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Abstract. We study generalized simulation relations for alternaighi au-
tomata (ABA), as well as alternating finite automata. Havingltiple pebbles
allows the Duplicator to “hedge her bets” and delay decisionthe simulation
game, thus yielding a coarser simulation relation. We défingk; )-simulations,
with k1/k2 pebbles on the left/right, respectively. This generalipevious work
on ordinary simulation (i.e.(1, 1)-simulation) for nondeterministic Biichi au-
tomata (NBA) in [3] and ABA in [4], and 1, k)-simulation for NBA in [2].

We consider direct, delayed and fair simulations. In eadecthe(k1, k2)-
simulations induce a complete lattice of simulations wh@rel)- and (n,n)-
simulations are the bottom and top element (if the automhssn states), re-
spectively, and the order is strict. For any fixed k2, the (k1, k2)-simulation
implies (v-)language inclusion and can be computed in polynomial.tfFoether-
more, quotienting an ABA w.r.{1, n)-delayed simulation preserves its language.
Finally, multipebble simulations yield new insights intetMiyano-Hayashi con-
struction [10] on ABA.

1 Introduction

We consider simulation relations on (alternating) finitad anfinite word automata:
nondeterministic finite automata (NFA), alternating firdietomata (AFA), nondeter-
ministic Buchi automata (NBA) and alternating Biichi amgita (ABA). Simulation pre-
order is a notion of semantic comparison of two states, dadift state and right state,
in automata, where the larger right state can match all moivéee smaller left one in a
stepwise way. Simulation preorderimplies language inclusn NFA/AFA/NBA/ABA
[3, 4], but not vice-versa. While checking language in@ass PSPACE-complete for
all these classes of automata [7, 11], the simulation melatan be computed in poly-
nomial time [3, 4].

Checking simulation preorder between two states can bepied as a game with
two players, Spoiler and Duplicator, where Spoiler trieprimve that the simulation re-
lation does not hold while Duplicator has the opposite dbjecin every round of the
simulation game, Spoiler chooses a transition from theecuieft state and Duplicator
must choose a transition from the current right state whihthe same action label.
Duplicator wins iff the game respects the accepting statdss automata, and different
requirements for this yield finer or coarser simulation tiefes. In direct simulation
whenever the left state is accepting, the right state muatbepting. Irdelayed simu-
lation, whenever the left state is accepting, the right state meisvbntually accepting.
In fair simulation if the left state is accepting infinitely often, then thehtigtate must
be accepting infinitely often. For finite-word automata yotirect simulation is mean-
ingful, but for Buchi automata delayed and fair simulatioeld coarser relations; see
[3] for an overview.



These notions have been extended in two directions. Eté$8hdefined a hierar-
chy of (1, k) multipebble simulations on NBA. Intuitively, the pebbles on the right
side allow Duplicator to “hedge her bets” and thus to delakinmdecisions. This extra
power of Duplicator increases with largeiand yields coarser simulation relations.

A different extension by Wilke and Fritz [4] considered siations on ABA. In
an ABA, a state is either existential or universal. The idethat Spoiler moves from
existential left states and universal right states, andyfa Duplicator.

Our contribution. We consider(ky, k2 )-simulations on ABA, i.e., with multiple peb-
bles on both sides:; on the left andks on the right. Intuitively, Duplicator controls
pebbles on universal states on the left and existenti@stat the right (and dually for
Spoiler). This generalizes all previous results: thek)-simulations on NBA of [2] and
the (1, 1)-simulations on ABA of [4].

For each acceptance condition (direct, delayed, fair)yteikls a lattice-structured
hierarchy of(k1, k2 )-simulations, wheré¢1, 1)- and(n, n)-simulations are the bottom
and top element if the automaton hasstates. Furthermore, the order is strict, i.e.,
more pebbles make the simulation relation strictly coanseyeneral. For each fixed
k1,ke > 0, (k1, k2)-simulations are computable in polynomial time and theylymp
language inclusion (over finite or infinite words, dependinghe type of simulation).

Quotienting AFA w.r.t.(k1, k2)-Ssimulation preserves their language. We also pro-
vide a corresponding result for ABA by showing that quotiegtABA w.r.t. (1, n)-
delayed simulation preserves thdanguage. This is a non-trivial result, since a naive
generalization of the definition of semielective-quotigdf does not work. We provide
the correct notion of semielective-quotients farn)-simulations on ABA, and show
its correctness. Moreover, unlike for NBA [2], quotientiAA w.r.t. (1, %) delayed
simulation forl < k < n doesnot preserve their language in general.

Finally, multipebble simulations have close connectiangrious determinization-
like constructions like the subset construction for NFABA&Nd the Miyano-Hayashi
construction [10] on ABA. In particular, multipebble sinatibns yield new insights into
the Miyano-Hayashi construction and an alternative coness proof showing an even
stronger property.

2 Preliminaries and Basic Definitions

Automata.An alternating Biichi automaton (ABA) is a tuple(Q, X, q;, A, E, U, F),
where( is a finite set of stated, is a finite alphabety; is the initial state{E, U} is

a partition of@ into existentialanduniversalstatesA C @ x X x @ is the transition
relation andF’ C (@ is the set of accepting states. We say that a gtégeaccepting if
q € F. We usen to denote the cardinality . A nondeterministic Blichi automaton
(NBA) is an ABA with U = 0, i.e., where all choices are existential. We say Bds
completaff V(q,a) € Q@ x X.3(q,a,¢') € A.

An ABA Q recognizes a language of infinite words (Q). The acceptance con-
dition is best described in a game-theoretic way [5]. Giverirgput wordw € X“,
the acceptance gam&«(Q,w) is played by two players, Pathfinder and Automa-
ton. Existential states are controlled by Automaton, wRihfinder controls universal
states. Automaton wins the garfi¢’(Q, w) iff she has a winning strategy s.t., for any



Pathfinder counter-strategy, the resulting computatisitsstsome accepting state i
infinitely often. The languagg€« (Q) recognized byQ is defined as the set of words
w € X¥ s.t. Automaton wing&*“ (Q, w). See [4] for a formal definition.

If we view an ABA Q as an acceptor dfnite words, then we obtain an alternat-
ing finite automaton (AFA). Fow = wp ... w, € X*, the finite acceptance game
Gi"(Q,w) is defined as above fd@“ (Q, w), except that the game stops when the last
symbolw,, of w has been read, and Automaton wins if the last state /& 6" (Q) is
defined in the obvious way. An alternating transition sys(éms) O is an AFA where
all states are accepting, afid(Q) := £fi"(Q) is its trace language. When we just say
“automaton”, it can be an ABA, AFA or ATS, depending on the teom

If Q is a set, with2? we denote the set of subsets@f and, for anyk € N, with
2Q:% we denote the subset P consisting of elements of cardinality at mastwhen
drawing pictures, we represent existential state@ and universal states E .

Multipebble simulationsWe define multipebble simulations in a game-theoretic way.
The game is played by two players, Spoiler and Duplicatog wlay in rounds. The
objective of Duplicator is to show that simulation holds,iltSpoiler has the comple-
mentary objective. We use the metaphor of pebbles for deagrthe game: We call
a pebble existential if it is on an existential state, and/emsial otherwiset_eft if it is
on the |.h.s. of the simulation relation, aRijhtotherwise. Intuitively, Spoiler controls
existentialeft pebbles and universRlightpebbles, while Duplicator controls universal
Left pebbles and existentiRightpebbles. The presence ufl pebbles in each side is
due to the further ability of Duplicator to split pebbles #veral successors. Moreover,
Duplicator always has the possibility of “taking pebblesasiv Since not all available
pebbles have to be on the automatbr; 1 pebbles are at least as goodkas

Formally, letQ be an alternating automatody € 29°% ak;-set andsy € 29%2 a
ko-set. We define the basié , k2)-simulation gam@(khkz)(qo, sp) as follows. Let

ISP andI'P'P be a set of actions (or transitions) for the two players (tsbecified
below). In the initial configuratiodqo, so), Left pebbles are ory andRightpebbles
on so. If the current configuration at roundis (q;, s;), then the next configuration
(di+1,8i+1) is determined as follows:

— Spoiler chooses a transitign;, s;, a;, q',s') € I'>P.
— Duplicator chooses a transitign;, s;, a;, q’,s’, Qi+ 1,8:41) € TP,

We now define the two transition relations. kgt := qN E be the set of existential
states inq, and definegV, s”, sV similarly. Let P := 2951 x 2@:F2 and Py := X x
2@k 2@k 'SP C Py x Py, models Spoiler's movesq,s,a,q’,s’) € ISP iff
Spoiler chooses as the next input symbol, and

— ¢ is obtained fromg” by choosing a successor feach pebblén . Formally,
q’ = {select(A(q,a)) | ¢ € ¥ }, whereselect(r) chooses an elementin
— Similarly, s’ is obtained frons" by choosing a successor for each pebblgin

Duplicator’s moves are of the forfey, s, a, q’,s’,q",s”) € ' C P; x Py x P;:

— " is a non-empty; -subset ofy’ U A(qY, a), and
— s is a non-emptyio-subset ok’ U A(s”, a).



Notice that Duplicator is always allowed to “take pebblesagiy and to “hedge her
bets” by splitting pebbles into different successors. Wethat a pebble on statgis
stuckif ¢ has naa-successor (whereis clear from the context).

We now formally define strategies. A strategy for Spoiler farectiond : Py Py +—
Py compatible withI"P, i.e., for any(r - (q,s)) € Py Py, 6(x - {q,s)) = (a,q,s’)
implies (q,s,a,q’,s’) € I'P. Similarly, a strategy for Duplicator is a function :
P} P, — (Py — P;) compatible withI"PvP  i.e., for anyr € P; P, and(a,q’,s’) €
Py, o(m)(a,q,s") = (q”,s") implies (q,s,a,q’,s’,q",s") € ', Aplayr =
(d0,s0){qi1,s1)--- € Pf U Py is afinite or infinite sequence of configurationsfn
Forawordw = agay--- € X*U XY st |w| = |n] —1 (With |71] = w = w -1
if 7 € X¥), we say that a play is o-conform tow iff, for any i < |x|, there exists
some(qi, s;, ai, q;,s;) € ISP s.t.o((qo,s0) ... (i, 8:))(ai, q},8;) = (Qir1,Siq1).
Intuitively, o-conform plays are those plays which originate when Dupticastrategy
is fixed too; 6-conform plays, fo a Spoiler’s strategy, are defined similarly. Below,
both strategies are fixed, and the resulting, unique plagriéoem to both.

The game can halt prematurely, for pebbles may get stuckisncase, the win-
ning condition is as follows: If there existsL&ft pebble which cannot be moved, then
Duplicator wins. Dually, if ndRightpebble can be moved, then Spoiler wins.

Remark 1.0ur winning condition differs from the one in [4] when pebblget stuck.
There, the losing player is always the one who got stuck. IfleteDuplicator win
when Spoiler is stuck on a univerggightpebble, we would obtain a simulation which
does not impljanguage containment. (Notice that “simulation impliestainment”
is proved in [4] under the assumption that pebbles do nottgekg Furthermore, the
condition in [4] is unnecessarily strong when Duplicatosiack on a universdleft
pebble, where letting Spoiler win is too conservative. Oefirdtion generalizes the
correct winning condition to multiple pebbles, for which weve “simulation implies
containment” without further assumptions.

In all other cases, we have that akft pebbles can be moved and at least &ight
pebble can be moved, and the two players build an infiniteesgzpiof configurations
T = (do,S0){q1,81) - - - € P. The winning condition is defined in terms of a predicate
C(m) onm. Different choices o () lead to different notions of simulation.

1. Ordinary (k1, k2)-simulation The acceptance condition is ignored, and Duplicator
wins as long as the game doesn’t h@l{r) : < true.

2. Existential direct{k1, k2)-simulation Duplicator wins if, whenevegveryqg € q; is
accepting, thesomes ¢ s; is accepting:

O(r) <= (Vi.q; CF = s;NF#0) .

3. Universal direct(ky, k2)-simulation Duplicator wins if, whenevesomeyg € q; is
accepting, theeverys € s; is accepting:

Clr):i<= (Vi.iqiNF#0 = s;CF) .

As we will see, ordinary simulation is used for ATSs, whiléstential and universal
direct simulation are used for automata over finite and itgfiniords, respectively.



The winning condition for delayed and fair simulation regsi some technical
preparation, which consists in the notion of being exisédigfuniversally good since
some previous round. Given the current roungdwe say that a stat@ € qm, has
seena statej since some previous rounid< m, written has_seen,,, (g, 4), iff either
1) ¢ = ¢, ori < m and there existg’ € q,,—1 S.t. 2.1)qg € A(¢ ,am,l), and 2.2)
has_seen’ (¢, ). Dually, we writecant_avoid’, (q, §) iff either 1) g = ¢, ori < m
and, for all¢ € qm_1,q € A(¢, ay_1) impliescant_avoid’, 1(q 4). We overload
the notation on the set of accepting states, and we Waideseen;,, (¢, F') to mean that
q has seen somg € F; and similarly forcant_avoid’,, (¢, F). Finally, we say thas,
is existentially good since round< j, written gooda(sj, i), if at round; every state
in s; has seen an accepting state since roymohd; is the least round for which this
holds [2]. Similarly, we say thady; is universally good since roundl < j, written
good” (sj,1), if at round;j every state iry; cannot avoid an accepting state since round
i, andyj is the least round for which this holds. Formally,

good™(s;j,1) <= (Vs € sj. has_seen;(s, F)) A
Vj'. (Vs' € sj. hasseen’, (s, F)) = j' >

good” (s;,i) <= (Vs € sj. cant_avoidé-(s,F)) A
Vj'. (Vs' € sjr. cant_avoid), (s, F)) = j/ > j

We write gooda(sj), omitting the second argument, when we just say shas good
sincesomeprevious round. For a path = sgs; . .., we writegood (m, 00), with the
second argument instantiatedite= oo, to mean thagood?(s;) holds for infinitely
many;’s; and similarly forgood” (s;) andgood” (7, 00).

We are now ready to define delayed and fair simulations.

4. Delayed(k, k2)-simulation Duplicator wins if, wheneved; is universally good,
then there existg > ¢ s.t.s; is existentially good since rourid

O(r) : <= Vi.good"(q;) = 3j > i. good™(sj, i) .

5. Fair (k1, ko)-simulation Duplicator wins if, whenever there are infinitely many
i's s.t. q; is universally good, then, for any suéhthere exists > i s.t.s; is
existentially good since round

O(r) : <= good” (mp,0) = (Vi. good”(q;) == 3Fj >i. good(s;, 1)),
wherery = qoqs - . . iS the projection ofr onto its first component.

