
Information and Computation 156, 264�286 (1999)

Process Rewrite Systems

Richard Mayr

Institut fu� r Informatik, Technische Universita� t Mu� nchen, Arcisstr. 21, D-80290 Munich, Germany
E-mail: mayrri�informatik.tu-muenchen.de

Many formal models for infinite-state concurrent systems are equivalent
to special classes of rewrite systems. We classify these models by their
expressiveness and define a hierarchy of classes of rewrite systems. We
show that this hierarchy is strict with respect to bisimulation equivalence.
The most general and most expressive class of systems in this hierarchy
is called process rewrite systems (PRS). They subsume Petri nets,
PA-processes, and pushdown processes and are strictly more expressive than
any of these. Intuitively, PRS can be seen as an extension of Petri nets by
subroutines that can return a value to their caller. We show that the
reachability problem is decidable for PRS. It is even decidable if there is
a reachable state that satisfies certain properties that can be encoded in
a simple logic. Thus, PRS are more expressive than Petri nets, but not
Turing-powerful.] 2000 Academic Press

1. INTRODUCTION

Petri nets and process algebras are two kinds of formalisms used to build
abstract models of concurrent systems. These abstract models are used for verifica-
tion, because they are normally smaller and more easily handled than full
programs. Formal models should be simple enough to allow automated verification,
or at least computer-assisted verification. On the other hand, they should be as
expressive as possible, so that most aspects of real programs can be modeled.

Many different formalisms have been proposed for the description of infinite-state
concurrent systems. Among the most common are Petri nets, basic parallel pro-
cesses (BPP), context-free processes (BPA), and pushdown processes. BPP are
equivalent to communication-free nets, the subclass of Petri nets where every tran-
sition has exactly one place in its preset. PA-processes [BK85, Kuc96, May97b]
are the smallest common generalization of BPP and BPA. PA-processes, pushdown
processes, and Petri nets are mutually incomparable.

We present a unified view of all these formalisms by showing that they can be
seen as special subclasses of rewrite systems. Such unified representations have
already been used by Stirling, Caucal, and Moller [Cau92, Mol96], but only for
purely sequential or purely parallel systems. Here we generalize this to systems with
both sequential and parallel composition.

doi:10.1006�inco.1999.2826, available online at http:��www.idealibrary.com on

2640890-5401�00 �35.00
Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

Basically, the rewriting formalism is first order prefix-rewrite systems on process
terms without substitution and modulo commutativity and associativity of parallel
composition and associativity of sequential composition. The most general class of
these systems will be called process rewrite systems (PRS). All the previously men-
tioned formalisms can be seen as special cases of PRS, and PRS is strictly more
general (see Theorem 4.14). Intuitively, PRS can be seen as an extension of Petri
nets by subroutines that can return a value to their caller. As PRS is a very
expressive model, model checking with any temporal logic (except Hennessy�
Milner logic) is undecidable for it (see Section 7). However, we show that the
reachability problem is decidable for PRS. The interesting point here is that PRS
is strictly more general than Petri nets, but still not Turing-powerful.

The rest of the paper is structured as follows. In Section 2 we define process
terms and the rewriting formalism. We describe a hierarchy of subclasses of it,
which we call the PRS-hierarchy. Section 3 explains the intuition for the various
classes in the PRS-hierarchy. In Section 4 we show that the PRS-hierarchy is strict
with respect to bisimulation. In Section 5 we show that the reachability problem is
decidable for PRS. Section 6 generalizes this result to reachability of certain classes
of states that are described by state formulae. The paper closes with a section that
summarizes the results.

2. TERMS AND REWRITE SYSTEMS

Many classes of concurrent systems can be described by a (possibly infinite) set
of process terms, representing the states, and a finite set of rewrite rules describing
the dynamics of the system.

Definition 2.1. Let Act=[a, b, ...] be a countably infinite set of atomic actions
and Const=[=, X, Y, Z, ...] a countably infinite set of process constants. The
process terms that describe the states of the system have the form

t ::== | X | t1 . t2 | t1& t2 ,

where = is the empty term, X # Const is a process constant (used as an atomic
process in this context), ``&'' means parallel composition, and ``.'' means sequential
composition. Parallel composition is associative and commutative. Sequential
composition is associative. Let T be the set of process terms.

Convention 1. We always work with equivalence classes of terms modulo com-
mutativity and associativity of parallel composition and modulo associativity of
sequential composition. Also we define that = .t=t=t .= and t&==t.

Convention 2. We defined that sequential composition is associative. However,
when we look at terms we think of it as left-associative. So when we say that a term
t has the form t1 . t2 , then we mean that t2 is either a single constant or a parallel
composition of process terms.

The size of a process term is defined as the number of occurrences of constants
in it plus the number of occurrences of operators in it:

265PROCESS REWRITE SYSTEMS

size(=) :=0

size(X) :=1

size(t1 . t2) :=size(t1)+size(t2)+1

size(t1 & t2) :=size(t1)+size(t2)+1.

For a term t the set Const(t) is the set of constants that occur in t:

Const(=) :=<

Const(X) :=[X]

Const(t1 . t2) :=Const(t1) _ Const(t2)

Const(t1& t2) :=Const(t1) _ Const(t2).

The dynamics of the system is described by a finite set of rules 2 of the form
(t1 w�a t2), where t1 and t2 are process terms and a # Act is an atomic action. The
finite set of rules 2 induces a (possibly infinite) labeled transition system with rela-
tions w�a with a # Act. For every a # Act, the transition relation w�a is the smallest
relation that satisfies the inference rules,

(t1 w�a t2) # 2

t1 w�a t2

,
t1 w�a t$1

t1& t2 w�a t$1&t2

,
t1 w�a t$1

t1 . t2 w�a t$1 . t2

,

where t1 , t2 , t$1, t$2 are process terms. Note that parallel composition is commutative
and, thus, the inference rule for parallel composition also holds with t1 and t2

exchanged.
Since 2 is finite, the generated LTS is finitely branching. (For some classes of

systems (e.g. Petri nets) the branching-degree is bounded by a constant that
depends on 2. For other classes (e.g. PA) the branching-degree is finite at every
state, but it can get arbitrarily high.) Also every single 2 uses only a finite subset
Const(2) :=�(t1 w�a t2) # 2(Const(t1) _ Const(t2)) of constants and only a finite subset
Act(2) :=�(t1 w�a t2) # 2[a] of atomic actions. Thus for every 2 only finitely many of
the generated transition relations w�

ai for a i # Act are nonempty. (Those for which
ai # Act(2)). Still the generated transition system can be infinite. (Consider the
analogy: Every labeled Petri net has only finitely many transitions and uses only
finitely many different atomic actions, but the state space can be infinite.) The rela-
tion w�a is generalized to sequences of actions in the standard way. Sequences are
denoted by _.

