidable if we consider VAL or JAL formulas with both
downward and upward closed constraints, or if we consider lossy VASS with
inhibitor arcs. Also, even if we use only propositional constraints in the logic
(i.e., only constraints on control locations) the use of negation must be re-
stricted: model checking is undecidable for CTL and lossy VASS. However,
it is decidable for the fragments EF and EG of CTL even for lossy VASS with
inhibitor arcs, but surprisingly, global model checking is undecidable for EG
and lossy VASS (while it is decidable for EF and lossy VASS with inhibitor
arcs). We also obtain as a side effect of our results that normal VASS (Petri
nets) and lossy VASS with inhibitor arcs (lossy counter machines) are two
incomparable models.

The rest of the paper is organized as follows: In the next section we recall the
definition of VASS. In Section 3 we introduce simple constraints and show
how they can be used to represent sets of VASS configurations. In Section
4, we show how the backward and forward reachability sets of lossy VASS
can be effectively computed by means of simple constraints. In Section 5
we recall the definitions of automata on finite and infinite sequences since
they are used in the definition of our logic AL. In Section 5 we introduce



the logic AL and its fragments. In Section 6 we give our results concerning
model checking of lossy VASS and different fragments of AL. In Section 7,
we examine how these results extend or break down in the case of lossy
VASS with inhibitor arcs. Finally, we give concluding remarks and a table
summarizing our results in Section 8.

2 Vector Addition Systems with States

Definition 2.1 A n-dim VASS S is a tuple (X, X,Q,0) where

e Y is a set of action labels,
o X is a set of variables such that |X| = n,
e () is a finite set of control states,

e § is a finite set of transitions of the form (q1,a,A, qs) where a € X,
AeZz".

A configuration of S is a pair (q,u) where ¢ € @ and @ € IN". Let C(S)
be the set of configurations of S. Given a configuration s = (g, @), we let
State(s) = q and Val(s) = 4.

We define a transition relation — on configurations as follows: (g, ;) —
(qo, tz) iff 37 = (q1,0,A,q2) € 9§, Uy = U + A. We let post,({(q1,u1))
(resp. pre;({gs,u2))) denote the configuration (gs,u2) (resp. (qi,41)), i.e.,
the immediate successor (resp. predecessor) of (g, u1) (resp. (ge,us2)) by the
transition 7. Then, we let post (resp. pre) denote the union of the post,’s
(resp. pre,’s) for all the transitions 7 € d. In other words, post({q,u)) =
[g.@) : 3a €% (g,8) - (¢, @)}, and pre((q, @) = {(,@) : Ja e
Y. (¢, @'y - (q,@)}. Let post* and pre* be the reflexive-transitive closures
of post and pre.

Given a configuration s, a run of the system S starting from s is a finite
or infinite sequence spagsia; ...s, such that s = so and, for every ¢ > 0,
8i — s;11. We denote by Runy(s,S) (resp. Run,(s,S)) the set of finite
(resp. infinite) runs of S starting from s.

A lossy VASS is defined as a VASS with a weak transition relation —> on
configurations. We define the relation = as follows: (g1, ;) == (g, 2) iff
iy, @y € IN", @ > 4y, (qu, d@y) —— (g2, @), and @ > @s.

The definition of the weak transition relation induces corresponding notions
of runs, successor and predecessor functions defined exactly as in the case
of perfect VASS’s by considering the weak transition relation = instead of
the relation —.



3 Representing Sets of Configurations

Definition 3.1 Let < denote the usual ordering on natural numbers. We
extend this relation to vectors of natural numbers in the standard way. Let
U= (ug,...,u,) and ¥ = (vq,...,v,) be two vectors in (IN Uoo)™. Then, we
have @ < ¥ iff Vi € {1,...,n}. u; < v;.

Given a set S C IN", we denote by min(S) the set of minimal elements of S
w.r.t. the relation <.

Let S C IN™. Then, S is upward (resp. downward) closed iff Vi € IN". @ €
S= NMieIN". 0> (resp. "< U)=0€S). Given a set S C IN", we
denote by ST (resp. S|) the upward (resp. downward) closure of S, i.e., the
smallest upward (resp. downward) closed set which contains S.

Lemma 3.2 FEvery set S C IN" has a finite number of minimal elements.

Proof Let S C IN" and suppose that S has an infinite set of minimals
min(S) = {uy,Us,...}. Then, by Dickson’s lemma, there are two indices i
and j such that @; < u;, which contradicts the fact that «; and «; are both
minimal elements. [

Lemma 3.3 A set is upward closed if and only if S = min(S)T.

Lemma 3.4 The union and the intersection of two upward (resp. down-
ward) closed sets is an upward (resp. downward) closed set. The complement
of an upward closed set is downward closed and vice-versa.

Proof The cases of union and intersection are trivial. Let S be a downward
closed set, and let S = IN"\ S. Then, let us consider two vectors @ € S and
7 € IN™ such that ¥ > 4. We have necessarily 7 € S, because otherwise (i.e.,
if ¥ € S) @ must be also in S since it is downward closed, which contradicts
the fact that @ € S. A symmetrical argument allows to show that the
complement of an upward closed set is downward closed.

Definition 3.5 (Constraints) Let X = {z1,...,z,} be a set of variables
ranging over IN .

1. A simple constraint over X, SC for short, is any boolean combination
of constraints of the form x > ¢ where x € X and ¢ € IN U {o0}.

2. An upward closed (resp. downward closed) constraint over X, UC
(resp. DC) for short, is any positive boolean combination of constraints
of the form x > ¢ (resp. x < ¢) where x € X and ¢ € IN U {o0}.

5



Constraints are interpreted in the standard way as a subset of IN" (< is
the usual ordering and < is the strict inequality). Given a simple constraint
€, we let [¢] denote the set of vectors in IN" satisfying £. Notice that the
constraints £ < 0 and > oo correspond to () and that z > 0 and z < oo
correspond to IN.

Definition 3.6 A set S is SC (resp. UC, DC) definable if there exists an
SC (resp. UC, DC) € such that S = [€].

Definition 3.7 (Normal forms)
1. A canonical product is a constraint of the form { < ¥ < u,

2. A canonical upward closed product is a constraint of the form l< z,

3. A canonical downward closed product s a constraint of the form ¥ < u,

where £ € IN" and @ € (IN U {oo})".

A SC (resp. UC, DC) in normal form is either (), or a finite disjunction of
canonical (resp. canonical upward closed, canonical downward closed) prod-
ucts.

Lemma 3.8 FEvery SC (resp. UC, DC) is equivalent to a SC (resp. UC,
DC) in normal form.

Lemma 3.9 (Expressiveness) SC definable sets are closed under boolean
operations, and UC definable sets as well as DC definable sets are closed
under union and intersection. The complement of a UC definable set is a
DC definable set and vice-versa. A subset of IN" is UC definable (resp. DC
definable) if and only if it is an upward (resp. downward) closed set. A set is
SC definable if and only if it is a boolean combination of upward closed sets.

Proof Follows from Lemmas 3.2, 3.3, and 3.4. [ |
Let S = (X, X,Q,6) be a n-dim VASS with @ = {¢1,...,¢n}. Then, every
set of configurations of S is defined as a union C' = {¢;} x S1U---U{gn} X Spm
where the S;’s are sets of n-dim vectors of natural numbers. The set of
configurations C' is SC (resp. UC, DC) definable if all the S;’s are SC (resp.
UC, DC) definable.

We represent SC definable sets by simple constraints in normal form coupled
with control states. From now on, we consider a canonical product to be
a pair of the form <q,Z < # < 1) where ¢ € Q. A simple constraint is
either () or a finite disjunction of canonical products. We consider the same
convention in the cases of upward closed and downward closed constraints.
We use SC(Q, X) (resp. UC(Q,X), DC(Q, X)) to denote the set of simple
constraints (resp. upward closed, downward closed constraints). We omit
the parameters () and X when they are known from the context.

6



4 Computing Successors and Predecessors

Proposition 4.1 The class SC s effectively closed under the under the op-
erations post and pre for any lossy VASS'’s.

Proof First, notice that these operations are distributive w.r.t. union
(disjunction). Hence, it suffices to consider separately each transition 7 =
(g,a,A,q") and show how to perform them on canonical products:

1. post,((¢,( < T< @) = (¢, E< T+ A).
2. pre((¢, (< T < @) = (¢, ({ ~A)N0 < 7),

where Vi, v € IN", @14 is the vector such that Vi € {1,...,n}. (€N ?); =
max(u;, v;). |
Notice that for lossy VASS’s, the pre image of any set of configurations is
upward closed and its post image is downward closed. This also holds for
pre* and post*.

Theorem 4.2 For every n-dim lossy VASS S, and every n-dim SC set S,
the set pre*(S) is UC definable and effectively constructible.

Proof Since the set pre*(S) is upward closed, by Proposition 3.9 we deduce
that it is UC definable. The construction of this set is similar to the one
given in [CFI96, ACJT96] for lossy channel systems. [

Theorem 4.3 For every n-dim lossy VASS S, and every n-dim SC set S,
the set post*(S) is DC definable and effectively constructible.

Proof Since post*(S) is downward closed, by Proposition 3.9 we deduce that
post*(S) is DC definable. This set can be constructed using the Karp-Miller
algorithm for the construction of the coverability graph. [

5 Automata and Automata Logic

In this section we define the finite automata we use to express properties
of computations. These automata are rather standard, except that they are
labeled on states and edges as well. This is natural in the context of specifica-
tion, since state labels are associated with predicates on the configurations of
a given system and edge labels are associated with the actions of the system.

7



Definition 5.1 Let A and ¥ be two finite alphabets. A labeled transition
graph over (A, ) is a tuple G = (Q, qinit, 11, 6) where

e () is a finite set of states,
® (init 1S the initial state,
e II: Q — A is a state labeling function,

e 0 C QXX xQ isa finite set of labeled transitions.

We write ¢ — q' when (g, a,q') € 6.
Given a state q, a run of G starting from q is a finite or infinite sequence
Qo0@0q1a1q3 - - . such that qo = q and Vi > 0. g; LI Qiv1-

Definition 5.2 (Automata on finite sequences) A finite-state automa-
ton over (A,X) on finite sequences is a tuple A; = (Q, init, I1, 0, F') where
(Q, Ginit, I1,0) is a labeled transition graph over (A,X), and F C Q is a
set of final states. A finite sequence AgagAiay ...\, € A(XA)* is accepted
by Ay if there is a run quaoqias ...q, of Ay starting from gini such that
Vi € {0,...,n}. II(¢;) = \;, and ¢, € F. We denote by L(Ay) the set of
sequences in A(XA)* accepted by Ay.

Definition 5.3 (Biichi w-automata) A finite-state Biichi automaton over
(A, X) is a tuple A, = (Q, Qinit, I1, 0, F) where (Q, Ginit, 11, 9) is a labeled tran-
sition graph over (A,X), and F C Q is a set of repeating states. An infi-
nite sequence A\ogagAiai ... A\, € (AX)* is accepted by A, if there is a run
Qoaoqiay - .. of A, starting from @i such that ¥i > 0. II(g;) = X;, and
3i>0.q € F. We denote by L(A,) the set of sequences in (AX)*” accepted
by A,

Definition 5.4 (Closed w-automata) A closed w-automaton is a Biichi
automaton Aye = (Q, Ginit, 11,8, F') such that F' = Q.

Remark 5.5 [Tho90] Bichi automata define w-regular sets of infinite se-
quences. They are closed under boolean operations. Closed w-automata define
closed w-regular sets in the Cantor topology (the class F in the Borel hier-
archy). They correspond to the class of w-regular safety properties. Closed
w-automata are closed under intersection and union, but not under comple-
mentation.



We introduce an automata-based branching-time temporal logic called AL
(Automata Logic). This logic is defined in the spirit of the extended tempo-
ral logic ETL [Wol83] and is an extension of ECTL* [CGK87, Tho89] which
allows to express temporal properties of (lossy) VASS’s involving simple con-
straints. The logic AL is more expressive than the branching-time logics
CTL and CTL*, and allows to express all oo-regular linear-time properties
on finite and infinite computations.

Definition 5.6 (Automata Logic) Given a set of control states @ and a
set of variables X, we let F denote a subset of SC(Q, X), and we let m range
over elements of F. Then, the set of AL(F) formulae is defined by the
following grammar:

pu= wlopleVeleAe | A (er, .. 0om) | VA (@1, 0m) |
ElAw(SOla---asom) |vAw(9017790m)

where Ay (resp. A,) is a finite-state automaton on finite (resp. infinite)
sequences over (A = {A1,...,A\n},X). We consider standard abbreviations
like =.

Definition 5.7 We use x to denote f orw. Let S = (X, X,Q,0) be a n-dim
(lossy) VASS, We define a satisfaction relation between configurations of S
and AL(F) as follows:

s = (q,€) iff State(s)=q and Val(s) € [¢]
sEp iff siEe
sE @i Ve iff sEp1LorsE e
sEe1AN@ iff s pands =@
s EJA(e1, -, om) iff Jp=Soap... € Run,(s,S). 3o = Ajjap... € L(A,).
lo| = |p| and V5. 0 < j < |p|. 55 F @i
s EVA(o1, .-y 0m) if Yo=seaq... € Run.(s,S). o = A\jyap... € L(A,)
lo| = |p| and V5. 0 < j < |p|. 55 | i,
For every formula ¢, let [¢]s :=={s € S|s = ¢}.

Definition 5.8 (Fragments of AL) JAL(F) is the fragment of AL that
uses only constraints from F, conjunction, disjunction and existential path
quantification. YAL(F) is the fragment of AL that uses only constraints
from F, conjunction, disjunction and universal path quantification. Let X
be (some fragment of) the logic AL. Then X; (resp. X, X,.) denote the
fragment of X where only automata on finite sequences (resp. Bichi, closed
w-automata) are used.



AL is a weaker logic than the modal p-calculus, but many widely known
temporal logics are fragments of AL. Every propositional linear-time prop-
erty, in particular LTL properties, can be expressed by means of automata
[VW86, Tho90] and hence they can be expressed in AL. Then, it is easy to
see that CTL* is a fragment of AL since every path formula in CTL* cor-
responds to an LTL formula. Thus, CTL is also a fragment of AL. Clearly,
VAL and JAL subsume the positive universal and existential fragments of
CTL* denoted YCTL* and JCTL* (notice that LTL is a fragment of VCTL*).

We consider two fragments of CTL called EF and EG. The logic EF uses SC
predicates, boolean operators, the one-step next operator and the operator
EF which is defined by [EF¢] = pre*([¢]), i-e., a configuration s satisfies
EFy if there is a reachable configuration from s which satisfies ¢. The
logic EG is defined like EF, except that the operator EF' is replaced by the
operator EG, which is defined as follows: s = EG iff there exists a complete
run that starts at s and always satisfies . By a complete run we mean either
an infinite run or a finite run ending in a deadlock.

We use the subscripts f or w to denote the fragments of these logics obtained
by interpreting their formulas on either finite or infinite paths only. Then, it
can be seen that EF = EF; C CTL; C CTL} C AL;. It can also be seen
that EG,, is a fragment of AL, but EG is not (due to the finite paths).

Figure 1 shows the relationship between several logics. An arc between two
logics means that the higher logic in the graph is more expressive.

6 Model Checking
Definition 6.1 (Model checking and global model checking)

1. The model checking problem is, given a configuration s and a formula
@, whether s € [¢]s,

2. The global model checking problem s whether for any formula ¢ the
set [¢]s is effectively constructible.

Lemma 6.2 Let S be a lossy VASS. Then for every formula ¢ of the form
A (71, ..., ) where all the m; are SC, the set [¢]g is SC definable and

effectively constructible.

Proof First we compute the product of S and Ay and obtain a new lossy
VASS &'. All states in the finite control of &’ have the form (g, ¢') where ¢ is
a state in the finite control of S and ¢’ is a state in Ay. The initial state is the
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-LTL

Figure 1: The relative expressive power of several logics.

product of the initial states in S and Ay. A state in the finite control of &' is
final iff the part of it in Ay is final. Similarly, each state in the finite control
of &' is assigned the constraint 7; that is assigned to the A-part of it. Every
constraint 7; is SC definable. Thus the set of final configurations of S’ can be
written as a disjunction of canonical products of the form <q,',l:- < @ < ay),
where ¢; is a final state of S'.

For every (qz-,l:- < & < 4;) we compute a tree whose nodes are labeled with
canonical products with <q,',l:- < & < ;) at the root in the following way: For
every node p with canonical product P we compute pre(P) with respect to
S'. Since &' is lossy, this is a disjunction of upward closed canonical products.

11



For each of these we compute the intersection with the m; assigned to the
current state of the finite control of §’. Thus we get a disjunction of canonical
products of the form <q,f§ # < @) where the upper bound # is in a finite
set of upper bounds UB(my,...,7y,) that occur in some canonical product
in m,...,T,. Every child-node of p is labeled with one of the canonical
products in this disjunction. We stop the construction of a branch of the
tree when we encounter a node marked with a canonical product s.t. there
is a previous node in the branch whose canonical product describes a larger
set of states. The set of states of the finite control of &' is finite. Also all
upper bounds used in canonical products in the tree are from the finite set
UB(my,...,mm). Thus by Dickson’s Lemma the tree must be finite, because
we eventually encounter larger lower bounds than previously in the branch.

Then we take the union of all canonical products in all these trees where the
associated control state of &’ has the form (g, ¢’) where ¢ is an initial state
in Ay;. We compute the projection on the first component g of the control
state and thus get the description of a set of states of S. This is [¢]s. ™

Theorem 6.3 The global model checking problem for lossy VASS and the
logic ALy is decidable.

Proof By induction on the nesting-depth of operators 3.A; in the formula.
The result follows from boolean operations and Lemma 6.2. [ |

The following results even hold for non-lossy VASS. The aim is to show
decidability of the global model checking problem for VASS and the logic
JAL,(UC). We define a generalized notion of configurations of VASS which
includes the symbol w. This symbol denotes arbitrarily high numbers of
tokens on a place. It is used as an abbreviation in the following way:

(q, (W,w, ..., W, Tgg1,--,Ty)) E @ &
Ing,...,np € IN. {q, (n1, N2, .., N, Th1, -+ -, Tp)) E @

(Of course the w can occur at any position, e.g. (g, (x1, T2, w, T4, w, Tg)).)

Lemma 6.4 Let S be a VASS and ¢ a formula of the form JA, (71, ..., Ty)
where all the 7; are in UC. Let s be a generalized configuration of S (i.e. it
can contain w). It is decidable if s = .

Proof We compute the product of S and A, and get a new VASS S’. The
states of the finite control of &’ have the form (g, ¢') where ¢ is a state of the
finite control of S and ¢’ is a state of A,. (g, ') is repeating iff ¢’ is repeating
in A,,. It is assigned the constraint m; that is assigned to ¢’. The initial state
s' of &' is the product of s with the initial state g of A,,.

12



We search for an infinite run of &’ that satisfies the assigned constraint m; at
every state and visits some repeating state infinitely often. The chances for
finding such a run are always bigger if the initial state is larger, because all
m; are upward closed.

First we compute the Karp-Miller coverability graph [KM69] of 8" with root
s'. Only those nodes are considered that satisfy the assigned constraint ;.
By Dickson’s Lemma this graph is finite. If there exists an infinite accepting
run then there must be an infinite cyclic accepting run that starts at a Biichi-
repeating node in this graph. This run corresponds to a cyclic path in the
coverability graph that starts and ends at a Biichi-repeating node and has
an overall positive effect of all fired transitions and can thus be repeated
infinitely often.

For every Biichi-repeating node n in the coverability graph we compute a
finite-state automaton A,, on finite sequences such that its labeled transition
graph is the largest strongly connected subgraph containing n, and its initial
state and its only final state is n. We label every arc in A,, with a unique
symbol \;. To every \; we assign an effect-vector A; € Z" that describes
the effect of the transition that was fired in the step from one node to the
other. Let k be the number of states in A,,.

The aim is to find a cyclic path in A,, from node n back to n where the sum
of all effect-vectors of all traversed arcs is > 0. (Note that the effect-vector
of an arc that is traversed j times counts j times, i.e. it is multiplied by
j.) Such a cyclic path with positive overall effect corresponds to a possible
infinite accepting run of the system S'.

Since n is the initial state and the only final state in A, every word in L(A4,,)

corresponds to a cyclic path from n to n. For any word w, let |w|,, be the

number of occurrences of A; in w. The question is now if there is a word
w € L(Ay) s.t.

Z |w|)\iAi > 6

1<i<k

This is decidable, since the set {(|w|y,,...,|w|s,) | w € L(Ay)} is semilinear
by Parikh’s Theorem [Par66]. We check this condition for every A,, and we
have s = ¢ if and only if a positive linear combination is found. [

Lemma 6.5 Let S be a VASS and ¢ a formula of the form A, (71, ..., m)
where all the m; are in UC. The set [¢p]g is UC definable and effectively
constructible.

Proof The set [¢]s is upward closed, because all 7; are upward closed.
Thus, this set is characterized by the finite set of its minimal elements (see
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Lemma 3.2 and 3.3). To find the minimal elements, we use a construction
that was described by Valk and Jantzen in [VJ85]. The important point
here is that we can use Lemma 6.4 to check the existence of configurations
that satisfy ¢. For example, if (g, (w,x2,23)) E ¢ then we can check if
(q,(n1,xe,23)) E ¢ for ny =0, ny =1, ny =2, ...until we find the minimal
ny s.t. (g, (n1, z2,23)) E @. |

Theorem 6.6 The global model checking problem is decidable for VASS and
the logic 3AL,(UC).

Proof By induction on the nesting-depth of the formula and Lemma 6.5. m

Theorem 6.7 The global model checking problem is decidable for lossy VASS
and the logic JAL(UC).

Proof By induction on the nesting depth of the formula and Theorem 6.3
and Theorem 6.6. [

Theorem 6.8 The model checking problem for lossy VASS and the logic
AL,. is decidable.

Proof Let S be alossy VASS and ¢ a AL, formula. Let s be some state of
S. We show decidability of the question s = ¢ by induction on the nesting-
depth of the operator 3.4,. in the formula. The base case where ¢ contains
no operator 3.4, is trivial. In the general case we use boolean operations
to reduce the problem to problems of the form s = 3A,.(¢1, ..., pn) Where
the ¢; have a smaller nesting-depth. We compute the product of S and A,
and construct the tree of all possible successors of s that satisfy the assigned
¢;. (By induction hypothesis we can check if s = ¢; for any state s.) The
construction of a branch stops if one of the following conditions is satisfied:
(1) There is no successor that satisfies the assigned ;. (2) We reach a node
with the same state of the finite control, but a larger marking than a previous
node with a state s'.

By Dickson’s Lemma every branch has finite length. Since the tree is finitely
branching, it is finite and can be effectively constructed. Since S is lossy and
all states in A, are repeating states, we know that s | IA,c(¢1, ..., pn) iff
some branch of the tree terminates by condition 2. [ |

Theorem 6.9 Model checking lossy VASS with the logic EG is decidable.

Proof The proof is very similar to the proof of Theorem 6.8. The only
differences are that one also has to consider finite runs that end in a deadlock
and the one-step next operator. This can easily be added to the construction
in Theorem 6.8. [ |
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Theorems 6.8 and 6.9 say that the model checking problem is decidable for
a lossy VASS and an EG-formula/ AL,.-formula ¢. However, in both cases
the set [¢] s is not effectively constructible (although it is SC definable). If it
were constructible then Lemma 6.2 could be used to decide model checking
lossy VASS with formulae of the form EFEG,m, where 7 is a constraint in
SC. However, this problem has very recently been shown to be undecidable.

Proposition 6.10 Model checking lossy VASS with formulae of the form
EFEG,m, where 7 is a constraint in SC is undecidable.

Proof This is a corollary of a more general undecidability result for lossy
BPP (Basic Parallel Processes), which follows (not immediately) from the
result on lossy counter machines in Proposition 7.2 (see [May98]). |

Remark 6.11 This undecidability result also implies undecidability of model
checking lossy VASS with the logic 4AL,. One can encode properties of the
form EFEG,m in 3AL, in the following way: Let A, be an automaton with
states q,q', and transitions ¢ — q, ¢ — ¢ and ¢ — ¢ which are labeled
with any action. The predicate true s assigned to q and the predicate w is
assigned to q'. q is the initial state and ¢' is the only repeating state. Let A,
be an automaton with only one state q which is the initial state and repeating
and a transition ¢ — q with any action. The predicate m is assigned to q.
Then for any lossy VASS s we have

st EFEG,m <= sk Ay(true,m) VvV A, ()

7 Lossy VASS with Inhibitor Arcs

Lossy VASS can be extended with inhibitor arcs. This means introducing
transitions that can only fire if some defined places are empty (i.e. they can
test for zero). Thus lossy VASS with inhibitor arcs are equivalent to lossy
counter machines. Normal VASS with inhibitor arcs are Turing-powerful,
but lossy VASS with inhibitor arcs are not.

Theorem 7.1 For lossy VASS with inhibitor arcs

1. the global model checking problem is decidable for the logic ALy.
2. model checking is decidable for the logics ALy, and EG.

Proof The constructions in Lemma 6.2 and Theorem 6.8 carry over directly
to lossy VASS with inhibitor arcs. [
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Inhibitor arcs can never keep a transition from firing, because one can just
loose the tokens on the places that inhibit it. However, after such a transition
has fired, the number of tokens on the inhibiting places is fixed and known
exactly. Such a guarantee is impossible to achieve in lossy VASS without
inhibitor arcs. Thus not all results for lossy VASS carry over to lossy VASS
with inhibitor arcs.

Proposition 7.2 Let S be a lossy VASS with inhibitor arcs. It is undecidable
if there exists an initial configuration s s.t. there is an infinite run of the
system (s, S).

Proof This is a corollary of a more general undecidability result for lossy
counter machines in [May98|. The main idea is that one can enforce that
lossiness occurs only finitely often in the infinite run.

Theorem 7.3 Model checking lossy VASS with inhibitor arcs with the logic
LTL is undecidable.

Proof We reduce the problem of Proposition 7.2 to the model checking
problem. We construct a lossy VASS with inhibitor arcs &' that does the
following: First it guesses an arbitrary configuration s of S doing only the
atomic action a. Then it simulates S on s doing only the atomic action
b. Let A, be a Biichi-automaton with initial state g and repeating state
¢ and transitions ¢ % ¢, ¢ = ¢ and ¢ % ¢. Let s’ be the initial state
of §’. We have reduced the question of Proposition 7.2 to the question if
(s',S") E JA,(true, true). This question can be expressed in LTL. |

It follows immediately that model checking lossy VASS with inhibitor arcs
with AL, (UC) is undecidable. It is interesting to compare this result with
Proposition 6.10. It shows that for undecidability of the model checking
problem it suffices to have either inhibitor arcs in the system or downward
closed constraints in the logic. One can be encoded in the other and vice
versa.

The set post*(s) is DC definable since it is downward closed. However, it is
not constructible for lossy VASS with inhibitor arcs (unlike for lossy VASS,
see Theorem 4.3).

Theorem 7.4 The set post*(s) is not constructible for lossy VASS with in-
hibitor arcs.

Proof Boundedness is undecidable for reset Petri nets [DFS98|. This result
carries over to lossy reset Petri nets. Lossy VASS with inhibitor arcs can
simulate lossy reset Petri nets. It follows that boundedness is undecidable
for lossy VASS with inhibitor arcs and thus post*(s) is not constructible. m
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8 Conclusion

We have addressed verification problems for VASS with lossy variables. These
systems can model communicating systems with unbounded lossy unordered
buffers. They can be seen as abstractions of (lossy) fifo-channel systems.
Considering lossy VASS instead of lossy fifo-channel systems has several ad-
vantages: First, the set of reachable configurations backward and forward is
effectively constructible, while for lossy channel systems only the backward
reachability set is computable. This is interesting, since in practice forward
reachability analysis can be more efficient than backward analysis, and it
can be combined with efficient graph exploration techniques (like on-the-fly,
partial-order based procedures) in order to avoid state-explosion. Another
advantage of considering lossy VASS is that in addition to safety proper-
ties (Theorem 6.3), also liveness properties can be checked and fairness con-
straints can be taken into account (Theorem 6.7), while it has been shown
that this is impossible for lossy fifo-channel systems [AJ96].

In our work, we have also established results for normal VASS and lossy
VASS with inhibitor arcs (lossy counter machines). Interestingly, it turns out
that these two models are incomparable. Moreover, all the positive/negative
results we obtained for lossy VASS with inhibitor arcs are the same as for
lossy fifo-channel systems. So, an interesting open question is whether these
two models are comparable.

The following table summarizes the results on the decidability of model check-
ing for VASS, lossy VASS with test for zero, lossy VASS and lossy fifo-channel
systems. By ‘++’ we denote the fact that for any formula ¢ the set [¢] is
SC definable and effectively constructible (global model checking), while ‘+’
means that only model checking is decidable. We denote by — that model
checking is undecidable. The symbol ‘?” denotes an open problem.

| Logic || VASS | Lossy VASS+0 | Lossy VASS | Lossy fifo |
AL;/EF — [Esp97] ++ ++ [AJ93] ++ [AJ93]
JAL,(UC)/LTL || ++ /+[Esp94] — ++ — [AJ96
JAL(UC) ? — ++ — [AJ96
AL,./EG — [EK95 + + [AJ93] + [AJ93]
JAL,/CTL — [EK95 — — — [AJ96]

The results in this table are new, except where references are given. For nor-
mal VASS and LTL, decidability of the model checking problem was known
[Esp94], but the construction of the set [¢] is new. The results in [AJ93] are
just about EF and EG formulas without nesting, not for the full logics ALy
and AL,..

As for the open problem in this table, note that we can decide for a VASS
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Figure 2: Decidability of the model checking problem for lossy VASS.

and any JAL(UC) formula, whether the set [¢] is SC definable, and in this
case we can effectively construct it and decide the model checking question.
However, if this set is not SC definable (in general this set could be even not
semilinear), we cannot answer the model checking question.

The main new result in this paper is that some liveness properties, as de-
scribed by JAL,(UC), are decidable for lossy VASS, unlike for lossy FIFO-
channel systems. Also these liveness properties are undecidable for lossy
VASS with test for zero. The general conclusion is that safety properties are
always decidable for lossy systems, while for liveness properties this depends
on the particular model and on the atomic propositions used in the logic.

The Figures 2 and 3 show the limits of the decidability of the model checking
problem for lossy VASS and lossy VASS with inhibitor arcs. Model checking
is decidable for the less expressive logics below the border and undecidable
for those above it.

Acknowledgment: We thank Peter Habermehl for interesting discussions.
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Figure 3: Decidability of the model checking problem for lossy VASS with
inhibitor arcs.
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Abstract

Lossy counter machines are defined as Minsky counter machines where the val-
ues in the counters can spontaneously decrease at any time. While termination is
decidable for lossy counter machines, structural termination (termination for ev-
ery input) is undecidable. This undecidability result has far-reaching consequences.
Lossy counter machines can be used as a general tool to prove the undecidability of
many problems, for example (1) The verification of systems that model communi-
cation through unreliable channels (e.g., model checking lossy fifo-channel systems
and lossy vector addition systems). (2) Several problems for reset Petri nets, like
structural termination, boundedness and structural boundedness. (3) Parameterized
problems like fairness of broadcast communication protocols.

Key words: Counter machines, lossy counter machines, decidability

1 Introduction

Lossy counter machines (LCM) are defined just like Minsky counter machines
[25], but with the addition that the values in the counters can spontaneously
decrease at any time. This is called ‘lossiness’, since a part of the counter is
lost. (In a different framework this corresponds to lost messages in unreliable
communication channels.) There are many different kinds of lossiness, i.e.,
different ways in which the counters can decrease. For example, one can define
that either a counter can only spontaneously decrease by 1, or it can only
become zero, or it can change to any smaller value. All these different ways
are described by different lossiness relations (see Section 2).

The addition of lossiness to counter machines weakens their computational
power. Some types of lossy counter machines (with certain lossiness relations)
are not Turing-powerful, since reachability and termination are decidable for
them. Since lossy counter machines are weaker than normal counter machines,
any undecidability result for lossy counter machines is particularly interesting.
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The main result of this paper is that structural termination (termination for
every input) is undecidable for every type of lossy counter machine (i.e., for
every lossiness relation).

This result can be applied to prove the undecidability of many problems.
To prove the undecidability of a problem X, it suffices to choose a suitable
lossiness relation L and reduce the structural termination problem for lossy
counter machines with lossiness relation L to the problem X. The important
and nice point here is that problem X does not need to simulate a counter
machine perfectly. Instead, it suffices if X can simulate a counter machine
imperfectly, by simulating only a lossy counter machine. Furthermore, one
can choose the right type of imperfection (lossiness) by choosing the lossiness
relation L.

Thus lossy counter machines can be used as a general tool to prove the unde-
cidability of problems. Firstly, they can be used to prove new undecidability
results, and secondly they can be used to give more elegant, simpler and much
shorter proofs of existing results (see Section 5).

Historically, the notion of ‘lossiness’ was first defined to model communica-
tion through unreliable channels. The main example are lossy fifo-channel sys-
tems, which are systems of finite-state processes that communicate through
lossy fifo-channels (buffers) of unbounded length. These lossy fifo-channels are
unreliable, because they can spontaneously lose messages. Since normal (non-
lossy) fifo-channel systems are Turing-powerful, automatic analysis of them
is restricted to special cases [4]. Lossy fifo-channel systems are not Turing-
powerful, since reachability and some safety-properties are decidable for them
[2,6,1]. However, some liveness-properties like the so-called ‘recurrent-state
problem’ are undecidable even for lossy fifo-channel systems [3]. The result
of this paper, the undecidability of structural termination for lossy counter
machines, is much more general and subsumes this result (see Section 5).
The rest of the paper is structured as follows. In Section 2 we define lossiness
relations and lossy counter machines. In Section 3 we show some decidable
properties of lossy counter machines, and in Section 4 we prove the main
undecidability result. Section 5 gives several examples how this result can be
applied. In the last two sections we discuss possible generalizations and draw
some conclusions.

2 Definitions

Definition 1 A n-counter machine [25] M is described by a finite set of states
Q, an nitial state qo € Q, a final state accept € Q, n counters cy,..., ¢y,
and a finite set of instructions of the form (q : ¢ = ¢; + 1;go0to ¢') or
(g : If ¢; =0 then goto ¢ else ¢; := ¢; — 1;goto ¢") where i € {1,...,n} and
¢.4.q4" € Q.

A configuration of M is described by a tuple (¢, my, ..., m,) where g € Q and
m; € IN is the content of the counter ¢; (1 < i < n). The size of a configuration



is defined by size((q,my,...,my)) == > m;. The possible computation steps
are defined as follows:
(1) (g, ma,...,my) — (¢, my,...,m;+1,...,my)
if there is an instruction (¢ : ¢; = ¢; + 1; goto ¢').
(2) (qg,my,...,my) — (¢',my,...,my)
if there is an instruction (¢ : If ¢; = 0 then goto ¢’ else ¢; := ¢;—1; goto ¢")
and m; = 0.

(3) (g, ma,...,my) — (¢",my,...,my —1,...,my)
if there is an instruction (¢ : If ¢; = 0 then goto ¢’ else ¢; := ¢;—1; goto ¢")
and m; > 0.
A counter machine is deterministic iff for every control-state ¢ € Q) there is
at most one instruction (q: ...... ) at this control-state. A run of a counter
machine is a (possibly infinite) sequence of configurations sy, $1, ... with sg —

S] —> So — S3 — ...

Now we define lossiness relations, which describe spontaneous changes in the
configurations of lossy counter machines.

Definition 2 Let = (for ‘sum’) be a relation on configurations of n-counter
machines which is defined as follows.

(@ma,.ymy) = (¢, mh, o omy)

(g,my,...,my) = (¢,m},...,m )V
n n

(0= A Xm > Yot
i=1 i1

This relation means that either nothing is changed or the sum of all counters

strictly decreases. Let id be the identity relation. A relation L5 is a lossiness

relation iff «d C N C . A lossy counter machine (LCM) is given by a

counter machine M and a lossiness relation —. Let — be the normal transition
relation of M. The lossy transition relation = of the lossy counter machine

15 defined by
! I
§1 == §y & 8|, 8. §1 — ] — Sy — Sy

An arbitrary lossy counter machine is a lossy counter machine with an ar-

bitrary (unspecified) lossiness relation. The following relations are lossiness

relations:

Perfect The relation id is a lossiness relation. Thus arbitrary lossy counter
machines subsume normal counter machines.

Classic Lossiness The classic lossiness relation < is defined by

cl

(¢,my,...,my) — (¢,m},....,m}) & q¢q=4q¢ N Vi.m; > m]

n

Here the contents of the counters can become any smaller value. A relation

I . . C l 1
= is called a subclassic lossiness relation iff id C = C 5.



Bounded Lossiness A counter can lose at most x € IN before and after

every computation step. Here the lossiness relation M s defined by

I(z)

(qamla"'amn) — (ql

! .
ST, e, M)

q=q¢ A Vi.m; > mi> maz{0,m; — z}

(z)

Note that *Z% is a subclassic lossiness relation for every x € IN.
Reset Lossiness If a counter is tested for zero, then it can suddenly become
zero. The lossiness relation =5 is defined as follows:
(g, my,...,my) LAY (q,my,...,m.) iff for all i either
(1) m; = m;, or
(2) m; =0 and there is an instruction
(g : If ¢; =0 then goto ¢' else ¢; := ¢; — 1; goto ¢").
Note that 2% is a subclassic lossiness relation.

The definition of these lossiness relations carries over to other models like
Petri nets [27], where places are considered instead of counters and the control-
states q are ignored.

Definition 3 For any arbitrary lossy n-counter machine and any configu-
ration s let runs(s) be the set of runs that start at configuration s. (There
can be more than one run if the counter machine is nondeterministic or
lossy.) Let runs®(s) be the set of infinite runs that start at configuration
s. A run r = {(¢",m},...,mi)}2 € runs®(s) is space-bounded iff Ic €
IN.Vi. 377 mé- < c. Let runsy(s) be the space-bounded infinite runs that start
at s. For a run r and a configuration s we write s € r to indicate that s is one
of the configurations that occur in r. An (arbitrary lossy) n-counter machine
M is

zero-initializing iff in the initial state qy it first sets all counters to 0.
space-bounded iff the space used by M 1is bounded by a constant c.

de € N.Vr € runs((qo, 0,...,0)).Vs € r.size(s) < ¢

input-bounded iff in every run from any configuration the size of every
reached configuration is bounded by the size of the input.

Vs.Vr € runs(s).Vs' € r. size(s') < size(s)

strongly-cyclic iff every infinite run from any configuration visits the initial
state qo infinitely often.

Vge Q,my,...,m, € N.Vr € runs“((q,my,...,my)).

am},...,m, € N.(q,m},...,m,) €r



bounded-strongly-cyclic iff every space-bounded infinite run from any con-
figuration wvisits the initial state qy infinitely often.

Vg€ Q,myq,...,m, € N.Vr € runsf((q,m,...,my)).

amy,...,m, € N.(q,m},...,m,) €r

If M is input-bounded then it 1s also space-bounded. If M is strongly-cyclic
then it is also bounded-strongly-cyclic. If M is input-bounded and bounded-
strongly-cyclic then it is also strongly-cyclic.

3 Decidable Properties

Since arbitrary LCM subsume normal counter machines, no interesting prop-
erties are decidable for them. However, some problems are decidable for classic
LCM (with the classic lossiness relation). They are not Turing-powerful. The
following results in this section are special cases of positive decidability results
in [5,6,2].

Lemma 4 (Dickson’s Lemma [10])

Given an infinite sequence of vectors Ty, Ts,Ts, ... in IN¥ there are i < j
s.t. & < @ (< taken componentwise).

Lemma 5 Let M be a classic LCM and s a configuration of M. The set
pre*(s) == {s'| s =* s} of predecessors of s is effectively constructible.

PROOF. Since M is a classic LCM, the set pre*(s) is upward closed and can
thus be characterized by its finitely many minimal elements. These minimal
elements can be effectively constructed because of Dickson’s Lemma [10] (see

also [5]). O
Theorem 6 Reachability is decidable for classic LCM.

PROOF. Given two configurations s and s', the question if s =* ¢ is
equivalent to s € pre*(s'). This is decidable by Lemma 5. O

Lemma 7 Let M be a classic LCM with initial configuration sqy. It is decidable
if there is an infinite run that starts at sg, i.e., if runs®(sy) # 0.

PROOF. We analyze all runs by breadth-first search. If there is no infinite
run then all runs will eventually terminate. Thus, the algorithm will terminate
and give the correct answer ‘no’. If there is an infinite run, then, by Dickson’s
Lemma [10], we will eventually reach a configuration s s.t. there is a previous
configuration s' in the same run with s > s'. In this case there is an infinite
cyclic run from s' to s', because M is classical lossy. Thus, in this case the
algorithm also terminates and gives the correct answer ‘yes’. O



In [2] Abdulla and Jonsson proved a more general result that subsumes Lemma 7.
They showed that the existence of an infinite run from a given initial config-
uration is decidable even for lossy FIFO-channel systems.

Theorem 8 Termination is decidable for classic LCM.

PROOF. A classic LCM M with wnitial configuration so is terminating iff
runs®(so) = 0. This is decidable by Lemma 7. O

It has been shown in [5] that even model checking classic LCM with the tem-
poral logics EF and EG (natural fragments of computation tree-logic (CTL)
[9,14]) is decidable.

Another interesting observation is that Petri nets and classical lossy counter
machines are incomparable. For Petri nets, model checking with the temporal
logic EF is undecidable, but model checking with LTL is decidable [15]. For
classical lossy counter machines it is just vice-versa. For classical lossy counter
machines model checking with EF is decidable [5], but model checking with
LTL is undecidable [5] (see also Theorem 11).

4 The Undecidability Result

We show that structural termination (i.e., termination for every input) is

undecidable for LCM for every lossiness relation. We start with the problem

CM, which was shown to be undecidable by Minsky [25].

CM

Instance: A deterministic 2-counter machine M with initial state ¢g.

Question: Does M accept (qg,0,0) ?

We reduce the problem CM to the following problem.

BSC-ZI-CMy

Instance: A deterministic bounded-strongly-cyclic, zero-initializing 3-counter
machine M with initial state qq.

Question: Does M have an infinite space-bounded run from (go, 0,0, 0),
i.e., runsy ((o,0,0,0)) #0 ?

Lemma 9 BSC-ZI-CMy is undecidable.

PROOEF. We reduce CM to BSC-ZI-CMy. Let M be a 2-counter machine
with initial state qo. We construct a 3-counter machine M' as follows: First
M'" sets all three counters to 0. Then it does the same as M, except that after
every instruction it increases the third counter cs by 1. FEvery instruction of
M of the form (q : ¢ = ¢; +1; goto ¢') with (1 < i < 2) is replaced by
(q: ¢ :=c;+1; goto q2) and (qa : ¢3 := ¢35+ 1; goto ¢'), where g3 is a new
state. Fvery instruction of the form

q: If ¢; =0 then goto ¢ else ¢; := ¢; — 1; goto ¢”
g g



with (1 < i < 2) is replaced by

q: If ¢; =0 then goto ¢, else ¢; := ¢; — 1; goto g3
G2 : c3:=c3+ 1; goto ¢

g3 : c3:=c3+ 1; goto ¢"

where ¢o, q3 are new states.

Finally, we replace the accepting state ‘accept’ of M by the initial state g

of M', i.e., we replace every instruction (goto accept) by (goto qj). M' is

deterministic, because M is deterministic. M' is zero-initializing by definition.

M'" is bounded-strongly-cyclic, because cs3 is increased after every instruction

and only set to zero at the initial state gj.

= If M s a positive instance of CM then it has exactly one accepting run
from (qo,0,0) (we assume without restriction that M has exactly one ac-
cepting state and that this state has no outgoing transitions). This run has
finite length and is therefore space-bounded. Then M' has an infinite space-
bounded cyclic run that starts at (qg,0,0,0). Thus M' is a positive instance
of BSC-ZI-CM .

< If M'" is a positive instance of BSC-ZI-CMy then there exists an infinite
space-bounded run that starts at the configuration (g}, 0,0,0). By the con-
struction of M’ this run contains an accepting run of M from the configu-
ration (qo,0,0). Thus M is a positive instance of CM. O

Now we consider the central problem for lossy counter machines.

InLCM¥

Instance: A strongly-cyclic, input-bounded 4-counter LCM M with initial
state qq.
Question: Does there exist an n € IN s.t. runs”((¢o,0,0,0,n)) # 0 ?

Theorem 10 InLCM¥ is undecidable for every lossiness relation.

PROOF. We reduce BSC-ZI-CMy to InLCM¥ with any lossiness relation
L. For any bounded-strongly-cyclic, zero-initializing 3-counter machine M
we construct a strongly-cyclic, input-bounded lossy 4-counter machine M’ with
initial state g and lossiness relation L as follows: The 4-th counter ¢4 holds
the ‘capacity’. In every operation it is changed in o way s.t. the sum of all
counters never increases. (More exactly, the sum of all counters can increase

by 1, but only if it was decreased by 1 in the previous step.) Every instruction
of M of the form (q: ¢; :=¢; + 1; goto ¢') with (1 < i < 3) is replaced by

q: If ¢4 =0 then goto fail else ¢4y :== ¢4 — 1; goto ¢

G2 : ¢ :=¢; +1; goto ¢



where ‘fail” is a special final state and qo s a new state. Every instruction of
the form (q : If ¢; = 0 then goto ¢’ else ¢; := ¢; — 1;goto ¢") with (1 < i < 3)
15 replaced by

q: If ¢; =0 then goto ¢’ else ¢; := ¢; — 1; goto ¢

Go : ¢4 =4+ 1; goto ¢"

where qy 1s a new state.

M'" is bounded-strongly-cyclic, because M is bounded-strongly-cyclic. M' is

input-bounded, because every run from a configuration (q,my, ..., my) is space-

bounded by my + ms + mz + my. Thus M' is also strongly-cyclic.

= If M s a positive instance of BSC-ZI-CMy then there exists a n € IN and
an infinite run of M that starts at (qo,0,0,0), visits qy infinitely often and

always satisfies ¢; + ¢o + c¢3 < n. Since id g—l>, there is also an infinite
run of M' that starts at (qo,0,0,0,n), visits qy infinitely often and always
satisfies ¢ + ¢3 + c3 + ¢4 < n. Thus M’ is a positive instance of InLCM".

< If M' is a positive instance of AnLCM¥ then there exists an n € IN s.t.
there is an infinite run that starts at the configuration (q;,0,0,0,n). This
run 1s space-bounded, because it always satisfies ¢; + co + 3+ ¢4 < n. By
the construction of M', the sum of all counters can only increase by 1 if it
was decreased by 1 in the previous step. By the definition of lossiness (see
Def. 2) we get the following: If lossiness occurs (when the contents of the
counters spontaneously change) then this strictly and permanently decreases
the sum of all counters. It follows that lossiness can only occur at most
n times in this infinite run and the sum of all counters is bounded by n.
Thus there is an infinite suffiz of this run of M' where lossiness does not
occur. Thus there exist ¢ € Q, m),...,my € N s.t. an infinite suffiz of
this run of M' without lossiness starts at (¢',m},...,m}). It follows that
there is an infinite space-bounded run of M that starts at (¢',m/,...,m}).
Since M is bounded-strongly-cyclic, this run must eventually visit qo. Thus
there exist mY,...,m5§ € N s.t. an infinite space-bounded run of M starts
at (qo,mY,...,my). Since M is zero-initializing, there is an infinite space-
bounded run of M that starts at (qo,0,0,0). Thus M is a positive instance
of BSC-ZI-CMy. O

Note that this undecidability result even holds under the additional condition
that the LCMs are strongly-cyclic and input-bounded.

This result can be used to show that model checking LCM with the temporal
logics CTL (computation-tree logic [9,14]) and LTL (linear-time temporal logic
[28]) is undecidable, since the question of InLCMY can be encoded in these
logics.

Theorem 11 Model checking LCM with the temporal logics CTL and LTL s
undecidable for every lossiness relation.



PROOF. Let M be a lossy 4-counter LCM with lossiness relation L and
initial state qo. We construct the LCM M' as follows: Let g be the new initial
state of M'. M' has the same instructions as M plus the following ones:

g : s =4+ 1; goto ¢

g : ¢4 :=cq + 1; goto qo

We label these two new instructions with action ‘a’ and all others with action
‘b’. Then we have that M 1is a positive instance of InLCMY iff M' satisfies the
LTL formula (¢, 0,0,0,0) = (a)true U ((b)true wU false) or the CTL formula
(g5,0,0,0,0) = E[{a)true U E[({b)true wU false)]] O

The following two variants of the structural termination problem are equiva-
lent. An LCM is a positive instance of variant 1 iff it is a positive instance of
variant 2, because of the imposed condition that the LCM is strongly-cyclic.
The only reason why we define both variants is to point out this fact.

STRUCTTERM-LCM, VARIANT 1

Instance: A strongly-cyclic, input-bounded 4-counter LCM M with initial
state qq.

Question: Does M terminate for all inputs from ¢y 7 Formally: Vny, ..., ny €
IN. runs® ((qo, n1, n2, n3,ng)) =0 7

STRUCTTERM-LCM, VARIANT 2

Instance: A strongly-cyclic, input-bounded 4-counter LCM M with initial
state qq.

Question: Does M terminate for all inputs from every control state ¢ 7 For-
mally: Vny,...,ny € N.Vq € Q.
runs®((q,my, o, n3,ng)) =0 7

Theorem 12 Structural termination is undecidable for lossy counter ma-
chines. Both variants of STRUCTTERM-LCM are undecidable for every lossi-
ness relation.

PROOEF. The proof of Theorem 10 carries over, because the LCM is strongly-
cyclic and the 3-CM in BSC-ZI-CMy s zero-initializing. O

SPACE-BOUNDEDNESS FOR LCM

Instance: A strongly-cyclic 4-counter LCM M with the initial configuration
(QOa 07 0) 07 0)
Question: Is M space-bounded ?

Theorem 13 Space-boundedness for LCM s undecidable for all lossiness re-
lations.



PROOF. We reduce BSC-ZI-CMy to the space-boundedness problem for LCM.
Let M be the 3-CM from BSC-ZI-CMy. We take the LCM M' from the proof
of Theorem 10 and modify it as follows (obtaining a new LCM M"): At the

final state ‘fail” we do not stop. Instead we add ci, ¢z and c3 to ¢y, set ¢y, ¢y

and ¢ to 0 and increase ¢4 by 1 and go to the initial state qf of M". Formally,

this is defined by

fail = If ¢, =0 then goto f, else ¢; :=¢; — 1; goto d;
dy: c¢q:=cq4+1; goto fail

fa 1 If co =0 then goto f3 else ¢y := ¢y — 1; goto ds
dy: cq4:=cq4+1; goto f,

fz: If ¢3 =0 then goto f, else c3 :=c3 — 1; goto d3
ds: c4:=cq4+1; goto f3

fi: ¢4 =cy+1; goto qf

The initial configuration of M" is (q,0,0,0,0). Now we show that M is a
positive instance of BSC-ZI-CMy iff M" is bounded.
= If M s a positive instance of BSC-ZI-CMy then it uses only a finite amount

k of space, i.e., we have always ¢; + ¢2 + ¢3 < k in both M and M". If the

value in ¢4 becomes larger than k then there are two cases.