We will denote the previous acceptance conditions witd {o, 3di, Vdi, de, {}, and
the corresponding game is denoted}@hkz)(qo, S0)-

Remark 2.Notice that the condition for fair simulation is equivaldntthe follow-
ing simpler one: Ifg; is universally good since some previous round infinitelyenft
thens; is existentially good since some previous round infinitefe: C'(7) : <

good” (m, 00) = good? (71, 00), wherem; = sos; ... is the projection ofr onto

its second component.



We are now ready to define the simulation relam a) , with z as above. We say
that ak,-sets z-simulates &; -setq, writtengq E k1 k) S if Dupllcator has a winning

strategy m(G(k ) (a,s). We overload the S|mulat|on relatlm_nfk k) ON singletons:
q T, kz) 5§ = {q} C(k, ks) {s}. For two automatad andB, we write A £, .
B for ¢ (k k2) ¢%, where the simulation is actually computed on the disjoiribo

of AandB. If E(k 1, 1S @ simulation, then its transitive closure is defineckds ; .
Note that, in general; (kr k2) is not itself a transitive relation.

Multipebble simulations hierarchyln general, having more pebbles (possibly) gives
more power to the Duplicator. This is similar to tfie k)-simulations for NBA studied
in [2], but in our context there are two independent direwiof “growing power”.

Theorem 1. Letx € {o,3di, Vdi, de, f} andk] > kq, kb > ko.

- Inclusion:C¢, . C Ty - (Inparticular, ¢, C=G 1))
2 Strictness: If:] > k; or k5 > ko, there exists an automata@ s.t. C s k) 7E Gk k1)

Proof (Sketch)Point 1) follows directly from the definitions, since Dugltor can al-
ways take pebbles away. Point 2) is illustrated in FigureHictvholds for any kind of
simulationz € {o, 3di, Vdi, de, f}. O

Fig. 1. Example in whichg Cf, 5 s, butq Z(,, 4,y s foranyks < 2,k2 < 3, with k1 < 2
or k2 < 3. The alphabet i¥’ = {a} U X, with ¥ = {b1, b2, c1,c2,c3}. Note that both
automata recognize the same language, both over finite &inderwords: £ (¢) = £ (s) =
a(cr1 +c2+c3) X" andLY(q) = L¥(s) = alcr + c2 + ¢3)X“.

Theorem 2. For anyk, k2 € N5 and any automatog,

2. Ly, cCde

3di f
1. E S C (k) SEon ko) S ko) Sk ) -

=(k1,k2) ==(k1,k2)

Moreover, for each containment, there exigs.t. the containment is strict.

Proof. The containments follow directly from the definitions. Fhetstrictness, con-
sider again the example in Figure 1, with the modificationswelf no state on the
right is accepting, then no simulation holds except ordirsamulation. Ifg is accept-
ing, then universal direct simulation does not hold, buaged simulation does. Finally,

if the only accepting state ig then delayed simulation does not hold, but fair simula-
tion does. Is is easy to generalize this example forlany, € N~ . a



3 Finite words

Lemma 1. For any automator® with n states and stateg s € Q:

1.¢ E(H,ff,b) s implies£fin(q) C £7(s), for anyk;, ks € Nxg.
2. qC{ ) S implies7r(q) C 7r(s), for anyks, ke € Nxo.
3. L™ (q) € £ (s) impliesq C7, ) s, provided thatQ is complete.

4. Tr(q) C Tr(s) impliesq C° ) S provided thatQ is complete.

(n,

In particular, the last two points above show that exist@ndirect (resp., ordinary)
simulation “reaches” language inclusion (resp., trace lasion) at(n, n).

Subset constructionsThe subset construction is a well-known procedure for deter
minizing NFAs [7]. It is not difficult to generalize it ovetlternatingautomata, where
it can be used for eliminating existential states, i.e.,ddgrm thede-existentialization
of the automaton. The idea is the same as in the subset cotistrLexcept that, when
consideringa-successors of a macrostate (for a symbat ), existential and uni-
versal states are treated differently. For existentiaéstave apply the same procedure
as in the classic subset construction, by taking always-aliccessors. For universal
states, eacla-successor induces a different transition in the subsetnaaion. This
ensures that macrostates can be interpreted purely disiglycand the language of a
macrostate equals the union over the language of the stltagging to it. Accordingly,

a macrostate is accepting if it contasmmestate which is accepting.

The previous construction can be dualized for de-univizigalfinite automata. For
an AFA Q, let S7(Q) andS"(Q) be its de-existentialization and de-universalization,
respectively. (See Definitions 1 and 2 in Appendix B.1.)

The following lemma formalizes the intuition that multige simulations for AFA
in fact correspond t@1, 1)-simulations over the appropriate subset-constructions.

Lemma 2. Let Q;, Q, be two AFAs over the same alphabetwith |Q:1| = n, and
|Q2] = na. Then, for anyk; < ny andky < na,

A Elhinny @ = QG S (Q) (1)
Q E?S;ﬂkz) Q9 = S'(Q) E(aﬁik?) Qs (2)
QL) Q <«  S(Q)CH S(Q). (3)

4 Infinite words

Multipebble existential-direct simulation is not suitalfbr being used faw-automata,
since it does not even imply-language inclusion.

Theorem 3. For any k1, k2 € N+, not both equal td, there exist an automato@
and stateg, s € 9 s.t.qg T, ) s holds, butC*(q) Z L¢(s).



(a) An example in whichy T s (b) An example in whichL*(g0) C
holds, butC® () Z £ (s). £“(s0) holds, butgo Zt,, ,.) so.

Fig. 2. Two examples.

Proof. Consider the example in Figure 2(a). Cleaify (}';, s holds, since Duplicator
can split pebbles on the successors,aind one such pebble is accepting, as required
by existential-direct simulation. But“(q) Z £¢(s): In fact, (ab)* € £¥(q) = (a(b+
¢))¥, but(ab)¥ & L¥(s) = ((ab)*ac)®. O

This motivates the definition afniversaldirect simulation, whictdoes implyw-
language inclusioplike the coarser delayed and fair simulations.

Theorem 4. For z € {Vdi, de, f}, automatorQ, &, k» € N+, and stateg;, s € Q,
q S k) s implies L£9(q) C L¥(s) .

Unlike in the finite word casey-language inclusion is not “reached” by the simu-
lations{Vdi, de, f}. See Figure 2(b) and Appendix C.

Theorem 5. For anyz € {Vdi, de, f}, there exist an automato@ and stategjy, so €
Qs.t.Lv (QQ) - Ew(SO), bthO z%n,n) S0

The Miyano-Hayashi constructiomhe Miyano-Hayashi (MH) construction [10] is a
subset-like construction for ABAs which removes univensah-determinism, i.e., it
performs thede-universalizatiorof w-automata. The idea is similar to the analogous
construction over finite words, with extra bookkeeping regktbr recording visits to
accepting states, which may occur not simultaneously fiteréint runs. A set of obli-
gations is maintained, encoding the requirement that,peddently of how universal
non-determinism is resolved, an accepting state has to &atuwally reached. There
is a tight relationship between these obligations and failtipebble simulation. For
an ABA Q, let Qnq be the de-universalized automaton obtained by applyindg/tHe
construction. (See also Definition 3 in Appendix C.1.)

The following lemma says that the MH-construction prodwmegautomaton which
is (n, 1)-fair-simulation equivalent to the original one, and thésuilt is “tight” in the
sense that it does not hold for either direct, or delayed ksitimun.

Lemma 3. For any ABAQ, let Q4 be the NBA obtained according to the Miyano-
Hayashi de-universalization procedure applied@oThen,

a) Q L, ;) Qna, forz € {f, Vdi}, and a’)3 automatonQ' s.t. Q" £ |1 Qf,
b) Ong E€1 1y @, and b’) 3 automatonQ? s.t. Q3 I£f, ;) Q2 forz € {de, ¥di}.



e Vdi,de
Ql Jz(dn,l) Ond 251,1) } Q2

a a a a
a a a a

Fig. 3. An example showing automa@' and Q* s.t. @' Z{s ) Qna (n = 2 suffices), and
Ond Z{11y Q° for = € {Vdi, de}. The only difference betwee@' andQ? is the stateys: being
accepting in the former angl, being non-accepting in the latter. Notice i@}, = Q24 = Ond.

The states inOng are:so = ({qo}, {q0}), s1 = {q1,q12}, {q12}), s2 = ({go1,¢22}, 0),

s3 = ({ga1, g2}, {gs2}).

Since fair simulation implies language inclusiap,and Qg4 have the same lan-
guage. This constitutes an alternative proof of correstf@sthe MH-construction.
The MH-construction “preserves” fair simulation in theléming sense.

Lemma 4. LetQ, S be two ABAs. TheQ Lf, ) S <= Qna Lf; ;) Sne-

Remark 3.A weaker version of the “only if” direction of Lemma 4 aboveamely

Q gflyl) S = Ond Elzm) Snd (notice the(1, 1) in the premise), had already appeared
in [43. The same statement for both direct and delayed sitiounlas false, unlike as
incorrectly claimed in [4]. In fact, it can be shown (with axaenple similar to Figure 3)
that there exist automat@ and S s.t. 9 E%l,l) S, but Qng Z%Ll) Sna, With z €
{di, de}. Finally, the “if” direction of Lemma 4 can only be establkshin the context
of multiple pebbles, and it is new.

Transitivity. While most(k1, k2)-simulations are not transitive, some limit cases are.
By defining a notion of join for(1,n)- and (n, 1)-strategies (see Appendix C.2), we
establish thaf1,n) and(n, 1) simulations are transitive.

Theorem 6. Let Q be an ABA withs states, and let € {Vvdi,de, f}. ThenCf; ) and
E%n,l) are transitive.
Remark 4 (Difficulties fofn, n) transitivity.). We did consider transitivity fofn, n)-
simulations on ABA, but found two major issues there. The fasue concerns directly
the definition of the join of twdn, n)-strategies, and this holds for amye {Vdi, de, f}:
The so-called “puppeteering technique”, currently usedl&ining the join for(1, n)-
and (n, 1)-strategies, requires to maintain several games, and &tp@output from
one game to the input of one or more other games. This creatstion of dependency



between different games. Far, n) and(n, 1), there are no cyclic dependencies, and we
were able to define the joint strategy. However, (forn)-simulations, there are cyclic
dependencies, and it is not clear how the joint strategyldhmidefined.

The second issue arises from the fact that we further redfudrtethe join of two
winning strategies is itself a winning strategy. Therefdhe joint strategy needs to
carry an invariant which implies the-winning condition, forz € {Vvdi, de, f}. While
such an invariant for = Vdi is straightforward, it is not clear what the correct invatia
should be for either delayed or fair simulation.

5 Quotienting

In the following we discuss how multipebble simulation mears can be used for state-
space reduction of alternating automata, i.e., we disaugenwhich notions of quotient
the quotient automaton recognizes the same language asghwbone.

LetQ = (Q, X, q1, A, E, U, F) be an alternating automaton, over finite or infinite
words. Let= be any binary relation o€, and let= be the induced equivalence, defined
as~==<*N(=*)"1.[]: Q — [Q] is the function that maps each element Q to the
equivalence claslg| € [Q] it belongs to, i.e.[¢] := {¢’ | ¢ = ¢'}. We overload P] on
setsP C @ by taking the set of equivalence classes.

In all the notions of quotients that will be defined, only thensition relation varies.
Thus, we gather the common part under a quotient skeletordéfire thequotient
skeletonQ~ = ([Q], X, [¢1], A~, E',U’, F') as follows:E’ := [E], U' := [Q] \ E' =
{lg]lg] €U }andF’ = [F]. We leaveA., unspecified at this time, as it will have
different concrete instantiations later. Notice that ndigtasses, i.e., classes containing
both existential and universal states, are declared eiiate

The following definitions are borrowed from [4]. We say thate A(q,a) is ak-
x-minimala-successor of iff there there is no strictlﬂm)-smallera-successor of,
i.e., foranyq” € A(q,a), ¢” Chn q impliesq’ Chn q". Similarly, ¢’ € A(q,a) is
ak-z-maximala-successor of iff forany ¢’ € A(q,a), ¢’ Chn q" impliesq” Chn
¢ Letmin®*(¢)/max”*(q) be the set of minimal/maximal successors.

a

5.1 Finite words

Let < be any preorder which implies language inclusion over finite woids, ¢ <

s = L(q) C £7(s). In particular, one can take= (T 1,y)"s Or even= equal
to language inclusion itself. As before, let be the equivalence induced by. It is
well known that automata over finite words can be quotiented.\wny preorder which
implies language equivalence. Here, we show that not altitians are needed, and that
is is sufficient to considex-maximal successors of existential states atchinimal
successors of universal states. We definentivimax[4] quotient automator@T, by
instantiating the quotient skeleton (see Section 5) wahgition relationA,, := AT,

where([q], a, [¢']) € AL iff either

~

- lg)e E'and3ge g NE,7 €[¢]st(qa,q) € ANG € maxZ(q), or
—[gleU and3 g€ [q],7 € [¢'] st.(G,a,7) € Aandq € minZ(q).

10



Notice that transitions from universal states in mixed s#asare ignored altogether.

Lemma 5. Let Q be any alternating finite automaton, and tetbe any preorder which
implies finite-language inclusion. Then, for ap¥ Q, £ (q) = £ ([¢]m)-

5.2 Infinite words

Unlike for finite words, it is well known that quotienting-automata w.r.tw-language-
equivalence does not preserve tianguage. It has even been shown that quotienting
w.r.t. (1, 1)-fair (bi)simulation does not preserve thdanguage either [6, 3]. Therefore,
one has to look for finer simulations, like delayed or dirdotwdation. Notice that
multipebbleexistentialdirect simulation cannot be used for quotienting, sincdoies

not even implyw-language inclusion—see Theorem 3.

Theorem 7. For any k1, k2 € N”% andz € {3di, f} there exists an ABAQ s.t.
LY(Q) # L¥(Qx), with A=A, k). FOr @ = 3di, ki andk; must not be both equal

to 1. (Note thatx?ﬁil)—quotientingdoes preservihew-language.)
Thus, in the following we concentrate aniversatdirect and delayed simulation.