Remark 2.2. There is no operator ``+'' for nondeterministic choice in the pro-
cess terms, because this is encoded in the set of rules 2 ! There can be several rules
with the same term on the left-hand side. It is also possible that several rules are
applicable at different places in a term. The rule that is applied and the position
where it is applied are chosen nondeterministically.

Also there is no such thing as action prefixes in the process terms. The atomic
actions are introduced by the rules.

266 RICHARD MAYR

Many common models of systems fit into this scheme. In the following we
characterize subclasses of rewrite systems. The expressiveness of a class depends on
what kind of terms are allowed on the left-hand side and right-hand side of the
rewrite rules in 2.

Definition 2.3 (Classes of Process Terms). We distinguish four classes of
process terms:

1. Terms consisting of a single process constant like X.

S. Terms consisting of a single constant or a sequential composition of
process constants like X .Y .Z.

P. Terms consisting of a single constant or a parallel composition of process
constants like X&Y&Z.

G. General process terms with arbitrary sequential and parallel composition
like (X . (Y&Z))&W.

Also let = # S, P, G, but = � 1. It is easy to see the relations between these classes of
process terms: 1/S, 1/P, S/G, and P/G. S and P are incomparable and
S & P=1 _ [=].

We characterize classes of process rewrite systems (PRS) by the classes of terms
allowed on the left-hand sides and the right-hand sides of rewrite rules.

Definition 2.4 (PRS). Let :, ; # [1, S, P, G]. A (:, ;)-PRS is a finite set of
rules 2, where for every rewrite rule (l w�a r) # 2 the term l is in the class : and l{=
and the term r is in the class ; (and can be =). The initial state is given as a term
t0 # :. A (G, G)-PRS is simply called PRS.

Remark 2.5. W.l.o.g. it can be assumed that the initial state t0 of a PRS is a
single constant. There are only finitely many terms t1 , ..., tn s.t. t0 w�

ai t i . If t0 is not
a single constant then we can achieve this by introducing a new constant X0 and
new rules X0 w�

ai t i and declaring X0 to be the initial state.

(:, ;)-PRS where : is more general than ; or incomparable to ; (for example,
:=G and ;=S) do not make any sense. This is because the terms that are intro-
duced by the right side of rules must later be matched by the left sides of other
rules. So in a (G, S)-PRS the rules that contain parallel composition on the left-
hand side will never be used (assuming that the initial state is a single constant).
Thus one may as well use a (S, S)-PRS. So we restrict our attention to (:, ;)-PRS
with :�;.

Figure 1 shows a graphical description of the hierarchy of (:, ;)-PRS. Many of
these (:, ;)-PRS correspond to widely known models like Petri nets, pushdown
processes, context-free processes, and others:

1. A (1, 1)-PRS is a finite-state system. Every process constant corresponds to
a state and the state space is bounded by |Const(2)|. Every finite-state system can
be encoded as a (1, 1)-PRS.

2. (1, S)-PRS are equivalent to context-free processes (also called basic pro-
cess algebra (BPA)) [BE97, Esp97]. They are transition systems associated with

267PROCESS REWRITE SYSTEMS

FIG. 1. The PRS-hierarchy.

Greibach normal form (GNF) context-free grammars in which only left-most
derivations are permitted.

3. It is easy to see that pushdown automata can be encoded as a subclass of
(S, S)-PRS (with at most two constants on the left side of rules). Caucal [Cau92]
showed that any unrestricted (S, S)-PRS can be presented as a pushdown
automaton (PDA), in the sense that the transition systems are isomorphic up to the
labeling of states. Thus (S, S)-PRS are equivalent to pushdown processes, the
processes described by pushdown automata.

4. (P, P)-PRS are equivalent to Petri nets. Every constant corresponds to a
place in the net and the number of occurrences of a constant in a term corresponds
to the number of tokens in this place. This is because we work with classes of terms
modulo commutativity of parallel composition. Every rule in 2 corresponds to a
transition in the net.

5. (1, P)-PRS are equivalent to communication-free nets, the subclass of Petri
nets where every transition has exactly one place in its preset [BE97, Esp97]. This
class of Petri nets is equivalent to basic parallel processes (BPP) [Chr93].

6. (1, G)-PRS are equivalent to PA-processes, a process algebra with sequen-
tial and parallel composition, but no communication (see [BK85, May97b,
Kuc96]).

7. (P, G)-PRS are called PAN-processes in [May97a]. It is the smallest com-
mon generalization of Petri nets and PA-processes and it is strictly more general
than both of them (e.g., PAN can describe all Chomsky-2 languages while Petri
nets cannot).

268 RICHARD MAYR

8. (S, G)-PRS are the smallest common generalization of pushdown processes
and PA-processes. They are called PAD (PA+PD) in [May98].

9. The most general case is (G, G)-PRS (here simply called PRS). PRS have
been introduced in [May97c]. They subsume all the previously mentioned classes.

3. THE INTUITION

In this section we explain the general intuition for the definition of (:, ;)-PRS;
i.e., what does it mean that parallel�sequential�arbitrary composition is allowed in
terms on the left�right-hand sides of rules?

If parallel composition is allowed on the right-hand side of rules, then there can
be rules of the form t w�a t1&t2 . This means that it is possible to create processes
that run in parallel. The rule can be interpreted that, by action a, the process t
becomes the process t1 and spawns off the process t2 or vice versa.

If sequential composition is allowed on the right-hand side of rules, then
there are rules of the form t w�a t1 . t2 . The interpretation is that process t calls a
subroutine t1 and becomes process t2 . It resumes its execution if and when the
subroutine t1 terminates.

If arbitrary sequential and parallel composition is allowed on the right hand side
of rules then both parallelism and subroutines are possible.

If parallel composition is allowed on the left-hand side of rules, then there are
rules of the form t1& t2 w�a t. This can be interpreted as synchronization�com-
munication of the parallel processes t1 and t2 . This is because this action can only
occur if both t1 and t2 change in a certain defined way.