(1) If M" does not lose then it will enter an infinite space-bounded cyclic
computation which never wvisits the state ‘fail’ again. Thus these runs
of M" are bounded.

(2) In order to visit the state ‘fail’ again M" must lose at least once. This
is at most compensated in the state ‘fail’ (the sum of the counters is
increased by 1), but not more than that. Thus these runs of M" are
bounded as well.

Thus all computations of M" from (qf,0,0,0,0) are space-bounded.

< If M is a negative instance of BSC-ZI-CMy then the computation of M"
from (q,0,0,0,0) without losses will visit the state ‘fail’ infinitely often
and the sum of all counters will become arbitrarily high. (The run without
losses 1s one possible run, since by Def. 2 id g—%) Thus M" is not space-

bounded. O

Remark 14 [t follows directly from Theorem 13 that the set of reachable
configurations of a LCM cannot be effectively constructed. (If one could con-
struct this set then one could decide boundedness). In particular, this non-
constructibility result also holds for classical LCM. The set of reachable con-
figurations of a classical LCM s always semilinear, since it is downward closed.
Thus, the set of reachable configurations of a classical LCM is semilinear, but
not effectively semilinear.

10



It has already been stated in [6] that the regular expression that describes
the set of reachable configurations of a lossy fifo-channel system cannot be
effectively constructed, although it always exists. (The proof in [6] contains
a slight error.) This result is subsumed by the more general Theorem 13 and
Remark 14.

STRUCTURAL SPACE-BOUNDEDNESS FOR, LCM

Instance: A strongly-cyclic 5-counter LCM. M.
Question: Is M space-bounded for every initial configuration

(Q7 N1, N9, N3, Ny, 715) ?

Theorem 15 Structural space-boundedness for LCM is undecidable for every
lossiness relation.

PROOEF. The proof is similar to Theorem 12. An extra counter cs is used to
count the length of the run. It is unbounded iff the run is infinite. All other
counters are bounded. O

5 Applications

Lossy counter machines can be used to prove the undecidability of many prob-
lems.

5.1 Lossy Fifo-Channel Systems

Fifo-channel systems are systems of finitely many finite-state processes that
communicate with each other by sending messages via unbounded fifo-channels
(queues, buffers). In lossy fifo-channel systems these channels are lossy, i.e.,
they can spontaneously lose (arbitrarily many) messages. This can be used to
model communication via unreliable channels. While normal fifo-channel sys-
tems are Turing-powerful, some safety-properties are decidable for lossy fifo-
channel systems [2,6,1]. However, liveness properties are undecidable even for
lossy fifo-channel systems. In [3] Abdulla and Jonsson showed the undecidabil-
ity of the recurrent-state problem for lossy fifo-channel systems. This problem
is if certain states of the system can be visited infinitely often. The undecid-
able core of the problem is essentially if there exists an initial configuration of
a lossy fifo-channel system s.t. it has an infinite run. The undecidability proof
in [3] was done by a reduction from a variant of Post’s correspondence prob-
lem, namely 2-permutation PCP. The undecidability of 2-permutation PCP
has been shown by Ruohonen in [29]. There is some confusion of the names of
the problems in the literature. Abdulla and Jonsson [3] use Ruohonen’s result
on the undecidability of 2-permutation PCP and cite [29], but they refer to
the problem ‘2-permutation PCP’ as ‘cyclic PCP’. However, the real cyclic
PCP is a different problem, which is also defined and shown to be undecidable
by Ruohonen in [29].
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Lossy counter machines can be used to give a much simpler proof of the
undecidability results for lossy FIFO-channel systems. The lossiness of lossy
fifo-channel systems is classic lossiness, i.e., the contents of a fifo-channel can
change to any substring at any time. A lossy fifo-channel system can simulate
a classic LCM (with some additional deadlocks) in the following way: Every
lossy fifo-channel contains a string in X* (for some symbol X') and is used as a
classic lossy counter. The length of the string encodes the value in the counter.
The only problem is the test for zero. We test the emptiness of a fifo-channel
by adding a special symbol Y and removing it in the very next step. If it can
be done then the channel is empty (or has become empty by lossiness). If this
cannot be done, then the channel was not empty or the symbol Y was lost.
In this case we get a deadlock. These additional deadlocks do not affect the
existence of infinite runs, and thus the results of Section 4 carry over. Thus
the problem InLCMY (for the classic lossiness relation) can be reduced to the
problem above for lossy fifo-channel systems and the undecidability follows
immediately from Theorem 10.

5.2 Model Checking Lossy Basic Parallel Processes

Petri nets [27] (also described as ‘vector addition systems’ in a different frame-
work) are a widely known formalism used to model concurrent systems. They
can also be seen as counter machines without the ability to test for zero, and
are not Turing-powerful, since the reachability problem is decidable for them
[22]. Basic Parallel Processes [7] correspond to communication-free nets, the
(very weak) subclass of labeled Petri nets where every transition has exactly
one place in its preset. They have been studied intensively in the framework
of model checking and semantic equivalences (e.g., [17,23,24,8,20,26]).

An instance of the model checking problem is given by a system S (e.g., a
counter machine, Petri net, pushdown automaton,...) and a temporal logic
formula ¢. The question is if the system S has the properties described by ¢,
denoted S = ¢.

The branching-time temporal logics EF, EG and EG, are defined as exten-
sions of Hennessy-Milner Logic [18,19,14] by the operators EF, EG and EG,,
respectively. s = EF ¢ iff there exists an s’ s.t. s — s’ and s’ = ¢. 59 | EGL
iff there exists an infinite run sy — s; — so — ... s.t. Vi.s; = . EG is similar,
except that it also includes finite runs that end in a deadlock. Alternatively,
EF and EG can be seen as fragments of computation-tree logic (CTL [9,14]),
since EF ¢ = Eltrueld ¢| and EGy = E[p wlU false].

Model checking Petri nets with the logic EF is undecidable [15], but model
checking Basic Parallel Processes with EF is PSPACE-complete [23]. Model
checking Basic Parallel Processes with EG is undecidable [17]. It is different
for lossy systems: By induction on the nesting-depth of the operators EF, EG
and EG,, and constructions similar to the ones in Lemma 5 and Lemma, 7, it
can be shown that model checking classic LCM with the logics EF, EG and
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EG,, is decidable. Thus it is also decidable for classical lossy Petri nets and
classical lossy Basic Parallel Processes (see [5]).

However, model checking lossy Basic Parallel Processes with nested EF and
EG/EG,, operators is still undecidable for every subclassic lossiness relation.
This is quite surprising, since lossy Basic Parallel Processes are an extremely
weak model of infinite-state concurrent systems and the temporal logic used is
very weak as well. (Note in particular that lossy Basic Parallel Processes are
normed, i.e., from every reachable state there is a terminating computation.)
Theorem 16 Model checking lossy Basic Parallel Processes (with any sub-
classic lossiness relation) with formulae of the form EFEG,®, where ® is a
Hennessy-Milner Logic formula, is undecidable.

PROOF. Esparza and Kiehn showed in [17] that for every counter machine
M (with all counters initially 0) a Basic Parallel Processes P and a Hennessy-
Milner Logic formula ¢ can be constructed s.t. M does not halt iff P = EG,p.
The construction carries over to subclassic LCM and subclassic lossy Basic
Parallel Processes. The control-states of the counter machine are modeled by
special places of the Basic Parallel Processes. In every infinite run that satisfies
@ exactly one of these places s marked at any time.

We reduce InLCM” to the model checking problem. Let M be a subclassic
LCM. Let P be the corresponding Basic Parallel Processes as in [17] and let
@ be the corresponding Hennessy-Milner Logic formula as in [17]. We use the
same subclassic lossiness relation on M and on P. P stores the contents of
the 4-th counter in a place Y. Thus P||Y™ corresponds to the configuration of
M with n in the 4-th counter (and 0 in the others). We define a new initial

state X and transitions X - X||Y and X 2 P, where a and b do not occur
in P. Let ® := ¢ N\ —(bytrue. Then M is a positive instance of InLCM” iff
X E EFEG,®. The result follows from Theorem 10. O

For Petri nets and Basic Parallel Processes, the meaning of Hennessy-Milner
Logic formulae can be expressed by boolean combinations of constraints of
the form p > k (at least k tokens on place p). Thus the results also hold if
boolean combinations of such constraints are used instead of Hennessy-Milner
Logic formulae. Another consequence of Theorem 16 is that model checking
lossy Petri nets with CTL is undecidable.

5.3 Reset/Transfer Petri Nets

Reset Petri nets are an extension of Petri nets by the addition of reset-arcs.
A reset-arc between a transition and a place has the effect that, when the
transition fires, all tokens are removed from this place, i.e., it is reset to zero.
Transfer nets and transfer arcs are defined similarly, except that all tokens
on this place are moved to some different place. It was shown in [12] that
termination is decidable for ‘Reset Post G-nets’, a more general extension
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of Petri nets that subsumes reset nets and transfer nets. (For normal Petri
nets termination is EXPSPACE-complete [30]). While boundedness is trivially
decidable for transfer nets, the same question for reset nets was open for some
time (and even a wrong decidability proof was published). Finally, it was
shown in [12] that boundedness (and structural boundedness) is undecidable
for reset Petri nets. The proof in [12] was done by a complex reduction from
Hilbert’s 10th problem (a simpler proof was later given in [11,13]).

Here we generalize these results by using lossy counter machines. This also
gives a unified framework and considerably simplifies the proofs.

Lemma 17 Reset Petri nets can simulate the infinite runs of lossy counter
machines with reset-lossiness.

PROOF. For every n-counter LCM M (with the reset lossiness relation Ll>)
we construct a reset Petri net N in the following way: Let there be places
C1,...,Cy that hold the contents of the counters and a place q for every state
q € Q of the finite control of M. Every marking of this net N where exactly
one of the places q contains exactly one token corresponds to a configuration
of the counter machine M and vice versa. For every instruction of M of the
form (q: ¢; :=c¢;+1; goto ¢') with (1 < i < n) there is a transition that takes
one token from q, puts one token on c;, puts one token on ¢' and resets all
places except ¢',cy,...,c,. The firing of this transition exactly simulates the
computation step of M. For every instruction of M of the form (q : If ¢; =
0 then goto ¢ else ¢; := ¢; — 1;goto ¢") with (1 < i < n) there are two
transitions: The first transition takes a token from q, puts a token on ¢ and
resets ¢; and all places except ¢',cy, ..., c,. Instead of being tested for zero the
place/counter ¢; is reset to zero. If the place/counter ¢; actually was zero before
the transition fired, then this was a faithful simulation of the computation step
of the counter machine. If the place/counter ¢; was not zero before, then it
was still a faithful simulation of a computation step of the reset-lossy counter
machine, because ¢; could suddenly have become zero (empty) by lossiness (see

the Def. 2 of reset lossiness Ll>) The second transition takes one token from q

and one from c;, puts one token on ¢" and resets all places except ", cq, ..., cp.

This transition can only fire if ¢; is not zero (empty) and faithfully simulates

the computation step of the counter machine.

The only problem with this simulation s that it is possible that in N all tokens

on the places q are lost. This causes a deadlock in N. The same thing cannot

happen in M, because the finite-control cannot be lost. Thus, N simulates M

with some extra deadlocks. However, we still have that

o For every infinite run of M there is an infinite run of N that faithfully
simulates it.

e For every infinite run of N there is an infinite run of M that faithfully
stmulates it.

Thus, the reset net N faithfully simulates all infinite runs of M. O

14



Theorem 18 Structural termination, boundedness and structural bounded-
ness are undecidable for lossy reset Petri nets with every subclassic lossiness
relation.

PROOCF. It follows from Lemma 17 that a lossy reset Petri net with sub-
classic lossiness relation - can simulate the infinite runs of a lossy counter

machine with lossiness relation - U 5. The results follow from Theorem 12,
Theorem 13 and Theorem 15. O

The undecidability result on structural termination carries over to transfer nets
(instead of a reset the tokens are moved to a special ‘dead’ place), but the
others don’t. For example, boundedness is decidable for transfer nets [12]. Note
that for normal Petri nets structural termination and structural boundedness
can be decided in polynomial time (just check if there is a positive linear
combination of effects of transitions).

Theorem 16 and Theorem 18 also hold for arbitrary lossiness relations instead
of just subclassic ones, but this requires an additional argument. When a Petri
net (weakly) simulates a lossy counter machine (e.g., like in Lemma 17) then
special places are used to encode the finite-control. If the lossiness relation on
the Petri net is not subclassic then the simulated control-state could change by
lossiness. This is a problem for lossy counter machines, because (by using the
‘capacity’ in ¢;) one wants to make sure that lossiness cannot occur infinitely
often. But now it can happen again as follows:

q: ¢ :=c;+1; goto ¢

By lossiness the control-state could change from ¢’ back to ¢ while the counter
¢ is decreased by 1. The result is an infinite loop at ¢ where ¢; stays at the
same value.

On can get around this problem by using the special features of Petri nets.
Petri nets (unlike counter machines) can increase a place/counter and decrease
another in the same step. So, instead of decreasing the capacity and increasing
a counter in the next step (like in Theorem 10) we can do both in one step
with one transition. This solves the problem, because now the sum of all places
never increases, not even temporarily as in lossy counter machines. Then the
proofs of Theorem 16 and Theorem 18 carry over to all lossiness relations.

5.4  Parameterized Problems

We consider verification problems for systems whose definition includes a pa-
rameter n € IN. Intuitively, n can be seen as the size of the system. Examples
are

e Systems of n indistinguishable communicating finite-state processes.

e Systems of communicating pushdown automata with n-bounded stack.
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e Systems of (a fixed number of) processes who communicate through (lossy)
buffers or queues of size n.
Let P(n) be such a system with parameter n. For every fixed n, P(n) is a
system with finitely many states and thus (almost) every verification problem
is decidable for it. So the problem P(n) |= @ is decidable for any temporal
logic formula ® from any reasonable temporal logic, e.g., modal p-calculus [21]
or monadic second-order theory. The parameterized verification problem is if a
property holds independently of the parameter n, i.e., for any size. Formally,
the question is if for given P and ® we have Vn € IN. P(n) = @ (or —3dn €
IN. P(n) E —®). Many of these parameterized problems are undecidable by
the following meta-theorem.
Theorem 19 A parameterized verification problem is undecidable if it satis-
fies the following conditions:

(1) It can encode an n-space-bounded lossy counter machine (for some lossi-
ness relation) in such a way that P(n) corresponds to the initial configu-
ration with n in one counter and 0 in the others.

(2) It can check for the existence of an infinite run.

PROOF. By a reduction of AnLCM¥ and Theorem 10. The important point
here is that in the problem InLCM¥ one can require that the LCM is input-
bounded. O

The technique of Theorem 19 is used in [16] to show the undecidability of
the fairness problem for broadcast communication protocols. These are sys-
tems of n indistinguishable communicating finite-state processes. The rules
for communication are as follows:
(1) Two processes can communicate directly by handshake.
(2) One process can broadcast a message, which is received (immediately) by
all other n — 1 processes.
Every message sent or received by a process can change its internal state, which
in turn defines what actions it can perform and how it reacts to messages.
The rules for communication are defined independently from the number n
of processes in the system. If one considers processes with & internal states
then any configuration of the broadcast protocol with n processes can be
described by a tuple (mq,ma, ..., my) where m; is the number of processes
in state ¢ and Ele m; = n. Every such m; can be seen as the content of a
counter which is bounded by n. A broadcast can cause all processes in a certain
state to change to another state. This can be used to reset such a simulated
space-bounded counter to zero. Note however, that no test for zero is possible.
The problem if such a broadcast protocol terminates (i.e., for every number
n of processes the system terminates) is undecidable, because it satisfies the
conditions of Theorem 19 (the lossiness relation used here is reset-lossiness).
Thus all fairness properties, like those expressible in the temporal logics CTL
[9,14]) and LTL (linear-time temporal logic [28]), are undecidable as well.
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In the same way, similar results can be proved for parameterized problems
about systems with bounded buffers, stacks, etc.

6 Extensions

The proofs of the main undecidability results in Theorem 10 and Theorem 12
work only for LCM with at least 4 counters. The question arises, if fewer coun-
ters suffice, like the two counters used in normal counter machines. However,
the methods used to reduce the number of counters in normal counter ma-
chines do not carry over to LOCM. They use codings which are not robust under
lossiness. Also these codings require a lot of computation and some types of
LCM are not exactly Turing-powerful. The decidability of structural termi-
nation for LCM with 3 or less counters probably depends on the particular
lossiness relation.

The computational power of lossy counter machines also depends very much
on the particular lossiness relation. However, a few general observations can
be made. The utmost one can expect from a LCM is the following:

e There is at least one computation that gives the correct result, since id gé.
e There may be other computations that give results that are smaller than
the correct result (by the definition of lossiness).

For some operations, e.g., addition and multiplication, this optimal behavior
can be achieved. However, for other operations like subtraction it is impossible,
since the obtained result may even be larger than the correct one. In fact,
many versions of LCM cannot even compare two numbers. Thus, it should be
stressed that we do not advocate LCM as a model of computation, but rather
as a means of proving undecidability.

Another question is if the undecidability results can be extended to more gen-
eral lossiness relations than = (see Def. 2). (Even = can hardly be called
lossiness any more, since it allows some counters to increase while others de-
crease.) One idea is to introduce functions f : IN" — N s.t. if s L &' then
either s = s’ or f(s') < f(s). (In the case of = the function f is the sum.)

Again this depends very much on the lossiness relation relation L. In the
proof of Theorem 10 a balance must be kept in the 4th counter, to ensure that
the LCM is input-bounded and lossiness can occur only finitely often in the
infinite run. This balance must be updated (computed) on the lossy counter
machine, which is not always Turing-powerful. In the simple case of the ‘sum’
function this is trivial, but for more general functions f it is a problem.

7 Conclusion

Lossy counter machines can be used as a general tool to show the undecid-
ability of many problems. It provides a unified way of reasoning about many
quite different classes of systems. For example the recurrent-state problem for
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lossy fifo-channel systems, the boundedness problem for reset Petri nets and
the fairness problem for broadcast communication protocols were previously
thought to be completely unrelated. Yet lossy counter machines show that the
principles behind their undecidability are the same. Moreover, the undecid-
ability proofs for lossy counter machines are very short and much simpler than
previous proofs of weaker results [3,12].

Lossy counter machines have also been used in this paper to show that even for
very weak temporal logics and extremely weak models of infinite-state concur-
rent systems, the model checking problem is undecidable (see Subsection 5.2).
We expect that many more problems can be shown to be undecidable with
the help of lossy counter machines, especially in the area of parameterized
problems (see Subsection 5.4).

Acknowledgments: Thanks to Javier Esparza and Petr Jancar for fruitful
discussions and to an anonymous referee for detailed comments.
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On the Verification of Broadcast Protocols

Javier Esparza *

Abstract

We analyze the model-checking problems for safety and
liveness properties in parameterized broadcast protocols,
a model introduced in [5]. We show that the procedure
suggested in [5] for safety properties may not terminate,
whereas termination is guaranteed for the procedure of [1]
based on upward closed sets. e show that the model-
checking problem for liveness propertiesis undecidable. In
fact, even the problem of deciding if a broadcast protocol
may exhibit an infinite behavior is undecidable.

1. Introduction

In [5], Emerson and Namjoshi present an abstract reacha-
bility procedure —called the EN-procedure in the sequel—
for the construction of a “covering graph”. It general-
izes the Karp-Miller construction of a covering graph for
Petri nets [9]. The EN-procedure can be applied to classes
of systems satisfying some abstract conditions (essentially,
computability of the least upper bounds of certain chains).
By combining it with the automata-theoretic approach to
model-checking [11], Emerson and Namjoshi show that it
can be used to verify safety and liveness properties. Similar
constructions have been studied in the framework of well-
structured transition systems [6].

The termination of the EN-procedure depends on the class
of systems being considered. In [5] termination is proved
for the parameterized systems of [4, 8]; termination for Petri
nets and vector addition systems was already proved in [9].

In the case of parameterized systems, the EN-procedure can
be used to prove that a property holds independently of the
number of processes participating in the protocol. In other
words, it can show that all the elements of an infinite family
of finite-state systems satisfy a certain property.
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One of the most interesting points of [5] is the application
of the EN-procedure to a new parameterized model called
parameterized broadcast protocols—shortened to broadcast
protocols in the sequel. Broadcast protocols are systems
composed of a finite but arbitrarily large number of indistin-
guishable processes that communicate by rendezvous (two
processes exchange a message) or by broadcasts (a process
sends a message to all other processes). It is also possible
to incorporate a distinguished control process. While the
case in which processes communicate only by rendezvous
had already been studied in [8, 4], the extension to broad-
casts is considered in [5] for the first time. The addition
of broadcasts allows to model simplified versions of cache
coherence protocols like MESI-protocols.

In [5] it is shown that broadcast protocols satisfy the ab-
stract conditions necessary for the applicability of the EN-
procedure. However, neither the termination issue nor the
decidability of the model-checking problems for safety and
liveness properties are examined. In this paper we address
these points and obtain the following results:

e The EN-procedure may not terminate for broadcast
protocols.

e The model-checking problem for safety properties is
decidable. The decision procedure—which obviously
cannot be the EN-procedure—is the result of instan-
tiating for broadcast protocols an abstract backwards
reachability algorithm introduced in [1].

e The model-checking problem for liveness properties is
undecidable.

The paper is organized as follows: Section 2 introduces
broadcast protocols and formalizes the model-checking
problems for safety and liveness properties. Sections 3, 4, 5
present the results above, respectively.

2. Broadcast Protocols: Basic Definitions
2.1. Syntax

A broadcast protocol is a triple (.S, L, R) where S is a finite
set of states. L is a finite set of labels composed of: a set 3;



ar?

Figure 1. A broadcast protocol

of local labels, two sets ¥, x {7} and ¥, x {!} of input and
output rendez-vous labels, and two sets X, x {77} and X x
{1} of input and output broadcast labels, where ©;, ¥,., &
are disjoint finite sets.

Along the paper a, b, c,... denote elements of ¥ = ¥; U
¥, U Xp. Rendezvous and broadcast labels like (a,?) or
(b, are shortened to a? and b!!. Elements of X are called
actions. R C S x L x S is a set of transitions satisfying the
following property: for every a € X, and every state s € .S,

there exists a state s' € S such that s > o', Intuitively,
this condition guarantees that a process is always willing
to receive a broadcasted message. We represent broadcast
protocols graphically as shown in Figure 1.

In this paper we consider broadcast protocols satisfying the
following additional constraints. (a) For each state s and
each broadcast label a?? there is exactly one state s’ such

that s < s' (determinism). (b) Each label of the form a,
a!, a? and a!! appears in exactly one transition.

These constraints are only used to simplify the presentation.
All our decidability/undecidability results are valid for gen-
eral broadcast protocols.

2.2. Semantics

Let B = (S,L,R) be a broadcast protocol where
S = {s1,...,sn}. A configuration of B is a function
c: S — IN. Intuitively, c(s;) indicates how many pro-
cesses are in the state s;. We identify ¢ with the vector
(c(s1),--.,¢(sn)) € IN™. We denote by u; the configura-
tion given by u;(s;) = 1ifi = j and u;(s;) = 0 otherwise.
Moves between configurations are either rendezvous (two
processes exchange a message and move to new states) or

broadcasts (a process sends a message to all other processes;
all processes move to new states). The semantics of B is the
smallest subset of N" x ¥ x IN" satisfying the three con-
ditions below, where a triple (c,a,c¢’) € IN" x ¥ x IN" is
denoted by ¢ = ¢'.

o If s; = s; thenc = ¢ for every c, ¢’ such that
c(s;) >0andc’ =c —u; + u;.
l.e. one process is removed from s;, and one process
is added to s;.

o Ifs; % sj and sy 2y s thenc % ¢ for every c,
¢’ such that c(s;) > 0, c(s;) >0andc’ =c—u; —
u; +u; + w.

l.e. one process is removed from s; and sg, and one
process is added to s; and s;.

o Ifs; sj then ¢ = ¢’ for every ¢, ¢’ such that
c(s;) > 0 and ¢’ can be computed from c in the fol-
lowing three steps:

ci = C—u; (1)

cz(sk) = > als) )
{Sl |Sla—??>sk}
¢ = c+tuj 3)

l.e. the sending process leaves s; (1), all other pro-
cesses receive the broadcast and move to their destina-
tions (2), and the sending process reaches s ; (3).

Thanks to our constraints (a) and (b) above, the configura-
tion ¢’ is completely determined by c and the action a. In
the example of Figure 1 we have

(3,1,2) 5 (4,0,2)
(3,1,2) & (3,2,1)
(3,1,2) % (2,1,3)

Given a broadcast protocol with n states, we call the n x n
matrices having unit vectors as columns broadcast matrices
[5]. Given an action a € X, it is easy to see that there
exists a broadcast matrix A/, and a vector v, such that ¢’ =
M, - ¢ + v, holds whenever ¢ % ¢'. For example, for the
action a in the example of Figure 1 we have

0 01 0
M,=10 0 0 Vo = 1
1 10 -1

Since broadcast matrices are closed under product, this ob-
servation can be generalized to arbitrary sequences o € ¥*:
Ifc 5 ¢’ thenc’ = M, - ¢+ v, for some broadcast matrix
M, and vector v,,.



The language of B from an initial configuration ¢, denoted
by L(B, cg), is the set of sequences o € ¥* such that ¢y =
c for some configuration cq. The w-language of B from ¢y,
denoted by L, (B, co), is defined accordingly.

A parameterized configurationis a partial functionp: S —
IN. We identify it with a set of configurations, namely those
extending p to a total function. So we identify the param-
eterized configuration of the broadcast protocol of Figure 1
given by p(s1) = p(s2) = L (undefined) and p(s3) = 3
with the set of configurations {(n1,n2,3) | n1,n2 € N}
The language of B from an initial parameterized configura-
tion po, denoted by L(B, po), is defined as

L(B,po) = | J L(B.<)

cEpo

So L(B, po) contains all sequences of actions that the pro-
tocol can execute from all initial configurations that belong
to the initial parameterized configuration po. L, (B, po) is
defined analogously.

2.3. Model-Checking Problems

Following the automata-theoretic approach to model-
checking (see for instance [11]), we formalize a linear
safety property as a regular set of dangerous sequences of
actions the protocol should not engage in. Similarly, a live-
ness property is formalized as an w-regular language over
3.

Notice that we consider languages over X, corresponding
to properties on the actions of the system. In [5] proper-
ties on the configurations satisfying certain conditions are
considered instead; for that, configurations are labeled with
atomic properties. All the results of this paper hold for the
languages of [5] as well.

We study the decidability of the following two model-
checking problems:

Safety properties

Given: a broadcast protocol B, a parameterized
configuration pg, a regular language L.

To decide: if L(B,po) N L =0.

Liveness properties

Given: a broadcast protocol B, a parameterized
configuration pg, an w-regular language L.

To decide: if L(B,po) N L = .

These two problems can be approached using well-known
automata-theoretic techniques. For the safety problem, we
take a finite automaton A = (Q, ¥, 9, qo, F') accepting the
language L. The combined system of a protocol B with

n states and an automaton A is a subset of (IN" x @) x
¥ x (N x Q) defined by: (c,q) % (c¢',¢') if and only if
cScinBandg 5 ¢ in A. Clearly, L(B,po) N L = 0§
if and only if no path of the combined system starting at
any (c,qo), where ¢ € pg, ever visits a combined state of
the form (c’, ¢) where ¢ € F'. For the liveness problem
we replace A by a Bichi automaton, and ‘visits a state” by
‘visits a state infinitely often’.

3. The EN-Procedure may not Ter minate

The EN-procedure for the construction of the covering
graph is described below. We exhibit a broadcast protocol
for which it does not terminate. It is then straightforward to
show that the procedure may not terminate either for com-
bined systems.

Fix for the rest of this section a broadcast protocol B =
(S,L, R), where S = {s1,...,s,}, and a parameterized
initial configuration py.

Let (IN U {w})™ be the set of w-configurations of B.
The semantics of broadcast protocols is generalized to w-
configurations by letting w + n = w —n = w for all
nelNw+w=wandw —w = 0. Let e; and e, be w-
configurations. We say e; < e, if e; is pointwise smaller
than or equal to e», where n < w foreveryn € NU {w}.
Clearly, < is a complete partial order on w-configurations
The least upper bound (lub) of a chain is the vector of lubs
of the component chains. For a sequence of actions o, de-
fine T}, as the affine operator given by T, (¢) = M, (e)+v,.
The EN-procedure examines pairs (e, a), where e is an w-
configuration and a € X. It is initialized with the empty
graph and the set of unexamined pairs {(eo,a) | a € X},
where e is defined by

~ _ J po(si) ifpo(s;) defined
eo(si) = { w otherwise.

The procedure goes as follows:

0. Add the node e to the graph.
1. Choose an unexamined pair (e, a);
if there are none, stop.
2. If there is no e’ such thate - €/,
then mark (e, a) as examined and go to 1.
3. Ife 5 ¢ for some e’ then

3.1 If the graph contains an
w-configurationd > €’
then make d the a-successor of e;

3.2 else, if the graph contains a path from
some node d to e such thatd < e/,
then let o be the sequence of actions
of this path, let 1 be the lub of the chain
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Figure 2. A protocol with an infinite covering
graph

d=<Ty(d) <T?,(d)<...,
and make 1 the a-successor of e;
3.3 else, create e’ as the a-successor of e.
4. Mark (e, a) as examined and go to 1.

Two questions arise: (a) is the lub of a chain effectively
computable? and, (b) does the procedure terminate, i.e., is
the covering graph finite? In [5], Emerson and Namjoshi
answer (a) positively (this is essentially a consequence of
the fact that there are only finitely many broadcast matrices
for a given n), but they do not study (b). We present an
example, inspired by [3], showing that the procedure may
not terminate.

Consider the broadcast protocol B of Figure 2. Initially
there is a process in state so and arbitrarily many processes
in state R. Following the terminology of [4, 8], the example
consists of a control process, which is always in one of the
states so, s1, 2, and an arbitrary number of identical user
processes, initially in state R. The protocol simulates a ma-
chine operating on two counters modeled by the states ¢
and ¢, which draw their items from a repository, modeled
by state R. The meaning of the different actions is:

add 1toc¢q;

reset ¢, to 0;

transfer one item from ¢; to ¢s;
reset ¢; to O;

transfer one item from ¢s t0 ¢;.

o RA TR

b
{s2,c1}
b cl
{s1,c1,c2} {s2,c2} d

{s1,c1,2c2}

{s1,2c1,c2}

Figure 3. Semantics of the protocol of Figure
2

We construct the covering graph from eq, the w-
configuration putting 1 process in sg, w processes in R,
and 0 processes elsewhere. We use a multiset notation
for w-configurations; for example, {s2, 3¢; } denotes the w-
configuration putting one process in so, 3 processes in c,
and w processes in R. Notice that every w-configuration
reachable from e, puts w processes in R, and so we
omit this part. With this notation we have ey = {so}.
An initial part of the configurations of B reachable from
eo is shown in Figure 3. Notice that the sequence of
actions abcdeabc®de?abc3de® - - - abc™de™ - - - can be exe-
cuted from e, and that all the w-configurations reached
along this sequence are different. So, in particular, there
are infinitely many reachable configurations from eg.



Proposition 3.1 The covering graph for the broadcast pro-
tocol of Figure 2 and the w-configurationeq = {s¢} isinfi-
nite.

Proof: Let o7 be an arbitrary sequence of actions such that
e) = e] — ey, e < ey, ande; # ey. Since in every con-
figuration reachable from e, the total number of processes
in the states sy, s2, s3 is 1, both e; and e, coincide on these
states. Since e; # es, 7 contains at least one occurrence
of b and d. Assume that the last occurrence of b precedes
the last occurrence of d (the other case is similar). Then, 7
has the form m bmydrs, where T3 contains no b’s and 75
contains no d’s.

For the construction of the covering graph we can replace
es by the lub of the chaine; < ex < e3--- where e; =
Ti=(e;). We prove that e; = e, for every i > 2, which
implies that the lub is es. This shows that for the protocol of
Figure 2 the EN-procedure and the EN-procedure without
step 3.2 compute the same graph. Since the latter computes
an infinite graph, the covering graph is infinite.

To show e; = e», we observe that, since es and e; coincide
on the states s1, s2, s3 and R, it suffices to prove ex(¢1) =
ei(c1) and ex(c2) = e;(c2). We prove ex(c1) = ei(c), the
other case being similar.

i—2

By the definition of T, we have e; = e LAY
for every i > 2. Since the occurrence of d removes all
processes from ¢y, e2(c;) and e;(c, ) are determined by the
suffix of 7 and 7¢~! starting right after the last occurrence
of d. This suffix is 73 in the two cases, and so we have
62(61) = #(7‘3,(1) + #(7'376) - #(7-370) = ei(cl)' where
# denotes the number of occurrences of an action in a
sequence. [

Since the protocol of Figure 2 contains both broadcast and
rendezvous actions, the EN-procedure might still terminate
for broadcast protocols with only broadcast moves. Unfor-
tunately, this is not the case. To prove it, given a broadcast
protocol B = (S, L, R), we define the broadcast protocol
Exp(B) (expansion of B) as the result of performing the
following two operations:

e each transition s % s’ where a is a local action is
- 1" ..
replaced by the transition s — s’, and a transition
+ "% + is added for each state #:

. - ! ?

e each pair of transitions s — s’ and t —> t', where a

is a rendezvous action, is replaced by the construction

shown in Figure 4.1 Moreover, in order to make sure

. ??

that for each state s there is a state s’ such that s ——»

, a2?? " ai?? as??

s'and s — ¢’, transitions s — sand s — s

are added where needed.

1The construction introduces two new states per rendezvous.

;/\ az2??

alll
O,

alz?

az2ll

az2??

Figure 4. Simulation of a rendezvous by
broadcasts

Observe that Exzp(B) only contains broadcast actions. We
also define a morphism ¢ between the action sequences of
B and Exp(B) as follows: p(a) = ajas if a is a ren-
dezvous action, and ¢(a) = a otherwise.

It is immediate to see that if ¢ -% ¢’ in B, then ¢ 27

¢’ in Exp(B), and vice versa. Here we interpret c as the
configuration of Exp(B) that coincides with ¢ on the states
of B and puts no process in the new states. We now have:

Proposition 3.2 Let B the broadcast protocol shown in
Figure 2. The covering graph for the protocol Ezp(B) and
the w-configuration {so } isinfinite.

Proof: The sequence
o(abcdeabc®de?abc®de® - - - abc™de™ - - -)

can be executed from eq in Exzp(B), and all the w-
configurations reached along this sequence are different.
So there are infinitely many reachable configurations
from eq in Exzp(B). The argument used in the proof of
Proposition 3.1, namely that every sequence 7 must contain
occurrences of b and d, is still valid, and in fact the proof
can be carried out in the same way. ]

The Exp construction also leads to the following result:

Proposition 3.3 The safety and liveness problems for ar-
bitrary protocols can be reduced to the same problems for
broadcast protocolswith only broadcast actions.

Proof: Given an arbitrary protocol B and a regular or
w-regular language L, we have L(B,po) N L = § if and
only if L(Exp(B),po) N(L) = 0. ]

We finish this section with a small remark. It was shown
in [8] that non-broadcast protocols with a control process
and arbitrarily many user processes are more complicated to



analyze than those in which all processes are identical. So
one could ask if this is also the case for broadcast protocols.
The answer is no. We can easily simulate the protocol of
Figure 2 by another one in which all processes are identical:
It suffices to add a new state Init and two new transitions
Init 2 5o and Init “*s R, and put all processes
initially in the Init state. The new protocol must first do
an init, by which essentially a process tells the others that
it becomes the control process and the others become user

processes.

4. A Model-Checking Algorithm for Safety
Properties

Let B be a broadcast protocol with states S = {s1,... ,sn}
and a parameterized initial configuration pg, and let A =
(Q,%,0,q0,F) be an automaton. The model-checking
problem for safety properties can be reformulated as fol-
lows: Can some combined state n € IN" x F' be reached
from a combined state (co, go) such that ¢y € po?

We can use this observation to apply a general backwards
reachability algorithm presented in [1] (see also [7]), which
we “instantiate” for broadcast protocols in the rest of this
section. The algorithm constructs the set of predecessors of
IN" x F, and checks whether it has an empty intersection
with (po, go)-

We need some preliminaries. A set C' of combined states is
upwards-closed if (c, q) € C implies (¢’, ¢") € C for every
(c,q) A(c',q'), where (c,q) < (¢, ¢') if e < ' and g = ¢'.
Denote by pred(C') the set of immediate predecessors of C
(i.e. the combined states from which C' can be reached in
one step). We have the following result:

Proposition 4.1 Let C' be an upwards-closed set of com-
bined states. Then:

1. The set of minimal elements of C' isfinite.
2. Theset pred(C') is upwards-closed.

3. Theminimal elements of pred(C') are effectively com-
putable from the minimal elements of C'.

Proof: 1. Follows immediately from the fact that < is a
well-ordering.

2. It suffices to prove that for each action a the set of
immediate predecessors of C' through the action a is
upwards-closed. We do it for the case in which a is a
broadcast action, the other cases being simpler. Assume we
have s; -5 s,. The immediate prodecessors of C' through
a is the set of combined states (c, ¢) such that the following
conditions hold for some minimal element (¢’,¢') of C:
(D) M,-c+vy,>c,(2c(s1)>1,and (3) ¢ = ¢'. Since

read?? local-read

write-inv??

read??

. . i -1 11
write-inv?? write-inv!!

local-read local-read

write

Figure 5. A MESI-protocol

M, is a broadcast matrix, this set is upward-closed.

3. Again, it suffices to prove the result for the set of
immediate predecessors of C' through the action a. A
little algebra shows that the minimal elements of this set
are the combined states satisfying (2) and (3) above, plus
a new condition (1) of the form M, - ¢ = d, where d
is defined as follows. Since A, is a broadcast matrix,
there is exactly one state s such that M,(s,s;) = 1.
We take d(s') = c'(s') — vo(s') for every s’ # s, and
d(s) = max(1,c'(s) — v,(s)). The set of solutions of (1),
(2), and (3) is clearly computable. [ |

Since IN" x F' is an upwards-closed set, we can apply
Proposition 4.1 and iteratively compute the minimal ele-
ments of Cy = IN" x F, Cy = Cy U pred(IN" x F),
Cy = Cy Upred?(IN" x F), etc. But we know that in any
infinite set of combined states there exist two elements n, n’
such that n < n' (i.e. < is a so-called well-quasi-ordering).
Therefore, there is an n such that the minimal elements of
C, and pred*(N" x F) = J,>, C; coincide, and so the
algorithm terminates.

In [5] the EN-procedure is applied to the protocol shown in
Figure 5, a simplified version of a MESI-protocol for cache
coherence. The initial configuration puts arbitrarily many
processes in state I, and none in the other three states. For
this particular protocol the EN-procedure terminates and
yields a covering graph with four nodes [5]. The invariants
#M =0V#S =0and #M +#E < 1, where #s denotes
the number of processes in the state s, are proved to hold by
observing that no node covers a configuration violating the
invariants.

We can prove the same two invariants using our algorithm.



For these simple properties we can do without an automa-
ton?: It suffices to compute the set of predecessors of the
upwards-closed sets #M > 1A#S > land #M + #E >
2, respectively, which we call U and V' in the sequel. The
reader can easily check that pred(V) = V, and so the pro-
cedure terminates after one step with pred*(V) = V. For
U we have
U: #M>1A#S>1

pred(U): (#M >1A#S>1)V
(BM = 0A#E = 1A#S > 1)
pred®(U).  pred(U)

i.e. the procedure terminates after 2 steps. Since the prede-
cessors of U and V' do not contain any initial configuration,
the invariants hold.

5. The Model-Checking Problem for Liveness
Propertiesis Undecidable

We prove that it is undecidable if L, (B, po) = 0, i.e. it is
undecidable if the broadcast protocol B with initial param-
eterized configuration po can execute an infinite sequence.
The undecidability of the model-checking problem follows.

The proof is by reduction from a problem on counter ma-
chines. It is closely related to the undecidability of a similar
problem for lossy counter machines proved in [10] (in fact,
it follows as a corollary from the results in [10]), and has
been inspired by the undecidability proofs of [2].

We start by introducing some notations and definitions. A
counter machineis atuple M = (Q,C, A, qo, H) where Q
is a set of states, C is a set of counters, ¢ is an initial state,
H is a set of halting states, and A is a set of transitions.
Transitions are of three types:

= 1 . .
e q L=ty ¢', which increase counter c,

o ¢ Z=1 ¢, which decrease counter ¢; these transi-
tions can only be taken if the counter has a positive
value;

o ¢ =% ¢, zero-tests that can only occur if the value of
the counter is 0.

A configuration of M is a tuple (g, j1,... ,7m), Where ¢
is a state, and ji,...,j, are natural numbers indicating
the contents of the counters. The semantics of a counter
machine is a relation — between configurations, defined as
expected. A run is either an infinite sequence ¢; — ¢ —
... orafinite sequence ¢; — ... — ¢, where ¢, is halting.
A configuration (q, j1, - - - , jm) is initial if ¢ = go, and n-
bounded if >°, .., 7i < n. A runis initial if its first
configuration is initial, n-bounded if all its configurations

2No automaton is used in [5] either.

contain only n-bounded configurations, and bounded if it is
n-bounded for some number n.

Theorem 5.1 The following problem is undecidable:

Given: a broadcast protocol B, a parameterized
configuration py.
To decide: if L, (B, po) = 0.

Proof: We proceed by reduction from the following unde-
cidable problem:

Given: a 2-counter machine M.
To decide: Does M halt on the input (0, 0) ?

Let M’ be a counter machine with 3 counters, behaving as
follows. Initially, M’ sets all counters to 0; then it simulates
M on the counters ¢; and ¢,, but after each step in the sim-
ulation it increases ¢3 by 1. If M halts, then M’ goes back
to its initial state.

We make the following two observations about M

e M’ has an infinite bounded initial run if and only if M
halts for (0,0).

The only bounded initial run of M, if any, corresponds
to the infinite iteration of the accepting run of M on
(0,0) (all other infinite runs continuously increase cs).

e Every infinite bounded run of M’ (not necessarily ini-
tial!) contains infinitely many initial configurations.

Such a run must set ¢ to 0 infinitely often, and this can
only be done after visiting an initial configuration.

We simulate in a weak sense the machine M’ by a broad-
cast protocol B. In B we have a state for each state and
each counter of M, and two special states D and I. D isa
special ‘dead’ state and I is introduced to keep an invariant
(see below). The total number of processes in the counters
of B plus the number of processes in I never increases. The
following table describes the simulation:

Counter machine | Broadcast protocol
ci=c+1_ mnc.!
q———4q q——(q
I inc.? c
c:=c—1_ , dec.! f
q——¢ q——
dec.?
c—=1T
c=0_ , reset.!! f
q——4q
reset.?? D

The parameterized configuration py puts 1 process in the
initial state go, arbitrarily many in I, and O processes else-
where.



The only situation in which the broadcast protocol does
not faithfully simulate a step of the counter machine oc-
curs when a reset, broadcast is executed at a configuration
having at least one process in the counter c¢. We call such a
broadcast a cheat.

Take an arbitrary run of the broadcast proto-
col and compute for all configurations ¢ the sum
S(c) = c(e1) + clez2) + ces) + ¢(I). The sums
form a non-increasing sequence. Moreover, the sequence
decreases only when the protocol cheats. We prove:

(1) If M halts for (0,0), then L, (B, po) # 0.

If M halts for (0, 0), then M’ has a bounded infinite initial
run, which iterates infinitely often the accepting run of A/
on (0,0). Let b be the bound of this run. We consider the
configuration ¢ € po that puts b processes in I. We claim
that B has an infinite run from c. This run exactly mimics
the infinite run of M’; since the infinite run is b-bounded,
the total number of processes in the counters of B never
exceeds b, and so B can mimic it even though there are
only b processes in I. Since in this run the protocol only

reset.!!

executes ¢ ——— ¢' when there are no processes in c,
there are no cheats. So this run of B faithfully simulates
the run of M, and so it is infinite.

(2) If L, (B, po) # 0, then M halts for (0, 0).

Let ¢ € po be a configuration such that B has an infinite
run from c. Since each cheat strictly decreases the sum
S(c), the run contains only finitely many cheats. Take a
suffix of the run containing no cheats. Since the suffix is
infinite, it corresponds to an infinite run r of M’. Moreover,
r is bounded, because no counter can ever be larger than
c(I). Now recall that every infinite bounded run of A/’
contains infinitely many initial configurations. So some
suffix »* of r is an initial run of M'. Clearly M halts for the
input (0, 0). |

6. Conclusions

In this paper we have studied (parameterized) broadcast
protocols, a model introduced by Emerson and Namjoshi in
[5]. We have shown that the covering graph procedure pro-
posed there for the verification of safety properties may not
terminate, whereas termination is guaranteed for the pro-
cedure of [1] based on upward closed sets. So, while the
covering graph technique is certainly adequate for several
classes of systems, it is not the most suitable for broadcast
protocols. Finally, we have shown that the model-checking
problem for liveness properties is undecidable. In fact, even
the problem of deciding if a broadcast protocol may exhibit
an infinite behaviour is undecidable.
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Abstract

The branching-time temporal logic EF is a simple, but natural fragment of com-
putation-tree logic (CTL) and the modal p-calculus. We study the decidability
of the model checking problem for EF and infinite-state systems. We use process
rewrite systems (PRS) to describe infinite-state systems and define a hierarchy
of subclasses of PRS that includes Petri nets, pushdown processes, Basic Parallel
Processes (BPP), context-free processes and PA-Processes. Then we establish the
exact limits of the decidability of model checking with EF in this hierarchy.

Model checking with EF is undecidable for Petri nets and even for parallel push-
down automata (the pushdown extension of Basic Parallel Processes). On the other
hand, model checking with EF is decidable for PAD, a process model that subsumes
both PA-processes and pushdown processes.

Key words: infinite-state systems, temporal logic, EF, model checking, process
algebra, PA-processes, pushdown processes

1 Introduction

The branching-time temporal logic EF (also called UB™ in [11] and [19]) uses
the boolean operators, the one-step next operator EX (for some successor),
and the operator EF (for some path eventually in the future). It is a fragment
of computation tree logic (CTL), which in turn is weaker than the modal p-
calculus [5]. EF-formulae are interpreted over (possibly infinite) trees describ-
ing all possible computations of a process. The processes can also have infinite
state spaces.
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There are many models for systems with infinite state spaces. Some of the
most common are Milner’s Calculus of Communicating Systems (CCS) [25],
Basic Parallel Processes (BPP) [9], context-free processes (BPA), pushdown
processes and Petri nets. The process algebra PA is a common generaliza-
tion of BPP and BPA and has operators for nondeterministic choice, parallel
composition, sequential composition and recursion. Unlike BPP, PA is not a
syntactical subset of CCS [25], because CCS does not have an explicit op-
erator for sequential composition. However, as CCS can simulate sequential
composition by parallel composition and synchronization, PA is still a weaker
model than CCS. PA-processes, pushdown processes and Petri nets are mutu-
ally incomparable (see Section 2).

Except for CCS, all these models can be represented by special subclasses of
a general rewriting formalism. These rewrite systems called “Process Rewrite
Systems (PRS)” were introduced in [18,22], together with a hierarchy of its
subclasses (the “PRS-hierarchy”). The PRS-hierarchy is a common general-
ization of two separate hierarchies for rewrite systems with sequential and
parallel composition that were defined by Stirling, Moller and Caucal [26] (see
also [11,7]) in analogy to the Chomsky-hierarchy. In this hierarchy, there is a
natural common generalization of PA-processes and pushdown processes. This
model was called PAD (for PA + PD) in [18,22] and it is strictly more general
than PA and pushdown processes with respect to bisimulation equivalence.

The model checking problem is the problem if a given process satisfies a prop-
erty encoded as a formula in a certain temporal logic. We study the model
checking problem for the logic EF and the models in the PRS-hierarchy. The
main new result in this paper is that model checking with EF is decidable
even for PAD. This completes the general picture of the decidability of model
checking with EF.

In Section 2 we define Process Rewrite Systems (PRS) and the PRS-hierarchy
of its subclasses. In Section 3 we define the logic EF and some generalizations
of EF. In Section 4 we show that model checking PAD with EF is decidable.
In Section 5 we describe a small example. In Section 6 we show that model
checking with EF is undecidable for PPDA, the pushdown extension of BPP,
which is a subclass of Petri nets. In the last section we present a general view
of the limits of the decidability of model checking with EF and other temporal
logics.

2 Process Models

Many classes of concurrent systems can be described by a (possibly infinite)
set, of process terms, representing the states, and a finite set of rewrite rules



describing the dynamics of the system.

Definition 1 Let Act = {a,b,...} be a countably infinite set of atomic ac-
tions and Const = {e,X,Y,Z,...} a countably infinite set of process con-
stants. The process terms that describe the states of the system have the fol-
lowing form.:

ti=c¢€ | X | tl.tg | t1||t2

where € is the empty term, X € Const is a process constant (used as an
atomic process in this context), “||” means parallel composition and “.” means
sequential composition. Parallel composition is associative and commutative.
Sequential composition is associative. Let T be the set of process terms.

Convention 1: We always work with equivalence classes of terms modulo
commutativity and associativity of parallel composition and modulo associa-
tiwity of sequential composition. Also we define that e.t =t =t.e and t|je = t.

Convention 2: We defined that sequential composition is associative. How-
ever, when we look at terms we think of it as left-associative. So when we
say that a term t has the form ti.ty, then we mean that ty is either a single
constant or a parallel composition of process terms.

The size of a process term is defined as the number of occurrences of constants
in it plus the number of occurrences of operators in it.

size (€
size(X):
size(ty.ty):

0
1
s

ize(ty) + size(ty) + 1
= size(t,) + size(ty) + 1

~— — N’ e

size(ty||t2) :

For a term t the set Const(t) is the set of constants that occur in t.

Const(e) :==0
Const(X):={X}
Const(t,.ty) := Const(t;) U Const(ts)
):

Const(ty||ts

Const(t,) U Const(ty)

The dynamics of the system is described by a finite set of rules A of the form
(t 5 ty) where t1 and ty are process terms and a € Act is an atomic action.
The finite set of rules A induces a (possibly infinite) labeled transition system
with relations = with a € Act. For every a € Act, the transition relation =



15 the smallest relation that satisfies the following inference rules.

(t1 S ty) € A t >t t 5t
t 5ty tilts 5 thllta  tity 5 .ty

where t1,ty,t),t, are process terms. Note that parallel composition is commu-
tative and thus the inference rule for parallel composition also holds with t;
and ty exchanged.