Minimax quotients for universal-direct simulatioin [4] it has been shown that mini-
max quotients preserve thelanguage (for direct simulation), and that one can comside
just maximal/minimal successors of existential/univessates, respectively. Here, we
improve this notion, by showing that, when considering iplétpebbles, it is not
needed to consideverymaximal successor of existential states, but it is safege di
card those maximal successors which @rg:)-simulated by &-setof other maximal
successors. This suggests the following definition:Fer F, a € X andk > 0, we
say thafg’ is a set ofk-maximal representatives farsuccessors df iff

d' € maxt (@) A (Ve € (maxh @)\ @) Fq € 29 ¢ I, ) @)
Notice that the above definition is non-deterministic, ie #ense that there might be
different sets of maximal representatives: In this case,aam just take ang-minimal
set satisfying Equation 4. In the following, we assume thsgtaof maximal represen-
tativesq’ has been selected for afgye F anda € Y.

We define theminimax+ quotient automator@™* by instantiating the quotient
skeleton (see Section 5) with transition relatidp, := AT, which differs from AT,
just for existential and mixed classé§j], a, [¢']) € AL* with [¢] € E’ iff

— there exis € [¢q] N E andq’ € [¢'] s.t.(¢,a,¢) € Aandq € ', whereq’ is a
fixed set ofk-maximal representatives farsuccessors df, as defined above.

Our definition of minimax+ quotient differs from the one if pdso w.r.t. the treat-
ment of mixed classes, as discussed in the following remarks

Remark 5.While in [4] universal states in mixed classes do inducesitamms (to min-
imal elements), in our definition we ignore these transgiatiogether. In the setting of
(1,1)-simulations these two definitions coincide, as they arevshia [4] to yield ex-
actly the same transitions, but this needs not be the case #etting: In the context of
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multiple-pebbles, one minimal transition from a universtateq” might be subsumed
by no single transition from some existential statein the same class, but it is always
the case thag” has a set of transitions whithgethersubsume the one frogt’ (cf.
Lemma 15 in Appendix D.3). In this case, we show that one cdadnalways discard
the transitions fromyV. Thus, in the context of multiple-pebbles, minimax+ quotse
resultin less transitions than just minimax quotients fidin

Remark 6.While minimax mixed classes are deterministic when comside(1, 1)-
simulations [4], this is not necessarily true when multipddbbles are used.

Theorem 8. ¢ z\(’ld_in) [¢)m+, Where the quotient is taken w.r.t. the transitive closure o

C{i%, foranyk such thatl < k < n. In particular, £(q) = £ ([g]wm-+)-
Semielective quotients for delayed simulatidhhas been shown in [4] that minimax
quotients w.r.{1, 1)-delayed simulation on ABA do not preserve thdanguage. The
reason is that taking just maximal successors of exislestéites is incorrect for delayed
simulation, since a visit to an accepting state might onlguody performing a non-
maximal transition. (This is not the case with direct sintiola, where if a simulation-
smaller state is accepting, then every bigger state is #ogejpo.) This motivates the
definition ofsemielective quotienfd], which are like minimax quotients, with the only
difference thaeverytransition induced by existential states is consideretjusb maxi-
mal ones. Except for that, all previous remarks still apiplyarticular, in mixed classes
in semielective quotients it is necessary to ignore nonimahtransitions from univer-
sal states—the quotient automaton would recognize a blggguage otherwise.

While for the(1, 1)-simulations on ABA in [4] it is actually possible to ignoman-
sitions from universal states in mixed classes altogetesx Remark 5), in the context
of multiple-pebbles this is actually incorrect, as showkigure 5, Appendix D.3. The
reason is similar as why non-maximal transitions from existl states cannot be dis-
carded: This might prevent accepting states from beingedsiWe define theemiel-
elective+quotient automato@2e* by instantiating the quotient skeleton (see Section 5)
with Ay := A%+, where

([q], a, [¢']) € ALT = (q,a,¢) € A and eithery€ E, or g€ U andg’ € min™4°(q)

Theorem 9. ¢ z?len) [q]se+» Where the quotient is taken W.rﬁ_:?f )" In particular,
L£(q) = L([q)se+)-

Remark 7.1t is surprising that, unlike for NBA [2], quotienting ABA wt. (1, k)-de
simulations, forl < k < n, does not preserve the language of the automaton in general.
The problem is again in the mixed classes, where minimakitians from universal
states can be selected only by looking at the fiulln)-simulation. See the counterex-
ample in Figure 4, where the dashed transition is presehgifilt k)-quotient, despite
being non¢1, n)-minimal.

Remark 8.Semielective multipebble quotients can achieve arbiyrdigh compres-
sion ratios relative to semielective 1-pebble quotienms,l{ipebble-)direct minimax
guotients and mediated preorder quotients [1] (see Figiréd@pendix D.3).
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Fig. 4. (1, k)-semielective+ quotients on ABA do not preserve dhtanguage foll < k£ < n in
general. Lek = 2. The only two(1, k)/(1, n)-equivalent states atg andg., and in the quotient
they form a mixed classy is nota (1, n)-minimal a-successor of., but it is a(1, k£)-minimal
successor fok = 2. Thus, the only difference between tig n)- and (1, k)-semielective+
guotients is that the dashed transition is (correctly) noluded in the former, but (incorrectly)
included in the latter. Thus th@, k)-semielective+ quotient automaton would incorrectly atce
the wordw = aaea” & L¥(qr) = aaa{b + ¢+ d}a”.

6 Solving Multipebble Simulation Games

In this section we show how to solve the multipebble simalatiames previously de-
fined. We encode each simulation game into a 2-player gaayghgrith anu-regular
winning condition. In the game-graph, Eve will take theerdf Duplicator, and Adam
the one of Spoiler. A game-graph is a tugle= (Vg, Va, —), where nodes i be-
long to Eve (mimicking Duplicator), and nodes i belong to Adam (mimicking
Spoiler). Transitions are represented by elementsin (Ve x Va U Va x VE), where
we writep — ¢ for (p,q) €—. Notice that the two players strictly alternate while
playing, i.e., the game graph kdpartite. We write V' for V& U Va. We introduce the
following monotone operator 02'2: For anyx C Vi, cpre(x) := {vg € Va | Vv1 €
Ve. (vo — v = Jug € x. 01 — v2)}, i.e., cpre(x) is the set of nodes where Eve
can force the game inte.

We define various game-graphs for solving simulations. Waress the winning
region of Eve as @-calculus fixpoint expression ovéh [8], which can then be evalu-
ated using standard fixpoint algorithms. We derive the ddsiomplexity upper bounds
using the following fact:

Lemma 6. Lete be a fixpoint expression over a graph with |[V'| € n©®*), Then, for
any fixedk € N, evaluatinge can be done in time polynomial in

For solving direct and fair simulation, we refer the readeAppendix E. Here, we
consider just delayed simulation, which is the most diffi¢ahd interesting).

The natural starting point for definirg@s'® is the definition in [2] of the game-graph
for computing(1, k)-simulations for NBAs. Unfortunately, the game-graph if i
actually incorrect: According to the definition of delaydthslation (cf. Section 2),
every new obligation encountered when the left side is aeugpt some round should
beindependentlgatisfied by the right side, which has to be good sthe¢round. Now,
the algorithm in [2] just tries to satisfy the most recentigéalion, which overrides
all the previous ones. This is an issue: If the left side istiomously accepting, for
example, then the right side might simply have not enougé tmsatisfy any obligation
at all. Therefore, [2] actually computes ander-approximatiomo delayed simulation.
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We overcome this difficulty by explictly bookkeeping all ging constraints. This
leads to the following definitions. The game-graph for dethgimulation isGd¢ =
(Ve vile, —4¢) where nodes ify!® are of the formy(q gad,s Good)» @nd nodes i
of the formv(q gad,s,Good,a,q’,s')> With q,q’,s,8" € Q. Bad = (b; D --- D b,,,) and
Good = (g1 C --- C gm,) are twosequencesf sets of states fror@, strictly ordered
by set-inclusion, which are used to keep track of multiplégattions.

Intuitively, Bad is used to detect when new constraints should be createdioi.e
detect when everieft pebble is universally good since some previous round. A eac
round, a new set of bad pebblbs= q \ F is added toBad. When accepting states
are visited bylLeft pebbles, they are discarded from everylset Bad. When some
b becomes eventually empty, this means that, at the curreantrallLeft pebbles are
universally good since some previous round: At this pdiris removed fronBad, and
we say thathe red light flashes

The sequenc&ood represents a set of constraints to be eventually satisfaech E
g € Good is a set of good pebbles, which we require to “grow” until icbmes equal to
s. WhenGood = (), there is no pending constraint. Constraints are addéddd when
the red light flashes (see above): In this case, we ugstate by adding the new empty
constraing = (). When accepting states are visitedRightpebbles, we upgrade every
constraintg € Good by adding accepting states. Completed constrgjntss are then
removed fromGood, and we say théhe green light flashes

Lemma 7. [V4°| < 2:(n+1)2k1tk2) (14 (ky + 1) F1) - (14 2(ky 4 1)k2+1) | 2.

Transitions inGgd® are defined as follows. For arty, s, a,q”,s”) € 'SP, we have
U(q,Bad,s,Good) —de U(q,Bad,s,Good,a,q’’,s"") s and fOf(q, 5, a, q//7 SNa q/a S/) S FDuP! we
havev(q gad,s,Good,a,q”,s") —° U(q,Bad,s’,Good’), WhereBad’, Good’ are computed
according to Algorithm 1 in Appendix E.3.

We have that Eve wins iff every red flash is matched by at leastgreen flash,
and different red flashes are matched by different green. dinés can be checked by
verifying that infinitely often eitheGood = () or s € Good, i.e., it is not the case
thatGood contains a constraint that it is not eventually “completadd discarded. Let
T = {v(q,Bad,s,Go0d) | Good = () V's € Good}, and define the initial configuration as

v — J Vata\Fys if q\F #10
! V(q,0,s,{snF}) Otherwise

q C§° , siff Tisvisited infinitely often iffu; €W9° = vxpuy (cpre(y) UT N cpre(x)).

Theorem 10. For any fixedk;, k2 € N, x € {Vdi,3di,de,f} and setsq,s C Q,
deciding whetheg E k. ks) S CAN be done in polynomial time.

7 Conclusions and Future Work

Transitivity for (n, n)-simulations. As discussed at the end of Section 4, composing
(n,n) (winning) strategies is apparently much more difficult tharthe (1,n) and
(n,1) case. We conjecture that all types(ef, n)-simulations discussed in this paper
are transitive, and showing this would conceivably soleejtlin problem as well.
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Quotienting with(n, 1)- and (n, n)-simulations. While we have dealt with(1,n)-
quotients, we have not considergd 1)- or (n, n)-quotients. For the latter, one should
first solve the associated transitivity problem, and, fothban appropriate notion of
semielective-quotient has to be provided. We have showntlismis already a non-
trivial task for(1, n)-simulations on ABA.

Future directions. Our work on delayed simulation has shown that several génera
izations are possible. In particular, two issues need todukessed. The first is the
complexity of the structure of the game-graph needed forpeding delayed simula-
tion. A possible generalization of delayed simulation immg looser “synchronization
requirements” between obligations and their satisfaatiaght result in simpler game-
graphs. The second issue concerns Lemmas 3 and 4: We woslltblfind a weaker
delayed-like simulation for which the counterexample shdlere does not hold. This
would give a better understanding of the MH-construction.

As in [3], it is still open to find a hierarchy ofk1, k2)-multipebble simulations
converging tav-language inclusion wheky = ky; = n.
Acknowledgment.We thank K. Etessami and C. Fritz for helpful discussionsl, @m
anonymous referee for suggesting the comparison to mediagorder [1].
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A Preliminaries (Section 2)

Theorem 1. Letz € {o,3di, Vdi, de, {} andk] > k1, kb > ko.
1. Inclusion:g%‘khb) C E?kg,k;)- (In particular, j?kl,kz)gj%k’l,kg)')
2. Strictness: Ik} > kq or k) > ko, there exists an automat@d s.t.gfkth);égfk,uk;).
Proof. 1. This follows directly from the definitions, since havingra pebbles can
only help Duplicator, who is always allowed to take pebbleay
2. For showing the strictness of the inclusion, consideretkeemple in Figure 1, for
any kind of simulation: € {o, 3di, Vdi, de, f}. This example shows that Duplicator
wins by “hedging her bets” on both sides, using 2 pebbles etetthand 3 pebbles
on the right. Henceg Ex2,3 s holds.
To see that the RPeft pebbles are necessary, it sufficies to note that if there ardye
oneleft pebble, then Spoiler could choose eitheor b5, and evenRightpebble
would get stuck. But with twd.eft pebbles, Spoiler can no longer play eitheior
bs, since ond.eft pebble would get stuck, which would be winning for Duplicato
A similar reasoning for the symbols:, ¢2, c3} shows that Right pebbles are
neccessary and sufficient for Duplicator to win the game.
It is easy to generalize Figure 1 to more peblifes k2). Moreover, a similar ex-
ample can be crafted without using the stuckness condibohusing only the
acceptance condition.
O

Twe following two observations will be useful in later prgoihen pebbles are
good infinitely often, then it is the case that they are alwgged, as stated below.

Lemma 8. Letm = qpqs - .. be any sequence éfsets. Then,
(gooda(ﬂ, o) = Vi >0. gooda(qi)) A (goodv(ﬂ',oo) = Vi >0. goodv(qi)) .

The following is a consequence of Kdnig's Lemma:

Lemma 9. Letm = sgs; ... be an infinite sequence &fsets. Ifgood(rr, o0), then
there exists an infinite pattycc = pop: - .. S.t. 1) for anyi, p; € s;, and 2) for infinitely
many:’s, p; € F.

Proof. We make use of Konig's Lemma: We build an infinite tree whisHinitely
branching, hence by Konig’s Lemma there exists an infingtt p,c. starting from the
root, and we show that this path contains infinitely many pting states. First, we
extract a subsequenge’ };>o from {s; }i>o, as follows:s; := s;,, whereis = 0 and,
inductively,; is the least index > i;_; S.t. gooda(sl-,z'j,l). It follows that, for any
j >0, gooda(sg,ij,l). For any state- € s’ there is a node(r,j) at levelj > 0
in the tree. (For example, the root of the treev{s, 0), wheres is the only state in
s; = so = {s}.) The parenthood relation between nodes is defined as falMig have
that, for anyr € s’ ,, there exists” € s’ s.t. there exists a path from to r which
visits at least one accepting state. In this caée,j + 1) is a children ofv(+’, j). This
tree is infinite and finitely branching. Moreover, the infinfiathr,c., whose existence
is guaranteed by Konig's Lemma, visits accepting statisifaly often. a
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B Section 3

Lemma 1. For any automator® with » states, and stateg s € Q:

1. g T3,y simpliesCi(q) C L5 (s), for anyky, ks € Nxo.

2. qC0, k) S implies7r(q) C 7r(s), for anyk, k2 € N5o.
3. £fin(q) C £fin(s) impliesq C74 | s, provided thatQ is complete.