If sequential composition is allowed on the left-hand side of rules, then there can
be rules of the form t$1 . t2 w�a t$ and t"1 . t2 w�a t". The intuition is that a process t
called a subroutine t1 and became process t2 by a rule t w�a t1 . t2 . The subroutine
may in its computation reach a state t$1 or t"1 . Now one of these rules is applicable.
This means that the result of the computation of the subroutine affects the behavior
of the caller when it becomes active again, since the caller can become t$ or t". The
interpretation is that the subroutine returns a value to the caller when it terminates.

If arbitrary sequential and parallel composition is allowed on the left-hand sides
of rules then both synchronization and returning of values by subroutines are
possible. It will be shown in Section 5 that rules with nested sequential and parallel
composition (on the left side or the right side) do not increase the expressiveness.
It suffices to have systems of rules where every single rules only contains either
sequential or parallel composition.

4. THE PRS-HIERARCHY IS STRICT

The question arises if this hierarchy of (:, ;)-PRS is strict. For the description of
languages this is not the case, because for example context-free processes (BPA)
and pushdown processes (PDA) both describe exactly the Chomsky-2 languages.
However, the hierarchy is strict with respect to bisimulation equivalence. Bisimula-
tion equivalence [Mil89] is a finer equivalence than language equivalence.

269PROCESS REWRITE SYSTEMS

Definition 4.1. A binary relation R over the states of a labeled transition
system is a bisimulation iff

\(s1 , s2) # R \a # Act.(s1 w�a s$1 O _s2 w�a s$2 .s$1 Rs$2)

7 (s2 w�a s$2 O _s1 w�a s$1 .s$1 Rs$2)

Two states s1 and s2 are bisimilar iff there is a bisimulation R such that s1Rs2 . This
definition can be extended to states in different transition systems by putting them
``side by side'' and considering them as a single transition system. It is easy to see
that there always exists a largest bisimulation which is an equivalence relation. It
is called bisimulation equivalence or bisimilarity and it is denoted by t.

Definition 4.2. A class of processes A is more general than a class of processes
B with respect to bisimulation iff the following two conditions are satisfied:

1. For every B-process there is a semantically equivalent A-process:
\t # B. _t$ # A. t$tt

2. There is an A-process that is not bisimilar to any B-process:
_t # A. \t$ # B. tt% t$

It has already been established in [BCS96, Mol96] that the classes of finite-state
systems, BPP, BPA, pushdown systems, PA, and Petri nets are all different with
respect to bisimulation. For PAD, PAN, and PRS this remains to be shown.

The proof has two parts: First we show that there is a pushdown process that is
not bisimilar to any PAN-process. Then we show that there is a Petri net that is
not bisimilar to any PAD-process.

Definition 4.3. Consider the pushdown system:

U .X w�a U .A .X U .A w�a U .A .A U .A w�b U .B .A

U .X w�b U .B .X U .B w�b U .B .B U .B w�a U .A .B

U .X w�c V .X U .A w�c V .A U .B w�c V .B

U .X w�d W .X U .A w�d W .A U .B w�d W .B

V .A w�a V V .B w�b V V .X w�e V

W .A w�a W W .B w�b W W .X w�f W

with the initial state U .X. The execution sequences of this system are as follows:
First it does a sequence of actions in [a, b]* and then one of two things:

1. A ``c,'' the sequence in reverse and finally a ``e.''

2. A ``d,'' the sequence in reverse and finally a ``f.''

Now we show that this pushdown system is not bisimilar to any PAN-process.
First we need several definitions and lemmas.

270 RICHARD MAYR

Definition 4.4. Let t be an arbitrary process and _ a sequence of actions. The
runs of t are its computations of maximal length. We define that only(t, _) is true
iff the conditions are satisfied:

v All runs of t are finite.

v All these runs do the sequence of actions _.

Lemma 4.5 (Dickson's lemma [Dic13]). Given an infinite sequence of vectors
M1 , M2 , M3 , ... in Nk there are i< j s.t. Mi�Mj (�taken componentwise).

Remember that P is the class of process terms that contain only parallel composi-
tion; see Definition 2.3.

Lemma 4.6. For every PAN 2 there is a sequence _ # [a, b]* s.t. no : # P satisfies
any of two conditions:

Cond1(_, :): _:c . : w�c :c 7 only(:c , _e)

Cond2(_, :): _:d . : w�d :d 7 only(:d , _f).

Proof. We assume the contrary and derive a contradiction. So we assume that
there is a PAN 2 s.t. for every _i :=aib (i # N) there is an :i # P s.t. Cond1(_ i , :i)
or Cond2(_i , :i).

There must be an infinite subsequence of :1, :2, ... where Cond1(_i , :i) is always
satisfied, or an infinite subsequence of :1, :2, ..., where Cond2(_i , :i) is always satis-
fied. We assume that there is an infinite subsequence where Cond1(_i , :i) is always
satisfied (the other case is symmetric). Now we only regard this infinite sub-
sequence. Since 2 is finite, there are only finitely many different rules in 2 that are
marked with the action c. Let (t1 w�c t$1), ..., (tn w�c t$n) be those rules. (Note that
ti # P for every i, because 2 is a PAN. However, t$i need not be in P.) It follows that
one of these rules must be used infinitely often to obtain : i

c from :i. Let this rule
be (tk w�c t$k) for some k # [1, ..., n]. Thus, there is an infinite subsequence of the
sequence :1, :2, ..., where only this rule is used to obtain : i

c from : i. Now we con-
sider only this infinite subsequence.

We regard the sequence :i of the : that satisfy Cond1. Const(2) is finite and
:i # P. Moreover, all :i only contain constants from the finite set Const(2). Thus we
can apply Dickson's Lemma. By Dickson's lemma there are j, j $ # N s.t. j $> j and
: j $�: j (this means : j $=: j&; for some ; # P).

For both : j and : j $ the rule (tk w�c t$k) is used to obtain : j
c , : j $

c . Thus, : j=tk&#
for some # # P and : j

c=t$k &#. Also we have : j $=: j&;=tk &#&; and
: j $

c =t$k &#&;=: j
c&;. By Cond1 we have only(: j

c , _je) and only(: j $
c , _j $e). However,

: j $
c also enables the sequence _ je. This is a contradiction. K

Lemma 4.7. For every PAN 2 there is a sequence 7 # [A, B]* s.t. no process
term t (w.r.t. 2) is bisimilar to the pushdown system U .7 .X of Definition 4.3.