Since A is finite, the generated LTS is finitely branching. (For some classes
of systems (e.g. Petri nets) the branching-degree is bounded by a constant that
depends on A. For other classes (e.g. PA) the branching-degree is finite at
every state, but it can get arbitrarily high.) Also every single A uses only
a finite subset Const(A) := U(tlgh)eA(C’onst(tl) U Const(ty)) of constants

and only a finite subset Act(A) := U( A{a} of atomic actions. Thus for

t1 i>t2)e
every A\ only finitely many of the generated transition relations = for a; € Act
are nonempty. (Those for which a; € Act(A)). Still the generated transition
system can be infinite. (Consider the analogy: Every labeled Petri net has only
finitely many transitions and uses only finitely many different atomic actions,
but the state space can be infinite.) The relation = is generalized to sequences
of actions in the standard way. Sequences are denoted by o.

Remark 2 There is no operator “+7 for nondeterministic choice in the pro-
cess terms, because this is encoded in the set of rules A! There can be several
rules with the same term on the left hand side. It is also possible that several
rules are applicable at different places in a term. The rule that is applied and
the position where it is applied are chosen nondeterministically. Also there is
no such thing as action prefizes in the process terms. The atomic actions are
introduced by the rules.

Many common models of systems fit into this scheme. In the following we
characterize subclasses of rewrite systems. The expressiveness of a class de-
pends on what kind of terms are allowed on the left hand side and right hand
side of the rewrite rules in A.

Definition 3 (Classes of process terms)
We distinguish four classes of process terms:

1 Terms consisting of a single process constant like X.

S Terms consisting of a single constant or a sequential composition of process
constants like X.Y.Z.

P Terms consisting of a single constant or a parallel composition of process
constants like X ||Y||Z.

G General process terms with arbitrary sequential and parallel composition
like (X.(Y|2))||W.



Also lete € S, P,G, but € ¢ 1. It is easy to see that the relations between these
classes of process terms are: 1 C S, 1 C P, S CG and P C G. S and P are
incomparable and SN P =1U {¢}.

We characterize classes of process rewrite systems (PRS) by the classes of
terms allowed on the left hand sides and the right hand sides of rewrite rules.

Definition 4 (PRS)

Let o, f € {1,S,P,G}. A («, 8)-PRS is a finite set of rules A where for every
rewrite rule (I = r) € A the term [ is in the class o and | # € and the term r
is in the class 3 (and can be €). The initial state is given as a term to € a. A

(G,G)-PRS is simply called PRS.

Remark 5 W.l.o.g. it can be assumed that the initial state ty of a PRS is a
single constant. There are only finitely many terms ty, ..., t, s.t. to — t;. If to
1s not a single constant then we can achieve this by introducing a new constant
Xo and new rules Xo = t; and declaring X, to be the initial state.

(cr, 3)-PRS where « is more general than [ or incomparable to 3 (for example
a = G and = S5) do not make any sense. This is because the terms that are
introduced by the right side of rules must later be matched by the left sides
of other rules. So in a (G, S)-PRS the rules that contain parallel composition
on the left hand side will never be used (assuming that the initial state is a
single constant). Thus one may as well use a (5,5)-PRS. So we restrict our
attention to («, #)-PRS with o C .

Figure 1 shows a graphical description of the hierarchy of (a, 3)-PRS.

Many of these («, 5)-PRS correspond to widely known models like Petri nets,
pushdown processes, context-free processes and others.

(1) A (1,1)-PRS is a finite-state system. Every process constant corresponds
to a state and the state space is bounded by |Const(A)|. Every finite-state
system can be encoded as a (1,1)-PRS.

(2) (1,5)-PRS are equivalent to context-free processes (also called “Basic
Process Algebra (BPA)”) [7,11]. They are transition systems associated
with Greibach normal form (GNF) context-free grammars in which only
left-most derivations are permitted.

(3) It is easy to see that pushdown automata can be encoded as a subclass
of (S,5)-PRS (with at most two constants on the left side of rules).
Caucal [8] showed that any unrestricted (.S, S)-PRS can be presented as a
pushdown automaton (PDA), in the sense that the transition systems are
isomorphic up to the labeling of states. Thus (S, S)-PRS are equivalent
to pushdown processes, the processes described by pushdown automata.

(4) (P, P)-PRS are equivalent to Petri nets. Every constant corresponds to
a place in the net and the number of occurrences of a constant in a term



PRS (G.,G)

)

PAD (S,G) PAN (P,G)

4

Pushd S,S .
p&)scesgggn( ) PA (1,G) Petri nets (P,P)

PPDA

)

BPA (1,5) BPP (1,P)

(

finite state systems (1,1)

Fig. 1. The PRS-hierarchy

corresponds to the number of tokens in this place. This is because we
work with classes of terms modulo commutativity of parallel composition.
Every rule in A corresponds to a transition in the net.

(5) (1, P)-PRS are equivalent to communication-free nets, the subclass of
Petri nets where every transition has exactly one place in its preset [7,11].
This class of Petri nets is equivalent to Basic Parallel Processes (BPP)
[9].

(6) (1,G)-PRS are equivalent to PA-processes, a process algebra with sequen-
tial and parallel composition, but no communication (see [1,21,16]).

(7) (P,G)-PRS are called PAN-processes in [20]. It is a common generaliza-
tion of Petri nets and PA-processes and it is strictly more general than
both of them (e.g. PAN can describe all Chomsky-2 languages while Petri
nets cannot).

(8) (S,G)-PRS are a common generalization of pushdown processes and PA-
processes. They are called PAD (PA + PD) in [23].

(9) The most general case is (G, G)-PRS (here simply called PRS). PRS have
been introduced in [18,22]. They subsume all the previously mentioned
classes.

What does it mean that parallel /sequential /arbitrary composition is allowed in
terms on the left /right hand sides of rules? The general intuition is as follows:



If parallel composition is allowed on the right hand side of rules, then there can
be rules of the form ¢ % ¢, ||t. This means that it is possible to create processes
that run in parallel. The rule can be interpreted that, by action a, the process ¢
becomes the process t; and spawns off the process t5 or vice versa. If sequential
composition is allowed on the right hand side of rules, then there are rules of
the form ¢t = ¢,.t5. The interpretation is that process ¢ calls a subroutine ¢; and
becomes process to. [t resumes its execution when the subroutine ¢; terminates.
If arbitrary sequential and parallel composition is allowed on the right hand
side of rules then both parallelism and subroutines are possible. If parallel
composition is allowed on the left hand side of rules, then there are rules of
the form ¢, ||, - ¢. This can be interpreted as synchronization/communication
of the parallel processes t; and t,. This is because this action can only occur
if both ¢; and t; change in a certain defined way. If sequential composition
is allowed on the left hand side of rules, then there can be rules of the form
th ty %t and t¥.t; = t". The intuition is that a process ¢ called a subroutine
t; and became process t; by a rule ¢t = t;.t,. The subroutine may in its
computation reach a state t| or t. Now one of these rules is applicable. This
means that the result of the computation of the subroutine affects the behavior
of the caller when it becomes active again, since the caller can become ¢’ or ¢”.
The interpretation is that the subroutine returns a value to the caller when it
terminates. If arbitrary sequential and parallel composition is allowed on the
left hand sides of rules then both synchronization and returning of values by
subroutines are possible. Rules with nested sequential and parallel composition
(on the left side or the right side) do not increase the expressiveness [18].

Thus, for example, the processes of class PAD (type (S,G) in the PRS-
hierarchy) have parallel composition and subroutines that can return values
to their caller, but they lack the ability to synchronize parallel processes.

It has been shown in [18] (with the help of earlier results from [6,26]) that this
hierarchy of subclasses of PRS is strict w.r.t. bisimulation equivalence, i.e.,
more general subclasses are strictly more expressive. (See [25,26] for more on
bisimulation.)

Theorem 6 ([18])
The PRS-hierarchy is strict with respect to bisimulation equivalence.

It has also been shown in [18] that PRS are not Turing-powerful.

Theorem 7 ([18])
The reachability problem is decidable for PRS.



3 The Temporal Logic EF

Temporal logics are used to describe properties of systems. The verification
process consists in showing that a given system satisfies a property encoded
in a given formula. We use the logic EF,~, an extended version of the logic
EF [11,7]. In addition to the standard operators of EF, the logic EF,. uses
strong atomic propositions of the form ‘The current state is term ¢’ and can
thus express the reachability problem. The “=" in the name stands for these
strong propositions, because they express that the current state is equal to a
given state t. Note that, because of this feature, the logic EF (unlike EF)
is not a fragment of CTL or the modal p-calculus. The modal p-calculus (and
CTL) cannot distinguish bisimilar states, but EFj. can. The logic EFj. can
also express weak constraints on sequences of actions. These constraints are
called decomposable constraints (thus the DC in the name).

Definition 8 (EF5.)
The syntaz of the formulae is as follows:

du=t | 2D | BAD, | O

where t € T is a process term and C is a decomposable constraint (see
Def. 10).

Let F be the set of all EFy.-formulae. Let T be the set of all processes terms
(as in Def. 1) in the process algebra. The denotation [®] of an EFp-formula
® 15 the set of process terms defined inductively by the following rules:

t] = {t}

—P] =T — [P]

@1 A CI)Q]] = [[q)l]] N [[CI)Q]]

Oc®] ={teT|FH,o0tSt ANt el[®] A C(o)}
Disjunction can be expressed by conjunction and negation.

The property t € [®] is also denoted by t = ®.

The model checking problem is the problem if a process satisfies a property
encoded as a formula in a temporal logic.

MODEL CHECKING

Instance: A description of a process (for example an (a, 3)-PRS A with
a,f € {1,5,P,G} (see Def. 3)) and a state ¢t and a formula @
from a temporal logic (for example EF or EF5.).

Question: Is it true that ¢t = @ ?



Model checking finite-state systems with EF can be done in polynomial time,
since EF is a fragment of the alternation-free modal p-calculus [11,7]. Model
checking Petri nets with EF has been shown to be undecidable [11,7] by reduc-
tion of the reachability set containment problem for Petri nets. Model checking
with EF is PSPACE-complete for Basic Parallel Processes (BPP) [23,19], and
context-free processes (BPA) [2,24]. For pushdown processes the complexity of
model checking with EF is between PSPACEand EXPTIME[2,29,30]. It was
claimed in [2] that model checking pushdown processes with EF is PSPACE-
complete. Unfortunately, the given proof is wrong. It assumes that an accept-
ing polynomial space-bounded Turing-machine has an accepting computation
of polynomial length, which is not true in general. It was shown in [21] that
model checking with EF is decidable for PA-processes. Lugiez and Schnoebe-
len [17] later proved the same result by using a completely different method
(using tree-automata to represent infinite sets of configurations). In the next
section we show that model checking with the more general logic EF}; is de-
cidable for the more general model PAD (type (S, G) in the PRS-hierarchy).
But first we reduce the problem to a simpler form.

Definition 9 For any EFL-formula ® let terms(®) be the set of process
terms used in ® as atomic propositions.

terms(t) :=={t}
terms(—®) := terms(P)
terms(®y A @q) := terms(P,) U terms(Ps)
terms(<Co®) = terms(P)

The logic EFp. uses constraints on sequences of actions. These constraints
are called decomposable, because they can be decomposed with respect to
sequential and parallel composition of sequences of actions.

Definition 10 (Decomposable Constraints)
A set of decomposable constraints DC is a finite set of predicates on finite
sequences of actions that satisfy the following conditions.

(1) DC contains the predicates true (all sequences satisfy it) and false (no
sequence satisfies it).

(2) For every predicate C' € DC it is decidable if C is satisfiable.

(3) For every C € DC there is a finite index set I and a finite set of decom-
posable constraints {C},C? € DC | i € I} s.t.

Vo,01,09. 0109 =0 = <C’(0) = \/C}(Uﬂ/\Cf(Ug))

i€l

(4) For every C € DC there is a finite index set I and a finite set of decom-



posable constraints {C] € DC | i€ I} s.t.

Vo,0'. ac' =0 = (C’(a) = \/C’;(d))
iel
(5) For every C € DC there is a finite index set I and a finite set of decom-
posable constraints {C},C? € DC | i € I} s.t.

Vo,01,09.¥a € Act. 01a09 =0 = <C(O’) — \ ClHo) A C?(@))
iel
(6) For every C € DC there is a finite index set I and a finite set of decom-
posable constraints {C},C? € DC | i € I} s.t.

Vo, 09. ( (Jo € interleave(o1,0,). C(0)) <= \/(C}(01) A C’f(@)))

el

o € interleave(oy, 09) means that o is an arbitrary interleaving of o1 and
0y. The formal definition of the function interleave is as follows: Let A
be the empty sequence.

interleave(\, o) :={o}
interleave(o, \) :=={o}
Ao | o € interleave(o1, az02) tU

interleave(ay01, ay09) :=
{ago | o € interleave(ao1,09)}

Lemma 11 If DC is a set of decomposable constraints, then the closure DC'
of DC under the boolean operations of conjunction and disjunction is also a
set of decomposable constraints.

PROOEF. The formulae in DC' can be transformed into disjunctive normal
form, such that the formulae in DC are the atomic formulae. Since DC is
finite, DC' is finite too.

Remark 12 A set of decomposable constraints need not be closed under nega-
tion.

Now we give an example for a set of decomposable constraints. Let A C Act,
be a finite set of atomic actions. For any a € A let #,(0) be the number of
occurrences of action a in 0. For u,v € N let [u], denote v modulo v. We
define the following constraints:

(1) length(o) > i or length(o) < i for all ¢ < k for some fixed constant k.
(2) #4(0) > i or #,4(0) < for all i < n for some fixed constant n.

10



(3) [#a(o)]x =i for all i,k < m for some fixed constant m.
(4) first(o) = a for any action a € A.

For any choice of A, k,n,m let Caknm denote the closure of the set of these
constraints under conjunction and disjunction.

Lemma 13 For any A, k,n,m, the set C4 nm s a set of decomposable con-
straints. It 1s even closed under negation.

PROOF. Directly from the definitions.

Example 14 The constraint [#.(0)]s = 0 expresses that the number of oc-
currences of action a in o is even. Let o € interleave(oy, 0q) be an interleaving
of two sequences. Then the number of occurrences of the action a in o is even
off it is either even in both o1 and oy or odd in both o1 and oy. This can be
expressed by the following decomposition.

[#a(0)l2 =0 == ([#alo)l2 =0 A [Fa(02)]2 =0) V
(Falo)lz =1 A [Fa(o2)l2 = 1)

Decomposable constraints increase the expressiveness of the logic. They have
proved to be useful for constructing characteristic formulae for finite-state
systems up to (different kinds of) bisimulation-like equivalences [15]. For more
details on decomposable constraints and decomposable languages see [17,28].

We use these constraints to show that the usual definition of EF is a fragment

of EF5.. The usual < is just $yye. The normal one-step nexttime operator
EX is often denoted by (a) and defined by

[(a)®@]:={t | I'.t S At €[]}

It is clear that (a) = $¢ with C := [first(o) = a A length(o) = 1]. The normal
version of EF also does not have atomic propositions ¢ (meaning that the state
is equal to ¢; see Def. 8), but propositions “a” (meaning that the atomic action
a is enabled). This can be expressed by (a)true, where true =t vV =t for any
term ¢.

It is also possible to express the modal operator O (meaning ‘always’) by
defining O¢p = =Op—. Oc® then means that @ holds in all states that are

reachable via a sequence of actions o s.t. C'(o).

Definition 15 The nesting-depth nd(®) of an EFy,-formula ® is defined by

11



nd(t):
( )
nd(<1>1 A <I>2)

0
nd(®)

maz{nd(P,), nd(Py)}
nd(®) +1

Definition 16 F; C F is defined as the set of all EF5--formulae with a
nesting-depth of modal operators $¢ of at most d.

Fo={PeF | nd(®) <d}
It follows that formulae in Fy contain no modal operators.

In order to simplify the notation we use some abbreviations:
Let T = {t1,...,t,} €T be a finite set of process terms, then

teE-T <= tE-tA---AN-t,
For reasons of symmetry we also define
tET: <= tEt A At,
Of course this cannot be true if n > 2.

Definition 17 We define a subset F; C Fq of formulae that do not contain
disjunction. Thus the formulae in F; are called conjunctive formulae. Fj is
defined as the minimal set of formulae ®4 that are defined by the following
grammar.

Sy =TT AN-T"
for every finite TT, T~ C T and
Dy=T A-T | By AOcByy | By A =By,

for every finite TT, T~ C T and every decomposable constraint C' and every

It follows that every formula in F§ has the form

T*AN=T"ANCT A N\ =Cp, T

iel jed

where TT, T~ C T, and C;, D; are decomposable constraints and V; € F§_,
and Y; € Fj .

A formula @ is in normal form if ® = V,c; O, U, s.t. the ¥, are conjunctive
formulae.

12



Lemma 18 Any EF5.-formula Oc® is equivalent to a formula in normal
form.

PROOF. By induction on the nesting-depth d of modal operators in ®. The
important property here is that o (P V Py) = Ca®y V Oc®y. We transform
the subformulae into disjunctive normal form, and then push the disjunctions
outwards.

Lemma 19 Every model checking problem for EF5.. is decidable iff it is de-
ctdable for all formulae Cc® with ® € Jgen Fy-

PROOF. If it is decidable for formulae of the form Oc® with ® € Fj, then
it is decidable for formulae in normal form and thus by Lemma 18 for all
formulae of the form O, with W € F. Simple boolean operations yield the
decidability of the whole model checking problem. The other direction is trivial.

4 Model Checking PAD

We prove the decidability of the model checking problem for EFp. and PAD
by construction of a sound and complete tableau. By Lemma 19 it suffices to
consider formulae of the form ¢o® for @ € FJ for any d and C' in some set of
decomposable constraints.

4.1 Decomposition

The key to the construction of the tableau system in Subsection 4.2 is that
properties of the form .ty = Oc® or t|ts E Oc® can be decomposed into
properties of ¢; and properties of ¢5. First we give a small example how this
is done and then we do it in general.

Example 20 We show how to do the decomposition for the following simple
formula of nesting-depth two:

O :=(—u A Ov) A =O(w))

where w,v,w are process terms. No decomposable constraints are used, except
for the constraint true (Ouye = <). This formula means that there is a reach-
able state different from u, s.t. from this state the state v is reachable, but the
state w is not reachable.

13



Let t1,ty be process terms. Then the property
tl|ts EO(mu A O(v) A =O(w))

1S equivalent to

(th EC(e) AN ta =P) V

(LLE® Aty =) V

Jo1, 09, 1, the t1 S Aty Bty A

N (B F# o Vg # o) Aty | Ov) A Ity E =O(w)

atl|laz=u

where aq, ay are process terms. This is equivalent to

(= Oe) Aty =@
(LED At O)

Jov, 00,81, th. t1 DAt Bty A N\ (£ a1 Vi, # as) A

atl|laz=u

VG EOB) Aty EO(BR) A

B1l|B2=v

-V B EOM)ALE 0(72))

71llv2=w

)V
)V

This is equivalent to

(tl):<>(6) VAN tg):q)
(tl):q) A tg):<>(6)

Jo1, 00,8, th. t1 DAL BN N (£ Vi #az) A

)V
)V

atllae=u
6y EO(B) Aty = O(B2)) A
B1l|B2=v
A =000 Vs £ 20()

Now we transform this expression into disjunctive normal form. We define
the set F' of all functions f that assign to every pair (o, ) s.t. ail|as = u,
a value in {1,2}. For every f € F let A} := {ay | f((a1,02)) = 1} and

14



A7 :={ay | f((ou,0z)) =2}. Then the expression is equivalent to

(tt EC(e) A ta ED@) V
tLE® A tEO)V
Jo, 00,8, by th S AL Bty A\ () ¢ Ay Aty ¢ A7) A

fer

V' EOM) Aty EO(B)) A

B1||B2=v

AN (=) Vi E—O())

71l|ly2=w

In the same way we define the set G of all functions g that assign to every
pair (v1,72) s.t. nllve = w, a value in {1,2}. For every g € G let By := {7 |
9((11,72)) = 1} and B} == {72 | g((m1,72)) = 2}

Then the expression is equivalent to

(tt EC(e) A ta ED@) V
(tLE® A k= O()V
Joy, 00,1, by 1y S AL, Bty A\ (B | —AF Aty = —A7) A

feFr
V(OB Aty o(8) A
B1]|B2=v
VI A tE-omn A GE ﬁ<><%>)
9eG@ \m€B} Y2€B2

This is equivalent to

(t1 E<C(e) A ta ED) V
(tED® Aty E<Oe) V

Jo1, 00, 1, th t1 >t Aty Bt A
V thE AN EOBY)A Nt E=OM)A

fEF,B1||B2=v,9€G 1 EB}

thiE—ATAL E OB A N\ th E —O()

. 2
’YzEBg
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Finally, this is equivalent to

(ts ECe) Aty =P) V
(Lt ED A taEO(e) V
Vot EOEATACB)A AN —O(n) A

feFaBIHﬂZZUageG ’YIEB;

ty = O(=AFAC(B) A N\ —O(12))

’72633
This is a boolean combination of properties of t, and properties of ts.

Now we show how the decomposition is done in the general case. In order to
simplify the presentation, we define the following sets of expressions. Let DC

be a set of decomposable constraints, 7" C T a finite set of process terms and
d e IN.

i = <0® A t. = ].\I/-
Cform(d, T, DC) := (ZE/\I = e ]é\J iF 5 ]) |

Vl,j ti,t;- c T,CZ',D]‘ € DC,CI)Z € fg, \Ifj € f(;ﬁl

Cform!'(d, T, DC) :=like Cform(d, T, DC), except that ¥; € F§
Dform(d, T, DC) := {\/ F, | F; € Cform(d,T, DC)}

i€l

The next two lemmas show the decomposition of properties for sequential
composition. The general idea is that properties of the form t;.to = Oc® are
decomposed into properties of t; and properties of t,. However, the details are
more complex. It does not always suffice to use properties of ¢; and properties
of t, but sometimes also properties of other terms are needed. These other
terms are the terms that occur in ® as atomic propositions and the terms
that occur in the rules of the PAD-process. Fortunately, these are only finitely
many.

We defined that sequential composition is left-associative, so if we write t;.to,
then the term %, is either a single constant or a parallel composition. The
following lemma describes the decomposition for the case that ¢5 is a single
constant.

Lemma 21 Let t be a process term, X a process constant, A a PAD, ® a

formula in FJ that contains only constraints from a set DC of decomposable
constraints and C € DC. Let T := {e,t, X} U terms(®) U {r | (I 5 r) € A}
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Then an expression F' € Dform(d, T, DC) can be effectively constructed s.t.

t.XEOCD < F

PROOF. by induction on d.

S = (T*AN=T7ANNicr Cc;Pi A Njes ~Op, V) for some TH, T~ C T, ®;,¥; €
Fi 1 and C;, Dj € DC decomposable constraints. In the base case d = 0 the
sets I and J are empty and we solve the problem without referring to the
induction hypothesis.

If |T*| > 2 then t.X | Cc® is equivalent to false.

If |T*| =1 s.t. the term in TT is not t'.X for some t', then t.X | Oc® is
equivalent to

V(tE Ocile) A X E O @)

i€l
V

\/ (t = OD{ O Ar <>D?Z'q))

Q
jel, (l.X—)r) €A

where the C%, Di are the decompositions of C' as defined in Def. 10 (cases 3 and
5). This expression is the F' that we are looking for. It is in Dform(d, T, DC).

Now we consider the case that Tt = {u.X} for some term u. If u.X € T~
then t.X = Cc® is equivalent to false. Otherwise t. X = Cc® is equivalent to

V(tE Oci(e) A X E O @)

i€l
V
\/ (t = OD{ O Ar OD%CI))
JEJ, (l.XiM")EA
V

iel jed

where the C?, Di are the decompositions of C' as defined in Def. 10 (cases 3 and
5). This is the expression F that we are looking for. It is in Dform(d, T, DC).
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Now we consider the case that TT = {}. Then t.X | Cc® is equivalent to

V(tE Oci(e) A X E O @)

i€l
%
\/ (t = OD{ O Ar <>D42'CI))
jeJ, (l.X—a)r)EA
%
tSUANCO)ANNVaX)eT .t #a)A
AN X ECEANTX E-Op Y,

iel jed

Jdo, t'.

where the C};,Di are the decompositions of C as defined in Def. 10 (cases 4
and ).

If d =0 then I = J = {} and the induction hypothesis is not needed. If d > 0
then by induction hypothesis there are expressions F;, G; € Dform(d—1, (T —
{t}) U{t'},DC) s.t. the above expression is equivalent to

V(tE Ocile) A X E O @)

1€l
Vv
V (t = <>D{ O Ar = <>D?Z'(I))
jEJ, (l.X—a)r)EA
Vv
ot t S ANCO)ANNV(aX)eT . t'#a) ANN\FAN -G

iel jed

By transformation to disjunctive normal form there are finite index sets K,
N, Nj,, My, and formulae @, V! € FS | and decomposable constraints E;, E! €

17

DC and H; € Cform'(d—1,T —{t},DC) s.t. the above expression is equivalent
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to

VIt 0601 X | 0cs®)

ic ;

V RO, WATE0y9)
jed, (l.Xiﬁ)eA

Vv

tSUANCo)AN V(. X)eT .t #£a) A
VIIAtTESE® A\ E-CpY A\ H,

kEK [iEN} iEN], JEMy,

do, t'.

Note that the expressions H; do not contain the termst ort'. This is equivalent
to

V(= 0ci(6) A X = 0¢;0)
V

V (t = <>D{ O Ar = <>D?Z'(I))

jel, (l.X—a)r) €A

V
keK 1€ Ny, 1EN, JE My,

This is the expression F' that we are looking for. It is in Dform(d, T, DC).

The following lemma does the same decomposition for the case that the second
component in the sequential composition is itself a parallel composition.

Lemma 22 Let t1,ts,t3 be process terms, A a PAD, ® a formula in F§ that
contains only constraints from a set DC of decomposable constraints and C' €
DC. Let T := {e,t1,to||ts} U terms(@)U {r| (I = r) € A}

Then an expression F' € Dform(d, T, DC) can be effectively constructed s.t.

t1.(t2||ts) E Cc® <— F

PROOEF. The proof is similar to Lemma 21 with only the following differ-
ences:
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(1) Leave out the part

\/ t):OD{(l)/\T):OD%‘CI)
jed, (Z.XiM)EA

of the disjunction, and
(2) Substitute (t3||ts) for X everywhere. O

Now we show an analogous property for parallel composition.

Lemma 23 Let ti,ty be process terms, A a PAD, ® a formula in Fj that

contains only constraints from a set DC of decomposable constraints and C €
DC. Let T := {e,t1,t2} U terms(P).

Then an expression F' € Dform(d, T, DC) can be effectively constructed s.t.

t1||t2 ): Ce® <—= F

PROOF. by induction on d.
® has the form (TTAN=T"ANNic; C;Pi ANjes ~Op,; ;) for some TH, T~ C T
and ®;,V; € Fg .

If |T*| > 2 then Oo® is equivalent to false.

Now we consider the case that T = {t} for some term t. If t € T~ then
t||te = Oc® is equivalent to false. Otherwise it is equivalent to

(t1 = Ooy(€) Aty = Oop®) v
rek \ (2 |= Oy () Aty = O )
Y
t = Op(an) Aty | O pp(as)A
VoV /\It):<>ci<1>i/\/\t):ﬁ<>Dj\Ilj
1€

leL o¢1|\az:t
jedJ

where the C},C}, D), D] are the decompositions of C' as defined in Def. 10
(case 6). This is the F' that we are looking for. It is in Dform(d, T, DC).
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Now we consider the case that TT = {}. Then t;||t; E Cc® is equivalent to

(t = Ocy(€) Atz = Ocp®)V
kek \ (t2 | Oor () ANty | Oor®)
Vv
t1 3t Nty Bty ADj(oy) A D} (09) A

\/ ElO'l 09 tll tl2 /\ (tll % a \/tl2 % 012) A

ler at||a€T~
A tillty b O @ A N\ Ity = =Op, ¥
1€l jeJ

where the C},CY, Dj, D] are the decompositions of C' as defined in Def. 10
(case 6). In the base case d = 0 we have I = J = {} and don’t need the
induction hypothesis. For d > 0, by induction hypothesis, there are formulae
F;,G; € Dform(d — 1,{t},t,} U terms(®), DC) such that t\||t) = O, @ =
Fy and t1]|t, & Op,V; <= G;. Now we transform the expression into
disjunctive normal form. We define the set Func of all functions

fifla,00) [y € T7} = {1,2}

that assign to every pair (ay, az) s.t. ail|ay € T, a value in {1,2}. For every
f € Func let A} ={ay | f((a,a)) =1} cmdAff ={ay | f((ay,a)) =2}
Then the expression is equivalent to

(t | Ocr(€) Aty £ Ocp®)V
ke \ (t2 E Ocr(€) Aty | Cor®)
Vv
t1 3t ANty Bty A Dj(oy) A DY (09) A

\/ 30'1,0'2,t,1,tl2. v (tll ¢ A} /\tl2 ¢ A?c) A

f€Func

leL
NEA N\ -G
icl jeJ

By transformation to disjunctive normal form there must be finite index sets O
and M (o), M'(0), N(0), N'(0) for every o € O and formulae ®!,, V!, ®" V", €
F§ | and decomposable constraints Ey, E!,, Fy,, F!, € DC s.t. the condition is

n'»
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equivalent to

(t | Oor(e) Aty | Oepd) v
ke \ (t2 | Oor(€) Aty | Oop®)
Vv
_tl Dt Nty Bty A Dj(oy) A DY (9) A

Vo | B E AR
01,092,171, 19. € Func

leL v Anen(o) i E Q. Ph Awenio) 11 FE ~Cp, ¥y,

_OEO /\mEM(o) tlz ): <>Fm (I)Z% /\m’EM’(o) tIQ ): _|<>F7,n’ \IJZ%’

This is equivalent to

(t = Oy () Aty = Ocp®) V
kek \ (ta | O (6) Aty | Oor®)
V
t1 = Cpy (—A} A Nnen(o) Q. P Aweni(o) =P8, ‘I’Zf) A
teL feFuncoc0 | ta = Opy (=A% A Anear(o) O @i Awear o) <, Uiny)

This is the expression F that we are looking for. It is in Dform(d, T, DC).
4.2  The Tableau System

We show the decidability of the model checking problem for PAD and EFj~
by induction on the nesting-depth d of the formula. We describe a tableau
system that solves the model checking problem for formulae G ® with & € Fy
under the condition that we can already solve the problem for formulae GoW
with ¥ € FS_;. This is because we use properties of the form ¢ = O for
U € FJ_, as side conditions in the construction of the tableau. By induction
hypothesis we can assume this. In the base case of d = 0 the condition is
trivially satisfied, as F¢, = {}.

Every node in the tableau is a set of expressions of the form ¢ - ®, where
t is a process term and ® an EF-formula. We use the symbol I~ in the
tableau instead of . The expression ¢ - ® means that one attempts to
prove the property ¢t = ®. The meaning of ¢t = ® is defined semantically
(Def. 8). The sets of expressions that form the tableau nodes are denoted by
[' and interpreted as sets of subgoals that should be proved. These subgoals
are interpreted conjunctively. The branches in the tableau are interpreted
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disjunctively, so the tableau is successful iff there is at least one successful
branch. Every branch in the tableau can be seen as an attempt to construct
a proof.

The following tableau rules are meant to be applied to a problem of the form
t = ©c® with @ € F§. In the rules Inductl-Induct4 we apply the induction
hypothesis that we can already solve the problem for formulae of a smaller
nesting-depth.

{tXFOcd}UT

SEQ1 (FIUT where F'is from Lemma 21
SEQ2 {t1(Bllfs) F Oo®}UT where F'is from Lemma 22
{F}uT
PAR {tits F ©c@}UT where F'is from Lemma 23
{F}ur
STEP1 {XEFOeP}UT
if C'()\), where X is the empty sequence, (X 5 ¢,) € A, k=1,...,n
and the Dj are the decompositions of C' (Def. 10 (case 4)).
XEOPLUT
STEP2 { o}V
if not C(\), (X B t) €A k=1,...,n
and the Dj are decompositions of C' (Def. 10 (case 4)).
t-Octul
Unsat { P} if C' is unsatisfiable
{false}
, {tEFoATV}UT
conjl
{tF®,tFU}UT
. {FAG}UT
9 SRS Bl
e (F,G}UT
tHFdVvelur
disjl { }

{tFo}ul' {t+FY}UT
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{FVG}UT

disj2
) (FYUT {G}uT
{tF OcTUT
Inductl T fveF | andt = Ol
Induct2 {tF OcWj Ul if e Fj_, and not t = OV
{false} =1 ¢
{tF-OcT}UT
Induct3 T if ¥ € F§ , and not t = OcW
Induct4 {tF ~OcWjUT ifeFi andt k= OV
{false} -t ¢
+
Term1 w if TH = {t} or T* = {}
{tFT*}ur .
Term2 ~————— ifT* ANTH £t
erm {false) 1 #{} # {t}
Term3 {tr _z} oL ift¢ T~
Term4 {th 174Ul ifteT™
{false}

In order to avoid any unnecessary growth of the proof tree, we define that the
rules with names in capital letters (PAR, SEQ1, SEQ2, STEP1 and STEP2)
have a lower precedence than the other rules. So in the construction of a
branch of the proof tree we only use such a rule if none of the others is
applicable.

Lemma 24 For any instance of a tableau-rule, the antecedent is true iff at
least one of the succedents is true.

PROOF. This follows immediately from the definition of the tableau-rules
and Lemma 21, Lemma 22 and Lemma 23.

Definition 25 (Termination conditions)

A node in the tableau consisting of a set of formulae T" is a terminal node if
one of the following conditions is satisfied:
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(1) T'={}

(2) false € T.

(8) There is a previous node in the same branch that is marked with the same
set I'.

Terminal nodes of type 1 are successful, while terminal nodes of types 2,3 are
unsuccessful.

The construction of a branch of the tableau stops when a terminal node is
reached. The branch is successful if this terminal node is successful. The tableau
15 successful if there is at least one successful branch.

The intuition is that every branch in the tableau is an attempt to construct a
proof. A terminal node of type 1 means that all subgoals have been solved. A
terminal node of type 2 means that this attempt to construct a proof failed.
A terminal node of type 3 means that the proof is ‘running in circles’. If there
is a proof, then it can be found elsewhere in the tableau by a shorter branch.

The construction of the tableau starts with a root-node of the form {t - Cc®}
where ¢ is a process term and ® € Fj. The tableau for a given root is not
unique, because the sequents are sets of expressions and the element to which
a rule is applied is chosen nondeterministically. However, all tableaux are
equivalent semantically, because the order in which subgoals are solved does
not matter.

4.8  Decidability

In this section we show that the tableau system of the previous section is
sound and complete and produces only finite tableaux for any given root.
Thus it yields a decision procedure for the model checking problem for PAD
and EF ..

Lemma 26 If the root node has the form {t = Oo®}, for & € F§, then for
every node in a tableau with this root at least one of the following conditions
18 satisfied:

(1) A tableau rule is applicable
(2) The node is a terminal node.

PROOF. The only problematic cases are the expressions of the form t
=Oe®. If such an expression occurs, then it must be due to the rules SEQI,
SEQ2 or STEP1. By definition of these rules and Lemma 21 and Lemma 22
we know that ® € F5 . Then the rules Induct3 or Inducts are applicable,
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because we assumed (by induction hypothesis) that we can already solve the
problem for formulae of a smaller nesting depth.

Lemma 27 The tableau is finite for every instance of the model checking
problem.

PROOF. If only process terms of a bounded size are used as atomic propo-
sitions, then there are only finitely many formulae in F§ for any fized d. The
tableau rules and the proofs of Lemmas 21, 22 and 23 show that this precon-
dition is satisfied. Any set DC of decomposable constraints is finite. There are
only finitely many rules (t; < t5) € A with only finitely many subterms of the
terms ty. So there are only finitely many different sets of expressions of the
form t = ® in the tableau. Therefore the branches of the tableau can only have
finite length, because of termination condition 3. Since the tableau is finitely
branching, the result follows.

Now we prove the soundness and completeness of the tableau. The following
lemma shows the soundness.

Lemma 28 Let ® € Fj and C € DC. If there is a successful tableau with root
{tF Cc®}, then t = O .

PROOF. A successful tableau has a successful branch ending with a node
marked by the empty set of expressions. Since these sets are interpreted con-
Junctively this node is true. By repeated application of Lemma 24 all its ancestor-
nodes must be true and thus the root-node must be true.

We need some new definitions to show the completeness of the tableau system.

Definition 29 A valid sequent I' in a tableau is a set of expressions which
evaluate to true.

For example if (t = Cc®) € T thent = Cc®. If (FAG) €T then F and G
evaluate to true.

It follows from the construction of the tableau system that every expression
in a valid sequent is a disjunction of conjunctions of expressions of the form

tE<Ce®ort 00,

Now we define a total order on valid sequents.
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Definition 30 For an expression t = Oc® with t = Oc® we define

znorm(t = Oc®) := min{length(c) | t >t € [®] A C(o)}
and

ynorm(t E Oo®) := size(t)
For an expression F' in a valid sequent we define
znorm(F) := mazx{znorm(t - Oc®) | tF Oe® is subterm of F, nd(®) = d}
and
ynorm(F) := maz{ynorm(t - Oc®) | t = Oc® is subterm of F, nd(®) = d}
and
znorm(F) := size(F')

where size(F) is just the number of letters/symbols needed to write F. The
norm of F' is a triple, which is defined by

norm(F) := (znorm(F), ynorm(F'), znorm(F))
These norms are ordered lexicographically. The order is well-founded.
For a valid sequent T" et
Yoy = {F €L | norm(l') = (z,y,2)}|

Since I' is valid and finite, there is a largest x s.t. Vy,. # 0 for some y, z.
This largest x will be called ,,q,. It depends on I'. Also for every x < Zyau
there is a largest y (called y(x)) s.t. Yoy, # 0 for some z. Finally, for every
x,y there is a largest z(x,y) s.t. Ypy. 7 0.

We define a well-founded ordering on valid sequents. Let I' and I'' be two valid
sequents and Yy, and v, , . be defined as above. Then

I <I' & 3,y,2) Y0y, < ’y;’y’z AN Y@ Y2 Zier (@Y, 2). Yaryr o = ’Y;;',y',z'

The intuition is that if a tableau-rule is applied to a valid sequent I', then
there is at least one valid succedent sequent that is smaller. This is because
an expression F' € I is replaced with several others with a lower norm. Since
the ordering is well-founded, the process must eventually terminate.

Note that these definitions do not apply to non-valid sequents.
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Lemma 31 Let I' be a valid sequent. Then every tableau with root I' has at
least one successful branch that ends with the empty sequent.

PROOF. By Lemma 2/ every tableau with root I' has at least one branch that
only contains valid sequents. Choose one such branch of minimal length. We
show that the order of the sequents on this branch must strictly decrease. We
do this by showing that every application of a tableau rule to a valid sequent
yields a smaller sequent.

SEQ1,SEQ2 It follows from the construction of the expressions in Lemma 21

and Lemma 22 that in these expressions one of two cases holds:

(1) The remaining sequence is shorter (lower znorm) or

(2) The remaining sequence has the same length and the terms are smaller
(lower ynorm).

Thus the succedent sequent is smaller.

PAR It follows from the construction of the expression in Lemma 23 that the
terms are always smaller (since ty,ty are smaller than ty||ts). The znorm
1s the same or smaller and the ynorm is smaller. Thus the succedent is
smaller.

STEP1,STEP2 Here we have two sub-cases:

e In the first branch of the rule STEP1 the sequence has length 0. In the
succedent the znorm and ynorm are the same, but the znorm is smaller.

e In the other branches of STEP1 and all branches of STEP2 we choose the
valid succedent that corresponds to the shortest sequence that leads to a
state that satisfies ®. In this succedent the sequence is shorter and thus
the xnorm s smaller.

In both cases the succedent is smaller.

Unsat This rule is never applied in this branch, because all sequents are valid.

conjyl,cony2 For these rules the succedent is smaller, because the znorm de-
creases.

disjl,disj2 For these rules the succedent is smaller, because the znorm de-
creases.

Induct, Term For the rules Inductl,Induct3 and Terml,Term?3 the succe-
dent must be smaller, because expressions are removed from the sequent.
The rules Induct2,Induct4, Term2, Term4 are never applied in this branch,
because all sequents are valid.

The construction of this branch cannot be stopped by termination condition
3, because the order strictly decreases. Since the order of the sequents strictly
decreases on this branch, it must eventually end with the empty sequent and
thus it is successful.

Corollary 32 Ift = Oc® for ® € F§ and C € DC then every tableau with
root {t = Co®} is successful.
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PROOF. The root-sequent is valid. By Lemma 31 every tableau must have
a branch that ends with the empty sequent. This branch is successful and thus
the tableau is successful.

Lemma 33 Let t be a process term, A a PAD, ® € Fj, DC a set of decom-
posable constraints and C' € DC. Then the following conditions are equivalent:

ot =g
o A tableau with root {t = Oc®@} is successful.
o Fvery tableau with root {t - Cc®} is successful.

PROOF. Directly from Lemma 28 and Corollary 32.

Theorem 34 The model checking problem for EF5. and PAD is decidable.

PROOF. By Lemma 19 it suffices to prove decidability for formulae of the
form Oo® with ® in Fj for any d. We prove this by induction on d. By
Lemma 33 and Lemma 27 it suffices to construct a finite tableau. During the
construction we must decide problems of the form t' = OoW for ¥ e F§ . In
the base case d = 0 this is trivial, since F¢; = (). For d > 0 this is possible by
induction hypothesis.

Since EF is weaker than EFj;., we get the following corollary.

Corollary 35 Model checking PAD with EF is decidable.

5 Example

In this section we describe a small example of the model checking problem for
EF and PAD. The PAD-process is described by the following set of rules A:

Xi>(Y||X).Z
Y—b>e
XZ5X

The initial state is X. By using the algorithm derived from the tableau system
described in Section 4 we can show a property of the process X.

X | OOC(a)true A OO(c)true N —O{a)(c)true
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This means that process X can always get back into states where it can do

[P [1P%)] [P}

action “a” or action “c”, but never a “¢” directly after an “a”.

6 Parallel Pushdown Automata

Parallel Pushdown Automata (PPDA) are defined as the pushdown extension
of BPP. They are the class of systems that can be described by a synchro-
nization of a BPP with a finite-state system. In the framework of PRS they
can be described as follows: Let R := {X;,..., X} C Const be the process
constants that represent the states in the finite state system. Then a PPDA
is a PRS where all rules in A have the form

XY 5 Xt

where X;, X; € R, Y € Const and t € P is a parallel composition of constants
that does not contain any constants from R. This is a subclass of Petri net
(type (P, P)) rules. In the case of sequential composition the same construction
yields pushdown automata, which are equivalent to (S, S)-PRS [8]. However,
PPDA are slightly weaker than Petri nets w.r.t. bisimulation.

We prove that model checking with EF is undecidable for PPDA by showing
that the proof of undecidability for Petri nets carries over to PPDA. Undecid-
ability of model checking Petri nets with EF was first proved by Esparza in
[10]. The proof there contains a slight error, which was corrected in [11]. The
idea is to prove undecidability by reduction from the reachability set contain-
ment problem.

REACHABILITY SET CONTAINMENT

Instance: Two Petri nets N; and N, having the same number of places and
a bijection f between the sets of places of N7 and Ny. f can be
extended to a bijection on markings in the obvious way.

Question: Is it true that for every reachable marking M of Ny, f(M) is a
reachable marking of Ny 7

Rabin showed that this problem is undecidable by reduction of Hilbert’s 10th
problem. Later Jancar [13,14] gave a more direct proof by a reduction from
the halting problem for counter machines.

We sketch the reduction of the reachability set containment problem to the
model checking problem. It is similar to the one in [11], but slightly simpler.
We assume that the transitions in the Petri nets N;, Ny are not labeled with
atomic actions.

Figure 2 illustrates the following construction.
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Fig. 2. Reducing reachability set containment to model checking with EF

(1) Put Ny and N, side by side.

(2) Add a place A and arcs from A to every transition in N; and back. Put
one token on A.

(3) Add a new transition ¢ and a place B and arcs from A to ¢ and from
t to B. The transition ¢ is labeled with the atomic action a. Place B is
initially unmarked.

(4) Add arcs from B to every transition in Ny and back.

(5) For every pair of places (s, f(s)) add a transition ¢; and arcs from s to
ts, f(s) tots, B to ts and ts to B.

(6) For every place s in Ny add a transition ¢, labeled with action b and arcs
from s to ¢, and back. Do the same for N,.

Proposition 36 An instance of the reachability set containment problem has
answer ‘yes’ iff the newly constructed Petri net satisfies the EF-formula

O(-a V &(—a A b))

Now we construct a PPDA that weakly simulates the Petri net of Figure 2. As-
sign a unique process constant to every place in this net. Every transition ¢ in
the net then corresponds to a rule Yi||...||Y, = Y/||...Y/. (These constants
need not be pairwise different.) Now replace every such rule by the following
rules:
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X[[Yi =Xy
Xi||)/;+1 l)XH_l for 1:]_, Ce ,Il—2
Xt [Ya S XY

where 7 is a new action. The X are states of the finite control and are specific
for every transition ¢. X is also a state of the finite control, but it is global
and only exists once. The intuition is that these rules simulate the original
transition in n steps. The initial state of the PPDA is X||I, where I is the
initial state of the Petri net.

Finally, we add one rule X % X, where p is a new action. So action p is
enabled iff the finite control is in state X. This simulation can get stuck, in
case there were not enough tokens there to fire the transition in the first place.
We call a state in the simulation ‘faithful’ if it is not forced to get stuck, i.e.,
it can get back to a state where p is enabled again. This can be expressed by
the formula &(p).

Theorem 37 Model checking with EF is undecidable for PPDA.

PROOF. An instance of the containment problem has answer ‘yes’ iff the
PPDA simulation of the net in Figure 2 satisfies

O(=C(p) Voa vV O(p A ma A —b))

7 Conclusion

We have shown decidability of the model checking problem for the branching-
time temporal logic EF and the process model PAD. The exact complexity
of the problem is an open question. The problem is known to be PSPACE-
complete for the special cases of BPP [23,19] and BPA [2,24]. Model checking
pushdown processes with EF is decidable in EXPTIME and PSPACE-hard
[2,29]. It is even PSPACE-hard in the size of the system for a small fixed
EF-formula. The complexity for PA and PAD is an open question. The two
completely different algorithms for PA by Mayr [21] and by Lugiez and Sch-
noebelen [17] both have the same extremely high complexity of O(tower(n)).
The algorithm for PAD described in this paper is a generalization of the one in
[21], but not a generalization of the algorithm for BPP in [19]. The PSPACE-
algorithm for BPP in [23,19] uses a bounded search, while the algorithm for
PAD works by decomposition. For a formula of nesting-depth d the complexity
of the algorithm derived from the tableau system is d-times exponential. This
is because the tableau has a branching degree that is d-times exponential for
EF-formulae of nesting depth d. Also there are d-times exponentially many
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different EF-formulae of nesting depth d. So the overall complexity of the
algorithm is O(tower(n)), where tower(0) := 0 and tower (i + 1) := 2tower®,

The best known lower bound for both PAD and PA is PSPACE-hardness,
but there is a slight difference. For PAD the problem is PSPACE-hard in
the size of the system for a fixed formula, because this holds for pushdown
processes [2] and PAD subsumes pushdown processes. PA does not subsume
pushdown processes and the best known lower bound is the same as for BPP:
The problem is ¥f-hard for formulae of nesting depth < d [19].

Finally, model checking PPDA with EF is undecidable, as shown in Section 6.
This implies undecidability for all models in the PRS-hierarchy that are more
general than PPDA, i.e., Petri nets, PAN and PRS.

Model Complexity of model checking with EF

finite-state systems || polynomial

BPA PSPACE-complete

pushdown processes || € EXPTIME, PSPACE-hard
BPP PSPACE-complete

PA decidable, PSPACE-hard
PAD decidable, PSPACE-hard

PPDA (and higher) || undecidable

As EF is a fragment of CTL and the modal p-calculus, it is interesting to
compare the limits of decidability for these logics. There is another fragment
of CTL (and modal p-calculus) called EG. EG is like EF, except that the
diamond operator EF' (for some path eventually in the future) is replaced
by the operator EG (for some path always in the future). EG is also a frag-
ment of CTL. Model checking with EG is undecidable even for BPP [12]. On
the other hand model checking with the modal p-calculus is decidable (and
EXPTIME-complete) for pushdown processes [29] and BPA [24]. Thus in the
PRS-hierarchy decidability of the weak logic EG coincides with decidability of
the much more expressive modal p-calculus. In Figure 3 we draw the border
of decidability of several branching-time logics in the PRS-hierarchy. Model
checking is decidable for all models below the border and undecidable for all
those above it. Note that almost all branching-time logics have the same de-
cidability border. EF is the only exception. So EF is ‘much more decidable’
than all other branching-time logics.

It is interesting to compare the decidability results for branching-time logics
with the results for linear-time logics like LTL [27] and the linear-time u-
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PRS (G,G)

PAN (P,G)

Pushdown (8S,S)

DrOCOsSos Petri nets (P,P)

EG, modal p-calc.

finite state systems (1,1)

Fig. 3. Limits of the decidability of branching-time logics.

calculus. While model checking PA-processes with EF is decidable, it is unde-
cidable for LTL and the linear-time p-calculus [3]. For Petri nets the situation
is just the opposite. While model checking Petri nets with EF is undecidable,
it is decidable for LTL and the linear-time u-calculus [4,11,7]. In Figure 4 we
draw the border of decidability of LTL in the diagram of the PRS-hierarchy.

Acknowledgment: Thanks to Javier Esparza for helpful discussions.
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PRS (G,G)

PAD (S,G) PAN (P,G)

linear time p-calc., LTL

Pushd

proces Petri nets (P,P)

BPA (1,S) BPP (1,P)

finite state systems (1,1)

Fig. 4. Limits of the decidability of linear-time logics.
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1 Introduction

We study the decidability of bisimulation-like equivalences between infinite-
state processes and finite-state ones. The motivation is that the intended be-
havior of a process is often easy to specify (by a finite-state system), but a
‘real” implementation can contain components which are essentially infinite-
state (e.g., counters, buffers). The aim of formal verification is to check if the
finite-state specification and the infinite-state implementation are semantically
equivalent (i.e., bisimilar). First we examine this problem in a general setting,
extracting its core in a form of two rather special subproblems (which are nat-
urally not decidable in general). A special variant of this method which works
for strong bisimilarity has been described in [14]; here we extend and gener-
alize the concept, obtaining a universal mechanism for proving decidability of
bisimulation-like equivalences between infinite-state and finite-state processes.
We show that finite-state processes can be encoded up to bisimilarity in for-
mulae of the temporal logic EF (more precisely, in a slightly extended version
of EF which can also express constraints on sequences of atomic actions). Such
a formula is called a characteristic formula for the given finite-state process.
The characteristic formula © of a finite-state process f has the property that
for any (general) process g whose set of actions is contained in the one of f we
have that g is bisimilar to f if and only if g satisfies ©. Previous works used
the modal p-calculus to construct characteristic formulae [33]. We show that
the much simpler logic EF (a fragment of CTL and the modal u-calculus)
suffices. This is significant, because model checking with FF' is decidable for

many more classes of infinite-state systems than with the modal p-calculus
[10,20,24].