_(nn)

4. Tr(q) € Tr(s) impliesq £, s, provided thatQ is complete.

In particular, the last two points above show that exist@ndirect (resp., ordinary)

simulation “reaches” language inclusion (resp., trace lasion) at(n, n).

Proof. Point 2) follows from Point 1), and Point 4) follows from PoB), since when

the set of accepting state is the full set of states, ke~ @, ordinary and direct

simulation coincide, and the trace language equals the faniiguage in this case.
For Points 1) and 3), we defer their proof at the end of the segtion. a

B.1 Subset constructions

Below, we give a formal definition for the de-existentiatina and de-universalization
procedures for AFAs.

Definition 1. Given an AFAQ = (Q, X, q1, A, F, E, U) with |Q| = n, the existential
n-subset construction yields a purely universal finite alwgtam

§%Q) = (Q, 2, {q1}, A, F',E U,

whereQ’ := 29, F':={Pc Q' | PNF # 0}, E' := (), U’ := @', and the transition

relation A’ C 29 x ¥ x 29 satisfiesi(P,a, R) € A’ iff there exists a choice function
select : PNU x X — @ which fixes an element id(p, a) for any universal state
pePNU,andR = ,cpnp Alp,a) U {select(p,a) | p € PNU}.

Intuitively, the choice functioselect resolves the universal choice, and then we take
the union over all possible resolutions of the existentialice.

Definition 2. Given an AFAQ = (Q, X, q;1, A, F, E,U) with |Q| = n, the universal
n-subset construction yields a purely existential finiteoausta

S§Y(Q) == (Q, £, {ar}, A, F',E U,

whereQ’ := 2%, F' .= {Pc Q' |PC F},E':=Q', U :=0,and(P,a, R) € A’ iff
there exists a choice functienlect : PNE x X' — @ which fixes an elementif(p, a)
for any existential statp € PN E, andR = J,cprpy AP, a) U {select(p,a) | p €
PNE}.

Lemma 2. Let Q;, Q2 be two AFAs over the same alphabgtwith |Q1| = nq, and
|Q2| = no. Then, for anyﬁ <n andk2 < ng,

Q E(H;?f,m) Q = 9 E(ﬂ;?li,l) S§7(Q2) (S1)
Q E?S;ﬂkz) Q = S'Q) E(aﬁik?) Qs (S2)
Qi E(Hﬁlli,m) Q9 = SQ) E(aﬁil) S§7(Qo) . (S3)
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Proof. First notice that Equation (S3) follows by subsequent apgibn of (S1) and
(S2). For Equation (S1), the idea is that maximally splifiiebbles on existential states
in Q5 is exactly the same as moving the only pebbl&#iQ,). More formally, one can
show how to mantain the following invariarty; , q2) is the current configuration in the
(k1,n2)-game on the left iffqi, {q2}) is the current configuration in tH&;, 1)-game
on the right. From the invariant, the winning condition isiaverified: If q; C F,
thenqs N F # (), which is the same as sayig € F’, whereF” is the set of accepting
states inS7(Q,). Equation (S2) is proved similarly. O

Proof (of Lemma 1)We first prove Point 1), i.eq g(ﬂ,fli ky) S iMplies £%(q) C
£fn(s). Let Q; andQ, be two disjoint copies of), where the initial states are, respec-
tively, ¢ ands. By definition,q Q(a,ff k) S Iff Q1 g(ﬂ,fli k) Q2- SINCEQ, g(ﬂ,fli k) Q2
implies Q; g(ﬂjli ny) Q2. then by Equation (S3), one h&g (Q;) 5(31‘“1) S3(Q5). But
E_(Hfl,aﬁ is known to imply language inclusion [4], henc: "1(§V(Q1_)) C Eﬁ“(SH(QQ))._
Finally, since the subset constructions are languagesprieg (this follows from their
correctness).i™(Q;) C L(Qy), implying L (q) C L7 (s).

For Point 3), the crucial observation is th@t(Q:) T}, S7(Qz) is equivalent
to language inclusion, sineg”(Q ) is a purely existential automaton asd(Q,) is a
purely universal automaton, hence only Spoiler plays. TE8(q) C £ (s) implies
S"(Q1) Q(al‘“l) S57(Q3), and, by Equation (S3), C74i ) Qa,ie.,q C3di g O

=(n,n =(n,n) °*

C Section4

Theorem 4. For z € {Vdi, de, f}, automatorQ, ki, k, € N+ and stateg, s € Q,
q S k) s implies L£9(q) C L(s) .

Proof. It suffices to prove the claim fat; = ks = n = |Q)], since, by Theorem 1,
(n,n)-simulation containgk, k2)-simulation. Similarly, by the containment between
universal-direct, delayed and fair simulation establisieTheorem 2, it is sufficient
to consider just fair simulation, which is the coarsest. ket apa; --- € L¥(¢) be a
word in £¢(¢). We have to show € £¢(s). LetG™ = G(™")(q, s) be the simulation
game between ands, let Gi* = G (¢, w) be the acceptance game forfrom state
q, and letG3* = G* (s, w) be the acceptance game foffrom states.

In order to showw € L£“(s), we use the winning strategy of Duplicator@™ and
the information inG3* to witness the existence of a winning strategy for Autométon
G3c. We use the so-called “puppeteering technique” to cootditige various games.
There are two “real players”, the Automatad,() and Pathfinder®;) players inG3,
and four “puppet players”, which are controlled Hy:

— The Duplicator () and Spoiler §) puppets in the simulation gan@™.
— The Automaton 4,) and Pathfinderf,) puppets in the acceptance gafigs©.

The orchestration job ofi; is complicated by the fact that in the simulation game
G*™ multiple Left andRight pebbles may be present in any given round. Henceforth,
A; mantains a family of acceptance games, depending on thentwonfiguration of
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the simulation game. The flow of information between theaw@siacceptance games
and the simulation game is shown below.

Gacc Ag Py Gacc
0,F 0,U
’ \&:efr DM ’
sim

MG D
acc Right FN acc
G A Gl,E

LU p,

The meaning of the picture is the following. Recall thaifi™, Duplicator is allowed to
“hedge her bets”, i.e., to split pebbles, on univetsst states and on existentiRight
states. Every timéD splits Left universal pebbles, a new acceptance gam@it is
spawned, and’s choices inGs™ are mimicked by, in G3. Similarly, whenD splits
Rightexistential pebbles, a new acceptance gani@sifi is spawned, and’s choice
in GS'™ is mimicked byA; in G3<. This is represented by the r.h.s. of the figure above.
Symmetrically, the other side represeits behaviour, which movekeft existential
pebbles copyingly, andRightuniversal pebbles copying; .

The correctness is guaranteed by the fact that, siade playing a winning strategy
in everyGJ* game, then regardless of universal choice&jff, the resulting run will
visit accepting states infinitely often. Thus, by constirctLeft pebbles inGs™ are
universally good infinitely often, and, sinde is playing a winning strategy for fair
simulation,Right pebbles are existentially good infinitely often. We won'pésitly
defineA;’s winning strategy for accepting in G, but, using Lemma 9 (which relies
on Konig's Lemma) we will show that one such strategy doésteindeed, sinc®ight
pebbles are existentially good infinitely often, by Lemmah&re exists an accepting
run forw in G3°¢, which witnesses the existence of a winning strategy4for

For bookkeeping the state of the various simulation gamesjse dogbook As-
sume that, at round the current partial play is*™ is

Ty = <quSO> cee <qivs’i> )

with qo = {¢} andsy = {s}, and that the remaining input word to be readvis=
a;a;+1 . ... Then, alogbool; = (LY, L}) for roundi is a pair of finite sets of partial
plays fromG3« andG3, respectively, whereL?| = 52, |L}| = j! and

L) ={m}; == (qo,j,wo) - - {gij wi) | 1 <j <3}, and
L = {m; = (s0.4,wo) .. (sig,wi) | 1 < j < jj}
(with {r, w;) we mean that in the language acceptance game the currerisstand the

remaining input word isv;). We say that’; is valid if it further satisfies the following
logbook properties

@i ={qi1,- - @i} (LPO)
S; = {Si71, ceey Si,j}} (LPl)
vmy,; € LY. m ; is aAg-conform partial play, (LP2)
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i.e., (LPO) and (LP1) say that the logbook is correctly “dymmnized” with the simula-
tion game, and (LP2) says that everg/j is built applyingAg’s winning strategy.

Inductively, A, ensures that a valid logbook at rouhis updated into a valid log-
book in the next round + 1. In the first round = 0, the initial GS™-configuration is
(d0,80) = {({¢}, {s}), and the two acceptance gane¥ andGi< are in (¢, w) and
(s,w), respectively. ClearlyLo = (L3, L}) with L§ = {{q, w)} and L} = {(s,w)} is
a valid logbook.

Assume that_; is a valid logbook for round, that the current configuration of the
simlulation game iq;, s;), and that these two sets are partitioned into existentidl an
universal states, in the following way:
qi:{qfl,...,qu}U{qll,...,qgjoU}andsi:{sfl,...,sﬁjb}u{sgh...,sﬂjb}
(Notice thatj% + ;% = j? andjL + ji = jt.) The next input symbol irGs™ is
determined by the remaining input woid = a;a;41 ..., anditis equal ta;. l.e., A;
makes theS puppet choose; as the next input symbol in the simulation ga@g™,
and the remaining input for the next rounduis;; = a;11a;42 . ... FOr determining
the nextGs™-configuration(q,1,s;11), as well as updating the loghook fg; =
(L?H, z+1) A, orchestrates the various puppets according to the follpsteps.

1. TheA, puppet moves from existenti@**-configurationgg,”; , w’) .. .(qu%,

according to her winning strategy {®3<. Notice thatall such pebbles in” can
be moved to some;-successor, since 1) € £“(q), and 2) different.eft states are
the result of different past choices at univelsait states, hence all state@- eqF

w')

acceptw; (in fact, all states iry;). In this way, an;- successoqwl j Isbuilt for ev-

eryq’; € qf. Letql(fi = {qu ;1 1< <%} be the set of such;-successors.

E
Foranyg/; € qf}, andgfd ;€ qgﬁ s.t. qur{ ; € A(gF,a:), letn) ; be the par-

tial play in LY ending In<qw,w1) (which, by the induction hypothesis, exists by

(LPO)). Then, we add?, , ; = 70 - (¢\7] ., wis1) to LY, . This establishes (LPO)

and (LP2) at round+ 1 for existential states in;. (Notice that states iqgf{ need
not be existential, we use the supersc(i) just to record that prececessors were
existential.)

2. Similarly, theP; puppet chooses a successor for every univégatconfigurations
({1, w') "'<ngb’ wt). LetqZJr1 = {slﬂj | 1 <j < jl} bethe set of such;-
successors, if any. Notice that, at this point, one or eMesuah configurations may
get stuck, i.e., with na;-successor, and, consequenﬂgﬂ might be empty. We
need not worry about this now.

3. Then, theS puppet in the simulation gan@*™ copies thed,’s and P,’s moves
above, moving frony” to ] and froms? tos(").

4. Now, theD puppet moves according to her winning strategy: Pebbleg irare
moved t0qz+1 (possibly being split fol> may hedge her bets), and pebbles/n

are moved ta'”) (possibly being split or thrown away), and the simulatiomga

i+1
U
goes into statéq;+1,s;+1), whereq; 41 = q£+{ U qEH, ands;+; C s§+{ U sEJg.
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Since D’s strategy is winning, at least oriRight pebble can be moved to some
successor. Thus, 1 # (. D's move above is copied by the puppfe and the
playerA;, as specified below.

5. TheP, puppet copies th® puppet's move frong to qgﬂ For anngj €qY and

U U U
qfﬁ ;€ qfd N A(q”,az) we addr}, | ; = 77 <qf+i > Wit1) tO LY, |, where

; is the partial play ending Il(lq w;), Wh|ch exists by (LPO). This establishes
(LPO) and (LP2) for universal statesap
6. Finaly, theA, player in the family of acceptance ganie¥* copies theD puppet's

move froms¥ to Sz(-ﬁ-% For anysf’; € s’ sit. sz(fij € sz(fi N A(sf),a:), we

addnj,, ; =7}, (s EJ& jrwiy1) to Li,,, wherer} ; is the partial play ending in

<sfj, w;), which exists by (LP1). We also update the logbook for urdakstates in

s; which were not discarded in the previous step 2.: Foreéf)ye sV s.t. sfﬂj €

5;’} NA(s{;,a;), we addrj, , ; =7} ;- <s§i’}7j,wi+1> to Lj,,, wherer/ ; is the
partial play ending |r(s”, w;), which exists by (LP1). This establishes (LP1) for
the next round + 1. (Notice that, since; 1 # 0, thenL!, , contains at least one
partial play.)

Below we argue about the correctness of this constructiein & (qo, so){q1,s1) . - .
be the resulting infinite play, and lef = qoq; ... andr! = sgs; ... be its projec-
tions. Since every partial play ih? is Ag-conform (by (LP2)), and thel, puppet is
playing according to a winning strategy (which exists, simc= £“ (q)), it follows that,
for everyn > 0, there exists > 0 s.t. everyﬂﬁj € LY has visited at least accepting

states. By (LP0) and since heft pebble is thrown away, we have t@iodv(wo, 00).
Since D’s strategy is winning, by the winning condition of fair sifation, we have
good? (!, 00). By Lemma 9, there exists an infinite accepting path. Thus,4; has
a strategy s.t., for an¥;'s strategy, there exists a accepting path which is conform
to both strategies. Thus, € £L¥(s). O

Theorem 5. For anyz € {Vdi, de, f}, there exist an automatad and stategy, so € Q
s.t.L%(qo) € L¥(s0), butg Z%mn) s

Proof. By the inclusion between simulations (see Theorem 2), ihisugh to consider
fair simulation. Take the example in Figure 2(b). We have #ra(qy) = L£¥(so) =
a® + a*b*, hence language inclusion holds betwegmandsg, but, as we shall see, no
Duplicator strategy is winning in th@, n)-simulation gamé}fn ) (qo, S0)-

This can be seen as follows. Spoiler choosesithetion and we can assume that
Duplicator “hedges her bets” by going #1 = {so, s1}. Now, Spoiler keeps looping
on gy by choosing the action for an arbitrarily high number of moves. Duplicatanc
only reply by staying in a subset ef. Notice that Duplicator has to eventually take the
pebble onsy, away: Indeed, Spoiler’s pebble ig is accepting infinitely often, hence
Duplicator would lose if the pebble oy ¢ F'is not taken away. When Duplicator takes
the pebble oy away, Spoiler plays thé action and Duplicator loses, his remaining
pebble ons; being stuck. Similar examples may be conceived in which tveptance
condition, instead of the stuckness condition, is used éaghat Duplicator loses. O
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C.1 Infinite words: ABAs and the Miyano-Hayashi construction

Definition 3. Given an ABAQ = (Q, X, q;, A, F, E,U), the Miyano-Hayashi con-
struction [10] yields a de-universalized NBA

Qnd = (Q/7 Ea ({QI}7 {QI} \ F)7A/7F/5Ela U/) )

where the new set of stat€¥ C 2% x 2% (called macrostatgsconsists of pairs of
subsets of), the set of accepting macrostatessatisfies

(P,O) e F' < 0 =0,

i.e., a macrostate is accepting if no obligation is pendify, = Q' and U’ = 0,
i.e., Qng is a purely non-deterministic automaton, and the the trémsirelation A’ C
(29 x 29) x X x (29 x 29) satisfies((P, 0),q, (P’,0")) € A’ iff there exists a choice
functionselect : PNE x X — QstVpe PNE,a € X : (p,a,select(p,a)) € A
(i.e.,select(p, a) fixes an element ik (p, a)) such that

P = U A(p,a) U {select(p,a) |[pe PNE},

pePNU

andifO = ), thenO’ = P’ \ F, otherwise,

O = < U A(o,a) U {select(o,a) | p € OﬁE}) \ F.

oceONU

Lemma 3. For any ABAQ, let Q4 be the NBA obtained according to the Miyano-
Hayashi de-universalization procedure applied@oThen,

a) 9 Eln,1) Cnds for z € {f,vdi}, and

b) Ond Elzm) Q.