Proof. We assume the contrary and derive a contradiction. Assume that there
is a PAN 2 s.t. for every sequence 7 # [A, B]* there is a term t(7) s.t.
t(7)tU .7 .X. For every 7 let t(7) be the smallest term that has this property.

271PROCESS REWRITE SYSTEMS

For any sequence 7 # [A, B]* let _(7) be the sequence of actions a and b that
is obtained by converting 7 to lowercase letters.

It follows from the definition of bisimulation that no process that has only finite
computations can be bisimilar to a process that has an infinite computation. Thus
by Definition 4.3 it follows that for every sequence 7 # [A, B]* and every state t(7)
the following properties hold:

C. There is a state tc(7) s.t. t(7) w�c tc(7) and tc(7)tV .7 .X and thus
only(tc(7), _(7) e).

D. There is a state td (7) s.t. t(7) w�d td (7) and td (7)tW .7 .X and thus
only(td (7), _(7) f).

For every t(7) the action c disables the action d and vice versa. Thus the actions
c and d must both occur in the same subterm : of t(7) and : # P. (This is because
in a PAN no single action can change two separate subterms. For example, in the
term (t1 . t2)& t3 (where t1 , t2 , and t3 are not =) no single action can change both t1

and t3 .) Let : be the maximal parallel subterm of t(7) where the actions c or d
occur. This means that : is part of a subterm of the form : .; or :& (; .#), but not
of the form :&; for some ; # P. It follows that : cannot immediately synchronize
with the rest of the term t(7).

We have that : w�c :c and : w�d :d . Let t(7)[: � :$] be the term that one gets
by replacing this one particular : in t(7) by :$. (Not every subterm : is replaced
by :$!) This means that tc(7)=t(7)[: � :c] and td (7)=t(7)[: � :d].

Without restriction we now assume that 7 begins with A (the other case is sym-
metric). Then t(7)c (t(7)d) must enable action a, but not action b. We show that
the action a must be enabled by a subterm of t(7)c (t(7)d) that is different from
:c (:d). We assume the contrary and derive a contradiction. In this case the rest
of t(7)c (t(7)d), without :c (:d), enables neither a nor b. It follows that the
rest of t(7)c (t(7)d) cannot do action a or b before :c (:d) terminates. If :c (:d)
does not terminate then by Lemma 4.6 the conditions C and D cannot be satisfied
for some 7, a contradiction. If :c (:d) does terminate, then for some suffixes _$, _"
of _(7) we get only(t(7)[: � =], _$e) and only(t(7)[: � =], _"f). Again, this is a
contradiction.

Thus the action a must be enabled at a subterm of t(7)c (t(7)d) that is different
from :c (:d). As we have t(7)tU .7 .X and U .7 .X w�b U .B .7 .X there must be a
t$ s.t. t w�b t$ and t$tU .B .7 .X. This action b must occur in :, because the rest of
t(7) cannot do b. Thus, : w�b :$ and t$=t(7)[: � :$]. We have U .B .7 .X w�c

V .B .7 .X. As the rest of t$ (without :$) cannot do action c we get :$ w�c :" and
t(7)[: � :"]tV .B .7 .X. However, now the rest of the term t(7)[: � :"]
(without :") can do action a, but V .B .7 .X cannot. Thus, t(7)[: � :"]t%

V .B .7 .X and we have a contradiction. K

Lemma 4.8. The pushdown system U .X of Definition 4.3 is not bisimilar to any
PAN 2 with initial state t0 .

Proof. We assume the contrary and derive a contradiction. Assume that there
is a PAN 2 with initial state t0 s.t. t0 tU .X. Let 7 be the sequence from

272 RICHARD MAYR

Lemma 4.7. (Note that 7 depends on 2.) The process U .X can reach the state
U .7 .X. Thus, t0 must be able to reach a state t s.t. ttU .7 .X. By Lemma 4.7 such
a term t does not exist, a contradiction. K

It follows directly that the pushdown system from Definition 4.3 is not bisimilar
to any PA-process either. However, as PAD and PRS subsume pushdown pro-
cesses, it is a PAD and PRS-process. Thus, PAD is strictly more general then PA
and PRS is strictly more general than PAN. PAD subsumes BPP and BPP is
incomparable to pushdown systems. Thus, PAD is also more general than
pushdown processes. Now we show that there is a Petri net that is not bisimilar to
any PAD-process.

Definition 4.9. Consider the following Petri net (given as a (P, P)-PRS).

X w�g X&A&B X w�c Y Y&A w�a Y Y&B w�b Y

X&A w�d Z X&B w�d Z Y&A w�d Z Y&B w�d Z.

The initial state is X&A&B.

Lemma 4.10. If there is a PAD-process that is bisimilar to the state X&A&B of
the Petri net of Definition 4.9, then there is also a pushdown process that is bisimilar
to X&A&B.

Proof. Let 2 be a PAD and Q the initial state s.t. QtX&A&B. Without restric-
tion, we can assume that Q is a single constant (see Definition 2.4). We construct
a pushdown process (an (S, S)-PRS) 2$ that is also bisimilar to X&A&B.

First we show that in every reachable state of 2 of the form (t1& t2) . t3 (t3 can
be =) t1 or t2 must be deadlocked.

Assume that there is a state (t1& t2) . t3 that is reachable from Q. Then a state M
must be reachable from X&A&B s.t. (t1&t2) . t3 tM. There are two cases:

1. If M is deadlocked then t1 and t2 must be deadlocked.

2. If M is not deadlocked then there is an M$ s.t. M w�d M$ and M$ is
deadlocked. By the definition of PAD a single action d can only change t1 or t2 ,
but not both. Thus either t1 or t2 must be deadlocked.

Thus, if parallel composition occurs in a state that is reachable from Q, then all
but one part of it must be deadlocked. Since Q is a single constant, parallel com-
position can only be introduced by PAD-rules. If such a rule has the form
(u w�x u1 &u2) # 2 for some action x, then u1 or u2 must be deadlocked. W.r.t.g., let
u1 be deadlocked. However, the term u1 . t for some term t is not necessarily
deadlocked. Thus, in 2$ we replace the rule (u w�x u1 &u2) by the rule u w�x u2 .u1 .
The new system is equivalent up to bisimulation. (We assume, w.r.t.g., that u2 can-
not influence u1 . This means that there is no rule in 2$ whose left-hand side is v2 .v1 ,
where v2 is a nonempty suffix of u2 and v1 is a nonempty prefix of u1 . This can be
achieved by renaming of constants in u2 and 2$ if necessary.)