Then we apply the designed method to the class of PAD processes (defined in
[21]), which properly subsumes all PA and pushdown processes. We prove that
a large class of bisimulation-like equivalences (including, e.g., strong and weak
bisimilarity) is decidable between PAD and finite-state processes, utilizing pre-
viously established results on decidability of the model-checking problem for
the logic EF [23,20,24,19]. We also provide several undecidability results to
complete the picture—we show that any ‘reasonable’ bisimulation-like equiv-
alence is undecidable between state-extended PA processes and finite-state
ones. Moreover, even in the case of state-extended BPP processes (which form
a natural subclass of Petri nets) the problem of weak bisimilarity with finite-
state processes is undecidable.

Decidability of bisimulation-like equivalences has been intensively studied for
various process classes (see [28] for a survey). The majority of the results are

about the decidability of strong bisimilarity, e.g., [3,9,8,34,7,16,12].

Strong bisimilarity with finite-state processes is known to be decidable for



(labeled) Petri nets [15], PA, and pushdown processes [14]. Another positive
result of this kind is presented in [22], where it is shown that weak bisimilarity
is decidable between BPP and finite-state processes. However, weak bisimila-
rity with finite-state processes is undecidable for Petri nets [13]. In this paper
we obtain original positive results for PAD (and hence also PA and PDA) pro-
cesses, and an undecidability result for state-extended BPP processes. More-
over, all positive results are proved using the same general strategy which can
also be adapted to the previously established ones.

In Section 2 we define process rewrite systems, the formalism we use to de-
scribe infinite-state systems. In Section 3 we describe the general method for
deciding bisimilarity between infinite-state systems and finite-state systems.
In Section 4 we use this method to construct characteristic formulae and apply
them to prove the main positive decidability result. In Section 5 we prove sev-
eral undecidability results for strong and weak bisimilarity. In the last section
we summarize the results and outline possible future work.

2 Definitions

Transition systems are widely accepted as structures which can exactly define
the operational semantics of processes. In the rest of this paper we understand
processes as (being associated with) nodes in transition systems of certain

types.

Definition 1 A transition system (TS) T is a triple (S, Act,—) where S is
a set of states, Act is a finite set of actions (or labels), and - C S x A x S
s a transition relation.

We defined Act as a finite set; it is somewhat nonstandard, but we can al-
low this as all classes of process descriptions we consider generate transition
systems of this kind. As usual, we write s = ¢ instead of (s,a,t) € — and
we extend this notation to elements of Act™ in an obvious way (we sometimes
write s —* ¢ instead of s = ¢ if w € Act” is irrelevant). A state ¢ is reachable
from a state s iff s —* £.

Let Const = {X,Y,Z,...} be a countably infinite set of process constants.
The set of (general) process expressions, denoted G, is defined by the following
abstract syntax equation:

E :=¢|X|E|E|EE

Here X ranges over Const and € is a special constant that denotes the empty

expression. Intuitively, the ‘.’ operator corresponds to a sequential composi-



tion, while the ‘||” operator models a simple form of parallelism.

In the rest of this paper we do not distinguish between expressions related by
structural congruence which is the smallest congruence relation over process
expressions such that the following laws hold:

e associativity for . and ‘||’
e commutativity for ‘||’
e ‘¢’ as a unit for <" and ‘||".

A process rewrite system [21] is specified by a finite set A of rules which are
of the form E % F, where E, F are process expressions and a is an element
of a finite set Act. The sets of process constants which are used in the rules
of A is denoted by Const(A), and the set of all process expressions built over
Const(A) is denoted by G(A).

Each process rewrite system A determines a unique transition system where
states are process expressions of G(A), the set of labels is Act, and transitions
are determined by A and the following inference rules (remember that ‘||’ is
commutative):

(ESF)eA ES ES% E
ESF EF % EF E|F % E'|[F

Various subclasses of process rewrite systems can be obtained by imposing
certain restrictions on the form of the rules. To specify those restrictions,
we first define the classes S and P of sequential and parallel expressions,
composed of all process expressions which do not contain the ‘||” and the ‘.’
operator, respectively. For short, we also use ‘1’ to denote the set of process
constants. A hierarchy of process rewrite systems is presented in Figure 1; the
restrictions are specified by a pair (A, B), where A and B are the classes of
expressions which can appear on the left-hand and the right-hand side of rules,
respectively. The set of states of a system A which belongs to the subclass
determined by (A, B) is then formed by all process expressions of BN G(A).
It is important to realize that, e.g., every BPA system A can also be seen as
a PA system, but the sets of states (processes) of A are different in the two
respective cases.

The hierarchy of Figure 1 contains almost all classes of infinite-state systems
which have been studied so far; BPA, BPP, and PA processes are well-known
[4], PDA correspond to pushdown processes (as proved by Caucal in [6]), PN
correspond to Petri nets (see, e.g., [31]), etc. This hierarchy is strict w.r.t.
strong bisimulation, i.e., ‘higher’ classes are strictly more expressive [21].
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BPA (1,S) BPP (1,P)

N/

FS (1,1)
Fig. 1. A hierarchy of process rewrite systems

A convenient way how to extend expressibility of process rewrite systems is to
equip them with a finite-state control unit. In order to do that, we first need
to introduce the notion of Step. Let A be a PRS. Observe that each transition
E % F is due to some rule H % K of A (i.e., H is rewritten to K within E,
yielding the expression F'). Generally, there can be more than one rule of A
with this property—if, e.g., A = {X % X||Y,Y % Y|V}, then the transition
XY % X||Y]|Y can be derived in one step in two different ways. For each
transition E % F we denote the set of all rules of A which allow to derive the
transition in one step by Step(E - F).

A state-extended PRS (StExt(PRS)) is a triple (A, @, BT) where A is a PRS,
( is a finite set of control states, and BT C A x () x @) is a set of basic tran-
sitions. The transition system generated by a state-extended PRS (A, @, BT)
has @ x G(A) as the set of states (its elements are called state-extended PRS
processes, or StExt(PRS) processes for short), Act is the set of labels, and
the transition relation is determined by the following rule: (p, E) = (¢, F) iff
E % F and there is H % K € Step(E % F) such that (H % K,p,q) € BT.

This construction also applies to the aforementioned subclasses of PRS. It can
(but does not have to) increase the expressive power of a given subclass. For
example, if we add a finite-state control to a FS, PDA, or PN process, we
obtain a process which can be equivalently described by another FS, PDA,
or PN process, respectively (here the word ‘equivalent’ means ‘the same up
to isomorphism’). In the other cases, the mentioned extension brings strictly
more power—StExt(BPA) are in fact PDA processes, StExt(BPP) form a



proper subclass of PN processes (which is also a proper superclass of BPP),
and if we add finite-state control to PA (or to any of its superclasses), we
obtain systems with full Turing power. The last fact will be demonstrated in
Section 5. Let us note that PRS themselves are not Turing-powerful, because
the reachability problem is decidable for them—see [21].

3 A General Method for Bisimulation-Like Equivalences

In this section we design a general method for proving decidability of bisimulation-
like equivalences between infinite-state processes and finite-state ones.

Definition 2 Let R : Act — 24" be a (total) function, assigning to each
action its corresponding set of responses. We say that R is closed under sub-
stitution if the following conditions hold:

e a € R(a) for each a € Act.
o Ifbiby...b, € R(a) and wy € R(by), ws € R(bs),...,w, € R(b,), then also
wiwy . .. w, € R(a).

In order to simplify our notation, we adopt the following conventions in this
section:

G = (G, Act,—) always denotes a (general) transition system.

F = (F,Act,—) always denotes a finite-state transition system with &
states.

R always denotes a function from Act to 24¢" which is closed under substi-
tution.

N always denotes a decidable binary predicate defined for pairs (s,t) of
nodes in transition systems (which will be clear from the context). Moreover,
N is reflexive, symmetric, and transitive.

Note that G and F have the same set of actions Act. All definitions and
propositions which are formulated for G should be considered as general; if
we want to state some specific property of finite-state transition systems, we
refer to F. We also assume that G, F, R, and N are defined in a ‘reasonable’
way so that we can allow natural decidability assumptions on them (e.g., it is
decidable whether g = ¢’ for all g,¢' € G and a € Act, or whether w € R(a)
for a given w € Act™, etc.)

Definition 3 The extended transition relation = C G X Act x G is defined
as follows: s =t iff s =t for some w € R(a).

Definition 4 A relation P C G x G is an R-N-bisimulation if whenever



(s,t) € P, then N(s,t) is true and for each a € Act:

o Ifs-5 s thent =t for somet € G such that (s',') € P.
o Ift-5t, then s = s for some s’ € G such that (s',1') € P.

States s,t € G are R-N-bisimilar, written s ~ t, if there is an R-N-bisimulation
relating them.

Various special versions of R-N-bisimilarity appeared in the literature, e.g.,
strong and weak bisimilarity (see [30,26]). The corresponding versions of R
(denoted by S and W, respectively) are defined as follows (N denotes the set
of all nonnegative integers):

e S(a) = {a} for each a € Act.

] ieN if a=r;
° W(a) — { . | | 0}

{T*ar? | 1,7 € Ny} otherwise.

The ‘77 is a special (silent) action, usually used to model an internal commu-
nication. As the predicate IV is not used in the definitions of strong and weak
bisimilarity, we can assume it is always true (we use 7" to denote this special
case of N in the rest of this paper). One can also argue that the N predicate
could be omitted from the definition of R-N-bisimilarity, as it is not employed
by any known bisimulation-like equivalence. This is not completely true, as,
e.g., the version of strong bisimilarity introduced in [28] uses such a predi-
cate to distinguish between ‘terminal” and ‘final’ states of pushdown processes
(in this way it is possible to distinguish between a ‘successful’ termination
caused by emptying the stack, and an ‘unsuccessful’ one (deadlock) caused by
entering a state (p, E'), where E # ¢, from which there are no transitions).

Generally, every R-N-bisimilarity is a refinement of R-T'-bisimilarity and this
fact also suggests the way how to use the predicate N; its basic purpose
is to impose some additional conditions on pairs of states which cannot be
specified by R, but which should be satisfied by (pairs of) equivalent states. We
illustrate this approach by designing a natural refinement of weak bisimilarity.

Example 5 It is a well-known fact that weak bisimilarity does not distinguish
between a state which cannot emit any action (deadlock), and a state which
can emit only an infinite number of silent ‘T actions (livelock). However, these
two behaviors are considered to be different in many situations; for example,
there are very good reasons to distinguish between deadlock and livelock in the
context of operating systems. Therefore, it is natural to ask whether there is
some refinement of weak bisimilarity which preserves most of its properties but
eliminates the mentioned drawback at the same time. A simple solution is to



define the D predicate in the following way:

D(s,t) is true iff (Init(s) = ) <= Init(t) = 0)

Here Init(s) denotes the set of initial actions, defined as follows: Init(s) =
{a € Act | s % §' for some s'}. Now W-D-bisimilarity is a good candidate for
the equivalence we are looking for; it is very similar to weak bistmilarity, but it
distinguishes between deadlock and livelock. As we shall see, W-D-bisimilarity
15 also decidable between PAD processes and finite-state ones.

The concept of R-N-bisimilarity covers many equivalences which have not
been explicitly investigated so far; for example, we can define the function R
like this:

e K(a)={a"|i €Ny} for each a € Act.
e L(a) ={w € Act” | w begins with a}.

Act® ifa=r;
. M) =

{w € Act™ | w contains at least one a} otherwise.

The predicate N can also have various forms. We have already mentioned the
‘T" (always true) and ‘D’ (deadlock equivalence). Another natural example is
the ‘I’ predicate: I(s,t) is true iff Init(s) = Init(t). It is easy to see that, e.g.,
ST . . . SI . wI WD
~ coincides with ~, while ~ refines ~.

An important example of a bisimulation-like equivalence which cannot be
seen as R-N-bisimilarity is branching bisimilarity (introduced in [35]). This
relation places additional requirements on ‘intermediate’ nodes that extended
transitions pass through, and this brings further difficulties. Therefore, we do
not consider branching bisimilarity in our paper.

R-N-bisimilarity can also be defined in terms of the so-called R-N-bisimulation
game. Imagine that there are two tokens initially placed in states s and ¢
such that N(s,t) is true. Two players, Al and Ex, now start to play a game
consisting of a (possibly infinite) sequence of rounds, where each round is
performed as follows:

1. Al chooses one of the two tokens and moves it along an arbitrary (but
single!) transition, labeled by some a € Act.

2. Ex has to respond by moving the other token along a finite sequence of
transitions in such a way that the corresponding sequence of labels belongs
to R(a) and the predicate N is true for the pair of states where the tokens
lie after Ex finishes his move.

Al wins the R-N-bisimulation game, if after a finite number of rounds Ex
cannot respond to Al’s final attack. Now it is easy to see that the states s and
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t are R-N-bisimilar iff Ex has a universal defending strategy (i.e., Ex can play
in such a way that Al cannot win).

A natural way how to approximate R-N-bisimilarity is to define the family of
relations ~; C G x G, i € Ny, as follows: s ~; t iff N(s,t) is true and Ex has
a defending strategy within the first ¢ rounds in the R-N-bisimulation game.
However, ~; does not have to be an equivalence relation. Moreover, it is not
necessarily true that s ~ t <= Vi € Ny : s ~; ¢.

Example 6 It is a well-known fact that in the case of weak bisimilarity (i.e.,
W-T-bisimilarity) the equivalence

st <= VieNy:s~;t

does not hold in general ( ““=" does not have to be valid). Moreover, = is
not transitive for 1 > 1. To see this, consider the states s,t,u in the transition
system of Figure 2; we have s ~1 t and t ~1 u, but s £, u.

Now we show how to overcome those difficulties; to do this, we first introduce
the extended R-N-bisimulation relation:

Definition 7 A relation P C G x G is an extended R-N-bisimulation if
whenever (s,t) € P, then N(s,t) is true and for each a € Act:

o Ifs= s thent=st for somet € G such that (s',t') € P.
o Ift =t then s = s for some s’ € G such that (s',') € P.

States s,t € G are extended R-N-bisimilar if there is an extended R-N-
bisimulation relating them.

Naturally, we can also define the extended R-N-bisimilarity by means of the
extended R-N-bisimulation game; we simply allow Al to use the ‘long’ moves
(i.e., Al can play the same kind of moves as Ex). Moreover, we can define the
family of approximations of extended R-N-bisimilarity in the same way as in
the case of R-N-bisimilarity—for each ¢ € Ny we define the relation @Z C GxG
as follows: s =, ¢ iff N(s,t) is true and Ex has a defending strategy within
the first ¢+ rounds in the extended R-N-bisimulation game where tokens are



initially placed in s and t.

Lemma 8 Two states s,t of G are R-N-bisimilar iff s and t are extended
R-N-bisimilar.

PROOF. Every extended R-N-bisimulation is also an R-N-bisimulation; here
we need that a € R(a) for each a € Act. Conversely, every R-N-bisimulation
is also an extended R-N-bisimulation; each extended transition is a finite se-
quence of transitions, hence we can concatenate ‘responses’ to those individual
transitions, obtaining a valid response to the original extended transition. Here
we need the second requirement of Definition 2, that the relation R is closed
under substitution. O

Lemma 9 The following properties hold:

(1) X is an equivalence relation for each i € Ny.
(2) Let s,t be states of G. Then Vi € Ny : s ~; t iff Vi € Ny : s =t

PROOF.

(1) For the first part, reflexivity and symmetry are obvious. Transitivity fol-
lows from the condition that the relation R is closed under substitution.

L. RN RN .

(2) It follows from the definition of =~ that s ~; t = s &, t. Hence, it

suffices to realize that if s @'Z t, then s ';LVj t for some j € Ny—as Al can
force his win using ¢ ‘long’ moves and each of those moves consists of a
finite number of ‘short’ moves, Al could actually ‘decompose’ his attacks,
playing only (a finite number of) short moves. O

Remark 10 For all states s,t of G and 1 € Ny we have that if s X, t then also
s ~; t. However, there is no ‘reverse correspondence’—it can be easily shown
that for arbitrarily large j the implication s %Vj t = s gvl t 1s generally
invalid (the implication is invalid even in the case when t is a state in a one-
state TS). See Section 5 for details.

Now we examine some special properties of R-N-bisimilarity on finite-state
transition systems (remember that F is a finite-state TS with k states).

Lemma 11 Two states s,t of F are R-N-bisimilar iff s 2t

RN

PROOF. As F has k states and @Hl refines ~; for each i € Ny, we have
that }gk_l = gvk, hence gffk_l = O

10



Theorem 12 States g € G and f € F are R-N-bisimilar iff the following
conditions hold:

RN
2. For each state ¢ which is reachable from g there is a state f' € F' such that
I} RN

g~ f.

PROOQF.
‘=": Obvious.
‘—=": We prove that the relation

P={(g,f)|g—"g and g = f'}

is an extended R-N-bisimulation. Let (¢, f) € P and let ¢’ = ¢" for some
a € Act (the case when f' = f” is handled in the same way). By definition
of 2, there is an f” such that f' =% f” and ¢" =,_; f". It suffices to show
that ¢" =) f"; as g —* ¢", there is a state f of F such that ¢” =, f. By

transitivity of =, ; we have f =, 1 f”, hence f =, f” (due to Lemma 11).

Now ¢" ~, F =, f" and thus ¢" =, f" as required. Clearly (g9,f) € P and
the proof is finished. O

Remark 13 We have already mentioned that the equivalence

RN

st = VieNy :s~;t

is generally invalid (e.g., in the case of weak bisimilarity). However, as soon as
we assume that t is a state in a finite-state transition system, the equivalence
holds. This is an immediate consequence of the previous theorem. Moreover,
the second part of Lemma 9 says that we could also use the ~; approzimations
on the right-hand side of the equivalence.

The previous theorem in fact says that one can use the following strategy to
decide whether g ~ f:

1. Decide whether g ~j f (if not, then g % f).

2. Check whether g can reach a state ¢’ such that ¢’ @k f! for every state f’
of F (if there is such a ¢’ then g % f; otherwise g ~ f).

However, none of these tasks is easy in general. Our aim is to examine both
subproblems in detail, keeping the general setting. Hence, we cannot expect
any ‘universal’ (semi)decidability result, because even the problems g ~; f
and g %, f are not semidecidable in general (see Section 5).

11



As F has finitely many states, the extended transition relation = is finite and
effectively constructible. Therefore, we can effectively replace the transition
relation of F with its corresponding extended transition relation. Al and Ex
can now play only ‘short” moves consisting of exactly one transition whenever
playing within the modified system F—each such move corresponds to some
extended transition of the original system F and vice versa. This observation
leads to the notion of branching tree, which allows to ‘extract’ from F the
information which is relevant for the first £ moves in the extended R-N-
bisimulation game. The aim of the following definition is to describe all such
trees up to isomorphism (remember that Act is a finite set).

Definition 14 For each i € Ny we define the set of Trees with depth at most
i (denoted Tree;) inductively as follows:

o A Tree with depth 0 is any tree with no arcs and a single node (the root)
which is labeled by an element of F'U {L}.

o A Tree with depth at most i+ 1 is any directed tree with root r whose nodes
are labeled by elements of F'U {L}, arcs are labeled by elements of Act,
which satisfies the following conditions:
~ Ifr % s, then the subtree rooted by s is a Tree with depth at most i.
~Ifr % s andr % s for s # s, then the subtrees rooted by s and s' are

not isomorphic.

It is clear that the set Tree; is finite for every j € Ny. More precisely, its
cardinality (denoted NT(j)) is given by:

e NT(0)=Fk+1
e NT(i+1) = (k+1)-2""T® \where n = card(Act)

The set Tree; is effectively constructible for every j € Ny. As each Tree can
be seen as a transition system, we can also speak about Tree-processes which
are associated with roots of Trees (we do not distinguish between Trees and
Tree-processes in the rest of this paper).

Now we introduce special rules which replace the standard ones whenever we
consider an extended R-N-bisimulation game with initial state (g, p), where
g € G and p is a Tree process (formally, this is a different game—however, it
does not deserve a special name in our opinion).

e Al and Ex are allowed to play only ‘short’ moves consisting of exactly one
transition whenever playing within the Tree process p (transitions of Trees
correspond to the extended transitions of JF).

e The predicate N(¢',p'), where ¢’ € G and p' is a state of the Tree process

12



p, is evaluated as follows:

(

true if label(p') = L and
N(g', f) = false for every f € F
N(g',p') = { false if label(p’) = L and

N(g', f) = true for some f € F
| N(¢', label(p'))  otherwise

Whenever we write g gz p, where g € G and p is a Tree process, we mean that
Ex has a defending strategy within the first ¢ rounds in the ‘modified’ extended
R-N-bisimulation game. The importance of Tree processes is clarified by the
two lemmas below:

Lemma 15 Let g be a state of G, j € Ny. Then g Révj p for some p € Tree;.

PROOF. We proceed by induction on j:

e j=0: Then p is a Tree with no arcs and just one node labeled by some
[ € F such that N(g, f) is true; if there is no such f, then it is labeled by

1. Clearly g =, .

e Induction step: We need to construct a Tree p such that g gdvj“ p. The
Tree p has a root r whose label is determined in the same way as in the case
when j = 0. The successors of r are defined by

r% s iff gég'andg'gjs

Note that for each ¢’ there is s € Tree; such that ¢’ gvj s by induction
hypothesis. Thus, we have ¢ gyjﬂ p as required. O

Lemma 16 Let f be a state of F, j € Ny, and p € Tree; such that f gvj p.
Then for every state g of G we have that g gvj fiffg gvj .

PROOF.
‘—>": By induction on j:

ej=0:As f 2, pand g =, f, we have that N(g, f) is true and (the root
of) p is labeled by some f’ such that N(f, f') is true. Hence, N(g, f') is true
and g =, .

e Induction step: Let f gjﬂ p and g gvjﬂ f. We prove that ¢ gjﬂ .
Clearly N (g, label(p)) is true (see above). Let g = ¢’ (the case when p = p’
can be done similarly). We need to show that p % p' for some p' with
q gvj p. As g gjﬂ f, there is f' € F such that f =% f’ and ¢’ gvj 1.

13



Furthermore, as f gjﬂ p and f = f', there is p’ such that p = p' and
1 Révj p'. To sum up, we have f’ Révj p' and ¢’ gvj f', hence ¢’ = by

induction hypotheses.

‘«—=": In a similar way. O

Now we can extract the core of both subproblems which appeared in the pre-
viously mentioned general strategy in a (hopefully) nice way by defining two
new and rather special problems—the Step-problem and the Reach-problem:

The Step-problem
Instance: (g, a, j,p) where gis astateof G,a € Act,0 < j < k,and p € Tree;.

Question: Is there a state ¢’ of G such that ¢ = ¢’ and ¢’ gj p?
A decision algorithm may use an oracle which for any state ¢” of G answers
whether ¢” Révj P.

The Reach-problem
Instance: (g,p) where g is a state of G and p is a Tree-process of depth < k.

Question: Is there a state ¢’ of G such that ¢ —* ¢’ and ¢' =, p?
A decision algorithm may use an oracle which for any state ¢” of G answers

whether ¢” = P.

Formally, the transition system F should also be given in the instances of the
aforementioned problems, as it determines the sets Tree; and the constant &;
we prefer the simplified form to make the following proofs more readable.

Theorem 17 If the Step-problem is decidable (possibly using the mentioned

oracle), then Révk is decidable between all states g and f of G and F, respec-
tively.

PROOF. We prove by induction on j that gvj is decidable for every 0 < j <
k. First, E;IJVO is decidable because the predicate /N is decidable. Let us assume
that Révj is decidable (hence the mentioned oracle can be used). It remains to

prove that if the Step-problem is decidable, then gjﬂ is decidable as well.
We need to introduce two auxiliary finite sets:

e The set of Compatible Steps, denoted C’Sf, is composed exactly of all pairs
of the form (a,p), where a € Act and p € Tree;, such that f = f’ for some
f! with f’ Révj p.

14



e The set of INCompatible Steps, denoted [NCS;-c , is a complement of CS;
w.r.t. Act x Tree;.

The sets CS; and IN CS; are effectively constructible. By definition, ¢ gvjﬂ f
iff N(g, f) is true and the following conditions hold:

1. If f = f' then g = ¢' for some ¢’ with ¢’ gvj 1.
2. If g5 ¢/, then f 5 f for some f' with ¢’ =, f'.

The first condition in fact says that (g,a,j,p) is a positive instance of the
Step-problem for every (a,p) € C’Sf (see Lemma 15 and 16). It can be checked
effectively due to the decidability of the Step-problem.

The second condition does not hold iff ¢ = ¢' for some ¢’ such that ¢’ gvj D
where (a, p) is an element of [NCS;-c (due to Lemma 15 and 16). This is clearly
decidable due to the decidability of the Step-problem again. O

It is worth mentioning that the Step-problem is generally semidecidable (pro-
vided it is possible to enumerate all finite paths starting in g). However, it
does not suffice for semidecidability of gvz or @Z between states of G and F.

Theorem 18 Decidability of the Step-problem and the Reach-problem (possi-
bly using the indicated oracles) implies decidability of the problem whether for
each g which is reachable from a given state g of G there is a state f' of F

with ¢' =}, f'.

PROOF. First, the oracle indicated in the definition of Reach-problem can
be used because we already know that decidability of the Step-problem implies

decidability of =, between states of G and F (see the previous theorem). To
finish the proof, we need to define one auxiliary set:

e The set of INCompatible Trees, denoted INCT, is composed of all p €
Treey, such that f @k p for every state f of F.

The set INCT is finite and effectively constructible. The state g can reach a
state ¢’ such that ¢ Rﬁk f for every state f of F (i.e., g is a negative instance of
the problem specified in the second part of this theorem) iff (g, p) is a positive
instance of the Reach problem for some p € INCT (due to Lemma 15 and 16).

O
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4 Characteristic Formulae

In this section we show how to apply the previously designed general method
to construct characteristic formulae for finite-state systems in the temporal
logic FFe (we show that the Step-problem as well as the Reach-problem can
be encoded by EF; formulae). Consequently, we reduce the problem of R-N-
bisimilarity between infinite-state processes and finite-state ones to the model
checking problem for FF. Therefore it is possible to apply decidability results
from this area. In this way we prove that a large class of R-N-bisimulation
equivalences is decidable between PAD processes and finite-state ones (the
class includes all versions of R-N-bisimulation equivalences we defined in this
paper and many others). First we define the logic EF¢ (it is an extended version
of the logic FF [10] with constraints on sequences of actions). Let C be a finite
set, of unary predicates on sequences of atomic actions. The formulae of EFg
have the following syntax (where a € Act and C € C):

O =true | =@ | APy | (a)® | Oc®

Let 7 = (S, Act, —) be a transition system. The denotation [®] of a formula
® is a set of states of 7 where the formula holds; it is defined as follows
(sequences of atomic actions are denoted by w):

[true] .=
[~
[®1 A Dy
[(a)®
[Oc®

— [2]
[[ 1] N [@2]
={se€S| 3'e€S. 555 A e[P]}

I:
I:=
I
|:={s€ S| FJw,s.s>s A Cw) A s €[]}

The predicates of C are used to express constraints on sequences of actions. An
instance of the model checking problem is given by a state s in S and an EFg
formula ®. The question is whether s € [®]. This property is also denoted by

s = .

A characteristic formula Oy for a finite-state process f w.r.t. R-N-bisimulation
has the property that for every (general) process g whose set of actions is
contained in the set of actions of f we have

g f = gEO;

For every R-N-bisimulation we define the set of predicates R as follows:

R ={C,|ac Act,Co(w) <= w € R(a)} U {true, false}
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As usual, we write O® instead of Oy P.

Let us fix a general TS G = (G, Act, —) and a finite-state TS F = (F, Act, —)
with k states in the same way as in the previous section. We show how to
encode the Step and the Reach problems by EFyx formulae. The first difficulty
is the N predicate. Although it is decidable, this fact is generally of no use
because we cannot make any assumptions on ‘strategies’ of model checking
algorithms. Instead, we restrict our attention to those predicates which can
be encoded by EFy formulae in the following sense: for each f € F' there is
an EFg formula W such that for each g € G we have that g = ¥ iff N(g, f)
is true. In this case we also define the formula W) := Ajcp 5.

A concrete example of a predicate which can be encoded by EFr formulae
is, e.g., the ‘I’ predicate defined in the previous section: For every f € F' let
Aj:={a€ Act | 3f". f % f'}. Then

U= A (aytrue A N\ —{a)true
a€Ay ac€Act—Ay
The ‘D’ predicate can be encoded in a similar way.

Now we design the family of ®;, formulae, where 0 < j < k and p € Tree;, in
such a way that for every g € GG the following equivalence holds:

RN
g;p <= g,

Having these formulae, the Step and the Reach problems can be encoded in a
rather straightforward way:

e (g,a,j,p) is a positive instance of the Step problem iff g = ¢, (®5,)
e (g,p) is a positive instance of the Reach problem iff g = (@)

The family of ®;, formulae is defined inductively on j as follows:

o &y, =V, where f = label(p)

® Bjpip=Vs A ( A A Ocaq’j,p'> A ( A =, (A )ﬁq’j,p')))

acAct p'eS(p,a) acAct p'eS(p,a

where f = label(p) and S(p,a) = {p' | p = p'}. Empty conjunctions are
equivalent to true.
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Thus, the characteristic formula ©f for a process f of a finite-state system
F = (F, Act, —) with k states is defined by

@f = ‘I)kyf A = ( /\ ﬁ‘I)kyf/)

frer

The decidability of the model checking problem for the logic EF; depends
on properties of the family of constraints C. It has been shown in [23] that
the model checking problem for PA processes and the logic EF¢ is decidable
for the class of decomposable constraints (see also [19] where the same result
was proved later using a completely different technique). This result has been
generalized to PAD processes in [20,24]. These constraints are called decom-
posable, because they can be decomposed w.r.t. sequential and parallel compo-
sition. A formal definition is as follows: a set of decomposable constraints DC
is a finite set of unary predicates on finite sequences of actions that contains
the predicates true and false and satisfies the following conditions:

1. Forevery C € DC there is a finite index set I and a finite set of decomposable
constraints {C},C? € DC | i € I} s.t.

Vw, wy, we. wywe =w = (C’(w) — \/ C}(w1) A C’f(wz)>

i€l

2. For every C' € DC there is a finite index set J and a finite set of decompos-
able constraints {C},C? € DC | i € J} s.t.

Vwy, wy. ( (Jw € interleave(wy, wy). C(w)) <= \/(C}(w1) A C’f(wz))>

i€

where interleave(wy, wy) is the set of all interleavings of w; and wy defined

by

interleave (e, w) :={w}
interleqve(w, ) :={w}
interleave(aywy, asws) :={ayw | w € interleave(wy, agwq)} U
{asw | w € interleave(a;wy, wq)}

It is easy to see that the closure of a set of decomposable constraints under
disjunction is again a set of decomposable constraints (see [19,32] for more on
decomposable constraints and decomposable languages). All the previously
mentioned examples of relations R can be expressed by decomposable con-
straints. Consider the relation W for weak bisimulation. There we have the
following constraints:

W (w):= (w = 7" for some i € Ny)
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W,(w) := (w = 7'ar’ for some i, j € Ny)

These constraints can be decomposed w.r.t. sequential and parallel composi-
tion. For W, this is trivial. For W, we have

Wa(wiwy) <= (Wy(w1) A Wr(wa)) V (W (wy) A Wy (ws))
(Fw € interleave(wy, wq). Wy (w)) <= (W, (wy) A Wi (ws)) V (Wi (wi) A We(ws))

Now we show decomposability for some other (nonstandard) relations that
were defined in Section 3. For the relation K the decomposition is trivial. For
the relation L we have the constraint

L,(w) := w begins with a
The decomposition is

La(wlwg) p— La(wl)
(Fw € interleave(w, ws). Lo(w)) <= Lo(w1) V Ly(ws)

For the relation M we have the constraints

M. (w) = true
M, (w) :=w contains at least one a

The decomposition of M, is trivial. The decomposition of M, is

Ma(wlwg) <~ Ma(wl) V Ma(wg)
(Fw € interleave(wy, wy). My(w)) <= M,(w1) V M,(w,)

However, there are also relations R that are closed under substitution, but
which yield non-decomposable constraints. For example, let Act = {a,b} and
R(a) == {w | #.w > #yw} and R(b) := {b}, where #,w is the number of
actions a in w. The function R is obviously closed under substitution, but
the corresponding set of constraints is not decomposable. On the other hand,
there are decomposable constraints that are not closed under substitution like,
e.g., R(a) := {a" | 1 < i < 5}. Now we can formulate a general decidability
theorem:

Theorem 19 The problem g ~ f, where R yields a set of constraints R
contained in a set DC of decomposable constraints, N is expressible in EFg,
g is a PAD processes, and [ is a finite-state process, is decidable.

Corollary 20 Weak bisimilarity between PAD processes and finite-state ones
18 decidable.
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Remark 21 (Complexity of the problem)

The complezity of our algorithm for the problem g ~ f depends on the com-
plexity of the model checking problem for EFe and PAD, which is not known
exactly yet. The algorithm for PAD in [20,24] and the different algorithms
for PA in [23] and [19] all have non-elementary complexity. For BPP, model
checking with EF¢ is PSPACE-complete [22,24] (see also Section 6). The EFg
formulae that are constructed for a finite-state system F with k states have
exponential size in k, but a nesting-depth of the operator <& that is only poly-
nomaial in k. Model checking can be done ‘on-the-fly’ while these formulae are
constructed and thus polynomial space suffices. Hence, the problem g =~ f is

in PSPACE for BPP.

For BPA and PDA, model checking with EF¢ is known to be in EXPTIME
[36,5]. It was claimed in [5] that it is even in PSPACE, but the given proof con-
tains an error (it assumed that an accepting polynomial space-bounded Turing
machine always has an accepting computation of polynomial length; however,
there are cases where the shortest accepting computation has an erponential
length). Thus the question about the complexity of model checking pushdown
systems with EFe is open again. Still we conjecture PSPACE-completeness
to be most likely, because the number of alternations between conjunction and
disjunction in the model checking problem is bounded by the size of the formula
and thus polynomial. So far, our construction yields an EXPTIME algorithm
for the problem g ~ f for BPA and PDA.

The known lower bounds for the model checking problem are PSPACE-hardness
for BPP [10] and BPA [25] (and thus also for for PDA, PA and PAD). How-
ever, unlike the upper bounds, the lower bounds for the model checking problem
do not carry over to the bisimulation problem g ~ f. For exzample, it has re-
cently been shown that weak bisimilarity between BPA and finite-state systems
is decidable in polynomial time [18], while model checking BPA with EF is
PSPACE-hard [25].

Decidability of the model checking problem for the EFg logic in a certain
class of transition systems /X is a sufficient but not necessary condition for
decidability of R-N-bisimilarity between processes of K and finite-state ones.
For example, model checking the ‘pure’ EF (without any constraints) is unde-
cidable for Petri nets, but the Step and the Reach problems are decidable for
S-T-bisimilarity [15]. In fact, strong bisimilarity is the simplest form of R-N-
bisimilarity and the EFF formulae which encode the two problems are therefore
very simple as well. An exact formulation of this observation is given in the
following theorem:

Theorem 22 An EF formula is simple iff it is of the form O® where the sub-

formula ® does not contain any <-operator (i.e., ® is a formula of Hennessy-
Milner logic [26]). If the model checking problem for simple EF formulae is
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decidable in a class IC of transition systems, then strong bisimilarity is decid-
able between processes of K and finite-state ones.

PROOF. The fS:Tj equivalence with a given Tree process p can be encoded by
a formula of Hennessy-Milner logic for every j € Ny. Consequently, the Step
problem can also be encoded by a formula of Hennessy-Milner logic, and the
Reach problem is encoded by a formula of the form ¢® where @ is a formula
of Hennessy-Milner logic. O

The model checking problem for simple EF formulae is essentially a kind
of generalized reachability problem (one checks whether there is a reachable
state that satisfies a given formula of Hennessy-Milner logic). Of course, it is
much easier than the general model checking problem for FF. Thus, decidabil-
ity issues can be different—we have already mentioned that model checking
EF logic is undecidable for Petri nets; however, model checking simple EF
is decidable (due to the decidability of the Reach problem—see below). For
example, in the case of Petri nets we can observe that the markings which
satisfy some formula of H.M. logic can be characterized by boolean combi-
nations of constraints of the form p > k or p < k, meaning that there are
at least/at most k tokens in place p. This leads to a generalized reachability
problem which is decidable [11].

Now we show that the model checking problem for simple EF formulae can
be seen as a reformulation of the Step and the Reach problems in the case
of strong bisimilarity (the Step problem is trivially decidable, and the Reach
problem is ‘equivalently hard’ to the model checking problem for the simple
EF logic). This shows the essence of the whole problem in a new light.

Theorem 23 The model checking problem for simple EF formulae and the
special variant of the Reach problem for strong bisimilarity are inter-reducible
in the Turing sense (i.e., decidability of one of the two problems implies de-
cidability of the other one).

PROOF. Decidability of the model checking problem for simple EF formulae
implies decidability of the Reach problem, as shown in Theorem 22. We prove
the other direction; let &® be a simple FF formula. First, let us realize that
the sub-formula ® cannot distinguish between states related by f:Tn, where
n = length(®). Due to Lemma 15 we know that for every state g of the
transition system G there is a p € Tree, such that g gn p (as the predicate T
is trivial, we do not have to label the nodes of Trees; hence the construction
of Tree, does not depend on the transition system F—see Definition 14). For
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each p € Tree, we check whether p = ®. Now it is easy to see that ¢' = OP
iff Reach(g',p) = true for some p € Tree, such that p = ®. a

5 Undecidability Results

In this section we provide several negative (undecidability) results which help
to clarify the decidability /undecidability border in the area of comparing
infinite-state processes with finite-state ones.

Intuitively, any ‘nontrivial’ equivalence with finite-state processes should be
undecidable for a class of processes having ‘full Turing power’, which can be
formally expressed as, e.g., the ability to simulate Minsky counter machines.

Definition 24 A counter machine M with nonnegative counters ci,cs, ..., Cp
18 a sequence of instructions

1: [NSl
n—1: INS,_1
n: halt

where each INS; (i = 1,2,...,n — 1) is in one of the following two forms
(assuming 1 < k, ki, ks <n, 1 <j<m)

e ¢cj:=cj+1; goto k
e if ¢;=0 then goto ki else (¢j:=c;—1; goto ko)

The halting problem is undecidable even for Minsky machines with two coun-
ters initialized to zero values [27]. Any such machine M can be easily ‘mim-
icked’ by a StExt(PA) process P(M) = (A, Q, BT) where

e A contains the following rules:
. IJ _a) ]]I], IJ i> 9
where j € {1, 2}.
e Q={q,...,q,}, where n is the number of instructions of M.
e BT is determined by the following rules:
(1) If the program of M contains an instruction of the form

[:¢cj:=c;j+1; goto k

then BT contains the elements (Z; = 1;.Z;, q;, qx) and (I; % I;.1;, qi, q1.).-
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(2) If the program of M contains an instruction of the form
[: if ¢; =0 then goto k; else (¢j:=c; —1; goto ky)

then BT contains the elements (Z; = Z;, qi, qr,) and (I; = &, qi, qi,)-
(3) Each element of BT can be derived using the rule 1 or 2.

Intuitively, the (two) counters of the machine M are modeled by a simple PA
process (I[1.11...11.2Z1)||(I2.15 .. . I5.Z;) where the number of I;’s means the
current value of the counter ¢;, j € {1,2} (the starting zero point being mod-
eled by Z1||Z2). The control states ¢, ..., g, correspond to the instructions of
M (more precisely, to their labels). Each state determines the unique transi-
tion to be performed next with the exception of ¢, which is the ‘halting state’.
The process (g1, Z1||Z2) is able either to perform the action a boundedly many
times and to stop (its behavior can be defined as a™ for some m € Ny) or to
do a forever (its behavior being a“); this depends on whether the machine M
halts or not. Notice that a“ is the behavior of the one-state process f where
{f = f} is the underlying PRS. When we declare as reasonable any equiva-
lence which distinguishes between (processes with) behaviors a¥ and a™, we
can conclude:

Theorem 25 Any reasonable equivalence between StExt(PA) processes and
finite-state ones is undecidable.

It is obvious that (almost) any R-N-bisimilarity is reasonable in the above
sense, except for some trivial cases. For weak bisimilarity, we can even show
that none of the problems g =~ f, g Vggl f is semidecidable when ¢ is a
StExt(PA) process. It suffices to realize that we can label all transitions in
P(M) by 7 and add a special a-transition enabled in the (halting) state
qn- Now q1(Z1||Z5) ~, 7% iff the machine M does not halt, and similarly
@ (Z1||Z5) = f where {f 5 f, f % g} iff the machine M halts.

Now, the claim of Remark 10 is also easy to see; if we take the modified process
P(M) of the previous paragraph, we can observe that ¢(Z,||Zs) ~; 7 for
every j which is less than the number of computational steps of M. On the
other hand, if M halts then ¢;(Z1]|Z2) %1 7. Therefore, the implication
(21| Z2) W 79 = q1(Z1]|Zo) = 7 is invalid for any j € N, because for
each such j there is a machine with more then j computational steps which
halts.

Once seeing that StExt(PA) are strong enough to make our equivalences un-
decidable, it is natural to ask what happens when we add finite-state control
parts to processes from subclasses of PA, namely to BPA and BPP.

We have already shown that every R-N-bisimilarity such that R yields de-
composable constraints and N is expressible within FFp is decidable be-
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Fig. 3. A finite-state system used in the proof of Theorem 26

tween StExt(BPA) (i.e., PDA) processes and finite-state ones. In the case of
StExt(BPP), strong bisimilarity with finite-state processes is decidable [15].
Here we demonstrate that the problem for weak bisimilarity is undecidable.
Our proof is obtained by modifying the construction which has been used in
[13] to show the undecidability of weak bisimilarity between Petri nets and
finite-state systems. To make this paper self-contained, we now give a concise
description of this modified construction.

Theorem 26 Weak bisimilarity is undecidable between StExt(BPP) processes
and finite-state ones.

PROOF. Consider a Minsky machine M as in Definition 24 with just two
counters (m = 2). In a stepwise manner, we show how to construct a StExt(BPP)
process P(M) such that P(M) is weakly bisimilar to the process f of Figure 3
ift M does not halt.

We begin with using just the action 7, the process constants Z, I, I, D, S and
the control states pi,...,pn, q1,---,qn. The states (p1,72), (¢1,Z) are consid-
ered as two possible starting ones. Basic transitions of P(M) are determined
as follows: for every machine instruction

[:cj:=cj+1; goto k
we have (Z = L;||S||Z,pi,px) and (Z 5 Li||S||Z, @, q). For every machine

instruction

[: if ¢; =0 then goto k; else (¢j:=c¢; —1; goto k»)

we have

(I] l} DHS;pl;pkz)J (Z l) S||Z,p[,pk1); (Ij l> Ij”S)leQICl))

and

(Ij l) DHS; Qlaqkz)’ (Z l> S”Z’ Ql;le)-
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We observe that, for every reachable state (r, E'), exactly one occurrence of Z
appears in the expression F; the constant Z only serves as an auxiliary symbol
which is used to model the ‘empty left-hand side’ of rules. The number of I;
(I5) in E is meant to correspond to the current value of counter ¢; (¢3). By
(the occurrences of) S we count the number of steps, and by D the number
of ‘decreasing steps’.

Thus both (p;,Z) and (¢;,Z) can simulate the computation of M (with
counters initialized to zero). Nevertheless, also ‘cheating steps’ (performing
a ‘zero step’ instead of a decreasing one) are possible; it reflects the inability
of StExt(BPP) (more generally, Petri nets) to test for zero. Note that by (and
only by) a cheating step we can go from the ‘p-domain’ to the ‘g-domain’.

Now we shall refine the transitions mentioned so far. The idea is to view
the sequence of steps as a string of 0’s (non-decreasing steps) and 1’s (de-
creasing steps), and to enable D to ‘count’ the respective binary number.
We introduce an additional auxiliary constant C', and replace every transition
(E1 l) EQ, 1, 7“2) by the set

(Ey = Ey,ry,r"), (D5 C\Cr' "), (Z 5 Z,r' 1),
(C 5 D,r" 0", (Z 5 Z,r",ry)

where ', 7" are newly added control states. It allows (though does not force) to
double the number of D’s in each step (after adding 1 in the case of a decreasing
step). Now we add a control state h and the basic transition (Z = D||Z, q,, h).

Defining vec(E) as the 5-dimensional vector giving the numbers of (occur-
rences of) I1,I,,C, D, S in E, we can easily derive (similarly as in [12]) that
the set { vec(E) | Ir such that (r, E) is reachable from (p;, Z) } is a subset of
{vec(E) | 3r such that (r, E) is reachable from (q;, Z) }; moreover, the two
sets are equal iff M does not halt.

To proceed with the construction of our desired P(M), we now take a disjoint
union of the so far constructed StExt(BPP) system with its isomorphic dupli-
cate. For a control state r (or a process constant X), we denote the respective
duplicate by T (or X).

We now introduce new control states sp, s, S3; moreover, the pairs (s,7),
(s,7)—where s € {s1, 2,53} and r is ‘old’—will also serve as control states.
The process P(M) is defined as ((s1,q1), Z||Z) when we also include the fol-
lowing basic transitions (adding actions a, b, ¢): for every (E = E' r,r") we
add

(E 5 E' (s1,7), (s1,7"), (E = E', (52,7), (82,77)).
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For every r, we add

(Z 5 Z,(s1,7),81), (Z 5 Z,(89,T), 82).

We also add (Z % Z, sy, (s2,p7)) and (Z LN Z, 89, s3). Finally, for every X €
{I,I,,C, D, S} we add a new control state sy and

Checking that P(M) is weakly bisimilar to f iff M does not halt can be done
analogously to [13]. O

6 Conclusions, Future Work

We designed a general method for proving decidability of R-N-bisimilarity
between infinite-state processes and finite-state ones (Theorem 12) by reduc-
ing this problem to two other problems—the Step and the Reach problem
(Theorem 17 and 18). We also showed how to encode these special problems
by formulae of FFyr logic. In this way we constructed characteristic formu-
lae for finite-state systems up to bisimulation in the logic FF¢. As this logic
is decidable for PAD (and hence also PA and PDA) processes, we obtained
a general decidability theorem (Theorem 19), which says that every R-N-
bisimilarity such that R yields decomposable constrains on sequences of ac-
tions and NV can be expressed by FFx formulae is decidable between PAD and
finite-state processes. This class of R-N-bisimilarities includes all versions of
R-N-bisimulation equivalences mentioned in this paper. Examples are the re-
lations ~, &, X, or ~, but most importantly ~ and ~ (i.e., strong and weak
bisimilarity).

Then we demonstrated that each ‘reasonable’ R-N-bisimilarity is undecid-
able between StExt(PA) processes and finite-state ones (Theorem 25); this is
caused by the fact that StExt(PA) processes have full Turing power. Moreover,
even if we restrict our attention to StExt(BPP), we get an undecidability result
for weak bisimilarity (Theorem 26). This proof is obtained by a modification
of the one which has been used for Petri nets.

A complete summary of the results on decidability of bisimulation-like equiv-
alences with finite-state processes is given in the table below. As we want
to clarify what results have been previously obtained by other researchers,
our table contains more rows than it is necessary (e.g., the positive result for
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PAD and ¥, where R and N have the above indicated properties, ‘covers’ all
positive results for BPA, BPP, PA, and PDA).

We also add a special column which indicates decidability of the model-
checking problem for the logic FF. The decidability of FF for pushdown pro-
cesses (PDA) and BPA follows from a much stronger result by Muller and
Schupp [29] who showed the decidability of monadic second order logic for
pushdown automata. Later, model checking PDA with EF was shown to be
in EXPTIME|[36,5] (see also Remark 21). Model checking BPP with EF was
shown to be decidable by Esparza [10] and PSPACE-complete by Mayr [22,24].
Decidability of EF for PA was shown by Mayr [23] and later by Lugiez and
Schnoebelen [19], who used a completely different method. The decidability for
PAD was shown in [20,24]. The undecidability of EF for Petri nets was shown
by Esparza in [10]. The undecidability of EF for StExt(BPP) and StExt(PA)
follows directly from the undecidability results on bisimilarity in this paper.

= L4 & EF
BPA Yes[9] | YES | YES | Yes [29.5]
BPP Yes [8] | Yes [22] | YES | Yes [10,22,24]
PA Yes [14] | YES | YES | Yes[23,19]
[

StExt(BPA), i.e., PDA 4| YES | YES | Yes [29,5]

(€]
w0
— | — | —

StExt(BPP), i.e., PPDA | Yes [15]| NO | NO | NO
StExt(PA) No [14] | No [14] | No [14] | NO

PAD YES | YES | YES || Yes [20,24]
Petri nets Yes [15] | No [13] | No [13] || No [10]

The results obtained in this paper are in boldface. Note that although model-
checking EF logic is undecidable for StExt(BPP) processes and Petri nets,
strong bisimilarity with finite-state systems is decidable. The original proof in
[15] in fact demonstrates decidability of the Reach problem (the Step problem
is trivially decidable), hence our general strategy applies also in this case.

A unifying concept similar to R-N-bisimulation can also be used for simulation-
like equivalences—we can define the R-N-simulation relation in the very same
way as R-N-bisimulation (which can be then seen as a special case of R-N-
simulation with the property that its inverse is also an R-N-simulation). The
predicate N becomes more important in this context, as it allows to define
some of the known and studied simulation-like equivalences (e.g., the ready
simulation equivalence). An interesting open problem is whether it is possible
to design a general strategy for deciding R-N-simulation equivalence between
infinite-state and finite-state processes in a similar way as for R-N-bisimilarity
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(recently, the decidability/tractability border for strong simulation (i.e., S-T-
simulation) with finite-state systems has been established in [17]). Another set
of open problems is the decidability of branching bisimilarity with finite-state
processes.
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Abstract

We prove that weak bisimilarity is decidable in polynomial time between finite-state
systems and several classes of infinite-state systems: context-free processes (BPA)
and normed Basic Parallel Processes (normed BPP). To the best of our knowledge,
these are the first polynomial algorithms for weak bisimilarity problems involving
infinite-state systems.
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1 Introduction

Recently, a lot of attention has been devoted to the study of decidability
and complexity of verification problems for infinite-state systems [33,12,5].
We consider the problem of weak bisimilarity between certain infinite-state
processes and finite-state ones. The motivation is that the intended behavior
of a process is often easy to specify (by a finite-state system), but a ‘real” im-
plementation can contain components which are essentially infinite-state (e.g.,
counters, buffers, recursion, creation of new parallel subprocesses). The aim is
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to check if the finite-state specification and the infinite-state implementation
are semantically equivalent, i.e., weakly bisimilar.

We concentrate on the classes of infinite-state processes definable by the syn-
tax of BPA (Basic Process Algebra) and normed BPP (Basic Parallel Pro-
cesses) systems. BPA processes (also known as context-free processes) can be
seen as simple sequential programs (due to the binary operator of sequential
composition). They have recently been used to solve problems of data-flow
analysis in optimizing compilers [13]. BPP [8] model simple parallel systems
(due to the binary operator of parallel composition). They are equivalent to
communication-free nets, the subclass of Petri nets [36] where every transition
has exactly one input-place [11]. A process is normed iff at every reachable
state it can terminate via a finite sequence of computational steps.