Moreover, there exist automatd! and 92 s.t.
a) o' zde 9ol and

(n,1)
b') Qa4 Zf, ) Q2 forz € {de, vdi}.

Proof. We first prove Point a), i.eQ gfn_l) Ong- Intuitively, the strategy of Dupli-
cator is to maximally hedge her bets éf(i.e., Left universal pebbles), and to select
successors i@ng (which is a purely existential automaton) by copying Sptslmoves
from Left existential pebbles i®. More formally, there exists a strategy for Duplica-
tor which mantains the following invariant: If at rourkdthe current configuration is
(qx, (a4}, 0r)), thenqgy, = qj, i.e., Duplicator has a strategy that mimicks exactly the
MH-construction.

We now argue that this strategy is winning for DuplicatosdmeLeft pebble gets
stuck, then Duplicator wins. Otherwise, by the propertiethe MH-construction, it is
the case that thRightpebble can always be moved; in this case, we argue as follows.
Let 7 = (qo, (q0,00)){q1, (q1,01)) ... be the resulting sequence of configurations.
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Forz = Vdi, assume thady, C F. By the definition of the MH-constructioa, C

qr N F, henceoy, = 0, i.e., (qi,0) € F'. Forz = f, assume that there are infinitely
manyi's s.t. q; is universally good since some previous royndNow consider the
sequence of indice§k; },>o defined as followsk, = 0, and, inductivelyk;; is s.t.
qx,., is good since round;. (Notice that this sequence is well-defined and infinite:
Since there are infinitely mans s.t.q; is universally good since some previous round
Jji, by Lemma 8, this implies that for any there existsj; > i s.t. q;, is universally
good since round.) We have that, by the definition of the MH-constructiop, = 0

for anyi > 0. Hence,(qy,, ) € F’ for infinitely manyk;'s.

We now prove Point b), i.e.Qng Efl,l) Q. We can assume that theeft peb-
ble never gets stuck, otherwise Duplicator wins trivialiere, the strategy for Du-
plicator is to maintain the following invariant: If at rounfd the current configura-
tion is ((qx,0r), qx), theng, € qg, i.e., Duplicator can force thRightpebble to be
somewhere irg;,. Clearly, the invariant holds for the initial configuratidfori = 0,
(q0,00) = ({q1},{q:}\ F) andgo = ¢;. Inductively, assume that the invariampte qx
holds fork > 0. We show how Dupicator can ensure it in the next rokndl. Assume
that Spoiler moves theeft pebble to(qx+1,0r+1) and that the next input symbol is
ay.. We have two cases to consider:

— If g1 € E, then, by the MH-construction, there exigtss qx11 S.t.¢' € A(qy, ax).
In this case, Duplicator moves tiRightpebble fromg; to gx1+1 := ¢'.

— If g» € U, then, by the MH-construction, it is the case th&ig;, ar) C qr+1.
Hence, Spoiler moves thRight universal pebbley, to any successofi1 €
Alqy, ax). For every Spoiler's movey.+1 € qp1-

We now argue that this invariant-preserving strategy isvig for Duplicator. As-
sume that, for infinitely manys, (q;, 0;) is accepting, i.e9; = 0. Hence, we can build
an infinite sequencgi; } ;>0 of indices s.to;, =  for anyj > 0. From the structure
of the MH-construction, it follows that for any > 0, there exists s.t.i;_; < k < ;
andq; € F. Hencegy, is accepting for infinitely many indicéss.

Points a’) and b’) are actually shown in Figure 3, where wegwo automatad!
andQ? which results in the same de-universalized automaton@,g.= 92, =: Ong.
For Point a’), the simulation gan@?ﬁﬁl)(gl, L4) results in the (unique) sequence of
configurations

T ={aqo}, {0} {a})){a1, a2}, {11, q12}, {q12}))
<{Q21, Q22}a ({Q21, Q22}, @)><{QB1, Q32}a ({QBl, %2}, {Q32})>w )

but at roundk = 3, the Left pebbles or{gs1, g32} are universally good since round 2
(sinceqo2 andgs; are in F), but theRight pebble is never accepting fér > 3. For
Point b’), the reasoning is similar, but naiy, ¢ F. We have that Spoiler can force the
gameGE”Ll)( 2., ©?) in the following sequence of configurations:

T = (50, 40)(51,q11) (52, g21) (53, G31)"

s.t., atroundk = 2, s, € I/, but 1)¢go1 ¢ F (hence, Q% Z8 1 Q2 for z = Vdi),
and 2) for no later round’ > 2, theRightpebble is accepting (in fact, it is trapped in
¢4, ¢ F), henceQ?, Z% 1 Q2 for z = de. 0
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Lemma 4. Let Q, S be two alternating Bchi automata. Then,
Q Efn,l) S = Ond Egl,l) Snd -

Proof. We make use of transitivity, which will established later.
“Only if”. Assume Q gfn 1 S. Then, by a double application of Lemma 3,

Qnd Elzl_’l) Q Egn,l) S Egn,l) Snd )

and, sincg1, 1)-simulation is contained i, 1)-simulation (see Theorem 1), by tran-
sitivity, we obtain Qpqg Eﬁn 1 Sne- But Qng is a purely existential automaton, hence

(n, 1)-simulation reduces t6l, 1)-simulation in this case. Thug€hg E€1 1 Shd-
“If”. Assume Qnq gfl 1) Sna- By Lemma 3,

Q Elznﬁl) Qnd Elzl_’l) Snd Eglyl) S )

thus, by “upgrading(1, 1)-simulation to(n, 1), and by transitivityQ Efm) S. O

C.2 Transitivity
Theorem 6. Letx € {Vdi, de, f}. Then,

GEGm TATEGm 8 = 4B 8
45 T ATy 8 = 4B 8

Proof. Directly from Lemma 10 and Lemma 11 below. a

Definition of the join of two strategies f¢t, n) simulations.LetG, = G (¢, r) and
Gy = G (r, s) be the basic simulation games betwgeandr, and betweem and
s, respectively. Lety ando; be two Duplicator’s strategies iy andG, respectively.
We construct goint strategyo, > o for Duplicator in the basic simulation gane=
G (g, s). In the definition of the join, we assume that the automataroisplete
hence it is always possible to select successors and théasiomugame never halts.

U,- 1D
1507 (Gé ) E,R
1DU\
’ 0S
S U,R D
U’R%,L 0SE,L G 0Dy, L E.R
G 0 ODE,R DUL G
Su,r )
\fE,L E,R

E,. 1Dg r
ISU,R Gi >

We keep track of the current state of thg game and at mostgames irG; . In the pic-

ture above(s, is shown in the center, where gameg&n are shown at the top/bottom

of the picture, where, foK € {E, U}, with G§X"> we mean those games@y, where
Pxy P),<,Y/

the (only)Left pebble is existential/universal. An arrow of the form——M—= - |
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means thaf{ -pebbles on sid& moved by playel” in the source game induce a move
by playerP’ in the destination game on si#, whereP, P’ € {S, D,05,0D,15,1D},

X e {E,U} andY,Y’ € {L(eft), R(ight)}. (Notice that the kind of pebble¥ does
not change across an arrow.)

The necessary bookkeeping is done by usihggdook At roundk > 0, the cur-
rent logbook is a tripleL, = (LY, L}, wy), Wherewy, = agay ...ax—1 is the in-
put word constructed so far (and we let = ¢ if £ = 0), L} = 7, with 7} =
(g0, r5) (g, 1Y) ... (q2,x?), is a partial play inG, of lengthk + 1, which iscoo-conform
to wy, and Ly, = {my, o, 7, 1, -, T4 4} IS @ set of partial plays ifs;, which are
o1-conform towy, of lengthk + 1, and of the form

Ths = ( é,ivsé,iﬂriivs%,i) oo { li,iasllc,i% forie0,...,1(k).

52

Assume that at rounkl > 0 the current partial play if is 7, where

Tk = (qo,S0)(q1,81) - - - (qk> Sk) - *)

We say that a logbook;, is valid if it satisfies thdogbook propertie®elow.

% = (PO)
1(k)

= ko) P
i=0
1(k)

Si = U s,lm- (P2)
i=0

Notice that (P1) entails the following property: (P1’) Foeeyr € r), there exists s.t.
T = (10.::80,4) * (Th4»Sks) Withr = 7 ., i.e.,ris the r.h.s. of the last configuration
of some partial play irL;..

We inductively show how to build a valid logbook and we define foint strategy
oo > o1. The initial configuration inGg is (¢, ), the one inG; is (r, s), and the one
in G is (g, s). Hence, the initial logbool., := (L3, L}), with L = (g,79) and
LY = {(r{, s{)}, is clearly valid, where) = ¢, r§ = v} = r ands} = s.

Inductively assume that, at rourkd L, is a valid logbook, and that the current
(partial) play inG is 7, with 7, = (go,80)(q1,81) - - - {qx,sk) (@s in (*)). We show
how to build a new logbook ;1 = (L}, L}, wk4+1) for the next round, and we
prove it valid. Assume that Spoiler moves as follows:

({ar}s sk ar, (ar)’, (sx)') € I57, (S)

i.e., the next input symbol i, and Spoiler moves universal-r.h.s. pebbles frgnto
(s)’. Notice that, ifg; is existential, then Spoiler moves the only |.h.s. pebbdenfr
ar = {ar} to (ar)’ := {(qr)'}, otherwise(qy)" := 0. Notice that we can already
update the next input word 01 := wy - ax, Which defines the third component of
the next logbook.
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For any universal state}/, € r) N U, let 7, ; be the path inL; s.t. 7, =
(rg.i»80.4) -~ (s sk) With i . = 7, which is guaranteed to exist by property
(P1"). Spoiler's move (S) above induces the-Spoiler's move fron’(r,m., s,m.) below:

({Tllc],i}v Sllc,iv Ak, {}7 (Sllc,i)/) € F(g,f ’ (1'3)

i.e.,ay is fixed by move (S) above, ar@d}m.)’ is the subset ofs;, )’ obtained by restrict-
ing Spoiler's move (S) t(s,{,yz. C sy, the containment following by property (P2). We
now applyG-Duplicator’s strategy , obtaining

‘71(<7’(%.,i7 S(l)z> Tt <7’1£’],m Siﬂ)(akv Tl[cj,iv (Siz)/) = <(r1[s’],i)/a (Sllc,i)”> . (1-D;)

By the completeness condition, it is always possible toctedeme successQr,’ii)’
and(s ;)" # 0.

The move (1-D) above fixes a successpr; )’ for each universal state, in r}.
We now consider these moves as adversariakini.e., they induce &s,- Sp0|lers
move

({Qk} rkvakv(Qk) (r )) FSS, (0-S)

where(r?)’ is the set of eIemen(s'kyi)’ above. We then appl§o-Duplicator’s strategy
09, obtaining

a0 ({a0,0) -+~ (i, ¥ (ar, (@), (£R)") = (@Ry1: Thgr) - (0-D)

Notice that, ifq) is existential, then{q),,} = (qj)’ as determined in (S), other-
wise ¢)_ , is determined by (0-D) above. The new configuration of the g@&hy is
(q,2+1, r, 1), and, accordingly, the first componelrﬁJrl of the new logbook is defined
asLy, , = - (qh, 1, 1)- By the completeness condition, it is always possible to
select some successg, ; andr)_ , # (.

The Gy-Duplicator’'s move (0-D) above fixes a succes@cf(i)’ for any existential
rf i € r) N E By the logbook property (P1), for any sua:f? there exists a pati‘rl1
in Lj stom; = (rg;,80,:) -+ (1 Sk4)- The Go-Duplicator's move (0-D) above is
mterpreted adversarially i64:

({Tf,i}a Sllc,ia Ak, (Tlf,i)la (Sllc,i)l) € Fg? . (1'$)
We then applyG;-Duplicator’s winning strategy :
01(<ré,i7 Sé,i) T <7"1]f,i7 Sllc,i>)(ak7 (Tf,i)lv (Sllc,i)l) = <(7"1]f,i)/a (Sllc,i)”> . (1'D;)

Once again, the completeness condition entails that itiaysd possible to select some
successofr,’ ;) and(s, ;)" # 0.

We are now ready to defing} , ;. Let(r), )’ be any statéry,)’ defined in (1-D), or
any state(ry’,)’ defined in (1-I), which is not discarded i€0-D), i.e.,(r} ;) € T}, ;.
(Notice tha’nr,cJrl # () by the completeness property, as already noticed abovedien
there exists at least one sugl ;)’.) We then addr, , - ((r,)’, (sj.;)") to the second
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componenlE}cJrl of the new logbook. It is easy to check that, by constructiwaperty
(P1) holds at round + 1.
Finally, wedefineDuplicator's move inG as

({Qk}; Sk, Ok, (Qk)/7 (Sk’)/a {qk’+1}7 Sk+1) € F([I}Dup ) (D)

whereqi41 = qj,, is fixed by move (0-D) ifgx = ¢ is existential, and it is fixed
by (S) if it is universal. (Notice that this establishes pdp (P0).) Moreoversy 1 is
taken to be the union of all se(s}c,i)” constructed in (1-p) and (1-0) above, i.e.,
Ski1 = Ui(s}w)”, which, in turn, establishes property (P2). Hence,

(00 > 01) ({g0,80) - - - (qk,8k)) (ar, (ar)’, (sk)") := (Qr+1,Sk41) -

The following theorem shows that, ,, is transitive, i.e., it shows that whery
ando; are both winning, theng > o7 is winning as well.