The other case where parallel composition occurs in a rule in 2 is when a rule
has the form u w�x u1 . (u2 &u3) .u4 , where u1 or u4 can be =. There are two cases:

273PROCESS REWRITE SYSTEMS

1. If u1 can terminate then the term (u2 &u3) can become active. Therefore u2

or u3 must be deadlocked. W.r.t.g., let u2 be deadlocked. Then in 2$ we replace this
rule by the rule u w�x u1 .u3 .u2 .u4 . Note that u2 is deadlocked, but u2 .u4 is not
necessarily deadlocked. (We assume w.r.t.g., that u1 cannot influence u3 and u3 can-
not influence u2 . This can be achieved by renaming of constants in u1 and u3 and
2$ if necessary.)

2. If u1 cannot terminate then in 2$ we replace this rule by the equivalent rule
u w�x u1 .

Thus, we get a new system 2$ that is equivalent to 2 up to bisimulation, but 2$
does not contain the operator for parallel composition. Thus, if the preconditions
are satisfied, the (S, S)-PRS 2$ with initial state Q is bisimilar to X&A&B. This is
the pushdown process that we are looking for. K

Definition 4.11. Let 2 be a (:, ;)-PRS for :, ; # [1, S, P, G] and t0 the initial
state. The language generated by this system is the set of all sequences _ s.t. _t.
t0 w�_ t and t is deadlocked.

Lemma 4.12. If a process t is bisimilar to a pushdown process then the language
generated by t is a context-free language.

Proof. Directly from Definition 4.1 and the definition of pushdown pro-
cesses. K

Lemma 4.13. The Petri net of Definition 4.9 is not bisimilar to any PAD-process.

Proof. We assume the contrary and derive a contradiction. If there is a PAD-
process that is bisimilar to the Petri net of Definition 4.9, then by Lemma 4.10 there
is a pushdown process that is bisimilar to this Petri net. Then by Lemma 4.12 the
Petri net of Definition 4.9 generates a context-free language L. By the definition of
this Petri net L is

[gmc_ | m�0 7_ # [a, b]*7 *a _=m+1 7 *b_=m+1]

_ [gmd | m�0]

_ [gmc_d | m�0 7 _ # [a, b]* 7*a _�m+1 7 *b_�m+1

7 *a_+*b _�2m+1].

It follows that L & g*ca*b*=[gmcam+1bm+1 | m�0]. By applying the pumping
lemma for context-free languages [HU79] it is easy to show that L is not context-
free. Thus, we have a contradiction. K

It follows that PAD and PAN are incomparable and PRS is strictly more general
than PAD. By combining these results with the other results above we get the
following theorem.

Theorem 4.14. The PRS-hierarchy is strict with respect to bisimulation.

274 RICHARD MAYR

5. THE REACHABILITY PROBLEM

In this section we show that the reachability problem is decidable for PRS. Thus,
PRS are not Turing-powerful.

Reachability.

Instance: A PRS 2 with initial state t0 and a given state t.

Question: Is the state t reachable from t0? Formally: Is there a sequence of
actions _ s.t. t0 w�_ t?

For Petri nets reachability is decidable and EXPSPACE-hard [May84, Lip76].
Here we show that reachability is decidable for PRS by reducing the problem to the
reachability problem for Petri nets. As the atomic actions are not important for
reachability, we will ignore them for the rest of this section and write just t1 � t2 ,
instead of t1 w�a t2 .

We prove the decidability of reachability in two steps. First, we show that it suf-
fices to decide the problem for a special class of PRS, the PRS in transitive normal
form (see below). Then we solve the problem for this subclass of PRS.

Definition 5.1. For a PRS 2 and process terms t, t$ # T we define

to2 t$: � __. t w�_ t$,

where _ is a sequence of applications of rules in 2. If 2 is fixed, then we just write
to t$. 2 is in normal form iff all rules in 2 are in normal form. A rule is in normal
form if it has one of the two forms:

Par-Rule. X1&X2 � Y or X � Y1 &Y2 or X � Y,

Seq-Rule. X1 .X2 � Y or X � Y1 .Y2 or X � Y,

where X, Y, Xi , Yi are process constants and Y can be =. The only rules that are
both seq-rules and par-rules are of the form X � Y. The relations o2

par and o2
seq

are technicalities used in the proofs:

to2
par t$: � __. t w�_ t$ and all rules used in _ are par-rules from 2,

to2
seq t$: � __. t w�_ t$ and all rules used in _ are seq-rules from 2.

A PRS 2 is in transitive normal form iff it is in normal form and for all X, Y # Const,

Xo2 Y O (X � Y) # 2.

Proposition 5.2. Let 2 be a PRS in transitive normal form and t1 , t2 process
terms that do not contain the operator for sequential composition. It is decidable if
t1 o2

par t2 .

Proof. This follows directly from the decidability of the reachability problem for
Petri nets [May84]. K

275PROCESS REWRITE SYSTEMS

The reachability problem for PRS is reducible to the reachability problem for
PRS in normal form.

Lemma 5.3. Let 2 be a PRS and t1 , t2 # T. Then a PRS 2$ in normal form and
terms t$1 and t$2 can be effectively constructed s.t. 2$, t$1 and t$2 use only constants from
the finite set V$ (with Const(2)�V$/Const) and t1o2 t2 � t$1 o2$ t$2 .

Proof. For any rule (u1 � u2) in 2 let

norm(u1 � u2) :=size(u1)+size(u2).

Let ki be the number of rules (u1 � u2) in 2 that are not in normal form and
norm(u1 � u2)=i. Let n be the maximal i s.t. ki {0 (n exists because 2 is finite).
We define Norm(2) :=(kn , kn&1 , ..., k1). These norms are ordered lexicographically.
2 is in normal form iff Norm(2)=(0, ..., 0). Now we describe a procedure that
transforms 2 into a new PRS 2$ and terms t1 , t2 into t$1 , t$2 s.t. Norm(2$)<lex

Norm(2) and t1o2 t2 � t$1 o2$ t$2 .
Remember that sequential composition is left-associative. This means that the

term X .Y .Z is (X .Y) .Z. It has the subterms X, Y, Z, and X .Y, but not Y .Z.
However, the term X . (Y&Z) has a subterm Y&Z.