Although the syntax of BPA and BPP allows to define simple infinite-state
systems, from the practical point of view it is also important that they can give
very compact definitions of finite-state processes (i.e., the size of a BPA/BPP
definition of a finite-state process F' can be exponentially smaller than the
number of states of F—see the next section). As our verification algorithms
are polynomial in the size of the BPA/BPP definition, we can (potentially)
verify very large processes. Thus, our results can be also seen as a way how
to overcome the well-known problem of state-space explosion.

The state of the art. Baeten, Bergstra, and Klop [1] proved that strong
bisimilarity [35] is decidable for normed BPA processes. Simpler proofs have
been given later in [20,14], and there is even a polynomial-time algorithm
[17]. The decidability result has later been extended to the class of all (not
necessarily normed) BPA processes in [10], but the best known algorithm is
doubly exponential [4]. Decidability of strong bisimilarity for BPP processes
has been established in [9], but the associated complexity analysis does not
yield an elementary upper bound (although some deeper examination might in
principle show that the algorithm is elementary). Strong bisimilarity of BPP
has been shown to be co-N P-hard in [28]. However, there is a polynomial-time
algorithm for the subclass of normed BPP [18]. Strong bisimilarity between
normed BPA and normed BPP is also decidable [7]. This result even holds
for parallel compositions of normed BPA and normed BPP processes [22].
Recently, this has even been generalized to the class of all normed PA-processes
[16].

For weak bisimilarity, much less is known. Semidecidability of weak bisimila-
rity for BPP has been shown in [11]. In [15] it is shown that weak bisimilarity is
decidable for those BPA and BPP processes which are ‘totally normed’ (a pro-
cess is totally normed if it can terminate at any moment via a finite sequence
of computational steps, but at least one of those steps must be ‘visible’, i.e.,
non-internal). Decidability of weak bisimilarity for general BPA and BPP is



open; those problems might be decidable, but they are surely intractable (as-
suming P # N P). Weak bisimilarity of (normed) BPA is PSPACE-hard [38].
An N P lower bound for weak bisimilarity of BPP has been shown by Stiibrna
in [38]. This result has been improved to [I5-hardness by Mayr [28] and very
recently to PSPACE-hardness by Srba in [37]. Moreover, the PSPACE lower
bound for weak bisimilarity of BPP in [37] holds even for normed BPP.

The situation is dramatically different if we consider weak bisimilarity between
certain infinite-state processes and finite-state ones. This study is motivated
by the fact that the intended behavior of a process is often easy to specify
(by a finite-state system), but a ‘real’ implementation can contain compo-
nents which are infinite-state (e.g., counters, buffers, recursion, creation of
new parallel subprocesses). It has been shown in [26] that weak bisimilarity
between BPP and finite-state processes is decidable. A more general result
has recently been obtained in [21], where it is shown that many bisimulation-
like equivalences (including the strong and weak ones) are decidable between
PAD and finite-state processes. The class PAD [31,30] strictly subsumes not
only BPA and BPP, but also PA [2] and pushdown processes. The result in
[21] is obtained by a general reduction to the model-checking problem for the
simple branching-time temporal logic EF, which is decidable for PAD [30].
As the model-checking problem for EF is hard (for example, it is known to
be PSPACE-complete for BPP [26] and PSPACE-complete for BPA [39,27]),
this does not yield an efficient algorithm.

Our contribution. We show that weak (and hence also strong) bisimilarity
is decidable in polynomial time between BPA and finite-state processes, and
between normed BPP and finite-state processes. To the best of our knowl-
edge, these are the first polynomial algorithms for weak bisimilarity with
infinite-state systems. Moreover, the algorithm for BPA is the first example
of an efficient decision procedure for a class of unnormed infinite-state sys-
tems (the polynomial algorithms for strong bisimilarity of [17,18] only work
for the normed subclasses of BPA and BPP, respectively). Due to the afore-
mentioned hardness results for the ‘symmetric case’ (when we compare two
BPA or two (normed) BPP processes) we know that our results cannot be
extended in this direction. A recent work [29] shows that strong bisimilarity
between pushdown processes (a proper superclass of BPA) and finite-state
ones is already PSPACE-hard. Furthermore, weak bisimilarity remains com-
putationally intractable (DP-hard) even between processes of one-counter nets
and finite-state processes [23] (one-counter nets are computationally equiva-
lent to the subclass of Petri nets with at most one unbounded place and can
be thus also seen as very simple pushdown automata). Hence, our result for
BPA is rather tight. The question whether the result for normed BPP can
be extended to the class of all (not necessarily normed) BPP processes is left
open. It should also be noted that simulation equivalence with a finite-state
process is co-N P-hard for BPA/BPP processes [25], EXPTIME-complete for



pushdown processes [24], but polynomial for one-counter nets [24].

The basic scheme of our constructions for BPA and normed BPP processes is
the same. The main idea is that weak bisimilarity between BPA (or normed
BPP) processes and finite-state ones can be generated from a finite base of
‘small’ size and that certain infinite subsets of BPA and BPP state-space can
be ‘symbolically’ described by finite automata and context-free grammars,
respectively. A more detailed intuition is given in Section 3. An interesting
point about this construction is that it works although weak bisimulation is
not a congruence w.r.t. sequential composition, but only a left congruence.
In Section 4, we propose a natural refinement of weak bisimilarity called
termination-sensitive bisimilarity which is a congruence and which is also
decidable between BPA and finite-state processes in polynomial time. The re-
sult demonstrates that the technique which has been used for weak bisimilarity
actually has a wider applicability—it can be adapted to many ‘bisimulation-
like” equivalences. Finally, we should note that our aim is just to show that the
mentioned problems are in P; although we do compute the degrees of bound-
ing polynomials explicitly, our analysis is quite simple and rough. Moreover,
both presented algorithms could be easily improved by employing standard
techniques. See the final section for further comments.

2 Definitions

We use process rewrite systems [31] as a formal model for processes. Let Act =
{a,b,c,...} and Const = {X,Y, Z,...} be disjoint countably infinite sets of
actions and process constants, respectively. The class of process expressions €

is defined by

Eux=¢| X | E|E | EE

where X € Const and ¢ is a special constant that denotes the empty expres-
sion. Intuitively, ‘.” is sequential composition and ‘|| is parallel composition.
We do not distinguish between expressions related by structural congruence
which is given by the following laws: ‘.” and ‘||” are associative, ‘||” is commu-

tative, and ‘e’ is a unit for ‘.” and ‘||".

A process rewrite system [31] is specified by a finite set of rules A which have
the form £ % F, where E, F € £ and a € Act. Const(A) and Act(A) denote
the sets of process constants and actions which are used in the rules of A,
respectively (note that these sets are finite). Each process rewrite system A
defines a unique transition system where states are process expressions over
Const(A), Act(A) is the set of labels, and transitions are determined by A



and the following inference rules (remember that ‘||’ is commutative):

(E=F)eA ES E ES%E
ESF EF % EF E|F & E|F

We extend the notation E % F to elements of Act* in the standard way. F is
reachable from E if E = F for some w € Act”.

Sequential and parallel expressions are those process expressions which do not
contain the ‘||” and the ‘. operator, respectively. Finite-state, BPA, and BPP
systems are subclasses of process rewrite systems obtained by putting certain
restrictions on the form of the rules. Finite-state, BPA, and BPP allow only
a single constant on the left-hand side of rules, and a single constant, sequen-
tial expression, and parallel expression on the right-hand side, respectively.
The set of states of a transition system which is generated by a finite-state,
BPA, or BPP process A is restricted to Const(A), the set of all sequential ex-
pressions over Const(A), or the set of all parallel expressions over Const(A),
respectively.

Example 1 Let A = {Z 5 Z,Z 5 1.Z,] % I.I,I % €} be a process
rewrite system. We see that A is a BPA system; a part of the transition system
associated to A which is reachable from Z looks as follows:

4

If we replace each occurrence of the ‘.” operator with the ‘|| operator, we obtain
a BPP system which generates the following transition system (again, we only
draw the part reachable from Z):

z z z z
(R S ( S () w—
o<—> o<—> o:—> O oo
d d d
Z ZII1 ZITNT ZITINTIT

A process is normed iff at every reachable state it can (successfully) terminate
via a finite sequence of computational steps. For a BPA or BPP process, this
is equivalent to the condition that for each constant X € Const(A) of its
underlying system A there is some w € Act* such that X = . We call such
constants X with this property normed.

The semantical equivalence we are interested in here is weak bisimilarity [32].
This relation distinguishes between ‘observable’ and ‘internal’ moves (compu-



tational steps); the internal moves are modeled by a special action which is
denoted ‘77 by convention. In what follows we consider process expressions
over Const(A) where A is some fixed process rewrite system.

Definition 2 The extended transition relation ‘éf is defined by E = F iff

i

either E = F and a = 7, or E R4 pr T F for some i,j € Ny,
E' E" € €.

A binary relation R over process expressions is a weak bisimulation iff when-
ever (E, F') € R then for each a € Act:

e if E % E' then there is F = F' such that (E',F') € R, and
o if F % F' then there is E = E' such that (E', F') € R.

Processes E, F are weakly bisimilar, written E ~ F', iff there is a weak bisi-
mulation relating them.

Weak bisimilarity can be approximated by the family of ~; relations, which
are defined as follows:

o I~y F for every E, F

o =, Fiff E=; F and the following conditions hold:
- if E % E’ then there is F' = F' such that E' ~; F'
- if F % F’ then there is E = E' such that E' ~; F'

It is worth noting that ~; is not an equivalence for ¢ > 1, as it is not transitive.
It is possible to approximate weak bisimilarity in a different way so that the
approximations are equivalences (see [21]). However, we do not need this for
our purposes.

Let I' be a finite-state system with n states, f,g € Const(I'). It is easy to
show that the problem whether f & ¢ is decidable in O(n?) time. First we
compute in O(n?) time the transitive closure of the transition system w.r.t.
the = transitions and thus obtain a new system in which % is the same as
= in the old system. Then it suffices to decide strong bisimilarity of f and
g in the new system. This can be done in O(n?logn) time, using partition
refinement techniques from [34].

Sometimes we also consider weak bisimilarity between processes of different
process rewrite systems, say A and I'. Formally, A and I' can be considered
as a single system by taking their disjoint union.



3 BPA Processes

In this section we prove that weak bisimilarity is decidable between BPA and
finite-state processes in polynomial time.

Let E be a BPA process with the underlying system A, F' a finite-state process
with the underlying system [" such that Const(A)N Const(I') = (). We assume
(w.lo.g.) that £ € Const(A). Moreover, we also assume that for all f,g €
Const(I'), a € Act such that f # g or a # 7 we have that f = ¢ implies
f % g € T. If those ‘%’ transitions are missing in I', we can add them
safely. Adding these transitions does not change the weak bisimilarity relation
among the states. In order to do this it suffices to compute (in cubic time)
the transitive closure of I' w.r.t. the 7 transitions. These extra transitions do
not influence our complexity estimations, as we always consider the worst case
when I' has all possible transitions. The condition that a # 7 is there because
we do not want to add new transitions of the form f = f, because then
our proof for weak bisimilarity would not immediately work for termination-
sensitive bisimilarity (which is defined at the end of this section).

We use upper-case letters X, Y, ... to denote elements of Const(A), and lower-
case letters f, g, ... to denote elements of Const(I'). Greek letters a, 3, . . . are
used to denote elements of Const(A)*. The size of A is denoted by n, and the
size of I by m (we measure the complexity of our algorithm in (n,m)).

The set Const(A) can be divided into two disjoint subsets of normed and
unnormed constants (remember that X € Const(A) is normed iff X = ¢
for some w € Act*). Note that it is decidable in O(n?) time if a constant is
normed. The set of all normed constants of A is denoted Normed(A). In our
constructions we also use processes of the form «f; they should be seen as
BPA processes with the underlying system A UT.

Intuition: Our proof can be divided into two parts: first we show that the
greatest weak bisimulation between processes of A and I' is finitely repre-
sentable. There is a finite relation B of size O(n m?) (called bisimulation base)
such that each pair of weakly bisimilar processes can be generated from that
base (a technique first used by Caucal [6]). Then we show that the bisimulation
base can be computed in polynomial time. To do that, we take a sufficiently
large relation G which surely subsumes the base and ‘refine’ it (this refine-
ment technique has been used in [17,18]). The size of G is still O(nm?), and
each step of the refinement procedure possibly deletes some of the elements
of G. If nothing is deleted, we have found the base (hence we need at most
O(nm?) steps). The refinement step is formally introduced in Definition 9 (we
compute the ezpansion of the currently computed approximation of the base).
Intuitively, a pair of processes belongs to the expansion iff for each % move
of one component there is a = move of the other component such that the



resulting pair of processes can be generated from the current approximation
of B. We have to overcome two problems:

1. The set of pairs which can be generated from B (and its approximations) is
infinite.

2. The set of states which are reachable from a given BPA state in one ‘=’
move is infinite.

We employ a ‘symbolic’ technique to represent those infinite sets (similar to
the one used in [3]), taking advantage of the fact that they have a simple (reg-
ular) structure which can be encoded by finite-state automata (see Theorem 6
and 12). This allows to compute the expansion in polynomial time.

Definition 3 A relation K is well-formed iff it is a subset of the relation G
defined by

G = ((Normed(A) - Const(I')) x Const(I'))
U (Const(A) x Const(I"))

U (Const(I') x Const(I))
U (

{e} x Const(I))

Note that the size of any well-formed relation is O(nm?) and that G is the
greatest well-formed relation.

One of the well-formed relations is of special importance.

Definition 4 The bisimulation base for A and I', denoted B, is defined as
follows:

B={(Yf,g) | Yf~g, Y € Normed(A)}
Ui(X,g) | X =g}
Ui(f,9) | f=g}
U{le,9) | e~ g}

As weak bisimilarity is a left congruence w.r.t. sequential composition, we
can ‘generate’ from B new pairs of weakly bisimilar processes by substitution
(it is worth noting that weak bisimilarity is not a right congruence w.r.t.
sequencing—to see this, it suffices to define X & X, Y 5 ¢, Z % Z. Now
X =Y, but XZ % YZ). This generation procedure can be defined for any
well-formed relation as follows:

Definition 5 Let K be a well-formed relation. The closure of K, denoted



Cl(K), is the least relation M which satisfies the following conditions:

(1) K C M,

(2) if (f,9) € K and («, f) € M, then (a,g) € M,

(3) if (f,9) € K and (ah, f) € M, then (ah,g) € M,

(4) if (V1,g) € K and (@, f) € M, then (Yar,g) € M,

(5) if (Yf,g9) € K and (ah, f) € M, then (Yah,qg) € M,

(6) if (o, g) € M and « contains an unnormed constant, then (a3, g), (afSh, g) €
M for every € Const(A)* and h € Const(L).

Note that CI(K) contains elements of just two forms — («,¢) and (af,g).
Clearly CI(K) = U2, CI(K)" where CI(K)? = K and CI(K)™! consists of
CI(K)* and the pairs which can be immediately derived from CI(K)® by the
rules 26 of Definition 5.

Although the closure of a well-formed relation can be infinite, its structure is in
some sense regular. This fact is precisely formulated in the following theorem:

Theorem 6 Let K be a well-formed relation. For each g € Const(L') there
is a finite-state automaton A, of size O(nm?) constructible in O(nm?) time
such that L(A,) = {a | (a,9) € CU(K)}U{af | (af,g) € CI(K)}.

PROOF. We construct a regular grammar of size O(nm?) which generates
the mentioned language. Let G, = (N, %, d,g) where

e N={f| fe Const(l)} U{U}
e ¥ = Const(A) U Const(T')
e ¢ is defined as follows:
- for each (g,h) € K we add the rule h — ¢.
- for each (f,h) € K we add the rules h — f, h — f.
- for each (Y f,h) € K we add the rules h — Y f, h — Y f.
- for each (X,h) € K we add the rule A — X and if X is unnormed, then
we also add the rule h — XU.
- for each X € Const(A), f € Const(I') we add therulesU — XU, U — X,
U—f.

A proof that G indeed generates the mentioned language is routine. Now we
translate Gy to A, (see, e.g., [19]). Note that the size of A, is essentially the
same as the size of Gy; A, is non-deterministic and can contain e-rules.

It follows immediately that for any well-formed relation K, the membership
problem for CI(K) is decidable in polynomial time. Another property of Cl(K)
is specified in the lemma below.



Lemma 7 Let (af,g) € CUK). If (Bh, f) € CI(K), then also (afBh,g) €
CUK). Similarly, if (B, f) € CI(K), then also (af3,g) € CI(K).

PROOF. We just give a proof for the first claim (the second one is similar).
Let (af,g) € CI(K)'. By induction on 3.

e i = 0. Then (af,g) € K and we can immediately apply the rule 3 or 5 of
Definition 5 (remember that o can be ).

e Induction step. Let (af,g) € CI(K)""'. There are three possibilities (cf.
Definition 5).

I. There is r such that (af,r) € CI(K)?, (r,g) € K. By induction hypothesis
we know (afh,r) € CI(K), hence (afh,g) € CI(K) due to the rule 3 of
Definition 5.

II. @ =Y and there is 7 such that (Yr,g) € K, (vf,r) € CI(K)". By induc-
tion hypothesis we have (yfh,r) € CI(K), and hence also (YyGh,r) €
CI(K) by the rule 5 of Definition 5.

L. a = v§ where (v,g9) € CI(K)® and v contains an unnormed constant.
Then (v0Gh, g) € CI(K) by the last rule of Definition 5.

The importance of the bisimulation base is clarified by the following theorem.
It says that CI(B) subsumes the greatest weak bisimulation between processes
of A and I'.

Theorem 8 For all «, f, g we have o = g iff (o, g) € ClU(B), and af =~ g iff
(af,9) € CI(B).

PROOF. The ‘if’ part is obvious in both cases, as B contains only weakly
bisimilar pairs and all the rules of Definition 5 produce pairs which are again
weakly bisimilar. The ‘only if” part can, in both cases, be easily proved by
induction on the length of o (we just show the first proof; the second one is
similar).

e a =c. Then (¢,g) € B, hence (¢,g) € CI(B).

e o = Y. If YV is unnormed, then Y &~ ¢ and (Y,g) € B. By the rule 6
of Definition 5 we obtain (Y'3,¢) € CI(B). If Y is normed, then Y3 = 3
for some w € Act® and g must be able to match the sequence w by some
g = ¢ such that 8 ~ ¢'. By substitution we now obtain that Y¢' ~
Clearly (Y¢',g) € B, and (8,¢') € CI(B) by induction hypothesis. Hence
(a, g) € CI(B) due to the rule 4 of Definition 5.

The next definition formalizes one step of the ‘refinement procedure’ which
is applied to G to compute B. The intuition is that we start with G as an
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approximation to B. In each refinement step some pairs are deleted from the
current approximation. If in a refinement step no pairs are deleted any more
then we have found B. The next definition specifies the condition on which
a given pair is not deleted in a refinement step from the currently computed
approximation of B.

Definition 9 Let K be a well-formed relation. We say that a pair (X, g) of
K expands in K iff the following two conditions hold:

o for each X = « there is some g = ¢' such that (a, g') € CI(K)
e for each g = ¢' there is some X = « such that (a, g') € CI(K)

The expansion of a pair of the form (Y f, g), (f,9), (¢,9) in K is defined in the
same way—for each %’ move of the left component there must be some =’
move of the right component such that the resulting pair of processes belongs
to CI(K), and vice versa (note that € = ¢). The set of all pairs of K which
expand in K is denoted by Frp(K).

The notion of expansion is in some sense ‘compatible’ with the definition of
weak bisimulation. This intuition is formalized in the following lemma.

Lemma 10 Let K be a well-formed relation such that Ezp(K) = K. Then
Cl(K) is a weak bisimulation.

PROOF. We prove that every pair (a, g), (af, g) of CI(K)® has the property
that for each ‘%’ move of one component there is a ‘=’ move of the other
component such that the resulting pair of processes belongs to CI(K) (we
consider just pairs of the form («f, g); the other case is similar). By induction
on i.

e i = 0. Then (af,g9) € K; as K = Ezp(K), the claim follows directly from
the definitions.
e Induction step. Let (af, g) € CI(K)"!. There are three possibilities:
. There is an h such that (af, h) € CI(K)', (h,g) € K.
Let af = 7f (note that o can be empty; in this case we have to
consider moves of the form f < f’. It is done in a similar way as below).
As (af,h) € CI(K)*, we can use the induction hypothesis and conclude
that there is h = h' such that (vf, h’) € CI(K). We distinguish two cases:
1) a =7 and ' = h. Then (vf,h) € CI(K) and as (h,g) € K, we obtain
(vf,g) € CI(K) due to Lemma 7. Hence g can use the move g = g.
2) a # 7 or h # h'. Then there is a transition h = h' (see the beginning
of this section) and as (h, g) € K, by induction hypothesis we know that
there is some g = ¢’ such that (#',¢') € CI(K). Hence, (vf,g') € Cl(K)
due to Lemma 7.
Now let ¢ <% ¢'. As (h,g) € K, there is h = h' such that (b, ¢') €
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I1.

I1I.

Cl(K). We distinguish two possibilities again:

1) a = 7 and b/ = h. Then af can use the move af = af; we have
(h,¢') € CI(K) and (af,h) € CI(K), hence also (af,¢') € CI(K).

2)a# Torh#h'. Then h % h'and as (af, h) € CI(K)?, thereis af = vf
(or af = f'; it is handled in the same way) such that (vf, k') € CI(K).
Hence also (vf,¢") € CI(K) by Lemma 7.

a =Y and there is h such that (Y'h,g) € K, (3f,h) € Cl(K)".

Let YBf = v6f. As (Yh, g) € K, we can use induction hypothesis and
conclude that there is ¢ = ¢’ such that (vh,¢') € CI(K). As (Bf,h) €
CI(K), we obtain (y(f,q') € CI(K) by Lemma 7.

Let ¢ = ¢'. As (Yh,g) € K, by induction hypothesis we know that Y'h
can match the move g % ¢'; there are two possibilities:

1) Yh = ~h such that (yh,g') € CI(K). Then also Y3f = v3f. As
(Bf,h) € CI(K), we immediately have (y3f,g") € CI(K) as required.

2) Yh = k' such that (h',¢') € CI(K). The transition Yh = h' can be
‘decomposed’ into Yh = h, h 2 b/ where z =aAy=Torz=71AYy =a.
If y =7 and B’ = h, we are done immediately because then Y3 = 3
and as (h,g'), (B,h) € CI(K), we also have (5,¢') € CI(K) as needed.
If y # 7 or W' # h, there is a transition h % R'. As (8f,h) € CI(K)',
due to induction hypothesis we know that there is some Bf % ~f (or
Bf 2 f'; this is handled in the same way) with (yf, #') € CI(K). Clearly
YBf = vf. As (W,q'), (vf,h') € CI(K), we also have (vf,g') € Cl(K).
« = 37 where 3 contains an unnormed constant and (3, g) € CI(K)".

Let o % o/. Then o/ = 6y and 3 = 4. As (B,g9) € CI(K)?, there is
g = ¢’ such that (6, ¢') € CI(K) due to the induction hypothesis. Clearly
d contains an unnormed constant, hence (67, ¢') € CI(K) by the last rule
of Definition 5.

Let g % ¢'. As (8, 9) € CI(K)?, there is 3 = § such that (8, ¢') € CI(K)
and ¢ contains an unnormed constant. Hence o = 7 and (0, ¢') € CI(K)
due to the last rule of Definition 5.

The notion of expansion allows to approximate B in the following way: B° = G,
Bt = Ezp(B').

Theorem 11 There is a j € N, bounded by O(nm?), such that B/ = B/t
Moreover, BY = B.

PROOF. Ezp (viewed as a function on the complete lattice of well-formed
relations) is monotonic, hence the greatest fixed-point exists and must be
reached after O(n m?) steps, as the size of G is O(nm?). We prove that B/ = B.
‘D:" First, let us realize that B = Ezp(B) (it follows immediately from Defi-
nition 4, Definition 9, and Theorem 8). The inclusion B C B’ can be proved
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by a simple inductive argument; clearly B C B°, and if B C B, we also have
B C B! by definition of the expansion and the fact B = Exp(B).

‘C As Ezp(B’) = B, we know that CI(B’) is a weak bisimulation due to
Lemma 10. Thus, processes of every pair in B’ are weakly bisimilar.

In other words, B can be obtained from G in O(nm?) refinement steps which
correspond to the construction of the expansion. The only thing which remains
to be shown is that Fzp(K) is effectively constructible in polynomial time. To
do that, we employ a ‘symbolic’ technique which allows to represent infinite
subsets of BPA state-space in an elegant and succinct way.

Theorem 12 For all X € Const(A), a € Act(A) there is a finite-state au-
tomaton A(x,q) of size O(n*) constructible in O(n*) time such that L(A(x q)) =
{a] X = a}

PROOF. We define a left-linear grammar Gx,q) of size O(n?) which gen-
erates the mentioned language. This grammar can be converted to Ax
by a standard algorithm known from automata theory (see, e.g., [19]). Note
that the size of A(x 4 is essentially the same as the size of G(x ). First, let
us realize that we can compute in O(n?) time the sets M, and M, consist-
ing of all Y € Const(A) such that Y = ¢ and Y = ¢, respectively. Let
G(X,a) = (N, E, (5, S) where

o N = {Y°Y" | Y € Const(A)} U {S}. Intuitively, the index indicates
whether the action ‘a’ has already been emitted.
o ¥ = Const(A)
e ) is defined as follows:
- We add the production S — X® to d, and if X = ¢ then we also add the
production S — €.
- For every transition Y % 7, --- 7, of A and every i such that 1 < i < k
we test whether Z; = ¢ for every 1 < j < 4. If this is the case, we add to
0 the productions
Y¢ — ZiZz'+1 s Zk and Y — Z;rZZ'+1 s Zk
- For every transition Y = Z; -+ Z;, of A and every i such that 1 <i < k
we do the following:
We test whether Z; = ¢ for every 1 < j < 4. If this is the case, we
add to 0 the productions
Y¢ — ZfZi+1"'Zk, Y™ — ZZTZZ+1Z]C and Y7 — ZiZz'+1"'Zk
We test whether there is a ¢t < ¢ such that Z, = ¢ and Z; = ¢ for
every 1 < j <1, j # t. If this is the case, we add to ¢ the productions

YO ZiZiy - Zyand Y — Zi 2 - 2y

The fact that G(x,q) generates the mentioned language is intuitively clear and
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a formal proof of that is easy. The size of G(xq) is O(n?), as A contains O(n)
basic transitions of length O(n).

The crucial part of our algorithm (the ‘refinement step’) is presented in the
proof of the next theorem. Our complexity analysis is based on the following
facts: Let A = (Q, %, 9, qo, F) be a non-deterministic automaton with e-rules,
and let ¢ be the total number of states and transitions of A.

e The problem whether a given w € X* belongs to L(A) is decidable in
O(Jw| - t) time.
e The problem whether L(A) = () is decidable in O(t) time.

Theorem 13 Let K be a well-formed relation. The relation Exp(K) can be
effectively constructed in O(n*m®) time.

PROOF. First we construct the automata A, of Theorem 6 for every g €
Const(I). This takes O(nm?) time. Then we construct the automata A x 4) of
Theorem 12 for all X, a. This takes O(n?) time. Furthermore, we also compute
the set of all pairs of the form (f,¢), (¢, g) which belong to CI(K). It can be
done in O(m?) time. Now we show that for each pair of K we can decide in
O(n®m?) time whether this pair expands in K.

The pairs of the form (f, g) and (g, g) are easy to handle; there are at most m
states f’ such that f % f', and at most m states ¢’ with g = ¢/, hence we need
to check only O(m?) pairs to verify the first (and consequently also the second)
condition of Definition 9. Each such pair can be checked in constant time,
because the set of all pairs (f,¢), (¢,¢) which belong to CI(K) has already
been computed at the beginning.

Now let us consider a pair of the form (Y, g). First we need to verify that for
each Y % « there is some g = h such that (o, h) € CI(K). This requires
O(nm) tests whether o« € L(Ay). As the length of « is O(n) and the size
of Aj, is O(nm?), each such test can be done in O(n?m?) time, hence we
need O(n*m?) time in total. As for the second condition of Definition 9,
we need to find out whether for each ¢ = h there is some X = « such that
(o, h) € CI(K). To do that, we simply test the emptiness of L(A(x,qa)) NL(Ap).
The size of the product automaton is O(n*m?) and we need to perform only

O(m) such tests, hence O(n®m?) time suffices.
Pairs of the form (Y f, g) are handled in a similar way; the first condition of

Definition 9 is again no problem, as we are interested only in the ‘%’ moves
of the left component. Now let ¢ % ¢’. An existence of a ‘good’ = move of
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Y f can be verified by testing whether one of the following conditions holds:

o L(Aw,a)) - {f}NL(Ay) is nonempty.
e Y = ¢ and there is some f = f’ such that (f',¢') € CI(K).
e Y = ¢ and there is some f = f’ such that (f',¢') € CI(K).

All those conditions can be checked in O(n®m?) time (the required analysis
has been in fact done above). As K contains O(nm?) pairs, the total time
which is needed to compute Ezp(K) is O(n* m®).

As the BPA process E (introduced at the beginning of this section) is an
element of Const(A), we have that F ~ F iff (E,F) € B. To compute B,
we have to perform the computation of the expansion O(nm?) times (see
Theorem 11). This gives us the following main theorem:

Theorem 14 Weak bisimilarity is decidable between BPA and finite-state
processes in O(n®m") time.

4 Termination-Sensitive Bisimilarity

As we already mentioned in the previous section, weak bisimilarity is not a
congruence w.r.t. sequential composition. This is a major drawback, as any
equivalence which is to be considered as ‘behavioral’ should have this prop-
erty. We propose a solution to this problem by designing a natural refinement
of weak bisimilarity called termination-sensitive bistmilarity. This relation re-
spects some of the main features of sequencing which are ‘overlooked’ by weak
bisimilarity; consequently, it is a congruence w.r.t. sequential composition. We
also show that termination-sensitive bisimilarity is decidable between BPA and
finite-state processes in polynomial time by adapting the method of the pre-
vious section. It should be noted right at the beginning that we do not aim
to design any new ‘fundamental’ notion of the theory of sequential processes
(that is why the properties of termination-sensitive bisimilarity are not stud-
ied in detail). We just want to demonstrate that our method is applicable to a
larger class of bisimulation-like equivalences and the relation of termination-
sensitive bisimilarity provides a (hopefully) convincing evidence that some of
them might be interesting and useful.

In our opinion, any ‘reasonable’ model of sequential behaviors should be able
to express (and distinguish) the following ‘basic phenomena’ of sequencing:

o successful termination of the process which is currently being executed. The
system can then continue to execute the next process in the queue;
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o unsuccessful termination of the executed process (deadlock). This models a
severe error which causes the whole system to ‘get stuck’;
e entering an infinite internal loop (cycling).

The difference between successful and unsuccessful termination is certainly
significant. The need to distinguish between termination and cycling has also
been recognized in practice; major examples come, e.g., from the theory of
operating systems.

BPA processes are a very natural model of recursive sequential behaviors.
Successful termination is modeled by reaching ‘c’. There is also a ‘hidden’
syntactical tool to model deadlock—note that by the definition of BPA systems
there can be an X € Const(A) such that A does not contain any rule of the
form X % «a (let us call such constants undefined). A state X3 models the
situation when the executed process reaches a deadlock—there is no transition
(no computational step) from X 3, the process is ‘stuck’. It is easy to see that
we can safely assume that A contains at most one undefined constant (the
other ones can be simply renamed to X), which is denoted ¢ by convention
[2]. Note that 0 is unnormed by definition. States of the form da are called
deadlocked.

In the case of finite-state systems, we can distinguish between successful and
unsuccessful termination in a similar way. Deadlock is modeled by a distin-
guished undefined constant ¢, and the other undefined constants model suc-
cessful termination.

Note that § ~ ¢ by definition of weak bisimilarity. As ‘e’ represents a successful
termination, this is definitely not what we want. Before we define the promised
relation of termination-sensitive bisimilarity, we need to clarify what is meant
by cycling; intuitively, it is the situation when a process enters an infinite
internal loop. In other words, it can do ‘7’ forever without a possibility to do
anything else or to terminate (either successfully or unsuccessfully).

Definition 15 The set of initial actions of a process E, denoted I(E), is
defined by I1(E) = {a € Act | E = F for some F}. A process E is cycling iff
every state F' which is reachable from E satisfies I(F) = {1}.

Note that it is easily decidable in quadratic time whether a given BPA process
is cycling; in the case of finite-state systems we only need linear time.

Definition 16 We say that an expression E is normal iff E is not cycling,
deadlocked, or successfully terminated.

A binary relation R over process expressions is a termination-sensitive bisi-
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mulation iff whenever (E, F) € R then the following conditions hold:

e if one of the expressions E, F' is cycling then the other is also cycling;

e if one of the expressions E, F' is deadlocked then the other is either normal
or it is also deadlocked;

e if one of the expressions E, F s successfully terminated then the other is
either normal or it 1s also successfully terminated;

o if E % E' then there is F = F' such that (E', F') € R;

o if % F' then there is E = E' such that (E', F') € R.

Processes E, F' are termination-sensitive bisimilar, written E ~ F', iff there is
a termination-sensitive bisimulation relating them.

Termination-sensitive bisimilarity seems to be a natural refinement of weak
bisimilarity which better captures an intuitive understanding of ‘sameness’ of
sequential processes. It distinguishes among the phenomena mentioned at the
beginning of this section, but it still allows to ignore internal computational
steps to a large extent. For example, a deadlocked process is still equivalent to
a process which is not deadlocked yet but which necessarily deadlocks after a
finite number of 7 transitions (this example also explains why the first three
conditions of Definition 16 are stated so carefully).

The family of ~; approximations is defined in the same way as in case of weak
bisimilarity; the only difference is that ~ relates exactly those processes which
satisfy the first three conditions of Definition 16. The following theorem follows
immediately from this definition.

Theorem 17 Termination-sensitive bisimilarity is a congruence w.r.t. se-
quential composition.

The technique which has been used in the previous section also works for
termination-sensitive bisimilarity.

Theorem 18 Termination-sensitive bisimilarity is decidable between BPA and
finite-state processes in O(n®mT) time.

PROOF. First, all assumptions about A and I' which were mentioned at the
beginning of Section 3 are also safe w.r.t. termination-sensitive bisimilarity;
note that it would not be true if we also assumed the existence of a 7-loop
f = f for every f € Const(I'). Now we see why the assumptions about I’
are formulated so carefully. The only thing which has to be modified is the
notion of well-formed relation; it is defined in the same way, but in addition
we require that processes of every pair which is contained in a well-formed
relation K are related by ~. It can be easily shown that processes of pairs
contained in CI(K) are then also related by ~. In other words, we do not
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have to take care about the first two requirements of Definition 16 in our
constructions anymore; everything works without a single change.

The previous proof indicates that the ‘method’ of Section 3 can be adapted to
other bisimulation-like equivalences. See the final section for further comments.

5 Normed BPP Processes

In this section we prove that weak bisimilarity is decidable in polynomial time
between normed BPP and finite-state processes. The basic structure of our
proof is similar to the one for BPA. The key is that the weak bisimulation
problem can be decomposed into problems about the single constants and
their interaction with each other. In particular, a normed BPP process is
finite w.r.t. weak bisimilarity iff every single reachable process constant is
finite w.r.t. weak bisimilarity. This does not hold for general BPP and thus
our construction does not carry over to general BPP.

Example 19 Consider the unnormed BPP that is defined by the following
rules.

X, XY, Y e for1<i<n-—1

X, 25 X,||Va, Y 2 e

Then the process X1 || Xa|| ... || Xy is finite w.r.t. bisimilarity, but every subpro-
cess (e.g. X3|| X4|| X7 or every single constant X;) is infinite w.r.t. bisimilarity.

Even for normed BPP, we have to solve some additional problems. The bisi-
mulation base and its closure are simpler due to the normedness assumption,
but the ‘symbolic’ representation of BPP state-space is more problematic (see
below). The set of states which are reachable from a given BPP state in one
‘2> move is no longer regular, but it can be in some sense represented by
a CF-grammar. In our algorithm we use the facts that emptiness of a CF
language is decidable in polynomial time, and that CF languages are closed
under intersection with regular languages.

Let £ be a BPP process and F' a finite-state process with the underlying
systems A and T, respectively. We can assume w.l.o.g. that E € Const(A).
Elements of Const(A) are denoted by X,Y,Z, ..., elements of Const(I') by
f,g9,h,... The set of all parallel expressions over Const(A) is denoted by
Const(A)® and its elements by Greek letters «, 3, . .. The size of A is denoted
by n, and the size of I' by m.
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In our constructions we represent certain subsets of Const(A)® by finite au-
tomata and CF grammars. The problem is that elements of Const(A)® are
considered modulo commutativity; however, finite automata and CF gram-
mars of course distinguish between different ‘permutations’ of the same word.
As the classes of regular and CF languages are not closed under permutation,
this problem is important. As we want to clarify the distinction between «
and its possible ‘linear representations’, we define for each a the set Lin(«)
as follows:

Lin(Xy| - - || Xk) = {Xpa) - - Xpw) | p is a permutation of the set {1,---,k}}

For example, Lin(X||Y||Z) ={XYZ, XZY,YXZ, YZX, ZXY, ZY X}. We
also assume that each Lin(«) contains some (unique) element called canonical
form of Lin(«). It is not important how the canonical form is chosen; we need
it just to make some constructions deterministic (for example, we can fix some
linear order on process constants and let the canonical form of Lin(«) be the
sorted order of constants of «).

Definition 20 A relation K is well-formed iff it is a subset of G = (Const(A)U
{e}) x Const(I'). The bisimulation base for A and I', denoted B, is defined

as follows:

B=A(X, /) | X= [}u{le, f) e~ [}

Definition 21 Let K be a well-formed relation. The closure of K, denoted
Cl(K), is the least relation M which satisfies

(1) K C M,
(2) if (X,9) € K, (B,h) € M, and f = g||h, then (B||X, f) € M,
(3) if (,9) € K, (B,h) € M, and f = g||h, then (3, f) € M.

The family of CI(K)® approximations is defined in the same way as in Section 3.

Lemma 22 Let (o, f) € CI(K), (8,9) € CI(K), fllg = h. Then (c||§,h) €
Cl(K).

PROOF. Let (o, f) € CI(K)'. By induction on i.

e i = 0. Then («, f) € K and we can immediately apply the rule 2 or 3 of
Definition 21.
e Induction step. Let (o, f) € CI(K)*"!. There are two possibilities.
I. @ = X||y and there are r, s such that (X,r) € K, (v,s) € CI(K)*, and
r||s & f. Clearly r||s||g = h, hence also s||g ~ t for some ¢. By induction
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hypothesis we have (v]|3,t) € CI(K). Now (X||v||8,h) € CI(K) due to
the second rule of Definition 21 (note that r||t = h).

II. (a,r) € CI(K)" and there is some s such that (¢,s) € K and r|s ~ f.
As r||s||g & h, there is some t such that r||g &~ ¢. By induction hypothesis
we obtain («||3,t) € CI(K), and hence (a|3,h) € CI(K) due to the third
rule of Definition 21.

Again, the closure of the bisimulation base is the greatest weak bisimulation
between processes of A and I'.

Theorem 23 Let o € Const(A)®, f € Const(I'). We have that o =~ f iff
(o, f) € CU(B).

PROOF. The ‘if’ part is obvious. The ‘only if’ part can be proved by induc-
tion on length(«).

e a=c¢. Then (¢, f) € B.

e o= X||f. As A is normed and X||§ = f, there are w,v € Act™ such that
X8 = B, X||# = X. The process f must be able to match the sequences
w,v by entering weakly bisimilar states—there are g,h € Const(A) such
that # ~ g, X ~ h, and consequently also f & g||/h (here we need the fact
that weak bisimilarity is a congruence w.r.t. the parallel operator). Clearly
(X,h) € B and (8,9) € Cl(B) by induction hypothesis, hence (X||3, f) €
Cl(B) by Definition 21.

The closure of any well-formed relation can in some sense be represented by
a finite-state automaton, as stated in the next theorem. For this construction
we first need to compute the set {(f||g, ) | fllg = h}. We consider the parallel
composition of the finite-state system with itself, i.e., the states of this system
are of the form f||g. Let our new system be the union of this system with the
old system. The new system has size O(m?) and its states are of the form f||g
or h. Then we apply the usual cubic-time partition refinement algorithm to
decide bisimilarity on the new system (see Section 2). This gives us the set

{(fllg,h) | fllg = h} in O(m®) time.

Theorem 24 Let K be a well-formed relation. For each g € Const(L') there
is a finite-state automaton A, of size O(nm) constructible in O(nm) time
such that the following conditions hold:

e whenever A, accepts an element of Lin(c), then (o, g) € CI(K)
e if (a,9) € CI(K), then A, accepts at least one element of Lin(c)
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PROOF. We design a regular grammar of size O(nm) such that L(G,) has
the mentioned properties. Let G, = (N, %, 9, S) where

e N = Const(I') U {S}
o ¥ = Const(A)
e ¢ is defined as follows:
- for each (X, f) € K we add the rule S — X f.
- for each (g, f) € K we add the rule S — f.
- for all f,r,s € Const(I'), X € Const(A) such that (X,r) € K, f =~ r||s
we add the rule s — X f.
- for all f,r,s € Const(I') such that (¢,r) € K, f = r||s we add the rule
s— f.
- we add the rule g — €.

The first claim follows from an observation that whenever we have @ € Lin(«)
such that @f is a sentence of G, then («, f) € CI(K). This can be easily
proved by induction on the length of the derivation of @f. For the second
part, it suffices to prove that if (o, f) € CI(K)", then there is @ € Lin(«) such
that @f is a sentence of G,. It can be done by a straightforward induction on
i

It is important to realize that if (o, g) € CI(K), then A, does not necessarily
accept all elements of Lin(a). For example, if K = {(X, f), (Y,r),(Z,h)},
Const(T') = {f,g,h,r,s} with f||r = s, s|h =~ g, and f||h % p for any p €
Const(I'), then A, accepts the string XY Z but not the string X ZY. Generally,
A, cannot be ‘repaired’ to do so (see the beginning of this section); however,
there is actually no need for such ‘repairs’, because A, has the following nice

property:

Lemma 25 Let K be a well-formed relation such that B C K. If o = g, then
the automaton A, of (the proof of) Theorem 24 constructed for K accepts all
elements of Lin(a).

PROOF. Let G, be the grammar of the previous proof. First we prove that
for all s,r, f € Const(T'), v € Const(A)® such that v = r, s||r &~ f there is a
derivation s —=* 7f in G, for every ¥ € Lin(vy). By induction on length().

e 7 =c¢. As e & r, the pair (¢,r) belongs to B. Hence s — f by definition of
Gy

e Let length(y) = i + 1 and let X € Lin(y). Then v is of the form X||3
where € Lin(3). As X||# ~ r and A is normed, there are u,v € Const(I)
such that X ~ u, # ~ v, and u||v &= r. Hence we also have s||ul|v ~ f, thus
sllu = t for some ¢t € Const(I'). As X =~ u, the pair (X, u) belongs to B.
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Clearly s — Xt by definition of G,. As 6_% v and vt ~ f,_we can use the
induction hypothesis and conclude t —* Gf. Hence s —* X3 f as required.

Now let o = g. As A is normed, there is some r € Const(I') such that ¢ ~ r.
Hence (e,7) € B and S — r by definition of G,. Clearly r||g ~ g and due to
the above proved property we have r —* @g for every @ € Lin(a). As g — ¢
is a rule of G4, we obtain S — r —* @wg — @.

The set of states which are reachable from a given X € Const(A) in one ‘=’
move is no longer regular, but it can, in some sense, be represented by a CF
grammar.

Theorem 26 Forall X € Const(A), a € Act(A) there is a context-free gram-
mar Gx,q) in 3-GNF (Greibach normal form, i.e., with at most 2 variables at
the right hand side of every production) of size O(n*) constructible in O(n*)
time such that the following two conditions hold:

o if G(x,q) generates an element of Lin(a), then X = «
o if X = q, then G (x,a) generates at least one element of Lin(c)

PROOF. Let G(x,o) = (N, X,0, X*) where

e N={Y*Y"|Y € Const(A)} U{S}
e ¥ = Const(A)
e ¢ is defined as follows:

- the rule S — X* is added to 9.

- for each transition Y % Z;||---||Zy of A we add the rule
YO 20 2]
(if £ =0, we add the rule Y* — ¢).
- for each transition Y = Z;|| -+ -||Zx of A we add the rule
YT 20 2]

(if k =0, we add Y™ — ¢). Moreover, if £ > 1 then for each 1 <i < k we
also add the rule
YO ZT 0 T
- for each Y € Const(A) we add the rule
Y™ =Y.

The fact that G|y, satisfies the above mentioned conditions follows directly
from its construction. Note that the size of G(x q) is O(n?) at the moment. Now
we transform G(x . to 3-GNF by a standard procedure of automata theory

(see [19]). It can be done in O(n*) time and the size of resulting grammar is
O(n").
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The notion of expansion is defined in a different way (when compared to the
one of the previous section).

Definition 27 Let K be a well-formed relation. We say that a pair (X, f) €
K expands in K iff the following two conditions hold:

o for each X % « there is some f = ¢ such that @ € L(A,), where @ is the
canonical form of Lin(«).
o for each f = g the language L(Ay) N L(G(x,q)) is non-empty.

A pair (e, f) € K expands in K iff f = g implies a = 7, and for each f = g
we have that € € L(A,). The set of all pairs of K which expand in K 1is denoted
by Exp(K).

Theorem 28 Let K be a well-formed relation. The set Exp(K) can be com-
puted in O(n't m®) time.

PROOF. First we compute the automata A, of Theorem 24 for all g €
Const(I'). This takes O(nm?) time. Then we compute the grammars G(x 4
of Theorem 26 for all X € Const(A), a € Act. This takes O(n®) time. Now
we show that it is decidable in O(n'®mT) time whether a pair (X, f) of K
expands in K.

The first condition of Definition 27 can be checked in O(n® m?) time, as there
are O(n) transitions X —» «, O(m) states g such that f = g, and for each
such pair (o, g) we verify whether @ € L(A,) where @ is the canonical form

of Lin(«); this membership test can be done in O(n*m) time, as the size of
@ is O(n) and the size of A, is O(nm).

The second condition of Definition 27 is more expensive. To test the emptiness
of L(Ay) N L(Gx,q)), we first construct a pushdown automaton P which rec-
ognizes this language. P has O(m) control states and its total size is O(n® m).
Furthermore, each rule pX % qa of P has the property that length(a) < 2,
because Gy q) is in 3-GNF. Now we transform this automaton to an equivalent
CF grammar by a well-known procedure described, e.g., in [19]. The size of
the resulting grammar is O(n°m?), and its emptiness can be thus checked in
O(n*® m®) time (cf. [19]). This construction has to be performed O(m) times,
hence we need O(n'®mT) time in total.

Pairs of the form (e, f) are handled in a similar (but less expensive) way. As
K contains O(nm) pairs, the computation of Ezp(K) takes O(n'' m®) time.

The previous theorem is actually a straightforward consequence of Defini-
tion 27. The next theorem says that Ezp really does what we need.

23



Theorem 29 Let K be a well-formed relation such that Exp(K) = K. Then
Cl(K) is a weak bisimulation.

PROOF. Let (o, f) € CI(K)". We prove that for each a % 3 there is some
f = g such that (3,g) € CI(K) and vice versa. By induction on i.

e i =0. Then (o, f) € K, and we can distinguish the following two possibili-
ties:
(1) a=X

Let X % (3. By Definition 27 there is f = g such that 3 € L(A,) for
some # € Lin(3). Hence (3,g) € CI(K) due to the first part of Theo-
rem 24.

Let f = g. By Definition 27 there is some string w € L(A,) NL(G x.q))-
Let w € Lin(3). We have X = 3 due to the first part of Theorem 26, and
(B8,9) € CI(K) due to Theorem 24.

(2) a=¢
Let f % g. Then a = 7 and ¢ € L(A,) by Definition 27. Hence (g, g) €
Cl(K) due to Theorem 24.
e Induction step. Let (o, f) € CI(K)""!. There are two possibilities.
I. @ = X||y and there are r, s such that (X,r) € K, (v,s) € CI(K)*, and
rl|s = f.

Let X||Ja = 3. The action ‘a’ can be emitted either by X or by a. We
distinguish the two cases.

1) Xy = 6]y As (X,r) € K and X =% 4, there is some r = 1’
such that (0,7") € CI(K). As r||s ~ f and r = 1, there is some f = ¢
such that r'||s &~ g. To sum up, we have (4,7") € CI(K), (v,s) € CI(K),
'||s & g, hence (6|7, 9) € CI(K) due to Lemma 22.

2) X||v = X||p. As (v,s) € CI(K)" and v % p, there is s = s’ such
that (p,s') € CI(K). As r||s &~ f and s = &', there is f = ¢ such that
(r|ls") = g. Due to Lemma 22 we obtain (X]||p, g) € CI(K).

Let f % g. As r||s ~ f, there are r = 1/, s % &' where 2 = aAy = 7 or
x =7 Ay =asuch that r'||s' = g. As (X,r) € K, (v,5) € CI(K)*, there
are X = §, v = psuch that (6,7'), (p,s') € CI(K). Clearly X[y = d||p
and (0]|p, g9) € CI(K) due to Lemma 22.

II. (a,r) € CI(K)" and there is some s such that (g,s) € K and r||s ~ f.

The proof can be completed along the same lines as above.

Now we can approximate (and compute) the bisimulation base in the same
way as in the Section 3.

Theorem 30 There is a j € N, bounded by O(nm), such that B/ = BT
Moreover, BY = B.

24



PROOF. O It suffices to show that Exp(B) = B. Let (o, f) € B. Then
a =~ f,and a = X for some X € Const(A) or a = . We show that (X, f)
expands in B (a proof for the pair (e, f) is similar).

Let X % 3. As X ~ f, there is f = ¢ such that § = g. Let 3 be the canonical
form of Lin(3). Due to Lemma 25 we have § € L(A,).

Let f 1)_9. As X ~ f, there is X = B such that 8 ~ g¢. Due to Theorem 26
there is § € Lin(3) such that 8 € L(G(x,q)). Moreover, 3 € L(A,) due to
Lemma 25. Hence, L(Ay) N L(G(x,q)) is nonempty.

‘C It follows directly from Theorem 29.

Theorem 31 Weak bistmilarity between normed BPP and finite-state pro-
cesses is decidable in O(n'? m?) time.

PROOF. By Theorem 30 the computation of the expansion of Theorem 28
(which costs O(n'' m®) time) has to be done O(nm) times.