Lemma 10. Letz € {Vdi, de, f}. Then,
q E%l,n) rAT E”(”l_’n) s = q E%l,n) s.

Proof. We refer to the logbool; at roundk as defined above. We first deal with the
case in which the gam@ never ends prematurely.

Forx = Vdi, we have to show that, whenewgy is accepting, so is every pebble
in s,. Assumeg;, € F. Sinceo is a winning strategy, therf, C F. By the logbook
property (P1’), the current configuration of every gamé&inis of the form(r, s), for
somer € F ands C Q. Buto; is winning, hence every sughis contained inF'. By
(PZ),Sk Q F.

Forxz = de, assume thaj; is accepting. Since is winning, there existg > k
s.t. gooda(rg, k). Thus, for anyr;,; € r, there existgi(i) s.t. Tgl'(i),i € F. By (P1),
let <r;(i),i,sj(i),i> be the configuration at rounf(i) of someG,-game. Sincer; is
winning, there existg (i)’ > ;() s.t.good” (sj(iy i, 5 (7). Letj* = max;(j(i)'): Then,
for all 4, every state irs;, ; has seen an accepting state since raurly (P2),s;« =

is}w—. Thus, every state in;« has seen an accepting state since rauntherefore,
there exists a minimal* s.t.k < k* < j* andgood? (sy-, k).

Forx = f, the reasoning is entirely similar to the previous paralgrap

We now deal with the case in which the gat@ends prematurely. If thieeft pebble
on g, is stuck, then Duplicator wins, and we are done. Otherwissyme that theeft
pebble is never stuck. We show that, in this case, the ganualbchever stops. In
fact, sinceoy is a winning strategy ifzq, then there always exists sorRéght pebble
rk: € 1 which can proceed. By (P1)’, there exists some configurafign, sy ;) in
G, which can go on, and, being winning in such a game, then some pebbls;in
can be moved, and, therefore, some pebbig ioan be moved as well (by (P2)). Thus,
G never stops. a
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Definition of the join of two strategies f¢n, 1) simulations. The definitions for(n, 1)

simulations are dual to th@, n) case in the previous section. L& = G (q,r)

andG; = G(™(r, s) be two basic simulation games. L& ando; be two Duplica-
tor’s strategies irlzy andG,, respectively. We constructjaint strategyo, < o; for

Duplicator in the basic simulation ganie= G(™1(q, s).

B 0D
0851, Gé ) UL

0D :

E’N’L Du.r

Su,r 1Su.R 1Dg R ’
G Gy D G
5 U,L DEg.r
B.L Duy,L
OSU,R ’
0Dy, 1

0SE,L Gé"w

We keep track of the current state of tfieg game and (at most) games inGg us-

ing the logbook technique. At rountd > 0, the current logbook is a triplé;, =
(LY, Ly, wy), wherewy, = apas ... ax—1 is the input word constructed so far;, =
m = (ro,s0)(r1,s1) ... (rx,st) is a partialo;-conform towy, play of lengthk + 1
in Gy, and L) = {7 g, 7} 15,7, 10y} 1S @ set of partiabg-conform (w.r.t.wy)

plays of lengthk + 1 in Gy, with wgz = (a9 (al Y - <q27i,7"21i>, for

i € {0,...,1(k)}. Every logbookL,, will satisfy an invariant, which consists of the
logbook propertiegP0)—(P2) specified below. Assume that at roénd 0 the current
play inG is 7, wherer,, = (qo, so){d1, 1) - - - {d, Sk). Then,Ly, is a valid logbook
if

1(k)
ar = |J i (PO)
1=0
(k)
re = [ J{rd.} (P1)
1=0

We inductively show how to build a valid logbook and how to defthe joint strat-
egyoy i o1. The initial configuration irzg is ({¢}, {r}) (there is only one such game
initially), the one inG; is ({r}, {s}), and the one iiG is ({¢q}, {s}). Letqy = {q},
ro = 7,19 = {r}, andsp = s. Hence, the initial logbool, := (L3, L}, wy), with
LY ={{q},{ro})}, L§ = {{ro}, {s0}), andwy = ¢, is clearly valid.

Inductively assume that, at rourid the current partial play it is 7, and that
Ly = (LY, L}, wy) is a valid logbook, wheré.?, L} andwy, are defined as above. By

(P2),

Tk = <QO750><Q1,81> cee <Qk,8k>
771(3,1' = <q2,07T8,i><q(13,17T(1),i> e <q2,ivrg,i>v fori € {0,...,1(k)}

W,i = (ro, 80){(r1,81) ... (v, Sk)
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We show how to build a new, valid logbodk. 1 = (L, L}, |, wk+1) for the next
round. Assume thak-Spoiler moves as follows:

(qu {Sk}v Ak, (qk)la (Sk)l) € ng ) (S)

i.e., the next input symbol ig;, and Spoiler moves existentihkft pebbles fromy;, to
(ar)’. We takew,.+1 = wy, - ag. Notice that, ifsy, is existential, then Spoiler moves the
only Rightpebble fromsy, := {s;} to (si)’ := {(sx)’}, otherwise(sg)’ := 0.

For any existential state” ¢ ry’, let 7)) ; be the path inL) ending in(qy ;, ")
(i.e., 7Y, = r¥), which is guaranteed to exist by property (P1). Spoileraven(S)
above induces th&,-Spoiler's move below

(q(lz,ia {TE}v Ak, (qg,i)/v {}) € F(Sf ’ (O'S)

which is obtained by restricting tq%i C qy. the transiton fromyy, to (qg)’, the inclu-
sion following from (P0). We appl$o-Duplicator’s strategy, obtaining

0’0(<Q871‘7 T(O),i>a0 T ak—1<q2,ia rE))(ak, (qz,i)lv = (qg+1,i7 Tgﬂ,i) . (0-D;)

The move (0-D) above fixes a successd}, , ; for each existential state” in ry’

(in Gp). We now consider these moves as adversaridini.e., they induce &;-
Spoiler's move

(v {3}k, (v)', (s6)') € TG7 (1-S)

where(ry )’ is the set of eIemenb&ﬁHJ defined above. We then aphy -Duplicator’s
strategyo, obtaining

o1((ro, s0)ao - - - ap—1(re, s1))(ar, (v&)’, (1)) = (trsr, {s411}) - (1-D)

Notice that, ifs;, is universal, them;_ , = (s;)’, as determined in (S), otherwisg, ,
is determined by (1-D) above. The second comporﬁé;nrt1 of the new logbook is
L11€+1 =T (1, 811€+1>'

Call a stater € r; usefuliff it has not been discarded by move (1-D), i.e., iff it
has some successorif, ;. By the logbook property (P1), for each useful universal
stater! € ry/, there exists a playy ; € L} s.t.m) ; = (ag;,70,) - (af ;, ) with
rgyi = Y. TheG,-Duplicator’'s move (1-D) is then interpreted adversayiail G:

(ai {7} ans (@) (g i) € T2 (0-5)
and we applyGo-Duplicator’'s winning strategy,, yielding

UO(<q8,iv7"8,z'>a0 s 'ak71<q(13,m7"U>)(ak7 (q(zi,i)’, 7’2+1,z‘) = (q(liJrl,i’ 7’2+1,z‘) . (O'Dé)

We now update the first componebf of the logbook. For any useful existential or
universal state) ; € r; with corresponding playr; ; € L} (as above), let), , ; be
as determined in (0- or (0-S), respectively. Then, we add] ; - (ap,; ;s 74 1) O
L2+1. Since every element iy, ; arises as a successor of sonsefulelement inry,
we have that (P1) holds at roukadt 1.
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Finally, wedefineDuplicator's move inG as

(00 > 01) ({(Qo, $0)a0 - - ax—1(Qk, 5k)) (ak, (ax)’, (Sk)") = (Akt1, k41) - (D)

whereqy41 is as union over all setqgﬂ_j defined by equations (0;Pand (0-0),
andsgy := S]1€+1 is defined according to (S) or (1-D), depending on whethewras
universal or existential, respectively. Notice that, bfimiéon of g1 andsg1, prop-
erties (P0) and (P2) hold for the new logbook. This complétesdescription of the
joint strategyog < o75.

The following theorem shows thﬁ_tﬂ(”n_rl) is transitive, i.e., it shows that whery
ando; are both winning, theng i o7 is winning as well.

Lemma 11. Letz € {Vdi, de, {}. Then,
q Efml) rAT E?n,l) s = q Efml) S.

Proof. We refer to the logbooK ;. at roundk as defined above. Far = Vdi, we have
to show that, whenever some pebblejinis accepting, so is;. Assumeqg, N F # ().
Then, there existg” € q. N F and, by (P0), there existg, ; € qx S.t.¢" € q
and(q) ;, 77 ;) is the current configuration in sont@®, game. Sincey) ; N F # 0
and o is a winning strategy, then%i € F. Hence, by the logbook property (P1),
r, = U{r)} N F # 0, where(ry, s;) is the current configuration ifs,. Since
r; N F # () andoy is winning, we havey, € F.

Forxz = de, assume that at roundevery pebble iny; is universally good since
some previous round, i.egood”(q;) holds. Let<q21i,r2ﬂ.> be any configuration in
Go. By (P0),qj ; € ax, thUSgoodV(qg,i). Sinceo is winning, then, for every, there
existsk(i) s.t. gooda({rg(i),i},k), i.e., k(i) is the least index’ s.t.7), ; € F. Leti*
be the index for whichg(i*)ﬁi* € F'is the last pebble being accepting for the first time
since roundk, i.e.,i* = argmax(k(i)). Hence, at round:(i*) > k, every pebble in

rii+) has been universally good since roundSinceo; is winning, then there exists
k' > k(i*) > ks.t.sp € F. Letk* < k' be the minimak” € [k,... k'] s.t.spr € F.
Thereforegood? ({s;-}, k), i.e.,{s- } is existentially good since rourid

Forxz = f, assume thaty; is universally good since some previous round for in-
finitely manyk’s. By reasoning as above for delayed simulation, singés winning,
thenry, is universally good since some previous round for infinitalgnyk’s. Finally,
beingo; winning, we conclude that, € F for infinitely manyk’s. O

D Section5

D.1 Finite words

Lemma 5. Let Q be any alternating finite automaton, and tetbe any preorder which
implies finite-language inclusion. Thef" (q) = £ ([¢]).

Proof. We proceed by induction on the lengthwfe X*. Letq any state irQ), and let
[q] be its equivalence class. Notice thaf?(¢) = £5%(¢') for anyq’ € [q].
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Assumew = e. If w € L (q) theng € F, hencelq] € F' andw € Lf"([q]) as
well. Conversely, ifu € £8%([q]) then[g] € F’, hence there existg” € [¢] N F. But
£i(gF) = £8%(q), hencew € £ (q).

Assumew = ag...ar_1 iS a word of lengthk, and letw’ = a;...ar_1. We
proceed by case analysis on the typégbf

— Case 1]q] € E'. We prove£fi®(q) C £fi(]q]), distinguishing two subcases.
Subcase 1.1y € E. Assumew € L1%(q). Then, there existéy, ao,q’) € A s.t.
w' € £8%(¢), and, w.l.o.g., we may assume thatis an ay-maximal successor
of ¢. (If not, then there exists a stag€ = ¢’ which actually is amg-maximal
successor of, thusw’ € £5%(¢") and then one can proceed frafh.) By induc-
tion hypothesisyw’ € £f7([¢]). Hence, by the definition of quotient, there exists
([a], a0, [¢']) € AZ, thusw € L™ ([q]).

Subcase 1.27 € U. Let¢” € [q] N E and, by definition of quotient.fi"(¢) =
L7(¢F), and then one can proceed as above fegdmThus, £ (¢) € £82([q]).
We now proveCfi®([q]) C L (q). If w € £8%([q]), then([q], a0, [¢']) € AT s.t.
w' € L([¢']). By the definition of quotient, there exigf ¢ [¢] andq € [¢']
s.t.(¢%,a0,q) € A. By induction hypothesisy’ € £f%(7") (we do not use the
maximality ofg’ here), hencew € £(g¥) = £fin(q).

— Case 2{q] € U’. We proveLfin(q) C L ([¢]). Assumew € L7(q). Let[¢'] be
anyelement in[Q] s.t. ([¢], ao, [¢']) € AT. We have to show that’ € £"([¢']).
By the definition of quotient, there exigte [¢] andq’ € [¢'] (we do not use the
minimality of ¢ here) s.t(q, a0, ') € A. We have thatf"(¢) = £7(), hence
w € LI(g). Sinceq € U, then everyug-successor of acceptsy’. In particular,
w' € £87(7"), and, by induction hypothesig; € £ ([¢]), But [¢'] was arbitrary,
thusw € £ ([q]).

We prove£fin([q]) € L£f"(q). Assumew € L£7([q]). Let ¢’ beanyelement inQ
s.t.(q,a0,q') € A, and we have to show’ € L (¢') for any suchy’. In partic-
ular, it is sufficient to show’ € £2(¢’) for anyag-minimal ¢/, since£(¢') C
£ (¢ for anyq” = ¢'. Hence, we assume thgtis anay-minimal successor of
q. Being[q] € U’, we have thaty’ € £%([¢]) for anyao-successoly’] of [¢]. As
(g,a0,q) € A and by the definition of quotient, there exi$ig|, ao, [¢']) € AT.
Thus,w’ € £f7([¢']), and, by induction hypothesis; € £5%(¢). But¢’ was ar-
bitrary, thusw € £%(q). O

D.2 Infinite words: Direct simulation
The two directions in Theorem 8 are proved, resp., by Lemmentid emma 13 below.

Lemma 12. If ¢ T} ) s, then[glms 7Y, s, where the quotientis taken w.eLy, .

Proof. Let G = G\Zﬁ;)([q],s) and, at round, if the current configuration ofs is
{[g:],si), let G; = GYﬂin)(qi,si). We maintain the following invariant: At round

Qi E\(’ﬂz) s;. Notice that the invariant implies the lemma: The cruciasatvation is
that[g;] € F’ implies|q;] C F, i.e., if one state in the quotient is acceping, then, by
the definition of direct simulation, all states in the quotiare accepting as well, and,
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in particular,q; € F'. By the invariant and by the definition #fli-simulation,q; € F
impliess; C F.