If Norm(2){(0, ..., 0) then there is a rule in 2 that is not in normal form. Take
a nonconstant subterm t of this rule and replace every subterm t in 2 and in t1 and
t2 by a new constant X. Then add two rules X � t and t � X. This yields a new set
of rules 2$ and t$1 and t$2 . By the definition of Norm and size we get Norm(2$)<lex

Norm(2). The constant X serves as an abbreviation for the term t. There are only
two problems:

1. A rule is applicable to a subterm of t, but not to X. For example,
t=Y .Z .W and there is a rule Y .Z � V. In this case the rule X � t must be applied
first. So the term X can be rewritten to V .W in two steps.

2. During the rewriting a subterm t is created. However, the rule that con-
tains t as a subterm on the left side is no longer applicable, because the subterm
t has been replaced by X. For example, let t=Y&Z, the initial state is (W & Z) .W
and there are rules W � Y and (Y&Z) .W � V. By the above algorithm the rule
(Y&Z) .W � V has been transformed into X .W � V and rules X � Y&Z and
Y&Z � X have been added. The initial state (W&Z) .W can be rewritten to
(Y&Z) .W, but now the changed rule X .W � V is not applicable. However, by
applying the new rule Y&Z � X first we get X .W and can finally rewrite the term
to V.

Thus, we get

t1 o2 t1 � t$1 o2$ t$2 .

By repeating this algorithm we finally get a set of rules 2" and terms t"1 and t"2 s.t.
Norm(2")=(0, ..., 0) and

t1 o2 t1 � t"1 o2" t"2 ;

2" is in normal form. K

276 RICHARD MAYR

The following lemma will be used to prove the correctness of the algorithm in
Lemma 5.5.

Lemma 5.4. Let 2 be a PRS in normal form. If there are constants X, Y
s.t. Xo2 Y and (X � Y) � 2, then there are also constants X$, Y$ with (X$ � Y$) � 2
and X$o2

par Y$ or X$o2
seq Y$.

Proof. It follows from the preconditions that we can choose a pair of constants
X$, Y$ s.t. (X$ � Y$) � 2 and X$ w�_ Y$ for a sequence _ of minimal length. More
precisely the length of _ is minimal over the choice of X$, Y$, and _.

Now we show that X$o2
par Y$ or X$o2

seq Y$. We do this by assuming the contrary
and deriving a contradiction. We say that a rule is trivial if it has the form
(X" � Y"). We assume that _ contains both seq-rules and par-rules that are non-
trivial. There are two cases:

1. The last nontrivial rule in _ is a par-rule. If a seq-rule Z1 � Z2 .Z3 occurs
in _ then there is a subsequence _$ of _ and a constant Z4 s.t. Z2 .Z3 w�_$ Z4 . This
contradicts the minimality of the length of _.

2. The last nontrivial rule in _ is a seq-rule. This seq-rule must have the form
Z1 .Z2 � Z. The first nontrivial par-rule that occurs in _ must have the form
Z$ � Z$1&Z$2 . Then there is a subsequence _$ of _ and a constant Z" s.t. Z$ w�_$ Z".
This contradicts the minimality of the length of _.

Thus _ consists either only of applications of par-rules (and thus X$o2
par Y$) or

only of seq-rules (and thus X$o2
seq Y$). K

Lemma 5.5. Let 2 be a PRS in normal form. Then a PRS 2$ in transitive normal
form can be effectively constructed s.t.

\t1 , t2 # T. t1o2$ t2 � t1 o2 t2 .

Proof. It suffices to find all pairs of constants X, Y s.t. Xo2 Y and to add the
rules (X � Y) to 2. By Lemma 5.4 it suffices to check Xo2

par Y and Xo2
seq Y. This

is decidable because of Proposition 5.2 and the decidability of the reachability
problem for pushdown processes (see [BEM97]). Lemma 5.4 basically says that
while there are new rules to add we can find at least one to add.

Algorithm.

2$:=2; flag :=true;
While flag do

flag :=false;
For every pair of constants X, Y with (X � Y) � 2$ do

If Xo2$
par Y or Xo2$

seq Y then (2$:=2$ _ (X � Y); flag :=true) fi;
od;

od;

Theorem 5.6. The reachability problem is decidable for PRS. The complexity is
polynomially equivalent to reachability for Petri nets.

277PROCESS REWRITE SYSTEMS

Proof. Let 2 be a PRS and t1 , t2 # T. The question is if t1o2 t2 . We construct
a new PRS 2$ by adding new constants X1 and X2 and rules X1 � t1 and t2 � X2 .
It follows that t1o2 t2 � X1 o2$ X2 . Then we use Lemma 5.3 and transform 2$ into
a PRS 2" in normal form. Normally the terms X1 , X2 would also change in this
transformation, but since they are single constants they stay the same. This proce-
dure adds at most 2k new rules, where k is the number of nonconstant strict sub-
terms of rules in 2. Thus, k=O(n2) and size(2$) is polynomial in size(2). We get
t1 o2 t2 � X1 o2" X2 . Then we use Lemma 5.5 to transform 2" into a PRS 2$$$ in
transitive normal form. It follows that t1o2 t2 � X1 o2$$$ X2 . Since |Const(2)|=
O(n) there are O(n2) pairs of constants. Thus, the algorithm of Lemma 5.5 uses
O(n2) instances of the reachability problem for Petri nets and for pushdown pro-
cesses in every instance of the loop. The loop is done at most O(n2) times. Thus,
it uses at most O(n4) instances of the reachability problem for Petri nets and
pushdown processes. Since 2$$$ is in transitive normal form we have

t1o2 t2 � X1o2$$$ X2 � (X1 � X2) # 2$$$.

The condition (X1 � X2) # 2$$$ is trivial to check.
The reachability problem for pushdown processes is polynomial [BEM97]. The

algorithm for PRS uses only polynomially many instances of Petri net reachability.
Since PRS are more general than Petri nets, it follows that reachability for PRS is
polynomially equivalent to Petri net reachability. K

6. THE REACHABLE PROPERTY PROBLEM

In the previous section the problem was if one given state is reachable. Here we
consider the question if there is a reachable state that has certain properties. We
call this problem the reachable property problem. Unlike for reachability, the atomic
actions are important for this problem. Properties are described by state formulae
that have the syntax:

8 :=a | c8 | 81 7 82 | 81 6 82

The denotation �8� of a state formula 8 is a (possibly infinite) set of process terms,

�a� :=[t | _t$. t w�a t$]

�c8� :=T&�8�

�81 7 82� :=�81� & �82�

�81 6 82� :=�81� _ �82�.