6 Conclusions

We have proved that weak bisimilarity is decidable between BPA processes
and finite-state processes in O(n°m’) time, and between normed BPP and
finite-state processes in O(n'?> m®) time. It may be possible to improve the al-
gorithm by re-using previously computed information, for example about sets
of reachable states, but the exponents would still be very high. This is because
the whole bisimulation basis is constructed. To get a more efficient algorithm,
one could try to avoid this. Note however, that once we have constructed B
(for a BPA/nBPP system A and a finite-state system I') and the automaton
A, of Theorem 6/Theorem 24 (for K = B and some g € Const(I')), we can
decide weak bisimilarity between a BPA/nBPP process o over A and a pro-
cess f € Const(I') in time O(|a|)—it suffices to test whether Ay accepts o
(observe that there is no substantial difference between Ay and A, except for
the initial state).

The technique of bisimulation bases has also been used for strong bisimilarity
in [17,18]. However, those bases are different from ours; their design and the
way how they generate ‘new’ bisimilar pairs of processes rely on additional
algebraic properties of strong bisimilarity (which is a full congruence w.r.t.
sequencing, allows for unique decompositions of normed processes w.r.t. se-
quencing and parallelism, etc.). The main difficulty of those proofs is to show
that the membership in the ‘closure’ of the defined bases is decidable in polyno-
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mial time. The main point of our proofs is the use of ‘symbolic’ representation
of infinite subsets of BPA and BPP state-space.

We would also like to mention that our proofs can be easily adapted to other
bisimulation-like equivalences, where the notion of ‘bisimulation-like’ equiva-
lence is the one of [21]. A concrete example is termination-sensitive bisimilarity
of Section 4. Intuitively, almost every bisimulation-like equivalence has the al-
gebraic properties which are needed for the construction of the bisimulation
base, and the ‘symbolic’ technique for state-space representation can also be
adapted. See [21] for details.
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Abstract. All bisimulation problems for pushdown automata are at
least PSPACE-hard. In particular, we show that (1) Weak bisimilarity
of pushdown automata and finite automata is PSPACE-hard, even for
a small fixed finite automaton, (2) Strong bisimilarity of pushdown au-
tomata and finite automata is PSPACE-hard, but polynomial for every
fixed finite automaton, (3) Regularity (finiteness) of pushdown automata
w.r.t. weak and strong bisimilarity is PSPACE-hard.
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1 Introduction

Bisimulation equivalence plays a central role in the theory of process algebras
[21]. The decidability and complexity of bisimulation problems for infinite-state
systems has been studied intensively (see [22] for a survey). While many algo-
rithms for bisimulation problems have a very high complexity, only few lower
bounds are known. Jancar [12, 13] showed that strong bisimilarity of two Petri
nets [25] and weak bisimilarity of a Petri net and a finite automaton is un-
decidable. Stiibrna [28] showed that weak bisimilarity for Basic Parallel Pro-
cesses (BPP) is AP-hard and weak bisimilarity for context-free processes (BPA)
is PSPACE-hard. (BPA are a proper subclass of pushdown automata.) How-
ever, it is still an open question whether these two problems are decidable. So
far, the only known lower bound for a decidable bisimulation problem was an
EXPSPACE-lower bound for strong bisimilarity of Petri nets and finite automata
[15], that follows from the hardness of the Petri net reachability problem [18].
For bisimulation problems where one compares an infinite-state system with a
finite-state one, much more is known about the decidability and complexity than
in the general case of two infinite-state systems [14]. Also the complexity can be
much lower. In particular, weak (and strong) bisimilarity of a BPA-process and
a finite automaton is decidable in polynomial time [17], while weak bisimilarity
of two BPA-processes is PSPACE-hard [28].

However, this surprising result does not carry over to general pushdown au-
tomata. We show that strong and weak bisimilarity of a pushdown automaton



and a finite automaton is PSPACE-hard. (These problems were already known
to be in EXPTIME [14].) For weak bisimilarity this hardness result holds even
for a small fixed finite automaton, while the same problem for strong bisimilar-
ity is polynomial in the size of the pushdown automaton for every fixed finite
automaton. These results also yield a PSPACE lower bound for strong bisim-
ilarity of two pushdown automata, a problem that has recently been shown to
be decidable by Sénizergues [27] (the proof in [27] uses a combination of two
semidecision procedures and does not yield any complexity measure).

The problem of bisimilarity is also related to the problem of language equiv-
alence for deterministic systems, e.g., the problem of language equivalence for
deterministic pushdown automata [26]. See Section 5 for details.

Furthermore, we prove a PSPACE lower bound for the problem of regularity
(finiteness) of pushdown automata w.r.t. weak and strong bisimilarity.

Thus no bisimulation problem for pushdown automata is polynomial (unless
PSPACE is P). This shows that there is a great difference between pushdown
automata and BPA, although they describe exactly the same class of languages
(Chomsky-2).

2 Definitions

Let Act = {a,b,c,...} and Const = {e, X, Y, Z, ...} be disjoint countably infinite
sets of actions and process constants, respectively. The class of general process
expressions G is defined by E := €| X | E||[E | E.E, where X € Const and € is a
special constant that denotes the empty expression. Intuitively, ‘." is a sequential
composition and ‘||’ is a parallel composition. We do not distinguish between
expressions related by structural congruence which is given by the following

laws: " and ‘||’ are associative, ‘||’ is commutative, and ‘€’ is a unit for *.” and

L||7.

A process rewrite system (PRS) [20] is specified by a finite set A of rules which
have the form E % F, where E,F € G, E # ¢ and a € Act. Const(A) and
Act(A) denote the sets of process constants and actions which are used in the
rules of A, respectively (note that these sets are finite). Each process rewrite
system A defines a unique transition system where states are process expressions
over Const(A). Act(A) is the set of labels. The transitions are determined by A
and the following inference rules (remember that ‘||’ is commutative):

(E5F)eA ES E ES E
ELF EF%E.F E|F S E'||F

We extend the notation £ < F to elements of Act™ in a standard way. Moreover,
we say that F is reachable from E if E 5 F for some w € Act*.

Various subclasses of process rewrite systems can be obtained by imposing cer-
tain restrictions on the form of rules. To specify those restrictions, we first define
the classes S and P of sequential and parallel expressions, composed of all pro-
cess expressions which do not contain the ‘||” and the ‘.” operator, respectively.
We also use ‘1’ to denote the set of process constants.




The hierarchy of process rewrite systems is PRS (G,G)

presented in Fig. 1; the restrictions are speci-
fied by a pair (A, B), where A and B are the
classes of expressions which can appear on the
PAD (S,G) PAN (P,G)

left-hand and the right-hand side of rules, re-

spectively. This hierarchy contains almost all / \ / \
classes of infinite state systems which have been

studied so far; BPA (Basic Process Algebra, PDA(sS) PA (LG) PN (P.P)

also called context-free processes), BPP (Basic

Parallel Processes), and PA-processes are well-

known [1], PDA correspond to pushdown au- BPA (LS) 8PP (L)
tomata (as proved by Caucal in [6]), PN cor-

respond to Petri nets, PRS stands for ‘Process \ /
Rewrite Systems’, PAD and PAN are artificial

names made by combining existing ones (PAD
= PA+PDA, PAN = PA+PN).

We consider the semantical equivalences weak
bisimilarity and strong bisimilarity [21] over transition systems generated by

PRS. In what follows we consider process expressions over Const(A) where A is
some fixed process rewrite system.

Fig. 1. A hierarchy of PRS

Definition 1. The action 7 is a special ‘silent’ internal action. The extended
transition relation ‘=’ is defined by E = F iff either E = F and a = 7, or

a,

ELE SE L F for some i,j € Ny, E',E" € G. A binary relation R over
process expressions is a weak bisimulation iff whenever (E, F') € R then for every
a € Act: if E % E' then there is F = F' s.t. (E',F') € R and if F = F' then
there is E = E' s.t. (E',F') € R. Processes E,F are weakly bisimilar, written
E = F, iff there is a weak bisimulation relating them. Strong bisimulation is
defined similarly with = instead of =. Processes E,F are strongly bisimilar,
written E ~ F, iff there is a strong bisimulation relating them.

Bisimulation equivalence can also be described by bistmulation games between
two players. One player, the ‘attacker’, tries to prove that two given processes
are not bisimilar, while the other player, the ‘defender’, tries to frustrate this.
In every round of the game the attacker chooses one process and performs an
action. The defender must imitate this move and perform the same action in
the other process (possibly together with several internal 7-actions in the case of
weak bisimulation). If one player cannot move then the other player wins. The
defender wins every infinite game. Two processes are bisimilar iff the defender
has a winning strategy and non-bisimilar iff the attacker has a winning strategy.
Note that context-free processes (BPA) correspond to the subclass of pushdown
automata (PDA) where the finite control has size 1. Although BPA and PDA
describe the same class of languages (Chomsky-2), BPA is strictly less expressive
w.r.t. bisimulation.



3 Hardness of Weak Bisimulation Problems

In this section we show lower bounds for problems about weak bisimulation. We
consider the following two problems:
WEAK BISIMILARITY OF PUSHDOWN AUTOMATA AND FINITE AUTOMATA

Instance: A pushdown automaton P and a finite automaton F'.
Question: P~ F 7
WEAK FINITENESS OF PUSHDOWN AUTOMATA

Instance: A pushdown automaton P.
Question: Does there exist a finite automaton F s.t. P~ F 7

We show that both these problems are PSPACE-hard. The proof is done by a
reduction from the PSPACE-complete problem if a single tape, linearly space-
bounded, nondeterministic Turing-machine M accepts a given input w. There is
a constant k s.t. if M accepts an input w then it has an accepting computation
that uses only & - |w| space. For any such M and w we construct a pushdown
automaton P s.t.

— If M accepts w then P is not weakly bisimilar to any finite automaton.
— If M doesn’t accept w then P is weakly bisimilar to the finite automaton F
of Figure 2.

The construction of P is as follows: Let n :=

k- |w| + 1 and X be the set of tape symbols

of M. Configurations of M are encoded as se-
quences of n symbols of the form vy qus where @
vy, vy € X* are sequences of tape symbols of

M and q is a state of the finite control of M.

The sequence v; are the symbols to the left S9 S3
of the head and v are the symbols under the

head and to the right of it. (v; can be empty,

but vy can’t.) Let py be the initial control- Fig. 2. The finite automaton F'
state of P and let the stack be initially empty. with initial state s;.

Initially, P is in the phase ‘guess’ where it guesses an arbitrarily long sequence
c1#EcoFt . . e of configurations of M (each of these ¢; has length n) and stores
them on the stack. The pushdown automaton can guess a sequence of length n
by n times guessing a symbol and storing it on the stack. The number of symbols
guessed (from 1 to n) is counted in the finite-control of the pushdown automa-
ton. The number m is not counted in the finite-control, since it can be arbitrarily
large. The configuration ¢, at the bottom of the stack must be accepting (i.e.,
the state ¢ in ¢,, must be accepting) and the configuration ¢; at the top must
be the initial configuration with the input w and the initial control-state of M.
All this is done with silent T-actions. At the end of this phase P is in the control
state p. Then there are two possible transitions: (1) p — poA where the special
symbol A ¢ X is written on the stack and the guessing phase starts again. (2)
p = Duerify Where the pushdown automaton enters the new phase ‘verify’.
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In the phase ‘verify’ the pushdown automaton P pops symbols from the stack
(by action 7). At any time in this phase it can (but need not) enter the special
phase ‘check’. For a ‘check’ it reads three symbols from the stack. These symbols
are part of some configuration ¢;. Then it pops n — 2 symbols and then reads
the three symbols at the same position in the next configuration ¢;1 (unless the
bottom of the stack is reached already). In a correct computation step from c;
to ¢;+1 the second triple of symbols depends on the first and on the definition
of M. If these symbols in the second triple are as they should be in a correct
computation step of M from c¢; to c; 41 then the ‘check’ is successful and it goes
back into the phase ‘verify’. Otherwise the ‘check’ has failed and P is in the
control-state fail. Here there are two possible transitions: (1) fail = po. In the
control-state p, the stack is ignored and the pushdown automaton from then
on behaves just like the state sy in the finite automaton F' of Figure 2. (2)
fail = ps. In the control-state ps again the stack is ignored and from then on
the pushdown automaton behaves just like the state s3 in the finite automaton
F of Figure 2. The intuition is that if the sequence of configurations represents
a correct computation of M then no ‘check’ can fail, i.e., the control-state fail
cannot be reached. However, if the sequence isn’t a correct computation then
there must be at least one error somewhere and thus the control-state fail can
be reached by doing the ‘check’ at the right place.

So far, all actions have been silent T-actions. The only case where a visible action
can occur is the following: The pushdown automaton P is in phase ‘verify’ or
‘check’ (but not in state fail) and reads the special symbol A from the stack.
Then it does the visible action ‘a’ and goes to the control-state pyeriy. If P
reaches the bottom of the stack while being in phase ‘verify’ or ‘check’ then it
is in a deadlock.

Lemma 2. If M accepts the input w then P is not weakly bisimilar to any finite
automaton.

Proof. We assume the contrary and derive a contradiction. Assume that there
is finite automaton F' with k states s.t. P ~ F’. Since M accepts w, there
exists an accepting computation sequence ¢ = ci#ca# . . . #c¢, where all ¢; are
configurations of M, ¢; is the initial configuration of M with input w, ¢, is
accepting and for all s € {1,...,m — 1} ¢; = ¢;41 is a correct computation step
of M.

P can (by a sequence of 7-steps) reach the configuration o := pyeripy (cA)F e
Since ¢ is an accepting computation sequence of M, none of the checks can fail.
Thus a can only do the following sequence of actions: 77 +m =1 (grmntm=1)k+l
We assumed that P ~ F’. Thus there must be some state f of F’ s.t. @ = f. Since
F' has only k states, it follows from the Pumping Lemma for regular languages
that o 2 f and we have a contradiction. O

Lemma 3. Let F be the finite automaton from Figure 2. If M doesn’t accept
the input w then P =~ F.

Proof. Since there is no accepting computation of M on w, any reachable con-
figuration of P belongs to one of the following three sets.



1. Let Cy be the set of configurations of P where either P is in phase ‘guess’ or
P is in phase ‘verify’ or ‘check’ s.t. a check can fail before the next symbol
A is popped from the stack, i.e. the control-state fail can be reached with
only 7-actions.

2. Let C5 be the set of configurations of P where either the finite control of P is
in state ps or P is in phase ‘verify’ or ‘check’, there is at least one symbol A
on the stack and no check can fail before the next symbol A is popped from
the stack, i.e. the control-state fail cannot be reached with only 7-actions,
but possibly after another ‘a’ action.

3. Let C3 be the set of configurations of P where either the finite control of P
is in state p3 or P is in phase ‘verify’ or ‘check’, there is no symbol A on the
stack and no check can fail, i.e. the control-state fail cannot be reached.

The following relation is a weak bisimulation:
{(Oél,Sl) | o) € Cl} U {(042782) | Qg € Cz} U {(043783) | a3 € 03}
We consider all possible attacks.

1. Note that no a; € C can do action ‘a’.

— If the attacker makes a move from a configuration in Cy with control-
state fail to p»/ps then the defender responds by a move s; — s1/s5.
These are weakly bisimilar to ps/ps by definition. If the attacker makes
a move q; — oy with ay, ] € Cy then the defender responds by doing
nothing. If the attacker makes a move a; 5 o) with a3 € C; and
ap € Cy (this is only possible if there is at least one symbol A on the
stack) then the defender responds by making a move s; I so. If the
attacker makes a move o — ) with a; € C; and ay € Cs (this is only
possible if there is no symbol A on the stack) then the defender responds
by making a move $; 5 oss.

— If the attacker makes a move s; — so /ss then the defender makes a
sequence of T-moves where a ‘check’ fails and goes (via the control-state
fail) to a configuration with control-state ps/ps. This is weakly bisimilar
to s2/s3 by definition.

2. If ay is a configuration with control-state ps then this is bisimilar to sg by
definition.

— If the attacker makes a move ay — oy with ap, o, € C then the defender
responds by doing nothing. If the attacker makes a move as — o (this
is only possible if the symbol A is at the top of the stack) then the
control-state of a is qyerify and o € C1. Thus the defender can respond
by S92 i) S1.

— If the attacker makes a move s» — s; then the defender responds as
follows: First he makes a sequence of 7-moves as N o, that pops symbols
from the stack without doing any ‘check’ until the special symbol A is at
the top. Then he makes a move o, = a/4. By definition the control-state
of a4 is querify and of € Cy.



3. A configuration as € Cs can never reach a configuration where it can do
action ‘a’. The only possible action is 7. Thus a3 =~ s3.

Since the initial configuration of P is in € and the initial state of F'is s1, we
get P~ F. O

Theorem 4. Weak bisimilarity of pushdown automata and finite automata is
PSPACE-hard, even for the fived finite automaton F of Figure 2.

Proof. By reduction of the acceptance problem for single tape nondeterministic
linear space-bounded Turing machines. Let M, w, P and F be defined as above. If
M accepts w then by Lemma 2 P is not weakly bisimilar to any finite automaton
and thus P % F. If M doesn’t accept w then by Lemma 3 P = F. O

Theorem 5. Weak finiteness of pushdown automata is PSPACE-hard.

Proof. By reduction of the acceptance problem for single tape nondeterministic
linear space-bounded Turing machines. Let M, w, P and F' be defined as above. If
M accepts w then by Lemma 2 P is not weakly bisimilar to any finite automaton
and thus not weakly finite. If M doesn’t accept w then by Lemma 3 P = F' and
thus P is weakly finite. O

4 Hardness of Strong Bisimulation Problems

STRONG BISIMILARITY OF PUSHDOWN AUTOMATA AND FINITE AUTOMATA

Instance: A pushdown automaton P and a finite automaton F'.
Question: P~ F 7

We show that this problem is PSPACE-hard in general, but polynomial in the
size of P for every fixed finite automaton F'. The PSPACE lower bound is shown
by a reduction of the PSPACE-complete problem of quantified boolean formulae
(QBF). Let n € N and let @1, ..., z, be boolean variables. W.r. we assume that
n is even. A literal is either a variable or the negation of a variable. A clause is
a disjunction of literals. The quantified boolean formula @ is given by

Q = V(Elafﬁz .. .Vatn,lﬂxn(Ql VANPIAN Qk)

where the Q; are clauses. The problem is if ) is valid. We reduce this problem
to the bisimulation problem by constructing a pushdown automaton P and a
finite automaton F' s.t. Q) is valid iff P ~ F.



F' is defined as follows: The initial state is sg.

z21+1

$9; —+ Sa(ip1) for 0<i <n/2 -1

z21+1

$2; —+ Sa(ip1) for 0<i <n/2 -1
$2i — ty(ipy) for 0<i<n/2—1
Iﬁf tagiyr) for 0 <i<n/2 -1
tagiyr) for 1 <i<n/2 -1
ta(it1)

ig1) for 1 <i<n/2-1

I21'+1
—
52i+1
—

a
Sp —> U
U — u
a
t, — u
a
t, — W,
w; — w;_q for1<i<n

Note that, unlike in the previous section, the size of F' is not fixed, but linear in
n. Figure 3 illustrates the construction.

Now we define the pushdown automaton P. Initially the stack is empty and the
initial control-state is po. For 1 < j < k and 1 <1 < n we define Q;(X,) iff X,
makes the clause Q; true and Q;(X;) iff X; makes Q; true. The transitions of
P are as follows:

T2i+1

P2 — Pagign) XoipaXoipr for 0<i <n/2 -1

pai 2 Po(it1) XoiroXoipr for 0 < i <nj2 -1

pai 2Hp 2(i41) XaipoXaipr for 0<i<n/2-1

D2 iy Pa(it1) X2ip2Xoip1 for 0 <i<n/2 -1

Pri = Tagit) for0<i<n/2—1

D2i iy T2(i41) for0<i<n/2-1

Pn  — q; for0<j<k

do — do

q]'X[ L) q]'Xl for 1 S j S k, 1 S l S n if Q](Xl)
qu[é q; fOI‘lS]Sk,lSlSnlf—'Q](Xl)
q]'X[ L) q]'Xl for 1 S j S k, 1 S l S n if Q](Xl)
X = g for 1 <j<k,1<Il<nif=Q;(X)).

Additionally we define for 1 < ¢ < n/2—1 that in the control-state ro; the stack
is ignored and the systems behaves just like £; in the system F' of Figure 3.

Lemma 6. If Q is not valid then P # F.

Proof. If Q is not valid then 3z, Vo ...z, 1 Ve, (-Q1 V...V =Q%) and the at-
tacker has the following winning strategy: The attacker chooses the values for the
variables with the odd indices by doing actions x; or Z; in the finite automaton
F and goes from sg to s,,. The defender can respond in two different ways: (1) If
the defender goes into a control-state ry; for some ¢ then the attacker can easily



Fig. 3. Reducing QBF to strong bisimulation.

win, since 19; behaves like to; and so; 7 to; for every 4. (2) If the defender stays
in the ‘p-domain’ of control-states, he is forced to store the attacker’s choices
for the variables with odd indices on the stack. However, he can make his own
choices for the variables with even indices and also stores them on the stack.
Finally, the defender reaches the control-state p, and the stack contains an as-
signment of values to all n variables. Since @ is not valid, there exists at least
one (); with 1 < j < k that is not satisfied by this assignment. Now the attacker
changes sides and makes the move p,, g; in the pushdown automaton P. The
defender can only respond by making the move s,, — w in the system F. Now
the pushdown automaton P can do the action ‘¢’ only n times, while system F
in state u can do it infinitely often. Thus the attacker can win. It follows that
PAF. O

Lemma 7. If Q is valid then P ~ F'.

Proof. Let C be a content of the stack and thus a (possibly incomplete) assign-
ment of values to variables. Let Q;(C) be true iff C' makes clause @; true. Let
Q(C) :== N <i<i, Qi(C). Let QX (C) be true iff C can be completed to a C’ s.t.
Q(C"). If Q is valid then the following relation is a strong bisimulation.

{(P2iC.52:) |0 < i <n/2 A QX(C)} U {(p2iCit2i) |1 < i Sn/2 A 2QX(C)} U
{(r2:Ct2i) |1 <0 <n/2} U {(¢;Cou) [1<J <k A Q(C)} U {(90Cu)} U
{(@Cw)[1 <)<k AOLi<n A -Q;(C) A length(C) =i}

Since (poe€, so) is in this relation, we get P ~ F. O

Theorem 8. Strong bisimilarity of pushdown automata and finite automata is
PSPACE-hard.

Proof. Directly from Lemma 6 and Lemma 7. O
Corollary 9. Strong bisimilarity of pushdown automata is PSPACE-hard.

Note that Theorem 4 is not a corollary of Theorem 8. For weak bisimilarity
the hardness result holds even for the small fixed finite automaton of Figure 2.
However, strong bisimilarity of a pushdown automaton P and a finite automaton
F is polynomial in the size of P for every fixed F.



Theorem 10. Let F be a fized finite automaton. For every pushdown automaton
P the problem if P ~ F requires only polynomial time in the size of P.

Proof. Using the construction from [14] one can reduce the problem P ~ F to
a model checking problem in the temporal logic EF (a fragment of CTL). One
can effectively construct Hennessy-Milner Logic formulae ¢ and ¥ that depend
only on F s.t.

P~F < (PE®) AN (PE-EFY)

where the modal operator EF denotes reachability. Let n be the size of (the
description of) P and m the maximum of the nesting-depth of @ and ¥. (The
total size of & and ¥ can be O(2™).) Let P’ be a state that is reachable from
P. It depends only on the control state of P and P’ and on the first m stack
symbols of P and P’ if they satisfy @ and ¥, respectively. There are only n
different possibilities for the control state and n™ different possibilities for the
first m stack symbols. For each of these n™*! configurations we check if it
satisfies @ or ¥. Each of those checks can be done in O(n™) time. Also for each
a of these n™*! configurations we check if P can reach a configuration a3 for
some . (8 represents the stack contents below the first m stack symbols. It does
not matter for @ and ¥.) Each of those (generalized) reachability-checks can be
done in O(n®m?) time [3]. Therefore the whole property above can be checked
in O(n?™*1m?) time. Thus the problem is polynomial in n, the size of P, but
exponential in m. (To be precise, m depends only on F' and can be made linear
in the number of states in F' [14].) |

Now we consider the strong finiteness problem.
STRONG FINITENESS OF PUSHDOWN AUTOMATA

Instance: A pushdown automaton P.
Question: Does there exist a finite automaton F s.t. P ~ F' 7

We show that this problem is PSPACE-hard by a reduction of QBF. Let @, P
and F be defined just as before in the hardness proof of strong bisimilarity. As
shown before, @ is valid iff P ~ F. We now construct a pushdown automaton
P’ s.t. P'is finite w.r.t. strong bisimilarity iff P ~ F. The initial configuration
of P'is p'Z. The transition rules are

p/ i> p'C
! al
P —q
qlc i) ql
qC = Po
qZ LN qZ
q’Z i) S0
Note that if P’ is in control-state pg or sg then it behaves like P and F, respec-
tively.

10



Lemma 11. If P # F then P’ is infinite w.r.t. strong bisimilarity.

Proof. There are infinitely many non-bisimilar reachable states ¢'C*Z for all
i € IN. It suffices to show that ¢'C'Z + ¢'C?Z for i > j. The attacker has
the following winning strategy: He does action ' exactly j times (the defender
can respond in only one way) and the new state in the bisimulation game is
(¢'C*77Z,q'Z). Then the attacker does action ¢’ and after the defender’s response
the new state is (poC*=7=1Z, s0). Since P # F, the attacker can win. O

Lemma 12. If P ~ F then P’ is finite w.r.t. strong bisimilarity.

Proof. Let the finite automaton F' with initial state s’ be defined by
s

’
a

s =t
b/
=t

U
c
t’—>80

where sq is the initial state of F. If P ~ F then p'C*Z ~ s, ¢CIZ ~ ¥,
poC*Z ~ 59 and so ~ so and thus P’ ~ F'. O

Theorem 13. Strong finiteness of pushdown automata is PSPACE-hard.

Proof. It follows from Lemmas 6,7, 11 and 12 that @ is satisfiable iff P ~ F iff
P' is finite w.r.t. strong bisimilarity. O

It might seem that Theorem 5 is a corollary of Theorem 13. However, a careful
inspection reveals a slight difference. The proof of Theorem 5 shows that the
question if, given a pushdown automaton P, “Is P weakly bisimilar to any finite
automaton with at most 3 states ?” is PSPACE-hard. The same question for
strong bisimilarity is polynomial, because of Theorem 10. (These results still
hold if the number 3 in the question above is replaced by any other integer
k > 3. For weak bisimilarity the question is PSPACE-hard in the size of P. For
strong bisimilarity it is polynomial in the size of P and exponential in k.) So,
while in general the finiteness problem for a pushdown automaton P is PSPACE-
hard for both weak and strong bisimilarity, the modified question “Is P finite
and small 77 is PSPACE-hard for weak bisimilarity, but polynomial for strong
bisimilarity. To conclude, finiteness w.r.t. weak bisimilarity is hard in a slightly
stronger sense.

5 Conclusion

We have shown that all bisimulation problems for pushdown automata are at
least PSPACE-hard. Thus no bisimulation problem for pushdown automata is
polynomial (unless PSPACE = P). It is interesting to compare these results
with the results for context-free processes (BPA), which describe exactly the

11



same class of languages (Chomsky-2). Strong and weak bisimilarity of BPA and
finite automata can be decided in polynomial time [17]. This shows that there is
a significant difference between pushdown automata and context-free processes
(BPA) as far as ‘branching-time equivalences’ like strong and weak bisimulation
are concerned. Intuitively, the reason for this is that, due to their finite control,
pushdown automata have a limited power of self-test that context-free processes
lack.

The problem of bisimulation equivalence is related to the problem of language
equivalence for deterministic systems, e.g., the problem of language equivalence
for deterministic pushdown automata (dPDA), which has been shown to be de-
cidable in [26]. However, the relationship is more complex than it seems, because
of the presence of e-transitions in PDAs. ‘Real-time’ PDAs are PDAs without -
transitions. We denote them by rPDA. We denote real-time deterministic PDAs
as rdPDA. We can distinguish five problems.

1. ForrdPDA, strong bisimilarity and trace-language equivalence coincide. (The
problem of trace-language equivalence can easily be reduced to terminal-
language equivalence on rdPDA.) This problem is also equivalent to strong
bisimilarity of dAPDA, because the e-transitions don’t matter for strong bisim-
ilarity. Language equivalence on rdPDA has been shown to be decidable in
[23]. Neither an upper complexity bound nor a lower complexity bound is
known.

2. Strong bisimilarity for PDA and rPDA. These problems are equivalent, be-
cause the e-transitions don’t matter for strong bisimilarity. Decidability of
strong bisimilarity for PDA has been shown in [27]. No upper complexity
bound is known. Theorem 8 gives a PSPACE lower bound.

3. Language equivalence of dPDA. This is equivalent to weak bisimilarity of
dPDA, if one renames the e-transitions to 7-transitions. The problem is
decidable by [26]. Neither an upper complexity bound nor a lower complexity
bound is known.

4. Weak bisimilarity for PDA. It is an open question if this problem is decidable.
A PSPACE lower bound has been shown in [28] (even for BPA). Theorem 4
shows that even the asymmetric problem of weak bisimilarity of a PDA and
a (small fixed) finite automaton is PSPACE-hard.

5. Language equivalence for PDA and rPDA. These problems are inter-reducible
and undecidable by [11].

12



Figure 4 shows the relationships between
these five problems. The hardness results of 0 a

this paper hold only for bisimilarity of non-

deterministic PDA (i.e., problems number

2 and 4) and thus they don’t yield a lower

bound for the problem of language equiva- 9

lence of dPDA (problem number 3). In par-

ticular, it is easy to see that language equiv-

alence of a dPDA and a deterministic finite

automaton is polynomial (unlike bisimilar-

ity for nondeterministic systems; see Theo- o
rem 8). It still cannot be ruled out that a

polynomial algorithm for language equiva-
lence of dPDA might exist.

Two lower bounds for bisimulation problems about Petri nets have not been
mentioned explicitly in the literature so far. They concern the problems of
strong bisimilarity of a Petri net and a finite automaton and finiteness of a
Petri net w.r.t. strong bisimulation. It can easily be shown that these problems
are EXPSPACE-hard by a reduction of the problem if a given place in a Petri
net can ever become marked. (This problem is polynomially equivalent to the
reachability problem for Petri nets [25] and thus EXPSPACE-hard [18].)

The following table summarizes known results about the complexity of bisimula-
tion problems for several classes of infinite-state systems. The different columns
show the results about the following problems: strong bisimilarity with finite au-
tomata, strong bisimilarity of two infinite-state systems, weak bisimilarity with
finite automata and weak bisimilarity of two infinite-state systems. New results
are in boldface.

Fig. 4. Bisimulation vs. languages

‘ H ~F ~ ~F =

FS P (2, 24] P [2, 24] P [2, 24] P [2, 24]

BPA P [17] € 2—EXPTIME [4] P [17] PSPACE-hard [28]
€ EXPTIME [14] | decidable [27] € EXPTIME [14]

PDA PSPACE-hard [28]

PSPACE-hard PSPACE-hard | PSPACE-hard

decidable [7] NP-hard [28]
BPP| € PSPACE [14] | (00 oy | € PSPACE ] | SO

PA decidable [14] co-NP-hard [19] decidable [14] |PSPACE-hard [28]

decidable [14] decidable [14]
PSPACE-hard | [ SPACE-hard | hop s 0B hard

decidable [15, 14 . . .
EXPSPAC['E—har]d undecidable [12] | undecidable [12] | undecidable [12]

PAN| EXPSPACE-hard | undecidable [12] | undecidable [12] | undecidable [12]
PRS || EXPSPACE-hard | undecidable [12] | undecidable [12] | undecidable [12]

PAD PSPACE-hard [28]

PN
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The following table summarizes results about the problems of strong and weak
finiteness. New results are in boldface.

strong finiteness weak finiteness
BPA € 2— EXPTIME [5, 4] ?
PDA PSPACE-hard |PSPACE-hard
decidable [13] »
BPP co-NP-hard [19] [1;-hard [19]
PA co-N'P-hard [19] I1P-hard [19]
PAD PSPACE-hard |PSPACE-hard
decidable [13] .
PN EXPSPACE-hard undecidable [13]
PAN/PRS|| EXPSPACE-hard |undecidable [13]

Some more results are known about the restricted subclasses of these systems
that satisfy the ‘normedness condition’ (e.g. [10, 9, 8, 16]). Normedness means
that from every reachable state there is a terminating computation. This condi-
tion makes many bisimulation problems much easier, e.g., strong bisimilarity of
normed BPP is decidable in polynomial time [10], while it is at least co-AP-hard
in the general case [19]. Also for normed systems finiteness w.r.t. strong bisim-
ilarity coincides with boundedness [16], while this doesn’t hold in the general

case.

Acknowledgment: Thanks to Colin Stirling for helpful discussions.
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On the Complexity of Bismulation Problemsfor
Basic Parallel Processes
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LIAFA - Université Denis Diderot - Case 7014 - 2, place Jussieu,
F-75251 Paris Cedex 05. France. E-mail: mayreliafa.jussieu.fr

Abstract. Strong bisimilarity of Basic Parallel Processes (BPP) is decidable, but
the best known algorithm has non-elementary complexity [7]. On the other hand,
no lower bound for the problem was known. We show that strong bisimilarity of
BPP is co-NP-hard.

Weak bisimilarity of BPP is not known to be decidable, but an AP lower bound
has been shown in [31]. We improve this result by showing that weak bisimilarity
of BPP is 112 -hard.

Finally, we show that the problems if a BPP is regular (i.e., finite) w.r.t. strong
and weak bisimilarity are co-NP-hard and I15-hard, respectively.

1 Introduction

Bisimulation equivalence plays a central role in the theory of process algebras [25].
The decidability and complexity of bisimulation problems for infinite-state systems has
been studied intensively (see [26] for a survey). While many algorithms for bisimulation
problems have a very high complexity, only few lower bounds are known.

The state of the art. Strong bisimilarity of two Petri nets and weak bisimilarity of a
Petri net and a finite automaton is undecidable [13, 14]. Weak bisimilarity for Basic
Parallel Processes (BPP) is A/P-hard and weak bisimilarity for context-free processes
(BPA) is PSPACE-hard [31]. However, it is still an open question whether these prob-
lems are decidable.

Some lower bounds for decidable bisimulation problems have been shown in [23].
Strong (and weak) bisimilarity between pushdown automata (PDA) and finite automata
is PSPACE-hard, finiteness of PDA w.r.t. weak and strong bisimilarity also PSPACE-
hard. Finally, both strong bisimilarity of Petri nets and finite automata and finiteness of
Petri nets w.r.t. strong bisimilarity are EXPSPACE-hard. (See the table in Section 5
for a summary of all results on the complexity of bisimulation problems.)

Basic Parallel Processes (BPP) were introduced by Christensen [6] as the fragment
of CCS [25] without communication, restriction and relabeling. They are equivalent
to communication-free nets [8], the subclass of Petri nets [28] where every transition
has exactly one input-place with arc-weight one. While strong (and weak) bisimilar-
ity are undecidable for Petri nets [13], strong bisimilarity is decidable for BPP (i.e.,
communication-free nets) [7]. However, the algorithm in [7] has non-elementary com-
plexity and, to the best of our knowledge, no better algorithm has been found since then.
In spite of this, no lower bound for the problem has been found either.

However, there is a polynomial algorithm for bisimilarity on the restricted subclass of
normed BPP [12]. (A process is normed iff from every reachable state there is a ter-
minating computation.) Thus, it was conjectured that a polynomial algorithm should
also exist for general (unnormed) BPP. This belief was reinforced by the fact that many
other problems for BPP are polynomial: boundedness [17], termination, liveness, (par-
tial) deadlock reachability and (partial) livelock reachability [21, 22]. (On the other



hand there are also hard problems for BPP: reachability is A"P-complete [8], some
model checking problems are PSPACE-complete [20, 22] or even undecidable [9].)
Our contribution. We show that strong bisimilarity for BPP is co-AP-hard (thus prov-
ing the above mentioned conjecture wrong). We also show that weak bisimilarity for
BPP is I11-hard, thus improving a previously established AP lower bound [31]. Fi-
nally, we show that the problem if a BPP is regular (i.e., finite) w.r.t. strong and weak
bisimilarity is co-AP-hard and I7%-hard, respectively.

2 Définitions

Let Act = {a,b,c,...} and Const = {¢,X,Y, Z,...} be disjoint countably infinite
sets of actionsand process constants, respectively. The class of general process expres-
sonsG is definedby E ::= e¢| X | E||E | E.E, where X € Const and e is a special
constant that denotes the empty expression. Intuitively, “.” is a sequential composition
and ‘||” is a parallel composition. We do not distinguish between expressions related by
structural congruence which is given by the following laws: “.” and ‘||’ are associative,
€’ is a unit for .’
A processrewrite system (PRS) [24] is specified by a finite set A of ruleswhich have the
formE = F,where E,F € G, E # eanda € Act. Const(A) and Act(A) denote the
sets of process constants and actions which are used in the rules of A, respectively (note
that these sets are finite). Each process rewrite system A defines a unique transition
system where states are process expressions over Const(A). Act(A) is the set of labels.
The transitions are determined by A and the following inference rules (remember that

(E5F)eA ES E ES E
ESF EF % E.F E|F & E'|F
We extend the notation £ % F to elements of Act™ in a standard way. Moreover, we
say that F is reachablefrom E if E = F for some w € Act”.

Various subclasses of process rewrite systems can PRS (G.G)
be obtained by imposing certain restrictions on the

form of rules. To specify those restrictions, we first / \
define the classes S and P of sequential and par-

allel expressions, composed of all process expres- PAD(SG)  PAN(

H H H [ bl ‘.! Op-
erator, respectively. We also use ‘1’ to denote the / \ /

set of process constants. The hierarchy of process  ppa(ss) PA (LG) PN (P.P)

rewrite systems is presented in Fig. 1; the restric-
tions are specified by a pair (A, B), where A and
B are the classes of expressions which can ap-

pear on the left-hand and the right-hand side of BPA(1.9) BPP (L.P)

rules, respectively. This hierarchy contains almost
all classes of infinite state systems which have been
studied so far; BPA (Basic Process Algebra, also FS(11)

called context-free processes), BPP (Basic Parallel
Processes), and PA-processes are well-known [1], Fig. 1. A hierarchy of PRS



PDA correspond to pushdown automata (as proved by Caucal in [5]), PN correspond
to Petri nets, PRS stands for ‘Process Rewrite Systems’, PAD and PAN are artificial
names made by combining existing ones (PAD = PA+PDA, PAN = PA+PN).

Here we study Basic Parallel Processes (BPP) that correspond to process rewrite sys-
tems of type (1, P).

We consider the semantical equivalences weak bisimilarity and strong bisimilarity [25]
over transition systems generated by PRS.

Definition 1. The action 7 isa special ‘silent’ internal action. The extended transition

T]

relation ‘%’ isdefinedby E & Fiff either E = Fanda=7,00 E > B! % B T3 F
for somei,j € N, E', E"” € G. Abinaryrelation R over process expressionsisaweak
bisimulation iff whenever (E, F) € R then for every a € Act: if E % E' then there
isF = F'st. (E',F') € Randif F % F' thenthereisE = E'st. (E',F’) € R.
Processes E, F' are weakly bisimilar, written E ~ F, iff there is a weak bisimulation
relating them. Strong bisimulation is defined similarly with % instead of =. Processes
E. F arestrongly bisimilar, written E ~ F, iff there is a strong bisimulation relating
them. The largest (strong or weak) bisimulation is an equivalencerelation.

Bisimulation equivalence can also be described by bisimulation games[30, 32] between
two players. One player, the “attacker’, tries to prove that two given processes are not
bisimilar, while the other player, the ‘defender’, tries to frustrate this. In every round of
the game the attacker chooses one process and performs an action. The defender must
imitate this move and perform the same action in the other process (possibly together
with several internal T-actions in the case of weak bisimulation). If one player cannot
move then the other player wins. The defender wins every infinite game. Two processes
are bisimilar iff the defender has a winning strategy and non-bisimilar iff the attacker
has a winning strategy.

3 Hardnessof Strong Bisimilarity for BPP
STRONG BISIMILARITY OF BPP

Instance: Two BPP processes P, and Ps.
Question: P, ~ P, ?

This problem has been shown to be decidable in [7]. However, the algorithm relies on
Dickson’s Lemma for termination and therefore the algorithm is not primitive recursive.
A polynomial algorithm for bisimilarity on the restricted subclass of normed BPP has
been described in [12], which led to the conjecture that the general problem was also
polynomial. We prove this conjecture wrong by proving a co-NP lower bound. Thus
no polynomial algorithm for strong bisimilarity of BPP can exist, unless P = AP,

First we give an intuition why the general (unnormed) problem is so hard, using the ter-
minology of communication-free Petri nets. The problem if a place in a communication-
free net is unbounded (i.e., if there are reachable states that put arbitrarily high num-
bers of tokens on it) is easily decidable in polynomial time [17]. However, it is not
so easy to determine if the number of tokens on a place really matters w.r.t. bisim-
ilarity, i.e., if states with different numbers of tokens on this place are really differ-
ent w.r.t. bisimilarity (i.e., non-bisimilar). First we consider the simple example A:




X3X|Y, X356, Y Se Z5 Z Theprocess (X, A) is infinite w.r.t. bisimilarity
(since it has infinitely many non-bisimilar reachable states). However, (X||Z, A) is fi-
nite w.r.t. bisimilarity, since (X|Z, A) ~ (Z, A). We say that in the process (X || Z, A)
the subprocess (Z, A) masks the infiniteness of (X, A). In particular, the subprocess
Z has the effect that the number of subprocesses Y doesn’t matter for bisimilarity,
since (Y™]|Z,4A) ~ (Y™||Z,A) for any n,m € IN. Now consider the new system
A= AU{Z % ¢}. The process (X||Z, A') is infinite w.r.t. bisimilarity, because
(X|1Z,4") % (X, A"). We say that by this transition the subprocess X is unmasked.
Of course, this is only a very trivial example of masking and unmasking. In general the
question if a process can be unmasked (i.e., if a place matters w.r.t. bisimilarity) is N'P-
hard. Later in this section we use a more complex example of masking and unmasking
to prove this.

For the subclass of normed BPP, finiteness w.r.t. bisimilarity coincides with bounded-
ness. Thus for normed BPP finiteness w.r.t. bisimilarity is decomposable into properties
of subprocesses and decidable in polynomial time. In particular, for normed BPP, the
parallel composition of two infinite processes yields an infinite process. For general
BPP it is different. The parallel composition of infinite processes (w.r.t. bisimilarity)
can yield a process that is finite w.r.t. bisimilarity. Thus, finiteness (or infiniteness)
w.r.t. bisimilarity of a BPP process cannot be decomposed into properties of subpro-
cesses in general. The following example shows this. Let A be

X, 2 Xy, Vi S efori<i<n—1
A,

X, 25 XY, Y, 2 €

Then the process X || Xz]| . - . || X, is finite w.r.t. bisimilarity, but every subprocess (e.g.
X[ X4|| X7) is infinite w.r.t. bisimilarity.

Now we are ready to prove the co-A"P lower bound for strong bisimilarity of BPP. We
do this by a polynomial reduction of 3-SAT to the negation of the problem. Let n € IN
and let x4, ..., x, be boolean variables. A literal is either a variable or the negation of
a variable. A clause is a disjunction of 3 literals. Let Q := Q1 A ... A Qy be aboolean
formula in 3-CNF over x4, ..., x, with k clauses. We construct BPPs P, and P s.t. Q
is satisfiable iff P, ¢ P,. The set of transition rules A is defined as follows.

Foreveryi € {1,...,n} we have X; = Xit1lla; where «; is a parallel composition
of constants defined as follows: For every j € {1,...,k} let A; be in «; iff the first
literal of Q; is z;. For every j € {1,...,k} let B, be in o, iff the second literal of
Q; is z;. Forevery j € {1,...,k} let C; be in «; iff the third literal of Q; is z,. For
every i € {1,...,n} we have X; = X,,||3; where j3; is a parallel composition of
constants defined as follows: For every j € {1,...,k} let A; be in 3; iff the first literal
of Q; is z;. Forevery j € {1,...,k} let B; be in 3; iff the second literal of Q; is ;.
Forevery j € {1,...,k} let C; be in g, iff the third literal of Q; is x;. The intuition is
that by action z;/Z, one chooses the value truel/false for the variable ;. @ is satisfiable
iff the assignment of values to the variables can be chosen in such a way that for every
Jj €{L,...,k} atleast one of the constants {4, B;, C;} does not appear.



A B G A, By Cy

523008

d € {ay,bi,cr |l < j}

fori1<j<k

d € {ap, by, e[l <k}

Fig.2. A in Petri net notation. ‘All abc’ means all actions a;, b;, ¢; for every i € {1,..., k}.
The other transition rules are as follows:

A B4 forl1 <j <k
B, 4B for1<j<k
¢, 3 for1 <j <k
x. 4x, forl<i<n+1,1<j<kd;€{ajbjc;}

X1 S VIl Vs
}’] g Zj+1||Wj for1 Sj <k, d]‘ € {aj7bj7cj}

W, Lw; for1 <j <k 1<I<jd€{ab,c}
Z; 36 forl1 <j <k, d; {aj7bj7cj}

A
Zrt1 — L1

Figure 2 gives a rough description of A in Petri net notation. Let P, := (X1]|Z1, 4)
and P, := ()&717 A)



Lemma 2. If @ issatisfiablethen P, £ Ps.

Proof. We show that the attacker has the following winning strategy. Since Q is satisfi-
able, there exists an assignment of variables that makes () true. The attacker can choose
this assignment by performing the corresponding actions x; or z; for 1 < i < n in
either P; or P». Then the attacker does the action e. The defender can only respond by
doing exactly the same. This yields the new states P| and P, with P| = Pj||Z;. For
every j € {1,...,k} there is at least one constant D; € {4,, B;,C;} that does not
appear in P or Pj. Let d; be the action corresponding to D;, e.g. if D; = B; then
d1 - bl.

The attacker performs the action d; by the rule Z; % cin P{. Since neither D, nor Z;
occurs in Pj the defender can only respond by Y; & Z5||W. Let the resulting states
be P’ and Pj’. Now the attacker performs Z, %5 cin PJ' to which the defender can
only respond by Y5 3 Z3||Wy in P{" and so on with Z;, d; for 1 < j < k. In the end

the defender is forced to perform the transition Yy ay Zi+1||Wyi. Now the action A is
enabled in one process (by the constant Z 1), but not in the other. Thus the attacker
canwinand P; % Ps. m|

Lemma 3. If  isnot satisfiablethen P, ~ P,.

Proof. Let AS (for “assignments’) be the set of subterms containing only constants
A;,B;,Ciforl <j < k.Wecallaterm¢ € AS afaulty assignment iff there is at least
onem € {1,...,k}s.t all three constants A,,, B, C., occur in ¢t. We call the minimal
such m the index of ¢, denoted ind(t). Let FAS be the set of faulty assignments. Since
Q is not satisfiable, every assignment ¢ that is created by performing one of each pair
of actions x1/%1 ...x,/Z, is a faulty assignment. Any incomplete assignment ¢’ that is
created by an incomplete prefix of choices from x1/Z; ...x;/Z; (with 7 < n) must in
the end become a faulty assignment once all choices from x1/%; ...x,/Z, have been
made. Let JFAS ; be the set of these incomplete faulty assignments created by choosing
one of each pair of actions z1/z; ...z;/Z;. Let O; be the set of terms containing only
constants Y;, Wi, Z;, Z;+1 with [ < j. To keep the notation simple we define Wy :=e.
The symmetric closure of the following relation is a bisimulation.

{(X:ltNZ3, XallthZy) |1 <i<n AtelFAS,_1 A u,v € No}U
{(XnsallIZ8, X [11Z5) | 7 € FAS A w,0 € No} U

{7 - YRl ZE Yall .. Ye|lt]Z2Y) | t € FAS A u,v € Ng} U
LG YRI5ty Yigall - - YR llEN Z5 2 W5 1) |

te FAS ANj+1<ind(t) Nv,7 € Oj1}U

{50 YRl Wi—ally, Yigall - IYRlEW5]17") |

te FAS AN j+1<ind(t) Nv,7v € 0j1}U

(Gl YR Zia W51y Yiall - YR NEIW 1) |

te FAS AN j+1<ind(t) A v, € O;_1} U
(W Z3 1Yl - YR, Wl Z55 1Y Gl - 1Y) |
u€e{0,1} ANte FASAN1<j<EkEAN~7 €0,_1}

Since (X1 || Z1, X1) is in this relation, we get P, ~ P, |



Theorem 4. Srong bisimilarity of BPP is co-A/P-hard.
Proof. Directly from Lemma 2 and Lemma 3 and the \P-completeness of 3-SAT.

Note that both P, and P, are bounded, i.e., they have only finitely many reachable
states. It is easy to see that in general the number of reachable states of P; / P is expo-
nential in the size of the description of A. Moreover, the number of reachable states of
P, /P is even exponential up to strong bisimilarity, i.e., they generally have an expo-
nential number of non-bisimilar reachable states. Let ¢ € FAS. Analogously to the def-
inition of the index of ¢ we define ind’(t) as the maximal m s.t. all three A4,,,, B,,,, C.,
appear in t. Consider the reachable states X,,t1/t1]|¢2, where ¢ ||to € FAS encodes
a faulty assignment and the constants A;, B;, C; in t; have j < ind'(t;||t2) and the
constants A;, Bj, C; in ty have j > ind'(t1||t2). In particular ind’(t1]|ta) = ind'(t1).
While the particular structure of ¢; does not matter for bisimilarity (as long as ¢; €
FAS), the structure of ¢5 does. We have X1 |t1]|t2 # Xnt1||t1]|th for every t, # to.
Since there are in general exponentially many different such ¢/, it follows that P, /P,
is at least exponential w.r.t. strong bisimilarity. Thus, our construction does not yield a
lower bound for the problem of strong bisimilarity of a BPP and a finite-state process
(with polynomially many states). It seems to be impossible to prove a lower bound for
this asymmetric problem, since whenever one encodes a sufficiently complex problem
(e.g. SAT) into a BPP, this BPP is never bisimilar (neither strongly nor weakly) to any
finite-state system of polynomial size (although it can be bisimilar to a finite-state sys-
tem of exponential size). Thus, we conjecture that strong and weak bisimilarity of a
BPP and a finite-state system is decidable in polynomial time. (Is is known that strong
and weak bisimilarity of a normed BPP and a finite-state system is polynomial [18]).
Now we consider the strong finiteness problem.

STRONG FINITENESS OF BPP

Instance: A BPP process P.
Question: Does there exist a finite-state system F's.t. P ~ F'?

Finiteness w.r.t. strong bisimilarity is decidable even for general Petri nets [14], and this
result carries over immediately to communication-free nets (i.e., BPP). However, the al-
gorithm in [14] consists of two semidecision procedures and gives no upper bound on
the complexity. For general Petri nets one gets an EXPSPACE lower bound by reduc-
ing the problem if a given place can ever become marked to the finiteness problem. For
general Petri nets the problem if a given place can ever become marked is EXPSPACE-
hard [19, 28]. For communication-free nets (i.e., BPP) this is different. While the reach-
ability problem is A"P-complete for communication-free nets [8], it is easy to see that
the problem if a given place can ever become marked in a communication-free net is
polynomial. Thus, one does not obtain a lower bound for the strong finiteness problem
of BPP that way.