Assume the current configuration @ is ([¢:],s;), andg; ;\(’1‘1’;) s;. Let Spoiler
choose the next input symba]. We consider two cases, depending on wheffgiis
existential or universal.

First caselq;] € E’. Let Spoiler choose at;-successofg;+1] of [¢], i.e., Spoiler
chooses transition

({lg:]}, 80 @i {[ai1]},8") € TP

By the definition of minimax quotient, there exigt € [¢;] N £ and ¢ € [gi11]
s.t. ¢ € A(q,a). (Note that we do not use the maximality gfin this proof.) We
haveg C74 ., ¢ CVY - s, But (1,k)-simulation implies(1, n)-simulation (The-

Sk (1)
orem 1), thereforey g\(fﬁil) ¢;, and, by transitivity,g ;\(’1‘{;) s;. We let G(q, s;)-

Spoiler choose transitiof{ g}, s;, a;, {¢'},s’) € Fg}(:)qu')’ and then we applé (g, s;)-
Duplicator’s winning strategy, obtaining transitiéfig}, s;, a;, {¢'},s’, {¢'},si+1) €
Fg(%f’si). Clearly,q’ € [gi+1], ¢ ;\(’{{i}) si+1, and the invariant is preserved.

We defineG-Duplicator’s response as

({[%]}7 Si, Qg {[Qi+1]}7 sla {[Qi+1]}; Si+1) S FG]?up .

Second casdy;] € U’. By the definition of quotienty; € U. Let Spoiler choose

transition
S
({lail},si i, {}.8") e IG" .

We let G;-Spoiler choose transitiof{q;},s;,a;,{},s’) € ngp, and then we apply
G;-Duplicator’s winning strategy, obtainingq; }, si, ai, {},s’, {qi+1},8i+1) € Fa“p.
The crucial pointis that we can assume w.l.0.g. that is an-Vdi-minimala,-successor
of ¢;. In particular, it is alsd:-Vdi-minimal. This implies that there existsigtransition
in the quotient automaton frofy;] to [¢;+1]. Thus,G-Duplicator’s response is defined
as

({[Qi]}v Si, A4, {}a Sl? {[Qi-i-l]}; Si+1) € F([]}Dup .
Clearly,g; 1 g\(’ldin) si11, and the invariant is preserved also in this case. O

Lemma 13. If ¢ g\(’ldjl) s, theng g\(’ldjl) [s]m, where the quotient is taken W.@.\(’ﬁik).
Proof. LetG = G(q, [s]) and, at round, if the current configuration d& is (g, [s:]),
let G; = G(q;,s;). We maintain the following invariany; gvldin) s;. The invariant
implies the lemma. if;; € F', then, by the definition dfdi—simuﬁaition,si C F, thence,
by the definition of quotients;] C F”.

Assume the current configuration @ is (g;, [s;]), andg; g\(’ldjl) s;. Let Spoiler
choose the next input symbe] and a transition

({a:}, [se), asr ', [8']) € T3,

where[s’] is obtained by fixing a successf] for any[s] € [s;] N U’. (Notice that, if
q; € E,thenq’ = {¢;+1} isjustasingleton, for somg;, € A(g;, a), otherwise, when
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q; € U, we have thaty’ = {} asLeftuniversal pebbles are under Duplicator’s control.)
By the definition of minimax quotien(,[sU], a;, [s']) € Amy+ implies that there exist
sV € [sY] ands’ € [s] s.t.3 € A(BY,a;). (*) Let s’ be the set of stateg obtained
above. (We do not use the m|n|maI|ty§f|n this proof.) For any mixed clags?, | €
[s;], for which its representativ€/. € s; is universal, letZ. ¢ NE be a(l k)-

mix [ lan]

Vdi-equivalent existential representative, for which, intjgatar, sV, CVdi Let

mix —=(1, k) mix"*

p; be equal te;, but where eack?._ is replaced byfmx By the invariantg; _(ﬁn) S;

mix
and, by the definition op; and by transitivityg; Qvld‘n) p;. The game then proceeds
by usingp; in place ofs;. Notice that universal states p are exactly those universal
states irs; which belong to a purely universal quotient. We@(y;, p;)-Spoiler choose
transition({¢; }, pi, ai,q’,s’) € FSE’q P’ wheres’ is obtained fromp; " U Cs; NU
by fixing successors as prescribed in (*) above. We then apply, p;)- Duplicator’s
winning strategy, yielding transitiot{q; }, p:, a:,q’,s’, {¢i+1}, Pi+1) € FG(ql )" It
might be the case that some transitip#, a;, p’) € A induced above, fop” € p,NE
andp’ € p;+1, (if any) does not induce a transition in the quotient, iteere exists
no corresponding transitiaiip”], a;, [p']) € Ams. This happens when, in definition of
minimax+ quotientp’ is not selected as /a=maximal representative far;-successors
of p¥. If this is the case, then, by the definition of minimax+ ganti there exists some
k-maximala;-successos” C maxg,""(p¥) s.t.p’ CFYy) s” and, for alls” € s”,
([p*], ai, [s"]) € Ams. We defines; 1 asp;.1, Where elements’ are replaced by,
as specified above. The@;Duplicator's response is defined as

{ai}s[sil, aind', [8'), {gisa ), [si1]) € TR

Sinceg; 11 I:( ) Pit1s and, by the definition of; ., and transitivityg; ;1 ':(1 ) Sit1s
the invariant is preserved.

Theorem 8. ¢ N\(’ldl ) [aJm+, where the quotient is taken Wrﬁi\(’f‘k) In particular,
L2(q) = L2([g)m+)-

Proof. Sinceq E\Zldl ) {q} trivially holds, the theorem follows from previous Lemma 12
and 13. a

D.3 Infinite words: Delayed simulation

Lemma 14. Letq,s € U. If ¢ Rl S then, for anyg’ € min"*(q), there exists

/

s’ € ming"*(s) s.t.¢' & ) s
Proof. We actually prove the following richer statement.

Claim. Let ¢,s € U s.t.q zfl ny S Then, for anyg’ € min"*(gq), 1) there exists
s' € A(s,a) st.s' CF, ) ¢, and, forany” € A(s,a), s" CF, ) ¢ implies both 2.1)
s" € ming*(s), and 2.2)" ~{, ) s".

Letq =~ ) s, and let¢’ € min['*(q). Point 1) follows from the definition of simula-
tion, i.e., there exists’ € A(s,a) s.t.s' Cf, ) ¢'-
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We now show Points 2.1) and 2.2), i.e., we show that any stué&hin fact anx-
minimala-successor of. Lets” € A(s, a) be any othen-successor of s.t.s” Cf,
s'. We have to show’ Cf,  s” as well. Sincey Cf, ) s, from the definition of
simulation, there existg’ € A(q,a) s.t.q¢” ‘:(1 n) s”. Hence, we have the following
chain .of incI.usionS'q” E%l,n) s” E%l,n) s g(l_’n) q. By th-e .tran.sitivity ofg%‘lyn)
established in Theorem 6, we ha}/éga_’n) ¢’, and, by the minimality of/, ¢’ Chin)
q” By transitivity, all states iqq”, s, s', ¢’} arexz-simulation equivalent. In particular,
s’ E{ ) s”, which establishes Point 2.1), ap Clin) s’, which establishes Point

2.2). O

Lemma 15. Lets e Uandqg € E. If ¢ =~
anys’ € ming**(s), s' Cf, ) d'.

Rl S then there existq’ C A(q,a) s.t., for

Proof. Lets € U, ¢ € E, andg %%m) s. Froms gflm g and by the definition of
simulation, there existg’ C A(g,a) ands” € A(s,a) s.t.s" CF ) d'.

Let s’ be any element iming’l( ). Fromq Cf, . s and by the definition of simu-
lation, it follows that, for any,’ € q', we havey’ Cf, ) s'. Sinces” Cf, |, q’, and any
element inq’ is simulated bys’, we obtain, by transitivity (Theorem 63/ Chin) s,

and, by the minimality of’, s Cf, ) s” Cf, ) d'. By transitivity,s" C¢, ) q’. O
Lemma 16. If q|:(1 »S: then[g ]SEJFE(1 n)S» Where the quotient is taken w. n:t(l n)"

Proof. In the following, we simply writeC instead ofl:de e Then, when we write
q T, s, we mean that is Duplicator’s winning strategy nﬁ;(q, s), i.e., the one wit-
nessingg C s. In the proof, we need the following definitions: For any Doator's
strategyo : PP, — (P, — P;) and for anyr € P, we define a new Duplicator’s
strategyo™ in the following way: For any’ € PPy, o™ (7’) := o(w - ). Given any
Duplicator’s strategyr, we say that a sequen@eé = s;sy1 ... iS o-right-conform
starting atp, iff there exist sequences’ = pypry1... andw = apagsi... S.t.
7 = (Pk, Sk){Dk+1,Sk+1) - - - IS o-conform w.r.t.w. We will use the following fact:

Claim. Assumen! = sgsyy1 ... is o-right-conform starting apy. If pr € F ando is
a winning strategy, then there exists k s.t.good(s;, k).

We are now ready for proving the lemma. l@t= G([¢],s) and, at round, if
the current configuration df is ([gx],sk), let Gr = G(qx,sx). We build a sequence
of winning strategiesy, o1, ..., S.t., at round:, oy, is a winning strategy iz, i.e.,
ar C,, sk Then, we define a strategyfor Duplicator inG, which, at roundk, is
defined in terms of;,. Finally, we prove that is winning.

Assume the current configuration@is ([gx], sx), and thaty, is a winning strategy
in G, s.t.qr C,, sk. Let Spoiler choose the next input symlagl. We consider two
cases, depending on whethgr] is existential or universal.

First caselqr] € E’. Let Spoiler choose ady,-successoyy.+1] of [gx], i.e., Spoiler
chooses transition

({lax]}, sk an, {[arr1]},8") € TP
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By the definition of semielective quotient, there eXjsE [qx] andq’ € [gx+1] S-t.
q € A(G,a). If [gx] N F # 0, then letg” be any accepting state jg;], otherwise let
q" be justg. We distinguish two subcases, depending on whefligin E or in U.

— First subcasej € E. We have that
7Cs ¢" Cor qx Coy sk -
N . P s

We let G(q, si)-Spoiler choose transitiot{q}, sk, ax, {¢'},s’) € FGI(’qA,Sk). Let
o = o < o i o, and lets, 1 be the result ofG (g, si)-Duplicator playing
according ta7, i.e.,a ({q}, sk)(ar, {¢'},s') = ({¢'}, sk+1)- Clearly,q’ Cox sp41,
with 7 = (q,sk). Butq¢’ € [gi+1], thusqr+1 Cor ¢’ Cs= sgy1 for someo’. By
transitivity, gx1+1 Corpas~ Skr1. We letogyq := o/ 167,

— Second subcasg:c U. By the definition of semielective quotient, € ming’de(a).
(Notice that, althougly is a universal state in this case, it is still Spoiler who lmas t

choose a success@rof g, sincelgy] is an existential state in the quotient automa-
ton). Sincelqy] is a mixed class, there exist§ € [¢;] N E s.t.

755 ¢ Cor ¢F Cor qi Cop s -

Sinceq C ¢¥, by the minimality ofg’ and Point 2) of Lemma 15, there exigfsC
A(q¥,a)s.t.¢’ C . Hence, w.l.o.gz can be taken s&({q}, {¢“})(ax, {},{}) =
({¢'}, ), where' is fixed by G([q],s)-Spoiler, and not under the control of
G(q, ¢”)-Duplicator.

Lets := & 1 o a of > 0y. Similarly to the previous point; (g, si.)-Spoiler
chooses a transitiof{q}, s, ax, { },s’) € I'SP. We letG (g, s )-Duplicator answer
with 3({q}, sk)(ak,{},s") = ({¢'}, sk+1), whereq’ is the aay-successor fixed by
G([g],s)-Spoiler above. As beforey11 Ty ¢’ Cor Sp+1, Wherer = (g, sg).
Hence, by transitivitygx 11 Co/pas Skr1- We letogy1 := o' a7,

In both casesjr+1 C sg+1- We defineG-Duplicator’s winning strategy as

Ok+1

o(mi({lar]}, sk))(ar, {lae+1]},s") = ({larsa]} ses1) -

Second casdy;] € U’. By the definition of quotienty, € U. Let Spoiler choose
transition

({lar]}, sk ax, {},8") € TP

If [gx] N F # 0, letq" € U be any accepting state jg,.], otherwise let/'” be justgy.
Then, we have
" Cor qx Coyp Sk -

Let = ol x oy. Let G(q%, sk)-Spoiler choose transitio{q’'}, sy, ax, {},s") €

S . .
I'Clyr s,y @Nd1etG(¢", sy,)-Duplicator choose transitiaf g™ }, s, ar, {},8, {qk+1}, sk+1) €
Fg(‘;‘; o) according tor. We leto 4y := 6™, with m = {{q¢*'},sk). The crucial point is
that we can assume w.l.0.g. that, ; is a de-minimak-successor of*". This implies
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that there exists a,-transition in the quotient automaton frof] to [gx+1]. Thus,
G-Duplicator’'s response is defined as

o(me({laxl}, sk))(ar, {},8) = (lgrsl} sken) -

This concludes the description of the second case.

We now argue about the correctness of the construction alsbesving that Du-
plicator’s strategy is winning ifs. If the Left pebble inG gets stuck, then Duplicator
wins, and we are done. Otherwise, assume #fgpebble never gets stuck. By construc-
tion, since we are taking joins of winning strategies, itdals that someright pebble
can always be moved, and the game does not halt prematuhelg, @n infinite path
© = {([qo],80){[q1],81) - .. results, whergy = ¢ andsg = s. Assume[q;| € F’, for
somek. There existg’" € [¢x] s.t.¢'" € F and, in any of the cases above, there exists
a winning strategy” s.t.¢" C,r qx C,, si. Lets := of" 1 o5, be a winning strat-
egy inG(q", sy). By construction, the sequeneé = s;sy,1 ... is o-right-conform
starting at;”. By the above claim, there exists> k s.t.good™(s;, k). O

Corollary 1. [g]se g?f_’n)q.

The lemma below implieg g?ﬁl) [¢]se+- Notice that we actually prove the much
stronger claim thafly]..+ di-simulates;.

Lemma 17. Foranyq € @, ¢ C{} | [qlse+-

Proof. We maintain the following invariant: Ifs, [gx]) is the current configuration in
G 1)(a.[g), thensy, € [g]. Clearly, the invariant implies that the winning condition
for direct simulation is satisfied: K, € F, then[gy] € F".