To simplify the notation we use sets of actions. Let A :=[a1 , ..., ak]�Act:

�A� :=�a1� & } } } & �ak�

�&A� :=�ca1� & } } } & �cak�.

278 RICHARD MAYR

By transformation to disjunctive normal form every state-formula 8 can be written
as (A1 7 &B1) 6 } } } 6 (An 7 &Bn), where A+

i , A&
i �Act.

We consider the question if there is a reachable state that satisfies a given state
formula. To express this problem, we define another operator,

�h8� :=[t | __, t$. t w�_ t$ # �8�].

Note that state-formulae do not contain the operator h. Let t # T be a process
term. For t # �8� we also write t <8.

Reachable Property Problem.

Instance: A PRS 2 with initial state t0 and a state-formula 8.
Question: t0 <h8?

We prove the decidability of the reachable property problem for PRS in two
steps. First we show that it suffices to solve the problem for PRS in transitive
normal form.

Lemma 6.1. Let 2 be a PRS that uses only constants from the finite set
Const(2)/Const, and let t0 # T be a process term. Then a PRS 2$ in normal form
and a term t$0 can be effectively constructed s.t. for every state formula 8, t0 <h8
with respect to 2 iff t$0 <h8 with respect to 2$.

Proof. We use the same algorithm to transform 2 and t as in Lemma 5.3. The
new rules that are added are labeled with the new (silent) action {, that does not
occur in 8.

The only problem that remains is that if a subterm t is replaced by a new con-
stant X, then X does not enable the same actions as t. Thus, for example, the new
system might satisfy a formula h(ca), although the original does not. The solu-
tion is as follows: Compute the set of actions [b1 , ..., bm] that are enabled by the

term t in w.r.t. 2. Then add new rules X w�
b1 X, ..., X w�

bm X. This must be done
after every step where a subterm a replaced by a constant.

Then the new system 2$, t$0 satisfies exactly the same formulae h8 as the old
one. K

Lemma 6.2. Let 2 be a PRS in normal form. Then a PRS 2$ in transitive normal
form can be effectively constructed s.t. for every term t and every state-formula 8,
t <8 w.r.t. 2 iff t <8 w.r.t. 2$.

Proof. We use the same algorithm as in Lemma 5.5. The only difference is that
we label the newly added rules with the special (silent) action { that does not occur
in any state-formula. K

Remark 6.3. By Lemma 6.1 and Lemma 6.2 it follows that it suffices to solve
the reachable property problem for PRS in transitive normal form. Let there be a
PRS 2 in transitive normal form with initial state t0 and 8 a state-formula. The
problem is if t0 <h8. As 8 can be transformed into disjunctive normal form and

t <h(81 6 82) � t <h(81) 6 t <h(82),

279PROCESS REWRITE SYSTEMS

it suffices to show decidability for formulae of the form h(A 7 &B), where
A, B�Act.

The following definition and lemma by Janc� ar [Jan90] are used to show the
effectiveness of the procedures check and check$ that are used to show the
decidability of the reachable property problem.

Definition 6.4. For a given Petri net N the set LN of formulae is defined as

v There is one variable M that stands for a marking of the net.

v A term is either

�� a term M(p), where p is a place, or

�� a constant c # N, or

�� of the form t1+t2 .

v A formula is either

�� an atomic formula t1<t2 or t1�t2 , where t1 , t2 are terms, or

�� of the form f1 6 f2 , where f1 , f2 are formulae.

For a concrete marking M, f (M) denotes the instance of f with this M. The seman-
tics is natural.

Lemma 6.5 [Jan90]. For a Petri net N with initial marking M0 it is decidable if
there is a reachable marking M s.t. f (M).

Definition 6.6. Let C/Const and t # P. Let h be a function s.t. h(C, t) is true
iff t contains only constants from C and false otherwise. Let 2 be a PRS in tran-
sitive normal form, X # Const, and let A, A$, B be finite sets of actions. Let j be a
mapping j: 2A [2Const. check(X, j, A$, B) iff there exists a t # P s.t. Xo2

par t and

(t=t$&&(C # 2A) tc) 7 t$ < (A$ 7 &B) 7 �
C # 2A

h(j(C), tc)

and the additional constraint that t # Const O t$==. check$(X, A, B) iff there exists a
t # P s.t. Xo2

par t and t � Const and

t < (A7 &B).

Lemma 6.7. The functions check and check$ are decidable.

Proof. Directly from Lemma 6.5, because par-rules correspond to Petri net
transitions. K

Definition 6.8. The function snd returns the nesting-depth of sequential com-
position in a process term:

280 RICHARD MAYR

snd(=) :=0

snd(X) :=0

snd(t1 &t2) :=max(snd(t1), snd(t2))

snd(t1 . t2) :=max(snd(t1)+1, snd(t2)).

Definition 6.9. Let 2 be a PRS in transitive normal form, X # Const, n # N,
and A, B finite sets of actions. Let reach(X, n, A, B) be true iff there exists a term
t s.t. t � Const, Xo2 t, t < (A7 &B) and the nesting-depth of sequential composi-
tion in t is at most n, i.e. snd(t)�n. The function reachseq is defined like reach,
except that the first rule applied to X must be a seq-rule of the form X w�a Y .Z and
Z is never changed afterwards. (This implies that reachseq is only defined for n�1.)

Now we describe recursive algorithms for reach and reachseq:

1 reach(X, n, A, B)
2 case n=0:
3 return(check$(X, A, B));
4 case n>0:
5 for every mapping j: 2A [2Const and every A$�A

6 if A$ _ .
C # 2A 7 j(C){<

C=A then

7 if check(X, j, A$, B) then

8 if �
C # 2A \ �

X$ # j(C)

reachseq(X$, n, C, B)+ then return(true);

9 return(false);

The function reachseq is only defined for arguments n�1:

1 reachseq(X, n, A, B)
2 for every X � Y .Z
3 if reach(Y, n&1, A, B) then return(true);
4 for every YoW
5 if W .Z < (A7 &B) then return(true);
6 return(false);

Remark. Note that seq-rules of the form X .Y � Z (sequential composition on
the left side) are almost never used in the algorithm. The only exception is in line
5 of the function reachseq where they might be needed to enable some action in A.
The reason why they are not used anywhere else is because they are not needed
since 2 is in transitive normal form.