It is clear that a constructive solution to the problem, i.e., constructing the finite-state
system F' if it exists, must require at least exponential time. This is because there are
BPPs s.t. the smallest finite-state system F' that is bisimilar to them has an exponential
number of states (in the size of the description of the BPP). However, it is not immedi-
ately clear if a simple yes/no answer to the strong finiteness problem must be as hard.
The following theorem shows this.



Theorem 5. Srong finiteness of BPP is co-NP-hard.

Proof. By a polynomial reduction of 3-SAT to strong infiniteness. Let the formula @
and the set of rules A be defined as before and let A’ := AU {X,.,1 5 X, 1|21}
We show that the process X; w.r.t. the set of rules A’, denoted (X, 4"), is infinite
w.r.t. strong bisimilarity iff Q) is satisfiable.

< If @ is satisfiable then there are infinitely many reachable states Y1 || ... || Y& ||y ZT™
for every m € INo, where  is a term that encodes a satisfying assignment of Q.
This means that - is a parallel composition of constants A;, B;, C; where for every
J € {1,...,k} at least one of the constants A;, B;, C; does not occur in y. How-
ever, for every m; # mso we have Y| ... ||Yzlv[1Z7™ # Yill ... IYellv] 277,
because the attacker has a winning strategy similar to the one in Lemma 2. Thus
(X1, A4") is infinite w.r.t. strong bisimilarity.

= Let A" := AU{X, 41 & X,41}. The process (X, A”) has finitely many reach-
able states. (However, (X, A”) has an exponential (in the size of A”") number of
non-bisimilar reachable states.) If @ is not satisfiable then (X;, A") ~ (X3, A")
and is thus finite w.r.t. bisimilarity. The bisimulation relation is the same as in
Lemma 3. O

The previous construction shows that the problem if a place can be unmasked (i.e.,
made to count w.r.t. bisimulation) is A/P-hard. Here this particular place was Z;.

4 Hardness of Weak Bismilarity for BPP

WEAK BISIMILARITY OF BPP

Instance: Two BPP processes P and Ps.
Question: P, ~ P, ?

It is still an open question if this problem is decidable. It has been shown to be semide-
cidable in [8], using the facts that weak bisimulation equivalence on BPPs is semilinear
(since it is a congruence on a finitely generated commutative semigroup) and that it is
decidable if a given semilinear relation on a BPP is a weak bisimulation. An A'P lower
bound for this problem has been shown in [31] (by reduction of a variant of the bin-
packing problem), and the co-A/P lower bound of Theorem 4 carries over immediately
to weak bisimilarity. Here we prove a /7%-lower bound (in the polynomial hierarchy)
that subsumes these results.

Let @ := Q1 A ... A Qy be aboolean formula in 3-CNF over the boolean variables
T1,.vey TnyY1,- -, Yn With & clauses. We construct BPP processes P, P, s.t. P, = Ps
iff V(z1,...,2,)3(y1,-..,yn) Q. Since this problem is I75-complete, we get a 17%-
lower bound for the problem of weak bisimilarity.

Let o; be a parallel composition of constants in {Q1, ..., Qx} S.t. constant Q) ; appears
in «; iff ; makes clause Q) true (i.e., x; appears positively in Q). Let 3; be a parallel
composition of constants in {Q1,...,Qx} S.t. constant ¢); appears in j; iff £, makes
clause Q; true (i.e., ; appears negatively in Q). Let ; be a parallel composition of
constants in {Q1, ..., Qx} S.t. constant Q; appears in v, iff y; makes clause @, true.
Let 6; be a parallel composition of constants in {Q1,...,Q} s.t. constant @), appears




in 9; iff §; makes clause ) ; true. The set of transition rules A is defined by

X; z—& X7;+1||Oé7; for 1 <i:<n
X, S Xa|g for1<i<n
X! B3 Xl fori<i<n

X BXL,8 forl<i<n

X1 S V... IV
X SV Y,

X 52z

Y, Sy forl<i<n
Y, 56 fori1<i<n
Q 3Q for1 <j<k
z Xz for1<j<k

Let P := (Xl,A> and Py = (X{,A)

Lemma®6. IfV(zy,...,z,)3(y1,...,y,) Q isfalsethen P, % Ps.
Proof. If V(xz1,...,2,)3(y1,-.-,y.) @ is false then 3(x1, ..., x,)V(y1, -, yn) Q.

The attacker chooses these values for x4, ..., z, by choosing z;/z;. The defender can
only copy these moves. Then the attacker chooses the transition X . 5 Z. The de-
fender can only respond by X, ;1 - Yi||...||Y, and then a sequence of silent -

actions ending in a state ¢. By definition of A and since 3(z1, ..., z,)V(y1, . -, Yn) Q@
there will be at least one action ¢; (with 1 < 5 < k) that is not enabled by ¢ (and cannot
made to be enabled by 7-moves). However, all ¢; are enabled by Z. Thus, the attacker
has a winning strategy and P, % Ps. O

Lemma?. IfV(z1,...,z,)3(y1,...,yn) @ then P, = P,

Proof. The attacker can choose the assignment for x4, . .., x,,. The defender can only
imitate these choices. If the attacker chooses the transition X, 11 — Yi|...||Y, or
X) .1 = Yi|...|Y, then the defender can respond in such a way that the two pro-
cesses become equal and the defender wins. If the attacker chooses X, = Z then
the defender can (by a long internal move of r-actions) choose the values fory1, ..., y,
on his side. Since V(x1, ..., x,)3(y1, - - -, y.) @ there are choices for yq, ..., y, S.t.in
the resulting state all actions ¢, . . ., g, are permanently enabled. Since ¢y, ..., q; are
also permanently enabled by Z in the other process and all other actions are not, the
defender wins. Thus, the defender has a winning strategy and P; ~ P. O

Theorem 8. Weak bisimilarity of BPP is /17 -hard.
Proof. Directly from Lemma 6 and Lemma 7.

WEAK FINITENESS OF BPP

Instance: A BPP process P.
Question: Does there exist a finite-state system F's.t. P ~ F' ?

We show that the weak finiteness problem for BPP is also I72-hard by using the pre-
viously defined processes P, and P, and constructing a new process P that is weakly



finite iff P, ~ P,. Let A’ be A U I', where I" is the following set of transition rules:
I LI 15 CSe DSE D S E D 5 X418
DSX|IS ESE ESE ESX S FESX)S S-S5
Let P := (I||D, 4").

Lemma9. If P, # P, then P isnot weakly finite.

Proof. P has infinitely many non-weakly-bisimilar states D||C"* for all i € IN. It suf-
fices to show that D||C? % DJ|C* for j > 4. The attacker has the following winning
strategy. He does action c exactly i + 1 times in D||C” and reaches the state D||C7 L.
The defender can respond in different ways in D||C*, but the reached state will always
be either E||C* or E'||C* for some k < 1. In the first case the attacker does the tran-
sition D < X ||S. The defender can only respond by £ < X ||S and the new state
in the bisimulation game is (X{[|S]|C7—*~*, X ||S||C*). This is not weakly bisimilar,
because P, % P». The second case is symmetric with X; and X exchanged. |

Lemma10. If P, =~ P, then P isweakly finite.

Proof. Let I"" be I" where X is replaced by X; and A" := AUI". Since P, ~ P, and
weak bisimilarity is a congruence on BPP, we get P = (I||D, A’) = (I||D,A”). Itis
easy to see that (I||D, A”") ~ (E, A"), because S < S. Thus P ~ (E, A”). However,
(E, A") has only finitely many reachable states. O

Theorem 11. Weak finiteness of BPP is 115 -hard.
Proof. By Lemmas 6, 7, 9 and 10. O

5 Conclusion

The following table summarizes known results about the complexity of bisimulation
problems for several classes of infinite-state systems. New results are in boldface.

‘ H ~ F ~ ~ F =~

FS P [2,27] P [2,27] P [2,27] P [2,27]

BPA P [18] € 2— EXPTIME [3] P [18] PSPACE-hard [31]
€ EXPTIME [15] | decidable [29] € EXPTIME [15] ]

PDA popacE-hard [23]| PSPACE-hard [23]| PSPACE-hard [23]|F5FACEard [31]

decidable [7] P

BPP || € PSPACE [15] co-NP-hard € PSPACE [15] II5-hard

PA decidable [15] co-NP-hard decidable [15] PSPACE-hard [31]
decidable [15] i decidable [15] i

PAD PSPACE-hard [23] PSPACE-hard [23] PSPACE-hard [23] PSPACE-hard [31]
decidable [16, 15] . . .

PN EXPSPACE-hard undecidable [13] undecidable [13] undecidable [13]

PAN|| EXPSPACE-hard undecidable [13] undecidable [13] undecidable [13]

PRS|| EXPSPACE-hard undecidable [13] undecidable [13] undecidable [13]




The different columns in the table above show the results about the following prob-
lems: strong bisimilarity with finite automata, strong bisimilarity of two infinite-state
systems, weak bisimilarity with finite automata and weak bisimilarity of two infinite-
state systems.

The following table summarizes results about the problems of strong and weak finite-
ness. New results are in boldface.

strong finiteness weak finiteness
BPA € 2— EXPTIME [4, 3] ?
PDA PSPACE-hard [23] |PSPACE-hard [23]
decidable [14] p
BPP co-NP-hard IT3-hard
PA co-NP-hard I1%-hard
PAD PSPACE-hard [23] |PSPACE-hard [23]
decidable [14] .
PN EXPSPACE-hard undecidable [14]
PAN/PRS|| EXPSPACE-hard undecidable [14]

Some more results are known about the restricted subclasses of these systems that sat-
isfy the ‘normedness condition’ (e.g. [12, 11, 10, 17, 18]).
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We consider the problem of simulation preorder/equivalence between infinite-
state processes and finite-state ones. First, we describe a general method how
to utilize the decidability of bisimulation problems to solve (certain instances of)
the corresponding simulation problems. For certain process classes, the method
allows to design effective reductions of simulation problems to their bisimulation
counterparts and some new decidability results for simulation have already been
obtained in this way.

Then we establish the decidability border for the problem of simulation pre-
order/equivalence between infinite-state processes and finite-state ones w.r.t. the
hierarchy of process rewrite systems. In particular, we show that simulation pre-
order (in both directions) and simulation equivalence are decidable in EXPTIME
between pushdown processes and finite-state ones. On the other hand, simulation
preorder is undecidable between PA and finite-state processes in both directions.
These results also hold for those PA and finite-state processes which are deter-
ministic and normed, and thus immediately extend to trace preorder. Regularity
(finiteness) w.r.t. simulation and trace equivalence is also shown to be undecidable
for PA.

Finally, we prove that simulation preorder (in both directions) and simulation
equivalence are intractable between all classes of infinite-state systems (in the hi-
erarchy of process rewrite systems) and finite-state ones. This result is obtained by
showing that the problem whether a BPA (or BPP) process simulates a finite-state one
is PSPACE-hard, and the other direction is co-N P-hard; consequently, simulation
equivalence between BPA (or BPP) and finite-state processes is also co-N P-hard.
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Key Words. concurrency, simulation equivalence, infinite-state systems

1. INTRODUCTION

We study the decidability and computational complexity of checking simulation preorder
and equivalence between certain infinite-state systems and finite-state ones. The motivation
is that the intended behavior of a process can often be easily specified by a finite-state
system, while the actual implementation may contain components which are infinite-state
(e.g., counters, buffers, recursive procedures). The task of formal verification is to prove
that the specification and the implementation are equivalent.

The same problem has been studied recently for strong and weak bisimilarity [14, 23, 16,
13], and it has been shown that these equivalences are not only decidable, but also tractable
between certain infinite-state processes and finite-state ones. Those issues (namely the
complexity ones) are dramatically different from the ‘symmetric’ case when we compare
two infinite-state processes. Here we consider (and answer) analogous questions for
simulation, establishing both the decidability and tractability border w.r.t. the hierarchy of
process rewrite systems [25] (see Fig. 2).

The state of the art: Simulation preorder/equivalence is known to be undecidable for
BPA [9] and BPP [11] processes. An interesting positive result is [1] which shows that
simulation preorder (and hence also equivalence) is decidable for one-counter nets, which
are ‘weak’ one-counter automata where the counter cannot be tested for zero explicitly
(one-counter nets are computationally equivalent to the subclass of Petri nets with at most
one unbounded place). A simpler proof has been given later in [17] where it is also
shown that simulation preorder/equivalence for ‘general’ one-counter automata is already
undecidable. Simulation with finite-state systems has been first studied in [16]; in contrast
to the ‘symmetric’ case, simulation preorder between Petri nets and finite-state processes
is decidable in both directions. Moreover, a related problem of regularity (finiteness) of
Petri nets w.r.t. simulation equivalence is proved to be undecidable. Recently, it has been
shown in [21] that simulation preorder between one-counter nets and finite-state processes
is decidable in polynomial time in both directions (while, for example, weak bisimilarity
between one-counter nets and finite-state processes is still intractable—a DP-hardness
results for this problem has been demonstrated in [20]). Moreover, in [21] it is also shown
that simulation equivalence between one-counter automata and finite-state processes is
already co-AP-hard.

Our contribution: In Section 3 we study the relationship between bisimilarity and
simulation equivalence. Our effort is motivated by a general trend that problems for
bisimilarity (equivalence, regularity) are often decidable, but the corresponding problems
for simulation equivalence are not. We propose a method how to use existing algorithms
for “bisimulation’ problems to solve certain instances of the corresponding (and possibly
undecidable) ‘simulation” ones. Such techniques are interesting from a practical point of
view, as only small instances of undecidable problems can be solved in an ad-hoc fashion,
and some kind of computer support is necessary for problems of ‘real’ size. Recently, the

10n leave at the Institute for Informatics, Technical University Munich, Germany. Supported by a Research
Fellowship granted by the Alexander von Humboldt Foundation and by the Grant Agency of the Czech Republic,
grant No. 201/00/0400.

2This work was partly supported by DAAD Post-Doc grant D/98/28804.
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method has also been used in [15] to reduce certain simulation problems for one-counter
nets to the corresponding bisimulation problems for one-counter automata (which had been
known to be decidable); some new decidability results have been obtained in this way.

In Section 4 we establish the decidability border of Fig. 2. First we prove that
simulation preorder between pushdown processes (PDA) and finite-state ones is decid-
able in EXPTIME in both directions. Consequently, simulation equivalence is also in
EXPTIME. Then we show that simulation preorder between PA and finite-state processes
is undecidable in both directions. It is rather interesting that the undecidability results
hold even for those PA and finite-state processes which are deterministic and normed.
Simulation equival ence between such processes is decidable (it coincides with bisimilarity
[14]); however, as soon as we allow just one nondeterministic state in the PA processes,
simulation equivalence becomes undecidable. We also show that all the obtained unde-
cidability results can be formulated in a ‘stronger’ form—it is possible to fix a PA or a
finite-state process in each of the mentioned undecidable problems. Then we demonstrate
that regularity of (normed) PA processes w.r.t. simulation equivalence is also undecidable.
Again, it contrasts with regularity w.r.t. bisimilarity for normed PA processes, which is
decidable in polynomial time [19]. All of the obtained undecidability results also hold for
trace preorder and trace equivalence, and therefore they might be also interesting from a
point of view of “classical’ automata theory (see the last section for further comments).

In Section 5 we concentrate on the complexity issues for simulation preorder and equiva-
lence with finite-state processes. We prove that the problem whether a BPA (or BPP) process
simulates a finite-state one is PSPA CE-hard, and the other direction is co-A/P-hard. Con-
sequently, simulation equivalence between BPA (or BPP) and finite-state processes is also
co-NP-hard. Hence, the main message of this section is that simulation with finite-state
systems is intractable for all classes of infinite-state systems of the hierarchy shown in
Fig. 2. It contrasts sharply with the complexity issues for strong and weak bisimilarity; for
example, weak bisimilarity between BPA and finite-state processes, and between normed
BPP and finite-state processes is in P [23].

In the last section we give a summary of existing results in the area of comparing infinite-
state systems with finite-state ones and discuss language-theoretic aspects of the obtained
results.

2. DEFINITIONS

In concurrency theory, a process is typically defined to be a state in a transition system
(which is a general and widely accepted model of discrete systems).

DEFINITION 2.1. A transition systemis a triple T = (S, .4, —) where S is a set of
states, A is a set of actions, and — C S x A x S is a transition relation.

As usual, we write s % ¢ instead of (s,a,t) € — and we extend this notation in the
natural way to elements of .A*. We say that a state ¢ is reachable from a state s iff s = ¢
for some w € A*. Furthermore, 7" is said to be image-finiteiff forall s € S and a € A the
set {t | s % t} is finite; 7" is deterministic if each such set is of size at most 1.
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2.1. Trace, Simulation, and Bisimulation Equivalence
In this paper we compare infinite-state processes with finite-state ones w.r.t. certain ‘lev-
els’ of their semantical sameness. Those ‘levels’ are formally defined as certain preorders
and equivalences over the class of all processes (i.e., states in transition systems).
We start with trace preorder and trace equivalence, which are very similar to the “clas-
sical’ notions of language inclusion and language equivalence of automata theory.

DerFINITION 2.2. LetT = (S, .4, —) be a transition system. We say that w € Act™ is
a trace of a process s € S iff s = s’ for some s’ € S. Let Tr(s) be the set of all traces of
s. We write s C; ¢ iff Tr(s) C Tr(t). Moreover, we say that s and ¢ are trace equivalent,
written s =, ¢, iff Tr(s) = Tr(t).

In concurrency theory, trace equivalence is usually considered as being too coarse.
A plethora of finer ‘behavioral’ equivalences have been proposed (see, e.g., [30] for an
overview). Smulation and bisimulation equivalence are of special importance and their
accompanying theory has been developed very intensively.

DErFINITION 2.3. Let T = (S,.A,—) be a transition system. A binary relation
R C S x S isasimulation if whenever (s,t) € R then foreacha € Act

a,

if s % ', thent % ¢’ for some ¢’ such that (s',¢') € R

A symmetric simulation is called a bisimulation. A process s is simulated by a process ¢,
written s C; ¢, if there is a simulation R such that (s,¢) € R. We say that s and ¢ are
simulation equivalent, written s =, ¢, iff s C, t and t C, s. Similarly, we say that s and ¢
are bisimilar (or bisimulation equivalent), written s ~ ¢, iff there is a bisimulation relating
them.

It follows immediately from Definition 2.2 and 2.3 that trace equivalence is coarser than
simulation equivalence which is coarser than bisimilarity. Moreover, these containments
are proper. To see this, consider the processes f, g, h of Fig. 1. Obviously f =; g =; h.
Furthermore, f =; gbut f #5 h Z5 g,and f £ g £ h « f.

REMARK 2.1. All of the introduced equivalences can also be used to relate states of
different transition systems. Formally, we can consider two transition systemsto beasingle
one by taking their digoint union.
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Another natural (and studied) problem is the decidability of regularity (i.e., ‘semantical
finiteness”) of processes w.r.t. a given behavioral equivalence.

DEFINITION 2.4. A process s is regular w.r.t. bisimulation (or simulation, trace)
equivalence iff there is a finite-state process f such that s ~ f (or s =5 f, s = f,
respectively).

2.2. Process Rewrite Systems

In this paper, we use the syntax of process rewrite systems [25] to describe processes.
This model is especially suitable for our purposes as it allows to define most of the known
(i.e., studied) classes of infinite-state systems in a uniform and succinct way. Similar
formalisms for describing processes are used in [3]. However, process rewrite systems
have the advantage that they can also describe classes of systems, like PA, that contain both
the operators for sequential and parallel composition. A formal definition is as follows:
Let Act = {a,b,c,...} and Const = {X,Y, Z, ...} be countably infinite sets of actions
and process constants, respectively. The set of general process expressions, denoted G, is
defined by the following abstract syntax equation:

E == ¢ | X | E|E | E.E

Here X ranges over Const and ¢ denotes the empty expression. Intuitively, the *.’
operator corresponds to a sequential composition, while the ‘||” operator models a simple
form of parallelism. In the rest of this paper we do not distinguish between expressions
related by structural congruence which is the smallest congruence relation over process
expressions such that the following laws hold:

1)

e associativity for “.” and *
e commutativity for ‘||’
e ‘c’asaunitfor ‘.’ and ‘||’.

DEFINITION 2.5. A process rewrite system is a finite set A of rules which are of
the form E % F, where a € Act and E, F € G, E # ¢ are process expressions. The
(finite) sets of process constants and actions which are used in the rules of A are denoted
by Const(A) and Act(A), respectively.

Each system A determines a unique transition system where states are process expres-
sions over Coonst(A), the set of labels is Act(A), and transitions are determined by A and
the following inference rules (remember that “||” is commutative):

(E5XF)eA _ESE ESE
ESF EF % E.F E|F3E|F

All notions and properties of transition systems can be also used for processes of process
rewrite systems in the following sense: We say that a process E of A has a property p iff
the part of the transition system generated by A which is reachable from E has the property
p. (Observe that, e.g., £ can be deterministic even if the transition system generated by A
is not deterministic.)
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PRS (G,G)

7\

PAD (S,G) PAN (P,G)

decidability
- ——_— -

PDA(SS) '\ PALG) ) PN(PP)

\/\/

BPA (1,9) BPP (L,P)
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FIG. 2. A hierarchy of process rewrite systems with the decidability/tractability border for simulation with
finite-state processes

Various subclasses of process rewrite systems can be obtained by imposing certain
restrictions on the form of the rules. To specify those restrictions, we first define the classes
S and P of sequential and parallel expressions, composed of all process expressions which
*.” operator, respectively. For short, we also use 1 to denote
the set Const U {e}. A hierarchy of process rewrite systems is presented in Fig. 2; the
restrictions are specified by a pair (A, B), where A and B are the classes of expressions
which can appear on the left-hand and the right-hand side of rules, respectively 3. The set
of states of a system A which belongs to the subclass determined by (A, B) is then formed
by all expressions of B which contain only the constants of Const(A). (In Fig. 2 we also
indicated the decidability/tractability border for simulation preorder and equivalence with
finite-state systems which is established in the following sections.) This hierarchy contains
a variety of widely studied classes of infinite state systems; BPA, BPP, and PA processes
are well-known [2], PDA correspond to pushdown processes (as proved by Caucal in [6]),
PN correspond to Petri nets (see, e.g., [29]), etc.

It can be shown that the hierarchy of Fig. 2 is strict w.r.t. bisimulation semantics [25];
for example, there is a PN process for which there is no bisimilar PAD process, there is a
PDA process for which there is no bisimilar BPA or BPP process, etc.

Sometimes we also work with the subclass of normed process rewrite systems; a process
Eof Aisnormedif E 2 ¢ forsomew € Act* (intuitively, this condition means that E can
successfully terminate). A system A is normed if each of its processes is normed. Observe
that for every PA (and hence also BPA, BPP, or FS) system A we have that A is normed
iff each X € Const(A) is normed. The extra condition of normedness can substantially
simplify certain bisimilarity-problems; for example, regularity w.r.t. bisimilarity is easily

31t has been shown in [25] that it does not make much sense to consider those restricted classes where A is
more general than B or incomparable to B. Therefore, we only study the subclasses for which A C B.
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decidable for normed PA processes in polynomial time [19], while the general problem is
open and seems to be complicated. However, normedness is not a particular advantage
when one tries to solve problems related to simulation equivalence, as we shall see in the
next sections.

2.3. Minsky Machines
Almost all undecidability results in this paper are obtained by reduction from the halting
problem for Minsky counter machines.

DEFINITION 2.6. A counter machine M with nonnegative counters cq, ca, -+ -, ¢ IS @
sequence of instructions

1: INS;
2: INS,
k—1: |INS,_;
k: halt

where each INS; (z = 1,2, ...,k — 1) is in one of the following two forms (assuming
1<n,n',n" <k 1<j<m)

ecj:=cj+1; goton
e if ¢; =0 then goto n' else (c; :=c¢; —1; goto n')

The halting problem, i.e., the question whether or not M will reach its halt instruction,
is undecidable even for Minsky machines with two counters initialized to zero [27].

3. THE RELATIONSHIP BETWEEN SIMULATION AND BISIMULATION
EQUIVALENCE

In this section we concentrate on the relationship between simulation and bisimulation
equivalence. It is a general trend that decidability results for bisimulation equivalence are
positive, while the ‘same’ problems for simulation equivalence are undecidable. Major
examples of that phenomenon come from the area of equivalence-checking (bisimilarity
is decidable in various classes of infinite-state processes, while simulation equivalence is
not), and from the area of regularity-testing (finiteness up to bisimilarity is often decidable,
while finiteness up to simulation equivalence is not). BPP and BPA are examples for this
[7, 5, 13], and some new examples will be also given in Section 4.

Now we propose a method which allows to ‘reduce’ certain simulation problems to their
bisimulation counterparts. Although this ‘reduction’ is not effective in general (it cannot
be expected), it works effectively for some (interesting) classes of infinite-state processes.

DerINITION 3.1. For every image-finite transition system 7' = (S, .4, —) we define
the transition system B(T') = (S, A, —) where — is given by

siutiff s S tandVue S: (s SuntCou) = ul,t

Observe that B(T") is obtained from T' by deleting certain transitions (only those are
preserved which are maximal w.r.t. simulation preorder). As T is image-finite, for each
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transition s — ¢ there is a ‘maximal’ transition s + ¢’ such that ¢ C, ¢’. As we often need
to distinguish between processes ‘s of 7 and ‘s of B(T")’, we denote the latter one by s 5.

LemMma 3.1. Let T = (S, A, —) beanimage-finite transition system. For eachs € S
we havethat s =, sg.

Proof. Obviously sg Cs s. For the other direction, let us define the relation R C S x S
as follows:

R ={(t,up) |t Es u}

We prove that s is simulated by s in R. Clearly (s, sg) € R; it remains to show that when-
ever (t,ug) € Randt % #/, then there is a transition ug +% ul with (#',uls) € R. Ast C,
u, there is at least one a-successor of u which simulates ¢’. Letu’ be the maximal one of those
a-successors W.r.t. simulation preorder (see above); thenu g +% u'y and (¢, u'y) € Rasre-

quired. =

THEOREM 3.1. Let Ty = (S1,A,—), T» = (52,4, —) be image-finite transition
systems, s € S1,t € So. Wehavethat s =; tiff sp ~ 5.

Proof. The ‘=" is obvious, as bisimilarity is finer than simulation equivalence and
s =4 sp, t =, tg by Lemma 3.1. For the other direction, we show that the following
relation R C S; x S is a bisimulation:

R = {(up,vB) | up =5 vB}

It clearly suffices because (sg,t5) € R. By the definition of bisimulation, we must show
that for each up +% ul there is a vg +> v}y with (ul,vy) € R and vice versa (we
only show the first part; the other one is symmetric). Let up up. ASug =, vg,
we also have ug C, v and hence vz must be able to ‘match’ the move up +» uj
by performing some vg +% vj with ul T4 vj. Now it suffices to show that vy T,
uyg. As ug =, v, we also have vz C, ug and hence the move vp K vl must be
matched by some ug v uj} with vi; T, uj. To sum up, we have uy Cy vl Ty uj
and hence uj; C, uf — but it also means that u}; T, uj by Definition 3.1 and

Lemma 3.1. We obtain u}z C, vz T, ujs Ty uj, hence vg T, uj as required. W

ExaMPLE 3.1. Let us consider the processes f, g, h of Fig. 1. We see that f = g,
but f £ g. According to Theorem 3.1, it should hold that f 5 ~ g — and it is indeed the
case since gz has only one a-successor (the ‘middle’ one; the other two a-transitions lead
to “strictly weaker’ states and therefore they are deleted).

The previous theorem also says that if we are to decide simulation equivalence between
processes s and ¢ of T, and 7%, we can instead check bisimilarity between processes sz and
tp of B(T1) and B(T%), respectively. Similarly, if we are interested whether s is regular w.r.t.
simulation equivalence, we can try to construct B(7") and check the regularity of s 5 w.r.t.
bisimilarity. This concept has recently been used in [15] where it is shown that the system
B(T) is effectively constructible for transition systems generated by labeled Petri nets with
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at most one unbounded place. More precisely, for each such net A which determines a
transition system T one can effectively construct a one-counter automaton A such that the
transition system which is generated by A is exactly B(T") (up to isomorphism). As a
number of ‘bisimulation’ problems for one-counter automata are known to be decidable
[12], some new (positive) decidability results for simulation on the restricted class of Petri
nets have been obtained in this way.

Itisalso possible to attack undecidable simulation problems with the help of Theorem 3.1.
For example, simulation equivalence is known to be undecidable for BPP processes [11],
while bisimilarity is decidable [7]. Therefore, the system B(T'), where T is generated by a
BPP system, cannot be effectively definable in the BPP syntax in general. However, one
can design a rich subclass of BPP systems where it ispossible (by putting certain effectively
checkable restrictions on BPP systems); see [22] for details.

In this paper, we use Theorem 3.1 to obtain a decidability result for PA processes (see
Section 4).

4. THE DECIDABILITY BORDER

In this section we establish the decidability border of Fig. 2. We show that simulation
preorder (in both directions) and simulation equivalence with finite-state processes are
decidable for PDA processes in EXPTIME. It is possible to reduce each of the mentioned
problems to the model-checking problem for an (almost) fixed formula ¢ of the alternation-
free modal u-calculus [18] and therefore we can apply the result of [31, 4] which says that
model-checking the alternation-free modal u-calculus for PDA processes is in EXPTIME.

Then we turn our attention to PA processes. We prove that, in contrast to the BPA and
BPP subclasses, simulation preorder is undecidable between PA processes and finite-state
ones in both directions. Moreover, simulation preorder is undecidable even if we consider
those PA and finite-state processes which are deterministic and normed. Thus, our unde-
cidability results immediately extend to trace preorder (which coincides with simulation
preorder on deterministic processes). It is worth noting that simulation equivalence be-
tween deterministic PA and deterministic finite-state processes is decidable, as it coincides
with bisimilarity which is known to be decidable [14]. However, as soon as we allow just
one nondeterministic state in the PA process, simulation equivalence with finite-state pro-
cesses becomes undecidable (there is even a fixed normed deterministic finite-state process
F such that simulation equivalence with F' is undecidable for PA processes). The same
applies to trace equivalence.

Finally, we also prove that regularity (finiteness) of PA processes w.r.t. simulation and
trace equivalence is undecidable, even for the normed subclass of PA. Again, the role of
nondeterminism is very special as regularity of normed deterministic PA processes w.r.t.
simulation and trace equivalence coincides with regularity w.r.t. bisimilarity, which is
easily decidable in polynomial time [19]. However, just one nondeterministic state in the
PA process suffices to make the undecidability proof possible.

THEOREM 4.1. Smulation preorder is decidable between PDA processes and finite-
state onesin EXPTIME (in both directions).

Proof. Let P beaPDA process with the underlying system A and F afinite-state process
with the underlying system I". We construct another PDA system A’, two processes A, B
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of A’, and a formula ¢ of the alternation-free modal u-calculus such that P C; F' iff
AEyp,and F C, Piff B = .

We can safely assume that the set Const(A) can be partitioned into two disjoint subsets
Control(A) and Stack(A), and that the rules of A are of the form pX % ga, where
p,q € Control(A), X € Stack(A), and a € Stack(A)*. (It has been shown in [6]
that PDA systems generate the same class of transition systems (up to isomorphism)
as pushdown automata, and that each PDA system can be effectively transformed into an
‘equivalent’ pushdown automaton in such a way that the increase in size is only polynomial.)
The system A’ is constructed as follows:

e Control(A') := Control(A) x Const(T") x {0,1}

o Stack(A') := Stack(A) U {Zo} where Zy ¢ Stack(A)

o foreveryrule pX % ga of A andevery G € Const(T) we add the rule (p, G, 0)X =
(¢,G,1)ato A’

o foreveryrule G % H of T, every p € Control(A), and every X € Stack(A') we
add the rule (p,G,1)X % (p, H,0)X to A’

Intuitively, the system A’ alternates the moves of A and T'; the ‘0’ and ‘1’ stored in the
finite control indicate whose turn it is. The new bottom symbol Z, is added so that F’
cannot ‘get stuck’ just due to the emptiness of the stack.

Let us consider a property o of processes which can be informally described as follows:
a process f satisfies ¢ iff for all a and f % f’ there is a move f' % f such that the
state f' also satisfies . This (recursively defined) property can be expressed in the modal

p-calculus [18] by putting

p=vX. </\ [a]<a>X>
acA
where A = Act(A)U Act(T") (note that A is finite). Intuitively, the recursion is ‘translated’
into an explicit fixed-point definition. The problem whether a PDA process satisfies ¢ is
decidable in EXPTIME [31, 4].
Let P be of the form pa. Keeping the intuitive interpretation of ¢ in mind, it is easy

to see that pa C; F' iff (p, F,0)aZy |= ¢, andsimilarly F C; paiff (p, F, 1)aZy |=¢. R

CoroLLARY 4.1. Smulation equivalence between PDA and finite-state processes is
decidablein EXPTIME.

REMARK 4.2. Recently, it has been shown in [21] that the problem whether a PDA
process can simulate a finite-state one, and the problem whether a PDA and a FS process
are simulation equivalent, are both EXPTIME-hard. Hence, the reduction to the model-
checking problemwith ¢ used in the proof of Theorem4.1isan essentially optimal decision
algorithm. The issue seems to be different with bisimilarity, which is known to be ‘only’
PSPACE-hard between PDA and FSprocesses [ 24] ; in fact, we conjecture that even weak
bisimilarity [ 26] between PDA and FSprocessesisa PSPA CE-complete problem.

Now we show that simulation preorder between PA and FS processes is already unde-
cidable in both directions, even if those processes are deterministic and normed.
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THEOREM 4.2. Let P beadeterministic PA process and F' a deterministic finite-state
process. It isundecidablewhether P C F'.

Proof. Let M be an arbitrary Minsky machine with two counters initialized to m 1, ms.
We construct a deterministic PA process P and a deterministic finite-state process F' such
that P C, F iff the machine M does not halt.

Let A := {zero1, incy, decy, zeros, incs, decs }. The underlying system of P is defined
by the following rules:

Z1 zeﬂ)l Zl, Z1 m Cl.Zl, Cl m 01.01, Cl dﬁ} g,
Zg Zeﬂ)z Zg, Zg B CQ.ZQ, Cg % 02.02, Cg di% 3

We define P = (C{"*.Z1) || (C5".Z), where C™, i € {1,2}, denotes a sequential
composition of m; copies of the constant C;.

The underlying system of F' corresponds to the finite control of M. For every instruction
of the form

n:c:=c+1; goto n’

incg

we have a rule F,, —% F.,.. For every instruction of the form

n: if ¢; =0 then goto n' else (¢; :=c; — 1; goto n')
we have rules F,, =% F, and F,, decg F,,». Then we add a new constant U and rules
U 3 U for every a € A. Finally, we complete the system of F' in the following way:
For every constant F;, except for the one which corresponds to the (label of the) halting
instruction of M, and every a € A, if there is no rule F; % F; for any Fj, then add a rule
F; % U. The process F corresponds to the initial state of M, i.e., F = F\.

The state of P corresponds to the contents of the counters of M and the state of F’
corresponds to the state of the finite control of M. A simulation step corresponds to a
computational step of M.

The only problem is that P may do steps that do not correspond to steps of the counter
machine, e.g., P does astep dec; whenthe currentstate in £ expects inc;. Inall these cases
the construction of the system of F' ensures that F' can (and must) respond by a step that
ends in the state U. After such a step F' can simulate anything. Itiseasytoseethat P £ ; F
iff P can force F' to enter the state corresponding to halt via a sequence of moves which
correspond to the correct simulation of M. Hence, P C F' iff the machine M does not
halt. =

REMARK 4.3. Theorem4.2till holdsunder theadditional conditionthat theunderlying
systems of both the PA process and the finite-state one are normed. We can make the PA
system normed by adding the following rules:

Z1 e, O e,
Zy 26, Cy ¢

To make sure that ' can simulate the actions z1, z», we add the rules N =% U and
N 225 U for every constant N of the system of F* (including U). Then, the system of
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F is made normed by adding the rule U 5 ¢. It is easy to see that P and F are till
deterministic, and still satisfy the property that P T, F' iff the machine M does not halt.

The halting problem is undecidable even for Minsky machines with two counters initial-
ized to zero. The construction of P is then independent of M. Furthermore, there exists
a universal Minsky machine M’; the halting problem for M’ (with given input values) is
undecidable, and the construction of F' is independent of those input values. Hence we can
conclude:

THEOREM 4.3. Thereisanormed deterministic PA process P and a normed determin-
istic finite-state process F' such that

ethe problemwhether P C, F for agiven (normed and deter ministic) finite-state process
F isundecidable,

othe problem whether P C, F for a given (normed and deterministic) PA process P is
undecidable.

The other direction of simulation preorder is also undecidable, as we prove in the next
theorem.

THEOREM 4.4. Let P beadeterministic PA process and F' a deterministic finite-state
process. It isundecidablewhether F C P.

Proof. Let M be an arbitrary Minsky machine with two counters initialized to m 1, ms.
We construct a deterministic PA process P and a deterministic finite-state system F' such
that F' C, P iff the machine M does not halt.

Let A := {zeroy, inc1, decy, zeros, ince, deca, c}. For the construction of P we start
with the same PA system as in Theorem 4.2 and extend it by the following rules, which
handle all the behaviors that are ‘illegal’ in a given state of P w.r.t. the counter values it
represents.

7y ¥ Ay, 0 % A,

Zy % Ay, Oy % A,,

Ay % Ay foreverya € {zeroy, incy, decy, c},

Ay 25 Ay forevery a € {zeros, inca, decy, c}
The intuition is that an illegal step that concerns the counter ¢ (with i € {1,2}) always
introduces the symbol A;, and from then on everything can be simulated. We define
P = (C™.Z1) || (C3"*.Z3) (where C[™, i € {1, 2}, denotes a sequential composition of
m,; copies of the constant C';). Note that P is deterministic; a term that contains both A,
and A, can do the action ¢ in two different ways, but the result is always the same.

The system of F' corresponds to the finite control of M. For every instruction of the

form

n:c:=c+1; goto n'

we have a rule F, fney F,,,. For every instruction of the form

n: if ¢; =0 then goto n' else (¢; :=c¢; — 1; goto n')
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Z€T0;

we have rules F,, — F,,; and F,, decy F,,.». For the unique instruction
k: halt

we add the rule F,, = Fj.. Note that a reachable state of P cannot do ¢, unless it
contains A; or A,. We let F¥ = F;. A simulation step now corresponds to a compu-
tational step of M. It follows that F' [Z; P iff F' can reach the ‘halting’ state F, via
a sequence of legal steps that correspond to steps of the Minsky machine (and do not

introduce the symbol A; or A, in P). Thus F' C, P iff the machine M does not halt. =

REMARK 4.4. Theorem4.4till holdsunder theadditional condition that theunderlying
systems of both the PA process and the finite-state one are normed. The system of F' is
made normed by introducing the rules N % ¢ for every constant N of the system of F. To
assure that P can always simulate the action z, we add the rules

Zi 5e, O Se, AL S e
To make the system of P normed, it now suffices to add the following:
Zo e, Oy Le, Ay Le

Itiseasytoseethat P and F' are still deterministic and satisfy the property that F T, P
iff the machine M does not halt.

The following theorem can be proved in the same way as Theorem 4.3.

THEOREM 4.5. Thereisanormed deterministic PA process P and a normed determin-
istic finite-state process F' such that

otheproblemwhether F' C, P for agiven (normed and deter ministic) finite-state process
F isundecidable,

ethe problem whether F' T, P for a given (normed and deterministic) PA process P is
undecidable.

We have seen that simulation preorder is undecidable between deterministic PA processes
and deterministic finite-state ones in both directions. However, simulation equivalence
(as well as any other equivalence of the linear time/branching time spectrum of [30]) is
decidablefor such a pair of processes, because it coincides with bisimilarity which is known
to be decidable [14]. With the help of Theorem 3.1, we can extend the decidability result
to all (not only deterministic) finite-state processes.

THEOREM 4.6. Smulation equivalence is decidable between deterministic PA pro-
cesses and (arbitrary) finite-state ones.

Proof. As simulation preorder between finite-state processes is decidable, the system
B(T') (see Definition 3.1) can be effectively constructed for any finite-state system 7". More-
over, if T' is deterministic then B(7") = T'. As bisimilarity between PA and FS processes is

decidable [14], we can apply Theorem3.1. =
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The decidability result of Theorem 4.6 is rather tight—in the next theorem we prove that
simulation equivalence becomes undecidable as soon as we consider PA processes with
just one nondeterministic state.

THEOREM 4.7. Thereis a fixed normed deterministic finite-state process F' such that
the problemwhether P =, F' for a given normed PA process P is undecidable.

Proof. We reduce the second undecidable problem of Theorem 4.3 to the problem
if P =, F. Let P’ be a normed deterministic PA process, F' be the fixed determin-
istic normed finite-state system derived from the finite control of the universal Min-
sky machine as in Theorem 4.3. We construct a normed PA process P and a fixed
deterministic normed finite-state process F' such that P’ C, F iff P =, F. It suf-

fices to define F by F % F,and Pby P % P, P % F. It follows immedi-
ately that P =, F iff P’ T, F’. Note that P is not deterministic; however, it con-

tains only one state (the P itself) where an action can be done in two different ways. B

REMARK 4.5. All undecidability results for simulation preorder which have been
proved in this section immediately extend to trace preorder, because trace preorder co-
incides with simulation preorder in the class of deterministic processes. The argument of
Theorem 4.7 carries over to trace equivalence as well.

Now we prove that regularity w.r.t. simulation and trace equivalence is undecidable for
normed PA processes with at least one nondeterministic state. Itis interesting that regularity
of normed deterministic PA processes w.r.t. any equivalence of the linear time/branching
time spectrum of [30] is easily decidable in polynomial time, as it coincides with regularity
w.r.t. bisimilarity which is known to have this property [19]. To see that a deterministic
process P is regular w.r.t. bisimilarity iff it is regular w.r.t. any equivalence ~ which is
not finer than bisimilarity and not coarser than trace equivalence (all equivalences of [30]
fulfill this requirement), it suffices to realize that

e if P is regular w.r.t. bisimilarity, then P ~ F for some finite-state process F', which
means that P ~ F' as ~ is not finer than bisimilarity;

e if P isregular w.rt. ~, then P ~ F for some finite-state process F'. It means that
P =, F, because ~ is not coarser than trace equivalence. Now we can use the standard
subset construction [10] to obtain a deterministic finite-state system F'’/ such that F =; F”.
As both P and F' are deterministic and trace equivalent, they are also bisimilar and hence
P~ F,

THEOREM 4.8. Regularity w.r.t. simulation and trace equivalence is undecidable for
normed PA processes.

Proof. Let M be an arbitrary Minsky machine with two counters initialized to m 1, mo.
We construct a normed PA process @ such that @ is regular w.r.t. simulation (and trace)
equivalence iff M does not halt.

Let P and F' be the processes constructed in the proof of Theorem 4.2, modified in the
same way as in Remark 4.3. The underlying system of @) is obtained by taking the disjoint
union of the system of P and F', and extending it with the rules Q % P, Q % F (note that
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the resulting system is normed). If M does not halt (i.e., if P C; F), then @ is regular
w.r.t. simulation and trace equivalence, because Q =, F' where the system of F” is the
one of F extended with F/ % F'. To complete the proof, we need to show that if M halts,
then @ is not trace equivalent to any finite-state process. Let w be the sequence of actions
which corresponds to the correct simulation of M by the process P. The process F' can
perform the sequence w, but it has to enter the ‘halting’ state F';, from which it can only
emit the actions z1, z» (See the proof of Theorem 4.2 and Remark 4.3). In particular, it
means that F' does not have any trace of the form w v where v € {inc1, dec;}*. On the
other hand, P can perform any trace of the form w inc ] dec? where n € IN. Suppose
there is a finite-state process G with k states such that @ =; G. Then G must have a
trace aw inck dec¥, and hence it can also perform the sequence aw inc¥ dec}™ for any
m € IN (here we use a well-known ‘pumping’ argument from the theory of finite automata
[10]). However, @ does not have this property—each trace of @ which is of the form
aw v where v € {incy, dec; }* must satisfy the condition that w v is a trace of P. If we
choose m = length(w) + k + 1, then obviously P cannot do the sequence w inc ¥ dec!”.

Hence a w inc} dec} is a trace of G but not a trace of @, and we have a contradiction. m

5. THETRACTABILITY BORDER

In this section we show that the problem whether a BPA process simulates a finite-state
one is PSPACE-hard. The reverse preorder is shown to be co-AP-hard. Consequently,
we also obtain co-AP-hardness of simulation equivalence between BPA and finite-state
processes. All hardness proofs can be easily adapted so that they also work for BPP
processes. As simulation preorder and equivalence are easily decidable for finite-state
processes in polynomial time, the tractability border for simulation preorder/equivalence
with finite-state systems of Fig. 2 is established.

THEOREM 5.1. Let P beaBPA process, F' afinite-state process. The problemwhether
F C, PisPSPACE-hard.

Proof. We show PSPACE-hardness by a reduction of the PSPA CE-complete problem
QBF. Letn € INand zy, ..., z, 1 be boolean variables. We assume (without restrictions)
that n is even. A literal is either a variable or the negation of a variable. A clause is a
disjunction of literals. The quantified boolean formula @ is given by

Q = VonHIl .. .VIEn,QHInfl(Ql VANPVAN Qh)

where the @; are clauses. The problem is if @ is valid.
We reduce this problem to the simulation problem. Let us define a finite-state system I’
with constants Fy, Fs, Fy, ..., F,,Q1,Q>, ..., Q consisting of the following rules:

o Fyi =% Fy(;y1y foreach0<i<n/2-1

o Iy 2% Fyiy1) foreach0<i<n/2-1
check

o F, — Qj foreach1 <j <k
e Q; L Q; foreachl < j <k

We also define a BPA system A with constants P, X1, Xo,..., X,—1,X1,X2,..., Xpn_1
which has the rules
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o P % P Xy 1.Xy; foreach0<i<n/2-1
e P PXy;1.Xy foreach0<i<n/2-1
o P23 PXyi1. X, foreach0<i<n/2—1
o P2 PX, 1. Xo; foreach0<i<n/2-1

check

o P —¢

o X; 15 X, forall0 < i <n—1,1<j < ksuch that the literal z;
occurs in the clause @ ;

o« X; Xy forall0<i<n-—11<j<k

e X, X, forall0 <i<n-—1,1<j < ksuch that the literal z;
occurs in the clause @ ;

o X, X5 forall0<i<n-1,1<j<k

Intuitively, the process F, guesses the assignment for variables with even index. P stores
this assignment and adds its own assignment for the variables with odd index. After the ac-
tion check it is checked if the assignment satisfies the formula. 1t follows immediately from
the construction of A that the assignment satisfies the formula iff the state which encodes the
assignment can do each action g, infinitely many times. If @ holds, then F,y C, P because
P can choose the ‘correct’ assignment for variables with the odd index and then perform
each g; infinitely many times. If Q) does not hold, then F'y Z, P because F; can ‘force’ P
to reach an assignment for which some @ ; is false; then it starts to perform ¢, repeatedly

and P inevitably reaches e from which there are no moves. Hence, Q isvalidiff Fo C; P. &

THEOREM 5.2. Let P beaBPP process, F' afinite-state process. The problemwhether
F C, Pis PSPACE-hard.

Proof. The PSPACE-hardness proof of Theorem 5.1 carries over directly. We

use the same rules for A with parallel composition instead of sequential composition. m

THEOREM 5.3. Let P beaBPA process, F' afinite-state process. The problemwhether
P C, Fisco-NP-hard.

Proof. We reduce the N"P-complete problem SAT to the problem if P Z, F. Let
n € INand zg,...,z, 1 be boolean variables. A literal is either a variable or the negation
of a variable. A clause is a disjunction of literals. The formula @ is given by

Q:=QiA...\Qy

where the @); are clauses. The problem is if @ is satisfiable.
We define a BPA system A with constants Py, Py, ..., Py, X1, X2, ..., Xpe1, X1, X2y oy X1
as follows:

e P, %5 P,.X; foreach0<i<n-—1
o P = }%;Fl.:ﬁy foreach 0 <i1<n-1
check
e P, —' ¢
o X; e forall 0 <i <n—1,1 < j < k such that the literal z;
occurs in the clause @ ;



SIMULATION OVER PROCESS ALGEBRAS 17

oXi—bm foreach0<i<n-1

o X, X5 forall 0 <i <n—1,1 < j < k such that the literal z;
occurs in the clause @ ;

o X; e foreach0 <i<n—1

Now we define a finite-state system I" with constants F, F;, Fy, ..., F}y by

o -4 F

o I foreach1 <i <k

o« F, X F forall1<i <k, 1<j<ksuchthati  j

o I, U F forall 1 <i<k

If Q is satisfiable then there is an assignment that satisfies all clauses @;. Then F
cannot simulate Py, because P, can choose this assignment and then it can perform
a sequence of actions where each g; is present (the sequence can also contain some
‘auxiliary” occurrences of b); F' cannot match this sequence because no F'; can do ev-
ery action ¢;. If @ is not satisfiable then in every assignment some @ ; is not true.

Then F can simulate P, by going to the state F;. Hence, @ is valid iff P, Z, F'. ®

THEOREM 5.4. Let P be a BPP process and F' a finite-state process. The problem
whether P C, F isco-NP-hard.

Proof. The proof is similar to the one of Theorem 5.3. The rules for A are like in
Theorem 5.3 with parallel composition instead of sequential composition. I' is defined
in the same way, but we also add the rules F Ly Uand F % U for every 1 <
i <k, and U =5 U for every z € {qi,.-.,qx,a,b, check}. Intuitively, if some b
or g; is emitted before P, completes the guess (i.e., before check is emitted), F' goes

to U where it can simulate everything. Again we have that @ is valid iff Py Z; F. 1

CoroLLARY 5.1. Theproblemsof simulation equival ence between BPA and finite-state
processes, and between BPP and finite-state processes are co-A/ P-hard.

Proof. Let P be a BPA (or BPP) process and F' a finite-state process. Let P’ be
defined by the rules P’ % P and P’ % F and F’ be defined by the rule F' %

F. Then P’ =, F' iff P C; F. The results follow from Theorem5.3and 5.4. W

REMARK 5.6. All of the obtained hardnessresults are also valid under the normedness
assumption. Observe that the BPA systems constructed in the proof of Theorem 5.1 and
Theorem 5.3 are normed; the finite-state systems used in those proofs can be made normed
by adding the transitions @ ; K oeforall< j < k (in the case of Theorem 5.1), and
F; b e forall 1 <4 < k (in the case of Theorem 5.3). This extension does not influence
the validity of any argument used in our proofs.