The initial configuration igso, [go]) with so = ¢, and[qo] = [¢], and the invariant
clearly holds since, € [qo]-

Inductively, assume the current configuratiotsis, [gx]) and the invariant;, € [qy]
holds. We distinguish three different cases.

— Case 13, € E. Then[gx] € E’. Assume Spoiler chooses transition

({sk}s {lawl}s ar, {sk+1},.{}) € rse,

From(sg, ak, sk+1) € 4, the invariants, € [gx] and by the definition of semielec-
tive quotient, there exists a transitioly, |, a, [sk+1]) € A%T. Thus, Duplicator
can select transition

({sits {awlts ar, {sk1} {3 {ska s {[sk41]}) € ree.,

Clearlysit1 € [sk+1], and the invariant is preserved.
— Case 25, € U andg;] € E’. In this case, Spoiler only chooses:

({sk}, {law]}> ax, {3, {}) € 5P
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If s has nau;-successor, then Duplicator wins. Otherwisesjgt; € min] ¢ (sy)
be a de-minimad-successor of;. By the definition of semielective quotient and
by the minimality ofs;.1, there exists a transitiofigx|, ax, [sk+1]) € ALT, thus

({sud {lael}s an, {3, (3 {seed, {[sneal}) € P

Clearlysi+1 € [sk+1], and the invariant is preserved.
— Case 33, € U and[gx] € U’. In this case, we use the minimality of successors of
universal states in universal classes. Assume Spoilersgisaoansition

({Sk’}v {[qk’]}va’k’a {}7 {[qk’+1]}) S FSp .

From the definition of quotient, there exists a transitign, ax, gx+1) € A s.t.
Qk+1 € minn’de(qk). From the invariank;, < [qz], we haves, ~% | q. By

ag (1,n)

Lemma 14, there exists;1 € min!"%(sy) S.t. sp41 z?fn) qr+1. Therefore,
Duplicator can select transition

({sed {laxl}s an {3 {lansal}y sk} {lansa]}) € TP

S.t.sk11 € [gr+1], thus preserving the invariant. O

Remark 9.Lemma 17 above is even true when quotienting w.r.t. fair &tin, or even
ordinary simulation. Notice that requiring minimal trati@mns from universal states in
mixed semielective-classes not only is required for caness (see Section 5.2), but it
also makes the proof much easier.

Theorem 9. ¢ z?f_’n) [¢]se+, Where the quotient is taken W-@?f,n)- In particular,
L£2(q) = L2([glse+)-

Proof. Directly from Corollary 1 and Lemma 17, and from the fact teahulation
implies language inclusion (Theorem 4). a
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Fig. 5. An example showing that (minimal) transitions from uniarstates in mixed classes are
needed in semielective quotients. The only t{#on)-simulation equivalent states @ arequ
andgg. (In fact,n = 2 suffices.) The resulting mixed classdh is [-] = {qu, g }. The dashed
a-transition on the right (due tgy) is needed and cannot be discarded: Inde&d,Q) # 0,
while removing the dashed transition fragy. would makeL* (Q~) = 0.

A ={ao,a1,...,ar}, X = AU{a,b,c}

Fig. 6. An example showing that multipebble-semielective quati@an achieve arbitrarily high
compression ratios. The NBA above hast 4 states, and the;'s are (1, 1)-delayed simula-
tion incomparable: Thus, thg, 1)-semielective quotient hds+ 4 states. However, the;'s are

all (1, n)-delayed simulation equivalent (amd= 2 suffices), therefore thél, n)-semielective
quotient has onlyt states. Moreover, the;’s are incomparable also w.r(tl, n)-universal direct
simulation, which shows that semielective quotients cdmiexe arbitrarily high compression ra-
tios relative to minimax quotients. Finally, notice thatedit backward simulation does not help
either: In fact, any tw;, p;, with ¢ # j, are backward-simulation incomparable, as there is
just one way of backward reaching the unique initial stgteRemember that backward simula-
tions should be compatible with the initial states, at I@d3terefore, quotienting methods which
employ backward simulations, likeediated preordefl], do not result in a smaller automaton.
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E Section 6

We give upper-bounds on the size of game-graphs necessagrfputing multipebble
simulations. When considering the size of the those garapkg, we will make use of
the following counting function:

sub, (k) = zkj (?) ,

=0
which counts the number of subsets of sizeé: of a given set of size,, and we will
approximate its value from above by using the following rougper bound

sub, (k) < (n+ 1)

Intuitively, the bound above may be seen as follows: Instefacbunting sets of size
< k, one countorderedsets; each ordered set can be representediastring over
an alphabet of size + 1, where we use an extra end-of-string symbol. We also give a

formal calculation.
(n) n—1 n—14i+1
7 i—1/)"" 1

()%

=0

I
|
=}
7N
SR
"
3
=
+
—_
N~—

E.1 Solving existential and universal direct simulation

For computing the winner for direct simulation, we constra@-player gamgd =
(v ydi_.diy “where Eve has a safety objective. The game-graph is the &ame
both eX|stent|aI and universal direct simulation, but théety objective is different.

Nodes inV!! take the formy(q s), while nodes inle" take the formu(q s a.q/,s/), With
q,q €29k ands,s’ € 29%2 anda € ¥.

Lemma 18. [V4| < 2. (n 4 1)2(ktk2) |57,

Proof. |V | = suby, (k1) - suby,(k2), and|VE| < [sub,(k1)]? - [sub,(k2)]* - [ 2.

Hence,| Vi U V| < 2-[suby, (k1)]? - [suby, (kg )% |E| <2-(n+1)2ktk) 3 O

Transitions inV& x V& model choices of Spoiler: For arfy, s, a, q',s’) € 'SP,
there is a transition for Adamy sy — v(q,s,qa,q',s7)- Similarly, for any Duplicator’s
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move(q,s,a,q’,s’,q",s") € I'P'"P, there exists a transition for Evgy s q.q/,s) —
V(q',s") in VEdl X V/_{h

The winning criterion for existential direct simulatiordinces a sef™ of safe ver-
ticesT? = {v(qs € VA | @ C F impliess N F # 0}. Similarly, the safe set for
universal direct simulation i$¥ = {v(qs) € VA" | @ N F # () impliess C F}. For
x € {3,V}, we have thag E?ﬁif,kz) s iff Eve can ensure never leavid when starting
fromvq,). This can be verified by checking whethey ) € w=di where

wedl = py. T N epre(y) .

E.2 Solving fair simulation

The game-graph for fair simulation is similiar to the praxdoone for direct simula-
tion, but with the difference that we need extra bookkeepargrecording whether
each pebble has visited an accepting state or not. Wg'let (V{, Vi —f), where
Adam’s nodes iV are of the form(q pad,s,good) @Nd Eve’s nodes ild are of the form
V(q,bad,s,good,a,q’,s')» Whereq, q',s,s” C Q. The setbad C q andgood C s record the
current “badness/goodness” of stateq ends, respectively, and they are used to detect
events like “being good since some previous round”: Spedificthe evenbad =0 is
used to detect whegvod” (q), and similarly forgood =s andgood(s).

Lemma 19. |[Vf| < 2 (n + 1)2(tke) . gkitha 3,

Proof. |Vi| = suby, (k1) - suby,(k2) - 2¥1%%2 and |VE| < [suby, (k1) - suby, (k2)]? -
2kithz | 37, Hence,‘VAlc U VEf| < 2 [suby, (k1) - suby, (ko)]? - 2F1Fk2 .| 2| < 2 (n +
1)2(katka) . gkitke | 57| -

"o S
For any(q,s,a,q ) S ) € 1P, U(q,bad,s,good) — U(q,bad,s,good,a,q’’,s")" and, for
"o o~ ! D
any(qa s,a,q,8,q,S ) e [P, U(q,bad,s,good,a,q"’,s"") — V(q’,bad’,s’,good’)s where

4 — sSNF if good =s
good = {se€s’|se€ FVsec A(good,a)} otherwise
bag/ — { A\ F if bad =

T l{ged |q¢€ FAqe A(bad,a)} otherwise

We notice the striking similarity of the update rule fosd pebbles and the updating
rule for the second component in the MH-construction ($ecti). Intuitively, states

in bad’ are those states iy which are not accepting and with some bad predecessor.
Similarly, states irgood’ are those states &i which are either accepting, or with some
good predecessor. The correctness follows from the foligwimple fact:

Claim. Letm = vov; ... be aninfinite sequence of vertices, With= v(q; bad; s, good,)
and s.tv; — v;41. Letm; = qoqy ... andrs = sgsy ... be the projections of to the
first and third component, respectively. Thgnodv(wl, oo) iff bad; = ( for infinitely
manyi’s, andgood (3, o) iff good, = s, for infinitely manyi’s.
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Let Ty be the set of states of the formy pad,s,good) With bad = ), and letT> be
the set of states of the form paq,s,go0d) With good = s. The winning criterion for
fair simulation is translated in the following 1-pair Stt@®ndition (also known as a
reactivity condition[9]): If T} is visited infinitely often, ther¥s is visited infinitely
often. Therefore, winning nodes for Eve are those in

Wi=vx.puy . vaz. (T> Ncpre(x) U Ty Nepre(y) U T Ncpre(z)) .

E.3 Solving delayed simulation

We recall the definition of the game-graph for computing gethsimuationgde =
(Ve yde _.de) ‘where

VAfie = {U(q,Bad,s,Good) | q,s C Q}

VEde = {v(q,Bad,s,Good,a,q’,s/) | q, q/a s, s’ - Q}
and Bad, Good are two sequences of sets of states fr@mstrictly ordered by set-

inclusion. More precisel\Bad = (bq, ..., b,,,) with 0 < m; < k;, satisfies, for any
1€ {1,...,7711},

b; Cq (B1)
bi+1 C b;, when: < mi (BZ)
bml 7& (Z) ) (B3)

andGood = (g1, ..., &m,) With 0 < my < ko, satisfies, forany € {1,...,ms},
g Cs (G1)
g: C gi+1, Wheni < my (G2)
We also denote witBad the set{by, ..., b, }, and similarly forGood.

The following lemma states that Algorithm 1 preserves tHend®n of Bad, Good:

Lemma 20. If Bad and Good satisfy properties (B1)-(B3) and (G1)-(G2), resp., then
the same holds for the seBad’ andGood’ as computed by Algorithm 1.

Proof. Properties (B1) and (G1) are preserved by Hewandg’ are constructed, on
lines 4 and 15, respectively. Similarly, the strictess @& thder, i.e., (B2) and (G2),
is preserved by removing duplicate elements (lines 6 andHRi@ally, property (B3)
follows by the check at line 8, which enforces that empty epta are removed from
Bad', if any (line 9). O

Lemma 7. |Vde| < 2:(n+1)2 k) (1 4 (Fy + 1)M+1) - (14 2(ko + 1)F2+1) | 2],

Proof. We first count the number of pai(s, Good). Assumelg,,,,| = h < ko (notice
thatmsy < h). We consider two cases, depending on wheghe# () or not. First case:
g1 # 0. Then, we can represent the strictly increasing sequgnce gz C -+ C

gm, DY the sequencéd;}i<;<m, Of non-emptydifferences, defined a$; = g; and

41



Algorithm 1 : Updating the sequencé&wod andBad

=

Input: The sequenceSood = (g1 C - -+ C gm,) andBad = (b1 D --- D b, ) to be
updated, the current input symhole X and the next configuratiofy’, s").
Output: The updated sequencésod’ andBad’
Add q toBad, i.e.,
Bad = (2 by DD bu,)

2 Bad' = ();
3 foreach (b € Bad) do

IN

11
12

13
14
15

16

17
18

b'={scq|s¢FArsc Ab,a)}
Add b’ to Bad’;

Remove duplicate elements frdgad’;
AssumeBad’ = (b} D --- D b;n,l);
if (b, = 0) then

Removeb; ,, from Bad’;

Add 0 to the front ofGood, i.e.,

Good=(0Cgi C  CEmy)
if (gm, = s) then
L Removeg,,, from Good;

Good’ = ();
foreach (g € Good) do

g ={ses'|seFVvsec Aga)}

Add g’ to Good'’;

Remove duplicate elements froGood’;
return Good’ andBad’;

dit1 = giv1 \ g fori > 1. (We have thag; = U;Zl d;, so no information is lost.)
Notice that, by definitonD = {dy,...,d,} is a partition ofg,., = {g1,-.-,9n},
henceD may be represented bysarjective functiory from g,,, to D s.t. f(g;) = d;

iff g; € dj. Let{ } be the Stlrllng number of the second kind. Then, the number of
sequence@ £g1Cg CCgm,is

seqy(ma) = { 1 - mat.

Second caseg; = 0. Thusgy # (), hence the number of sequenfes- g1 C g2 C

).

- C gm, is just as before, but with one less element in the sequercadq,, (M2 —

Hence, the number of pai(s, Good) is

fg(n,kg)ki<7;>< Z() Zh: (seq (ma +seqh(m21))> .

i=1 = mo=1
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l.e., we sum over all sizesfor setss, and eitherGood is empty, orGood is non-
empty. In this second case, we sum over all possibilitiegHersizeh € {1,...,i}

of the largestg,,, (by (G1), everyg € Good is C s), and over all possibilities for
the number of elements, in Good: For each such combination of indices, we have
seqy, (m2)+seq,, (m2 — 1) sequences. We now proceed to derive a bounf,om k).

As seqy, (m2) represents the number of surjective functions from a seefsto a set

of sizems, clearlyseq,, (m2) < m#, just considering all such functions. Then,

poi <35 () (14 (1) £ 2o08)
<2 (;

)(-E0
) £ Q)
<1+2-i-;(2)ih>

(1+2-i-(i+1)")

IN

IN

IN

" (142 (14 1

IN

YA +2 (ke + 1))

<(n+1)M (142 (ko + 1)kt

We now count the number of pai(g, Bad). Assumelb;| = h < k; (notice that
my < h). By an argument similar to the one in the previous paragnrapthave that the
number of non-empty sequendes D> by O -+ D by, # 0is seq,(m1). Hence, the
number of pairdq, Bad) is

Faln, ) = Z( ) <1+Z( ) 3 seqh<m1>> ,

=1 mi=1

which, with a similar calculation to the above, can be showbe bounded by
fi(n, k) < (n+1)" (14 (k1 + 1)’““) )

Finally, ’V'&ie‘ < fl(n, kl) : fg(n,k/’g), and‘VEde] < fl(n,kzl) : fg(n, kg) : (n +
Dktk 2] thus| Ve UVES| < 2+ fi(n k1) - fa(n, ko) - (n + 1)tk | D] <
2 (n+1)2kitka) (1 4 (kg + )R+ - (142 (ky 4+ 1)k2H) - |2 m
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