6. SUMMARY AND CONCLUSIONS

Table 1 summarizes the known decidability results in the area of equivalence/preorder
checking between infinite-state processes and finite-state ones. The results which have been
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obtained in this paper are in boldface. In the case of trace preorder/equivalence/regularity
we distinguish between deterministic infinite-state processes (left column) and general ones
(right column); finite-state systems can be considered as deterministic here, because the
subset construction [10] preserves trace equivalence.

TABLE1
A summary of known decidability results
BPA BPP PA PDA PN

~FS yes [8] yes [7] yes [14] yes [28] yes [16]

reg. ~ yes [5] yes [13] ? ? yes [13]

Cs FS YES yes [16 NO YES yes [16

FS Cs YES yes [16 NO YES yes [16

=s FS YES yes [16] NO YES yes [16]
reg. = ? ? NO ? no [16]

Ct FS yes yes | yes[16 yes [16 NO NO yes yes | yes[16 yes [16
FSC¢ yes no yes [16 yes [16 NO no yes no yes [16 yes [16
=t FS yes no yes [16] | yes[16] | yes[14] no yes no yes [16] | yes [16]
reg. =¢ yes no yes [13] ? ? no yes no yes [13] | no [16]

The results for trace preorder/equivalence might be also interesting from the point of view
of automata theory (trace preorder and equivalence are closely related to language inclusion
and equivalence, respectively). All ‘trace’ results for BPA and PDA are consequences of
the “classical’ ones for language equivalence (see [10]). It is interesting to compare those
decidability issues with the ones for PA, especially in the deterministic subcase. Trace
preorder with finite-state systems tends to be decidable for deterministic processes; PA
is the only exception. At the same time, trace equivalence with finite-state systems is
decidable for deterministic PA. The PA processes we used in our undecidability proofs
are parallel compositions of two deterministic and normed BPA processes (which can be
seen as deterministic CF grammars). The parallel compaosition corresponds to the shuffle
operator on languages [10]. Thus, our results also bring some insight into the power of
shuffle on (deterministic) CF languages.

Interesting open questions are left in the area of regularity-testing. We can conclude
that all of the “?” problems are at least semidecidable, as it is possible to enumerate all
finite-state systems and decide equivalence with them.
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1 Introduction

Besides their classical use in formal language theory, pushdown automata have
recently gained importance as an abstract process model for recursive proce-
dures. Algorithms for model checking pushdown automata have been presented
in [3,1,14,4]. Reachability analysis for pushdown automata is particularly use-
ful in formal verification. For example, the satisfaction of a safety property
corresponds to the fact, that a certain set of “bad” configurations is not reach-
able. Polynomial algorithms for reachability analysis have been presented in
[1] and further optimized in [5]. For most purposes in formal verification it is
sufficient to consider BPA (‘Basic Process Algebra’; also called context-free
processes), the subclass of pushdown automata without a finite control. BPA
have been used for dataflow analysis in recursive procedures with applications
in optimizing compilers [6].

The weakness of BPA is that it is not a very expressive model for recursive
procedures. It can model recursive dependencies between procedures, but not
the passing of data between procedures or different instances of a procedure
with different parameters.

Example 1 Consider the following abstract model of recursive procedures

P,Q,R,S and F, which take an integer number as argument: (x|y means “x
divides y”).

P(z): Ifxz>16 Q(z): If 2|z then R(x)
If 8|z then Q(z + 1) else S(x + 1)
else P(z — 2)
else F(z)

If one starts by calling procedure P (with any parameter) then procedure R will
never be called, because P mever calls Q) with an even number as parameter.
However, a BPA model for these procedures cannot detect this.

Thus, we define a new more expressive model called BPA(Z) that extends
BPA with an integer parameter. Procedures are now called with an integer
parameter that can be tested, modified and passed to subroutines. We limit
ourselves to one integer parameter, because two would give the model full Tur-
ing power and make all problems undecidable. BPA(Z) is a compromise be-
tween expressiveness and automatic analysability. On the one hand it is much
more expressive than BPA and can model more aspects of full programs. On
the other hand it is still simple enough such that most verification problems
about BPA(Z) stay decidable. For the verification of safety properties, it is
particularly useful to have a symbolic representation of sets of configurations



and to be able to effectively construct representations of the Pre* (the set of
predecessors) and the Post* (the set of successors) of a given set of configu-
rations. While finite automata suffice for describing sets of configurations of
BPA, a more expressive formalism is needed for BPA(Z). We define Z-input
1-CM, a new class of 1-counter machines that take integer numbers as input,
to describe sets of configurations of BPA(Z). We show that the Post™ (the set
of successors) of a set described by a Z-input 1-CM can be effectively con-
structed. The Pre* (the set of predecessors) of a regular set can be effectively
constructed as well. However, the Pre* of a set described by a Z-input 1-CM
cannot be represented by a Z-input 1-CM in general and has an undecidable
membership problem.

We develop a new temporal logic based on reversal-bounded counter machines
that can be used to describe properties of BPA(Z). By combining our result on
the constructibility of the Post™ with some results by Ibarra et al. on reversal

bounded counter machines [9,10] we show that the model-checking problem is
decidable.

2 BPA(Z)

We define BPA(Z), an extension of BPA, as an abstract model for recursive
procedures with an integer parameter.

Presburger arithmetic is the first-order theory of integers with addition and
linear ordering (see, e.g. [7,8,2]).

Definition 2 A n-ary Presburger predicate P(ky, ..., k,) is an expression in
Presburger arithmetic of type boolean (i.e., the outermost operator is a logical
operator or quantifier) that contains exactly n free variables ky, . .., ky, of type
integer. A set S of n dimensional integer vectors is Presburger definable if there
exists a n-ary Presburger predicate P(ky, ..., ky) such that (ky,..., k,) € S iff
P(ky, ..., k) is true.

Presburger definable sets are also known as semilinear sets.

Definition 3 We define integer symbol sequences (ISS) to describe configura-
tions of processes. ISS are finite sequences of the form X1 (k1) Xa(kz) ... Xn(kn)
with n > 0, where the X; are symbols from a given finite set and the k; € 7. are
integers. (The brackets are mere ‘syntactic sugar’ and can be omitted.) Greek
letters a, B, ... are used to denote ISS. The constant € denotes the empty se-
quence.

Definition 4 Let Act = {7,a,b,¢,...} and Const = {X,Y,Z,...} be dis-



joint sets of actions and process constants, respectively. A BPA(Z) (o, A) is
given by an initial configuration o (where o is an ISS) and a finite set A of
conditional rewrite rules of the form

X (k) -% Xi(e1)Xoles) ... Xo(en), P(k)

where

e X € Const, a € Act, k is a free variable of type integer.

o Viec{l,...,n}. X; € Const.

o For every i € {1,...,n} e; is an expression of one of the following two
forms:
- e; = k; for some constant k; € 7, or
- e; = k + k; for some constant k; € 7.

e P(k) is a unary Presburger predicate.

Note that n can be 0. In this case the rule has the form X (k) ¢, P(k).
We denote the finite set of constants used in A by Const(A) and the finite
set of actions used in A by Act(A). These rewrite rules induce a transition
relation on ISS by prefiz-rewriting as follows: For any o we have X (q)a ——a
X1(q1)X2(q2) - .- Xn(gqn ) if there is a rewrite rule

X(k‘) L> Xl(el)Xz(ez) .. .Xn(en), P(k‘)

such that the following conditions are satisfied.

e P(q)
o Ife,=Fk+Fk; then g =q+k;.

In the following we use also the notation o —a B if « —2sa B for some a.

Remark 5 The Presburger predicates can be used to describe side conditions
for the application of rules, e.g., the rule

Xk)SYk-7Z(K+1), 3knk>8

can only be applied to ISS starting with X (q) where q is at least 8 and divisible
by 3. Furthermore, we can use Presburger predicates to express rules with con-
stants on the left-hand side, e.g., the rule X (5) = Y (2)Z(17) can be expressed
by X(k) =Y (2)Z(17), k=>5. In the following we sometimes use rules with
constants on the left-hand side as a shorthand notation.

Remark 6 If one extends the model BPA(Z) by allowing two integer param-
eters instead of one (i.e., BPA(Z,7)), it becomes Turing-powerful, because it



can simulate a Minsky 2-counter machine (in the sense that one can reduce
the halting problem of a Minsky-2 counter machine to the reachability problem
of a BPA(Z,7)).

If one extends the model by allowing multiplication and division on the one
integer parameter, it becomes Turing-powerful as well. This is because in this
case one can encode two counters into one by Godel-coding. Two counters that
hold numbers ny; and ny are represented by one counter holding 2"*3™2. Thus,
all verification problems for these extensions of BPA(Z) become undecidable.

Definition 7 We say that a BPA(Z ) is in normal form if it only contains the
following three types of rules:

X (k) = X1(e1)Xs(e2), P(k)
X(k)—=Y(e), P(k)
X(k)2se, P(k)

where e, eq, es are expressions and P(k) is a unary Presburger predicate as in

Def. 4.

We call the rules of the third type decreasing and the first two types nonde-
creasing.

Remark 8 It is easy to see that general BPA(Z ) can be simulated by BPA(Z)
in normal form (it can execute the same sequences of actions different from
T ) with the introduction of some auxiliary constants. Long rules are split into
several short rules. For example the long rule X (k) = Y (k+1).Z(k—2).W (k+
7) is replaced by X (k) = X'(k).W(k +7) and X'(k) 5 Y(k +1).Z(k — 2).
If one is only interested in the set of reachable configurations of the original
BPA(Z) then one has to filter out the intermediate configurations that contain
auxiliary constants. It will turn out in Section 4 that this is possible. We will
show that the set of reachable configurations of a BPA(Z) in normal form can
be represented by a Z-input 1-CM (a special type of 1-counter machine). These
Z-input 1-CMs are closed under synchronization with finite automata. Thus,
to filter out the intermediate configurations it suffices to synchronize with the
finite automaton that accepts exactly all sequences not containing auziliary
constants.

It is clear that a BPA(Z) can simulate a l-counter machine. However, the
set of reachable configurations of a BPA(Z) cannot be described by a normal
1-counter machine.

Example 9 Consider the BPA(Z) with just one rule X (k) = X (k + 1)X (k)
and initial state X (0). The set of reachable configurations are all decreasing
sequences of the form X (n)X(n—1)X(n—2)...X(0) for any n € N. The lan-
guage consisting of these sequences cannot be accepted by a normal 1-counter



machine, no matter how the integer numbers are coded (e.g., in unary cod-
ing or in binary as sequences of 0 and 1). The reason is that one cannot test
the equality of the counter against the input without losing the content of the
counter during the test.

The central problem in this paper is to compute a representation of the set of
reachable states of a BPA(Z).

Definition 10 Let A be the set of rules of a BPA(Z) and L a language of
ISS (describing configurations of the BPA(Z)). We define Posty(L) = L.
By Posta(L) we denote the set of all successors (reachable configurations) of
elements of L w.r.t. A in one step. Posta(L) = {f | Ja € L.a —a B}. Then,
Post’ (L) is inductively defined as Post’y(L) = Posta(Post'’k *(L)) for n > 0.
By Post’\ (L) we denote the set of all successors (reachable configurations) of
elements of L w.r.t. A, i.e. Post\(L) = Up>¢ Postx(L). In the same way
we define Prea(L) = {a | 38 € L.a —a B}, Prek(L) and Prel\(L) for the
predecessors of elements of L.

3 Automata

We define several classes of automata that are used in our constructions. For
alternating pushdown automata we use the definitions of [1].

Definition 11 An alternating pushdown automaton (APDA for short) is a
triple P = (P,I', A) where P is a finite set of control locations, ' is a finite
stack alphabet and A is the set of transition rules with A C (P x T') x 2P,

A configuration is a tuple (g, w) with ¢ € P, w € T*.

If ((p,7), {(p1,w1), ..., (Pn,wn)}) € A then for every w € I'* the configuration
(p, yw) is an immediate predecessor of the set {(py, wiw), ..., (p,, woaw)}, and
this set is an immediate successor of (p, yw). Intuitively, at the configuration
(p,yw) the APDA selects nondeterministically a transition rule of the form
((p,7), {(p1,w1), ..., (Pn,wy)}) and forks into n copies in the configurations
(p1, wyw), . .., (Pp, Waw).

A run of P for an initial configuration c is a tree of configurations with root
¢ such that the children of each node ¢ are the configurations that belong to
one of its immediate successors (nodes of the form (p, €) have no successors).
We define the reachability relation =C (P xI'*)x 2P*I" between configurations
and sets of configurations. Informally, ¢ = C iff C is a finite frontier (finite
maximal set of incomparable nodes) of a run of P starting from c. Formally,
= is the smallest subset of (P x I'*) x 2P*I" guch that:

e ¢ = {c} for every c € P x I'*,



e if ¢ is an immediate predecessor of C, then ¢ = C,
e ifc={c1,...,cp} and ¢; = C; for each 1 <i < n, then ¢ = (CLU...UC,).

The set of predecessors of a set of configurations C is defined as prej(C) =
{cePxT*|3C"CC.c=C"}.

We can add a new accepting state g, to P and designate an initial state ¢o € P.
Then the language L(P) C I'* accepted by P is defined as the set of initial
stack contents w for which P starting in go accepts, i.e. L(P) = {w | (g, w) €

prep({{ga, w') |w' € T}

An alternating 1-counter machine is an automaton with one integer counter
which can be incremented, decremented, set to a value and tested for 0. Ad-
ditionally, Presburger tests on the counter can be performed.

Definition 12 An alternating I1-counter machine (ACM) is a tuple M =
(Qur, Apr), where Qyr is a finite set of states and Ay C Qpr X 29M*OP s g set
of transition rules, where Op={c:=c+k|ke€ Z}U{c:=k|ke€ Z}U{c=
0} U{P(c) | P(c) is a unary Presburger predicate}.

A configuration of an ACM is a tuple (q,d) with ¢ € Qy; and d € Z. If

(q’{ (Q1,CizC—i—kl),,,,,(qn,c::c—i—kn),

(QL €= kll)v SR (Q:'L’7 Ci= k;ﬂ)v (QQ'» Pl(c))v cey (QZ’H Pn”(c))}) €Ay
then the configuration (q,d) is an immediate predecessor of the set {(q1,d +
ki)y ..oy (qn,d+kn), (qy, kL) - (@, kL), (d), d) ... (g, d)} provided that P;(d)
is true for all 1 < ¢ < n” and this set is an immediate successor of (g, d). If

(¢,{ (qr,c:=c+ki),...,(qu,c:=c+kn), (g1, c:=k),..., (¢, c:=kL),

(qila c= 0)’ R (q;{”’ €= 0)’ (qi”a Pl(c))’ R (q#”’ an(c))}) €Aum

then the configuration (g, 0) is an immediate predecessor of the set {(q1, k1), . . .,
<Qna kn>’ <qia ki>’ T <Q;w k:b>’ <qi,a 0>’ T <qx”a 0>’ <Q1”a 0>’ T <qxf”’ 0>} provided
that P;(0) is true for all 1 < ¢ < n" and this set is an immediate successor of
(q,0). In the same way as for APDA, we define a run, the reachability relation,
and pre’, (C).

We can add an accepting state g, to Q5 and designate an initial state gg € Q.
Then the language L(M) C Z accepted by M is defined as the set of ini-
tial counter values d € Z for which M starting in gy accepts, i.e. L(M) =

{d| (g0, d) € prep({{ga, &) | d" € Z})}.
We show in Lemma 17 that Presburger tests can be eliminated.

If we restrict the set of transition rules to a subset of Qs X Qu X Op we ob-
tain 1-counter machines with Presburger tests. Their reachability relation =C
(Qum XZ)*x(QpXZ)is defined in the obvious way. We define reacha(q, d,q') =
{d' €Z|(q,d)y = (¢',d')}, i.e. the set of all counter values at state ¢' reachable



from a configuration (g, d).
Pushdown counter automata (PCA) have been introduced by Ibarra in [9].

Definition 13 A pushdown counter automaton (PCA) [9] is a pushdown au-
tomaton that is augmented with a finite number of reversal-bounded counters
(containing integers) which can be incremented, decremented and tested for 0.
A counter is reversal bounded iff there is a fized constant k s.t. in any accept-
ing computation the counter can change at most k times between increasing
and decreasing.

Now we define a new class of 1-counter machines with infinite input. These
Z-input 1-counter machines consider whole integer numbers as one piece of
input and can compare them to constants, or to the internal counter without
changing the counter’s value. Additionally, they have several other useful fea-
tures like Presburger tests on the counter. Z-input 1-counter machines will be
used in Section 4 to represent sets of reachable configurations of BPA(Z).

Definition 14 A Z-input 1-counter machine M is described by a finite set of
states @, an initial state qo € Q, a final state g5 € @, a non-accepting state
fail € @, and a counter c that contains wnitially 0. The wnitial configuration
is given by the tuple (qo,0). It reads pieces of input of the form S(i) where
S is a symbol out of a given finite set and i € 7Z is an integer number. The
instructions have the following form (q is different from q; and fail ):

(1) (qg: c¢:=c+1;goto ¢')

(g: c¢:=c—1;goto ¢)
(g : If ¢ >0 then goto ¢ else goto ¢").

(4) (g: If ¢ =0 then goto ¢’ else goto ¢").

(5) (¢: Read input S(i). If S= X and i = K then goto ¢’ else goto ¢").

(6) (q¢: Read input S(i). If S =X and ¢ = c then goto ¢’ else goto ¢").

(7) (g : If P(c) then goto ¢’ else goto ¢"), where P is a unary Presburger
predicate.

where X € Const 1s a symbol constant and K € Z s an integer constant.

Z-input 1-counter machines can be nondeterministic, i.e., there can be several
instructions at the same control state. Each transition arc to a new control
state can be labeled with an atomic action. The language L(M) accepted by
a machine M is the set of ISS which are read by M in a run from the initial
configuration to the state gy.

In the following we use several shorthand notations for operations which can
be encoded by the standard operations above. We use ¢ := ¢+ j (incrementing
the counter by a constant j), ¢ := j (setting the counter to a given constant
j) and the operation guess(c) (setting the counter to a nondeterministically



chosen integer).

It is now easy to see that the set of reachable states of Example 9 can be
described by the following Z-input 1-counter machine:

qo : guess(c); goto ¢
¢1 : Read input S(i). If S = X and i = ¢ then goto ¢, else goto fail
q2: c:=c—1;goto ¢,

g2 : If ¢ =0 then goto g, else goto fail

While instructions of type 6 (integer input) do increase the expressive power
of 1-counter machines, this is not the case for instructions of type 7 (Pres-
burger tests). The following lemma shows that instructions of type 7 can be
eliminated from Z-input 1-counter machines if necessary. We use them only
as a convenient shorthand notation.

Lemma 15 For every Z-input 1-counter machine M with Presburger tests
(i.e., instructions of type 7), an equivalent Z-input 1-counter machine M' with-
out Presburger tests can be effectively constructed (Equivalent means L(M) =

L(M")).

PROOF. Any Presburger formula can be written in a normal form that
is a boolean combination of linear inequalities and tests of divisibility. As we
consider only Presburger formulae with one free variable, it suffices to consider
tests of the forms ¢ > k, ¢ < k and k|c for constants k € Z. Let K be the
set of constants k used in these tests. K is finite and depends only on the
Presburger predicates used in M. Let K' = {ky,...,ky} C K be the finite set
of constants used in divisibility tests. For every control state ¢ of M we define
a set of control states of M’ of the form (q, ji, ..., jm) where j; € {0,..., k;—1}
for every i € {1,...,m}. Now M’ simulates the computation of M in such a
way that M’ is in a state (s, ji, ..., jm) iff M is in state s and j; = ¢ mod k;.
For example if K = {2,5} then the step (s,n) “=%' (s, n + 1) of M yields
e.g. the step ((s,1,2),n) “=3' ((s,0,3),n + 1) of M’. The divisibility tests
thus become trivial in M’, because this information is now encoded in the
control states of M'. The linear inequality tests are even easier to eliminate.
For example the test ¢ > 5 can be done by decrementing the counter by 5,
testing for > 0 and re-incrementing by 5. Thus, the Presburger tests can be
eliminated from M'. O

It is only a matter of convention if a Z-input 1-CM reads the input from left to
right (the normal direction) or from right to left (accepting the mirror image



as in the example above). It is often more convenient to read the input from
right to left (e.g., in Section 5), but the direction can always be reversed, as
shown by the following lemma.

Lemma 16 Let M be a Z-input 1-CM that reads the input from right to left.
A Z-input 1-CM M' can be constructed that reads the input from left to right
and accepts the same language as M.

PROOF. (sketch) M' has the same control states as M plus a new initial
state ¢y and a new final state ¢j. M’ starts in configuration (g, 0). It guesses
a value for its counter and goes to g¢. Then it does the computation of M in
reverse (reading the input from left to right) until it reaches go. It tests if the
counter has value 0. If yes, it goes to q} and accepts. If no, then it doesn’t
accept. O

Now, we give some results concerning APDA and ACMs. In the same way as
in Lemma 15 we can show the following lemma for ACMs:

Lemma 17 For every alternating 1-counter machine M with Presburger tests,
an equivalent alternating I1-counter machine M’ without Presburger tests can
be effectively constructed. (Equivalent means L(M) = L(M')).

Theorem 18 [1] Given an APDA P and a regular set of configurations C,
Prey(C) (in particular L(P)) is reqular and effectively constructible.

With an APDA we can easily simulate an alternating 1-counter machine with
Presburger tests: First, we eliminate the Presburger tests with Lemma 17.
Then, with the stack we can easily simulate the counter. Because the Parikh-
image of regular sets is Presburger definable (semilinear) [12], we obtain the
following:

Corollary 19 Let M be an alternating 1-counter machine with Presburger
tests. Then, L(M) is effectively Presburger definable.

The next corollary follows from the fact that for a 1-counter machine without
alternation successors correspond to predecessors of the reversed machine.

Corollary 20 Let M be a I-counter machine with Presburger tests, q,q €
Qu and d € Z. Then, reacha(q,d, q') is effectively Presburger definable.

10



4 Constructing Post*

In this section we prove the following theorem:

Theorem 21 Let A be a set of BPA(Z) rules in normal form and M a Z-
input 1-counter machine. Then a Z-input 1-counter machine M' with L(M') =
Posti (L(M)) can be effectively constructed.

To prove this theorem we generalize the proof of a theorem in [1] which shows
that the Post* of a regular set of configurations of a pushdown automaton is
regular. This proof uses a saturation method, i.e. adding a finite number of
transitions and states to the automaton representing configurations.

We cannot directly adapt this proof to BPA(Z), because process constants in
a configuration can disappear for certain values of the parameter by applying
decreasing rules. We show how to calculate a Presburger formula to charac-
terize these values. This allows us to eliminate decreasing rules from A. This
means that symbols produced by rules in some derivation can not disappear
later. Then, we can apply the saturation method.

First, we show how to characterize for a given X the set {d | X(d) —4 €}
by a Presburger formula. We transform the set of rules A into an alternating
1-counter machine and use Corollary 19.

Lemma 22 Let A be a set of BPA(Z) rules and X a process constant. Then
a Presburger formula Px(d) with {d | Px(d)} = {d | X(d) =% €} can be

effectively constructed.

PROOF. We construct an alternating 1-counter machine M with Presburger
tests such that L(M) = {d | X(d) —} €}, i.e. M with initial counter value d
has an accepting run iff X(d) —} €. Then, we apply Corollary 19.

We construct M = (Qr, Apr) as follows: To each process constant Y of the
BPA(Z) we associate a state gy in Q. The initial state of M is gx and its
accepting state g,. Ay is the smallest set such that:

If A contains a non-decreasing rewrite rule Z(k) —— Xi(e1)Xa(es), P(k),
then (gz, {(gx,,0p1), (4x,, 0P2), (¢a, P(c))}) € Apr (where op; (i =1,2) is ¢ :=
c+k;if e; = k+k; and op; is ¢ := k; if e; = k;). If A contains a non-decreasing
rewrite rule Z(k) - X;(e1), P(k), then (gz, {(gx,,0p1), (¢, P(c))}) € Ay
(where op; is ¢ ;= c+ ky if e = k+ ky and opy is ¢ := ky if eg = k). If A
contains a decreasing rule Z(k) - ¢, P(k) then (gz, {(qa, P(c))}) € Au.
It is a clear, that a run of M with initial counter value d is accepting iff X (d)
can disappear with rules of A. O

11



Lemma 23 Let A be a set of BPA(Z) rules and M a Z-input 1-counter ma-
chine representing a set of configurations. Then, we can effectively construct a
set of rules A" without decreasing rules and a Z-input 1-counter machine M’',

such that Posty(L(M)) = Posth,(L(M'")).

PROOF. The proof is done in two steps. First we construct a machine M’
such that L(M') = Post; (L(M)) (where Ay C A is the set of decreasing rules
in A), i.e. M" is the closure of M under decreasing rules. Then, we construct A
without decreasing rules such that Post} (L(M)) = Postj,(Posty, (L(M))).

Let us first construct M': The machine M represents a set of configurations. M’
represents the closure of this set under application of decreasing rules. For each
state ¢ we add a new transition from the initial state gq to g. These transition
is composed of guess(c) (which sets the counter non-deterministically to some
value) and a Presburger test P,(c) which characterizes all the counter values
which can be obtained at state ¢ by following a path from ¢y to ¢ such that
all process constants read on this path can disappear by applying rules of A.

We obtain P,(c) by first constructing a 1-counter machine with Presburger
tests M" mimicking the counter operations of M and then using Corollary
20. M" is constructed from M as follows: M" has the same states as M. All
transitions which read a process constant X are replaced by the corresponding
Presburger test Py (k) (with Lemma 22). Then P,(c) is the Presburger formula
we get by applying Corollary 20 to characterize the set reachp(qo, 0, q).

Clearly, L(M') = Post} (L(M)).

Now, we construct A’ which provides rules which non-deterministically guess
what process constants will disappear later in a derivation. Obviously, only
the first process constant from the left can disappear. A’ contains all non-

decreasing rules of A. Furthermore, for each conditional rewrite rule in A of
the form

X (k) = Xi(e1)Xo(ez), P(k)

we add the rule

X(k‘) L> X2(€2), P(k) A PXl(el)

to A’, where Py, is the Presburger formula of Lemma 22. Clearly, we have
Post)(L(M)) = Posty(Posty (L(M))). O

12



We use this lemma to prove Theorem 21. To construct a counter machine
M'" representing Post}i(L(M)), given a counter machine M and a set of
BPA(Z) rules A, it suffices to consider A which doesn’t contain decreasing
rules. Before giving the detailed construction and its correctness proof we ex-
plain the main idea with an example: Suppose we have a rule of the form
X(k) = Y(k+3)Z(k —2), P(k)in A and the automaton M is of the
following form:

guess(c) Read X(i);i=c? c=07

Notice that the counter is not tested before the input instruction. This is not
a restriction (see Lemma 25). We add a new state gy for Y and transitions to
M and obtain:

guess(c) Rea'd X(1)7 i=c ? c=0 ? ............
c:=c-5 Read Z(i);i=c 7
c:=c+2;P(c)?

qy

The transition going out of ¢y changes the counter value in such a way that
if Y is read with parameter k£ then Z is read with parameter k — 5, where —5
is the difference between —2 and 3. Then, the transition restores the counter
value to the value before application of the rule by adding 2 and tests P(c).
Now consider instead a rule X (k) — X(k+1)Y(k—2) P'(k) in A. Follow-
ing the same principle as before we add a state for X and transitions. This
will create a loop:

guess(c)

c:=c-3;Read Y(i);i=c 7
c:=c+ 2; Pc)?

O
/t ax

c:=c-3;Read Y(i);i=c?c:=c+2; P'(c) ?

It is clear that in this way we only add a finite number of states (one for each
process constant) and transitions. In the following we give the detailed proof

13



of our main theorem.

Proof of Theorem 21

First we show how to transform a Z-input 1-CM into a special form:

Definition 24 A Z-input 1-CM M 1is said to be in special form iff

s From the initial state qo there is only an instruction guess(c) going to qi.
No instructions go back to qo or q;.

All instructions from q, are of the form

(¢1 : Read input S(i). If S = X and i = c then goto ¢’ else goto fail)

or

(q1 : Read input S(i). If S = X and i # ¢ then goto ¢’ else goto fail)

We call this instructions first input instructions.

All instructions with a test of the counter (¢ > 0 or ¢ =0) are of the form
(q: If test(c) then goto ¢' else goto fail)

Machines in special form guess a counter value, read an input and only then
can test the counter and continue. We can prove the following lemma:

Lemma 25 Any Z-input 1-CM M can be replaced by a Z-input 1-CM M' in
special form which accepts the same language.

PROOF. Putting the test instructions into the required form is trivial. To
construct a machine where no tests on the counter are done before an input,
we have to characterize all the counter values which can be obtained by taking
a path (without inputs) from the initial configuration (g, 0) to another state
q'. We can construct a Presburger formula P(c) for this (using Corollary 20).
Then we can construct a machine with states ¢y and ¢; as required by the
special form (by putting the corresponding Presburger test behind each input
instruction). At last, input instructions starting at ¢; of the form

(q1 : Read input S(i). If S = X and i = K then goto ¢ else goto fail)
can be replaced by
(q1 : Read input S(i). If S = X and i = ¢ then goto ¢" else goto fail)

(qll 11
(g

: If ¢ = K then goto ¢
. guess(c); goto ¢')

else goto fail)

mn

The same is done for instructions with inequations. O

14



To prove Theorem 21 we have to show, that given a set A of BPA(Z) rules and
a Z-input 1-counter machine M we can construct a Z-input 1-counter machine
M'" with L(M') = Postiy(L(M)). Because of Lemma 23 we can suppose that
A does not contain decreasing rules. We suppose that rules of A are in normal
form and that M is in special form (Lemma 25). We first give the construction
of M' and then we prove that L(M') = Post)(L(M)).

Construction of M’

In the following we will omit the else-part of all the instructions (they all go
to fail). The construction of M’ is done by adding states and instructions to
the machine M. The basic idea is the following: Each rule of A can replace a
process constant read starting from the initial state of the automaton M by
other process constants. Therefore, instructions have to be added to M. These
instructions have to change also the counter in order to simulate correctly the
change in the parameters. Therefore, the counter has to be changed in such a
way, that after reading the symbols on the right-hand side of a rule its value is
the same as before. The special form of M insures that the counter is not tested
before the input instructions. Furthermore, because there are no decreasing
rules, only symbols read in the first input instructions can be replaced.

Let go be the initial state of M and ¢; the state after the initial state. To
simplify the presentation we only show how to treat input instructions with
a test of the form ¢ = ¢. The same can be done for i # ¢. For each process
constant X we add a new state gx and an instruction

(¢1 : Read input S(7). If S = X and ¢ = ¢ then goto ¢x ).

Now, for each input rule of the form
(q1 : Read input S(7). If S = X and ¢ = c then goto ¢')
in M (including instructions added before) and for each rule in A of the

following forms, we add instructions to M to obtain M'.

[ ] X(I{?) L)Xl(k—*—kl), P(l{?)
add one instruction

(gx, : c:=c—ky; If P(c) then goto ¢')
o X(k) L) Xl(kl), P(l{?)

add two instructions (g, is a new state)
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(gx, : If ¢ =k then goto g,)
(¢n : guess(c); If P(c) then goto ¢')

o X(k) % Xy(k+ k1) Xo(k + ko), P(k):
add two instructions (g, is a new state)

(gx, :c:=c— ki +ko; Read input S(¢).
If S= X5 and i = c then goto ¢,)
(gn:c:=c—ko; If P(c) then goto ¢')

o X(k) % X1(k1)Xo(k+ k), P(k):
add three instructions (gn,, ¢,, are new states)

(gx, : If ¢ =k; then goto qy,,)
(qn, : guess(c); Read input S(7). If S = X, and i = ¢ then goto ¢p,)
(Qn, : ¢:=c— ko; If P(c) then goto ¢')

L] X(k) L)Xl(k—f—kl)Xz(kz), P(k‘)
add two instructions (g, is a new state)

(gx, :c:=c—k1; Read input S(7).
If S= X5 and i = ky then goto g¢,)
(gn : If P(c) then goto ¢')

[} X(k) L) Xl(kl)Xz(kz), P(k)
add three instructions (g, , ¢,, are new states)

(gx, : If ¢ =k; then goto qy,,)
(gn, : Read input S(i). If S = X5 and i = ky then goto gy, )
(qn, : guess(c); If P(c) then goto ¢')

Since there are only a finite number of instructions starting at ¢; and a finite
number of rules in A, it is obvious that only a finite number of instructions are
added. In M’ loops containing the states gx can be created by the construction.

Correctness of M’

We have to show that Post*(L(M)) = L(M').

First, Post*(L(M)) C L(M'):

We show by induction that Post} (L(M)) C L(M') for all n € IN. Base case:
Obviously, we have L(M) C L(M') because M' is obtained by adding states
to M. Induction step: Consider an o € Post’x"'(L(M)). Then, there exists an
o' € Posth (L(M)) with o — a. By induction hypothesis o € L(M'). Now,
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the construction of M’ insures that a € L(M'), because for each rule of A
there are corresponding transitions which are added to obtain M’.

Second, L(M') C Post*(L(M)):

We prove this by induction on the number of new instructions (added to M
by the construction) taken in accepting runs of M'. Let oo € L(M’). If no new
instruction is taken in an accepting run of «, then o € L(M) and therefore
a € Post*(L(M)). Now, suppose that an accepting run of o in M’ takes some
new instructions. These are all taken at the beginning of the run. @ must be
of the form X;(m)a’. The machine M’ takes first the guess(c) instruction and
then an input instruction of the form

(¢1 : Read input S(7). If S = X; and i = ¢ then goto gx, else goto fail)

Then, there are several cases to consider depending on the next instruction
taken. We give the proof in detail for one case. All the others are done analo-
gously. Suppose that the next instruction taken by the machine is

(gx, : ¢:=c— ky; If P(c) then goto ¢')

Therefore, P(m — k;) is true. By construction there is an instruction in M’

(g1 : Read input S(i). If S = X and i = ¢ then goto ¢')

for some process constant X. Furthermore there is a rule X (k) — X;(k +
k1), P(k) in A. Because of @ € L(M') we have X(m — ky)a' € L(M')
with an accepting run which takes less new instructions than the one for
a. By induction hypothesis, X (m — ki)’ € Post*(L(M)) and furthermore
X(m —ky)a' —a X(m)a' = a. Tt follows, that a € Post*(L(M)).

Thus Theorem 21 is proven. O

Remark 26 While the language of reachable states of any BPA(Z) can be
described by a Z-input 1-CM, the converse is not true. Some Z-input 1-CMs
describe languages that cannot be generated by any BPA(Z). Consider the
language

{X(B)Y (31)Y (52) .. .Y (jn) X (k) | k€ Z,n € N, jy,..., jn € L}
It is easy to construct a Z-input 1-CM for this language (it just ignores the
values of the j;). However, no BPA(Z ) generates this language, since it cannot

quess the values of the arbitrarily many j; without losing the value for k, which
it needs again at the end.
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The complexity of constructing a representation of Post* must be at least as
high as the complexity of the reachability problem for BPA(Z). A special case
of the reachability problem is the problem if the empty state € is reachable
from the initial state.

¢-REACHABILITY FOR BPA(Z)

Instance: A BPA(Z) A with initial state X (0).
Question: X (0) »*€?

It is clear that for BPA(Z) with Presburger constraints the complexity of
e-reachability is at least as high as that of Presburger arithmetic. Consider
a closed (i.e., without free variables) Presburger formula P and a BPA(Z)
with one rule X (k) — ¢, P(k). Then we have X (0) —* € iff P is true.

Presburger arithmetic is complete for the class Uy~ TA[Zznk, n] (see [13]), and
thus requires at least doubly exponential time. Now we consider a restricted
case of BPA(Z) without full Presburger constraints. In Remark 5 it was shown
how Presburger constraints can be used to encode rules with constants on the
left-hand side. Without rules with constants on the left-hand side BPA(Z)
would not be very meaningful. In the following theorem we do not use full
Presburger constraints, but we do use rules with constants on the left-hand
side.

Theorem 27 The e-reachability problem for BPA(Z) without full Presburger
constraints, but using integer constants in the left-hand sides of rules, is N'P-

hard.

PROOF. We reduce 3-SAT to e-reachability. Let Q@ := Q1 A ... A Q; be
a boolean formula in 3-CNF with j clauses over the variables z1,...,x,. We
construct a BPA(Z) A with initial state X (0) s.t. X (0) —4 €iff @ is satisfiable.
Let p; be the [-th prime number. We encode an assignment of boolean values
to x1,...,x, in a natural number x by Godel coding, i.e., x; is true iff z is
divisible by p;. The set of rules A is defined as follows:

X(k) - X(k+1)

X(k) = Qik+1).Q2(k+1)..... Qj(k+1)

Qi(k) — Xi(k) if z; occurs in clause Q;.
Qi(k) — Xi(k) if Z; occurs in clause Q;.
Xi(k) = Xi(k — m)

X;(0) — €

Xi(k) = Xi(k —p)

Xi(r) — ¢ for every r € {1,...,p — 1}
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The X (k) is used to guess a number k that encodes an assignment to zy, . . ., z,.
If follows from the construction that @Q;(k) —* € iff £ encodes an assignment
that makes clause Q; true, X;(k) —* € iff k£ encodes an assignment where z;
is true and X;(k) —* € iff k encodes an assignment where x; is false. Thus we
get X(0) —* e iff @ is satisfiable. As the [-th prime number is O(l - log!), the
size of A is O(jn + n?logn). O

5 The Constructibility of Pre*

In this section we show that the Pre* of a regular set of configurations (w.r.t.
a BPA(Z)) is effectively constructible. However, the Pre* of a set of config-
urations described by a Z-input 1-CM is not constructible. It is not even
representable by a Z-input 1-CM in general. Regular sets are given by finite
automata. We define that finite automata ignore all integer input and are only
affected by symbols. So, in the context of BPA(Z) we interpret the language
(ab)* as {a(k1)b(k})...a(k,)b(kl) | n € Ny, Vi. k;, ki € Z}.

Theorem 28 Let A be a BPA(Z) and R a finite automaton. Then a Z-input
1-CM M can be effectively constructed s.t. M = Pre)(L(R)).

PROOF. Every element in Pre, (L(R)) can be written in the form aX (k)y
where o —* ¢, X (k) —* f and Sy € L(R). Thus there must exist a state r in
R s.t. there is a path from the initial state ry of R to r labeled 8 and a path
from r to a final state of R labeled 7. We consider all (finitely many) pairs
(X,r) where X € Const(A) and r € states(R). Let R, be the finite automaton
that is obtained from R by making r the only final state. We compute the set
of integers k for which there exists a § s.t. X(k) —* 5 and 8 € L(R,). First
we compute the Z-input 1-CM My in special form that describes Post™(X (k))
as in Theorem 21. Then we compute the product of Mx with R,, which is
again a Z-input 1-CM in special form. The set of counter values at state ¢;
of Mx for which Mx x R, is nonempty is Presburger definable and effectively
computable (like in Corollaries 19 and 20). Let Px, be the corresponding
unary Presburger predicate. Let R] be the finite automaton that is obtained
from R by making r the initial state. We define M , to be the Z-input 1-CM
that behaves as follows: First it accepts X (k) iff Px (k) and then it behaves
like R;.. Let M, be the Z-input 1-CM that accepts all sequences o s.t. @ —* €.
M, is effectively constructible, since for every symbol Y the set of k£ for with
Y (k) —* € is Presburger and effectively constructible by Lemma 22. Then
finally we get

M = M, - UMX,T

X,r
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and M = Pre)(L(R)). O

Now we consider the problem of the Pre* of a set of configurations described
by a Z-input 1-CM.

MEMBERSHIP IN Pre* oF Z-INPUT 1-CM

Instance: A BPA(Z) A, a Z-input 1-CM M and a state X,(0)
Question: Xy(0) € Pre; (M) 7

Theorem 29 Membership in Pre* of Z-input 1-CM is undecidable.

PROOF. We reduce the undecidable halting problem for Minsky 2-counter
machines (with both counters initially 0) to the membership in Pre* of a Z-
input 1-CM. The first observation is that X,(0) € Prej (M) iff Post) (Xo(0))N
L(M) # 0. Let M' be a Minsky 2-counter machine. We will define the BPA(Z)
A and the Z-input 1-CM M in such a way that each of them simulates a 1-
counter machine and together they simulate the 2-counter machine M'.

We define the BPA(Z) A in such a way that it correctly simulates the part
of the computation of M’ that only affects the first counter ¢;. The integer
parameter is used to store the first counter c¢;.

e For every instruction of M’ of the form (X : ¢; := ¢; + 1; goto X') we have
arule X(k) — X'(k +1)X (k).

e For every instruction of M’ of the form
(X : If ¢; =0 then goto X' else ¢; := ¢; — 1;goto X”) we have two rules
X(0) — X'(0)X(0) and X (k) = X"(k—1)X(k), k>0.

e For every instruction of M’ of the form (X : ¢y := ¢2 + 1; goto X') we have
arule X (k) — X'(k)X (k).

e For every instruction of M’ of the form
(X : If c2 = 0 then goto X' else ¢y := ¢3 — 1;goto X”) we have two rules
X (k) — X'(k)X (k) and X (k) — X" (k)X (k).

In the last of these four cases the BPA(Z) guesses the successor state, because
it knows nothing about the counter cy. Thus, Post; (X((0)) contains all correct
computation sequences of M’ starting at the initial control state X and initial
counter value 0, but also some wrong ones (if it has guessed wrongly in the
fourth case). These sequences are read from right to left.

Then we use the Z-input 1-CM M to simulate the other part of the compu-

tation of M’ which affects the second counter ¢y. The counter of M is used to
store the second counter ¢, of M’ (which is initially 0). M ignores all integer
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input and only checks the symbols.

e For every instruction of M’ of the form (X : ¢ := ¢ + 1;goto X') the
machine M reads the input, but ignores it, goes to control state X' and
leaves the internal counter unchanged.

e For every instruction of M’ of the form
(X : If ¢, =0 then goto X' else ¢; := ¢; — 1;goto X") the machine M reads
the input symbol, which is either X or X', and changes the control state
accordingly to X or X'. M ignores the integer input and leaves the internal
counter unchanged.

e For every instruction of M’ of the form (X : c¢p := ¢y + 1;g0to X') the
machine M increases the internal counter by 1 and goes to the control state
X'

e For every instruction of M’ of the form
(X : If cg = 0 then goto X' else ¢ := ¢3 — 1;goto X") the machine M
checks if the internal counter is 0.

- If the internal counter is 0, then it reads the input symbol and checks if
it is X'. If yes, then it goes to the control state X'. If no, then it stops
and rejects. The internal counter is left unchanged. The integer input is
ignored.

- If the internal counter is > 0 then it decrements the internal counter by
1, reads the input symbol and checks if it is X". If yes, then it goes to
the control state X"”. If no, then it stops and rejects. The integer input is
ignored.

The machine M only accepts in the final control state X, which is also the
final state of M’'. As for the BPA(Z) above, these computation sequences of
M are read from right to left. This is not a restriction by Lemma 16.

Together A and M simulate the computation of M'. A ensures that the com-
putation step is correct when the first counter is concerned. M does the same
for the second counter and ensures that only those sequences are accepted
that end in the final state X; of M'.

So we get that X(0) € Prey(M) <= Postr(Xo(0)) NL(M) # 0 <
M halts, and thus the membership problem in Pre* is undecidable. O

Theorem 29 does not automatically imply that the Pre* of a Z-input 1-CM
(w.r.t. A) cannot be represented by a Z-input 1-CM. It leaves the possibil-
ity that this Z-input 1-CM is just not effectively constructible. (Cases like
this occur, e.g., the set of reachable states of a classic lossy counter machine
is semilinear, but not effectively constructible [11].) However, the following
theorem shows that the Pre* of a Z-input 1-CM is not a Z-input 1-CM in
general.
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Theorem 30 Let A be a BPA(Z) and M a Z-input 1-CM. Then, the set
Pre\(L(M)) cannot be represented by a Z-input 1-CM in general.

PROOF. Let M' be the 2-counter machine that accepts if and only if the
initial counter value in the first counter ¢; is a power of 2, i.e., 2™ for some
positive integer m. Let A and M be defined as in the proof of Theorem 29.

We assume that Pre’y (M) could be represented by a Z-input 1-CM and derive
a contradiction. If there were a Z-input 1-CM that represents Prey (M) then
there would also exist a Z-input 1-CM that represents Prex (M)N{Xy(n) | n €
IN} = {Xo(n) | 3m € N.n = 2™}. This is a contradiction, because the set
{n|3Im € N.n = 2™} is not Presburger definable. 0O

6 The Logic and its Applications

We define a logic called ISL (Integer Sequence Logic) that can be used to
verify properties of BPA(Z). It is interpreted over ISS (see Def. 3). We define
a notion of satisfaction of an ISL formula by a BPA(Z) and show that the
verification problem is decidable.

Let const denote the projection of ISS on sequences of constants obtained by
omitting the integers; formally const(X; (k1) Xa(k2) ... Xin(kn)) = X1 Xa ... Xpp.
Then, the logic ISL is defined as follows:

Definition 31 ISL formulae have the following syntax:

F = (Al,...,An,P)

where Ay, ..., A, are finite automata over an alphabet of process constants,
and P is an (n — 1)-ary Presburger predicate. Formulae are interpreted over
sequences w of the form Xi(k1)Xa(kz) ... Xm(km), where the satisfaction re-
lation is defined as follows:

w = F iff there exist words wy, ..., w,, constants Y1,...,Y, 1 and integers
k’l, ceey ]{?n,1 s.t.w = wlYl(kl)ngg(kg) Ce wnflynfl(knfl)’wn and

o Viec{l,...,n—1}. A; accepts const(w;)Y;.
o A, accepts const(wy) and P(ky, ..., k, 1) is true.

The set of sequences which satisfy a formula F is given by [F] = {w|w = F}.
Intuitively, ISL formulae specify regular patterns (using automata) involving a

finite number of integer values which are constrained by a Presburger formula.
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We use ISL formulae to specify properties on the configurations of the systems
and not on their computation sequences, the typical use of specification log-
ics in verification. For instance, when BPA(Z)’s are used to model recursive
programs with an integer parameter, a natural question that can be asked is
whether some procedure X can be called with some value k satisfying a Pres-
burger constraint P. This can be specified by asking whether there is a reach-
able configuration corresponding to the pattern Const* X (k)Const*, where
P(k) holds. Using ISL formulae, we can specify more complex questions such
as whether it is possible that the execution stack of the recursive program can
contain two consecutive copies of a procedure with the same calling parame-
ter. This corresponds to the pattern Const* X (k;)(Const—{X })* X (k) Const™,
where ki = ks.

The first result we show, is that we can characterize [F'] by means of reversal
bounded counter automata. However, elements of [F] are sequences over an
infinite alphabet, since they may contain any integer. To characterize over a
finite alphabet an element w € [F] we can encode the integers in w in unary:
a positive (resp. negative) integer k; is replaced by k; (resp. —k;) occurrences
of a symbol p; (resp. n;). Hence, given a set L of ISS, let L denote the set of all
sequences in L encoded in this way. We can characterize m with a reversal
bounded counter automaton.

Lemma 32 We can construct a reversal bounded counter automaton M over
a finite alphabet ¥ such that [F]| = L(M).

PROOF. The reversal bounded counter automaton M simulates sequentially
the automata A;, ..., A, in order to check if the input is of the correct regular
pattern. After reading w; (A; has to be in an accepting state), the machine
reads a sequence of symbols p; or n; and stores their length in corresponding
reversal bounded counters. After the input has been completely read, the
Presburger formula can be tested by using a finite number of other reversal
bounded counters. O

Now, we define a notion of satisfaction between BPA(Z)’s and ISL formulae.

Definition 33 Let (wy, A) be a BPA(Z) with initial configuration wy and set
of rules A. Let F' be an ISL-formula. We define that (wg,A) satisfies the
formula F iff it has a reachable configuration that satisfies F'. Formally

(wg,A) E F <= Jw € Post)(wy).w =F
To prove the decidability of the verification problem (wg, A) |= F, for a given
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BPA(Z) (wy, A) and a formula F' we need the following definition and a lemma.

Definition 34 Let L be a set of ISS. Then, L|, is the set of sequences w such
that there exists a sequence w' € L with k' > k integers such that w is obtained
from w' by removing k' — k integers and encoding the remaining integers in
unary.

Lemma 35 Let (wy,A) be a BPA(Z) with initial configuration wy and set of
rules A. Then we can construct a PCA M such that L(M) = Post)(wp)|g.

PROOF. First by Theorem 21 we construct a Z-input 1-CM M that accepts
Post’y (wp). We construct a PCA from M by (1) using the pushdown store to
encode the counter (2) choosing non-deterministically exactly k input values
which are compared to the counter. For these comparisons we need £k additional
reversal bounded counters (to avoid losing the counter value). O

Theorem 36 Let (wy, A) be a BPA(Z) with initial configuration wy and set
of rules A and F = (A4, ..., A,, P) an ISL-formula. The problem (wy, A) = F

1s decidable.

—_—

PROOF. Clearly, we have Post}(wp) N [F] # 0 iff Post}i(we) N [F] # 0,

— —

which is also equivalent to Post} (wp)|n,—1 N [F] # 0 since F' cannot constrain

—

more than n — 1 integers. Then we show that Posth(wo)|,1 N [F] # 0 is
decidable. This follows from Lemma 35, Lemma 32, the fact that the inter-
section of a CA language with a PCA language is a PCA language (Lemma
5.1 of [9]), and Theorem 5.2 of [9] which states that the emptiness problem of
PCA is decidable. O

Finally, we consider another interesting problem concerning the analysis of
BPA(Z)’s. When used to model recursive procedures, a natural question is
to know the set of all the possible values for which a given procedure can be
called. More generally, we are interested in knowing all the possible values
of the vectors (ki,...,k,) such that there is a reachable configuration which
satisfies some given ISL formula F' = (A, ..., A1, P). We show that this set
is effectively semilinear.

Theorem 37 Let (wy, A) be a BPA(Z) with initial configuration wy and set
of rules A, and let F' be an ISL formula. Then, the set

{(k1,...,kn) € Z" 3w = u Y1(k1) ... 0, Y (kn)Wny1 € Posti(wg). w = F}
15 effectively semilinear.
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PROOF. As in the proof of Theorem 36, we can construct a PCA which

recognizes the language Post} (wy)|, N [F]. Then, the result follows from the
fact that the Parikh image of a PCA language is semilinear (see Theorem 5.1
of [9]). O

7 Conclusion

We have shown that BPA(Z) is a more expressive and more realistic model
for recursive procedures than BPA. The price for this increased expressive-
ness is that a stronger automata theoretic model (Z-input 1-CM) is needed to
describe sets of configurations, while simple finite automata suffice for BPA.
As a consequence, the set of predecessors is no longer effectively constructible
for BPA(Z) in general. However, the set of successors is still effectively con-
structible in BPA(Z) and thus many verification problems are decidable for
BPA(Z), e.g., model checking with ISL. Thus, BPA(Z) can be used for veri-
fication problems like dataflow analysis, when BPA is not expressive enough.
We expect that our results can be generalized to more expressive models (e.g.,
pushdown automata with an integer parameter), but some details of the con-
structions will become more complex.
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