Lemma 6.10. The above algorithms are correct and effective implementations of
the functions reach and reachseq.

281PROCESS REWRITE SYSTEMS

Proof. By induction on n.

Base case. For reach the base case is n=0. The correctness follows
immediately from the definition of the function check$ and Lemma 6.7. Note that no
seq-rules are used, because 2 is in transitive normal form.

For reachseq the base case is n=1. By definition the first rule application must
have the form X � Y .Z (as in line 2). Line 3 deals with the case that Y alone
develops into some term t # P that satisfies A 7 &B and Z does not play a role.
However, t must not be a single constant, because otherwise it might be able to
interact with Z via a seq-rule. The function reach is called with argument n=0 and
just calls the function check$ which guarantees that t is not a single constant. In
lines 4, 5 we consider the case that Y is rewritten to a single constant W (possibly
Y itself) s.t. W .Z < (A 7 &B). Since 2 is in transitive normal norm the condition
in line 4 is trivial to check: either W=Y or (Y � W) # 2. Line 5 is there to deal
with the case that some seq-rule of the form W .Z w�a Z$ is needed to enable some
action a in A.

Step. In the function reach we split the set of actions A into subsets. The spe-
cial subset A$ are the actions that should become enabled after applying only par-
rules to X. The other subsets of actions are assigned sets of constants by the
function j. These constants require further application of seq-rules. By the function
check we test for the reachability of a state t with

(t=t$&&(C # 2A) tc) 7 t$ < (A$ 7 &B) 7 �
C # 2A

h(j(C), tc)

and the additional constraint that t # Const O t$==.

The constants in the terms tc require further applications of seq-rules. The addi-
tional constraint ensures that at least one tc is not = or t$ is not a constant. This
ensures that the reachable state that finally satisfies (A 7&B) is not a constant.
(The applications of seq-rules in reachseq always yield nonconstant terms.)

Now for the correctness of reachseq. By definition the first rule application must
have the form X � Y .Z (as in line 2). Line 3 deals with the case that Y alone
develops into some term t # P that satisfies A 7 &B and Z does not play a role.
However, t must not be a single constant, because otherwise it might be able to
interact with Z via a seq-rule. The function reach guarantees this and by induction
hypothesis the correctness follows. In lines 4, 5 we consider the case that Y is
rewritten to a single constant W (possibly Y itself) s.t. W .Z < (A 7 &B). Since 2
is in transitive normal norm the condition in line 4 is trivial to check: either W=Y
or (Y � W) # 2. Line 5 is there is deal with the case that some seq-rule of the form
W .Z w�a Z$ is needed to enable some action a in A. K

Now we show that it suffices to consider terms with bounded nesting-depth of
sequential composition.

Lemma 6.11. Let 2 be a PRS in transitive normal form, X # Const(2), and
A, B�Act(2). Then X <h(A7 &B) iff there is a term t s.t. Xo2 t, t < (A 7 &B)
and snd(t)�|A| V |Const(2)|.

282 RICHARD MAYR

Proof. X is transformed into t by applying rewrite rules from 2. The nesting-
depth of sequential composition is only increased when a seq-rule of the form
Z � Z$.Z" is applied to some constant Z which is a subterm of an intermediate
term. In the end Z should be rewritten to a subterm t$ of of t that satisfies a part
of the formula (A 7 &B). Thus, this subterm Z is required to satisfy h(A$ 7 &B)
for some A$�A. Let a chain be a sequence of applications of rewrite rules s.t. every
rule rewrites at least part of the term which was introduced by the previous one.
Consider a chain and the sequence of constants Zi in it to which seq-rules are
applied and the sequence of formulae h(A$i 7 &B) that the Zi are required to
satisfy. These subsets A$i can never get bigger in a chain. Furthermore, if they get
smaller they must be subsets of previous ones. Therefore, in any chain at most |A|
different formulae h(A$i 7 &B) must be satisfied by constants Zi to which seq-rules
are applied. We can assume that in any chain no constant (to which a seq-rule is
applied) appears twice with the same formula, because this means that a constant
has been rewritten to a term containing this constant without making any progress
in the formula. It follows that any chain contains at most |A| V |Const(2)| applica-
tions of seq-rules, because there are only |Const(2)| different constants. Thus, we
get snd(t)�|A| V |Const(2)|. K

Theorem 6.12. The reachable property problem is decidable for PRS.

Proof. An instance is given by a PRS 2, an initial state t0 , and a state-formula
8. The question is if t0 <h8. Without restriction we can assume that t0 is a single
constant X. (Otherwise just add a rule X w�{ t0 .) By Lemma 6.1 and Lemma 6.2 the
problem can be reduced to a problem for PRS in transitive normal form. By
Remark 6.3 the problem can be reduced to problems for formulae of the form
h(A 7 &B). If X <h(A 7 &B) then there are two cases:

1. X can reach a term Y # Const s.t. Y < (A 7 &B). This can be easily
checked, because 2 is in transitive normal form. For every constant Y # Const check
if (X � Y) # 2 and Y < (A 7 &B). Also check if X < (A 7 &B).

2. X can reach a term t � Const s.t. t < (A 7&B). By Lemma 6.11 there is
such a t with snd(t)�|A| V |Const(2)|. Thus, the condition can be checked by com-
puting reach(X, |A| V |Const(2)|, A, B). By Lemma 6.10 this can be done with the
algorithms given above.

X <h(A 7&B) iff one of those checks yields a positive answer. K

Remark 6.13. This result can also be used to decide deadlock-freedom. Let 2
be a PRS with initial state t0 and Act(2) the (finite!) set of actions used in 2.
A deadlock is reachable iff t0 <h(&Act(2)). Thus, the system is deadlock-free iff
t0 <3 h(&Act(2)).

7. CONCLUSION

The algorithms for the reachability problem and the reachable property problem
for PRS rely on the reachability problem for Petri nets, which has a high complexity

283PROCESS REWRITE SYSTEMS

(EXPSPACE-hard [May84, Lip76]). So it might seem that they are not applicable
in practice because of their very high complexity. However, there are three
arguments in their favor:

1. In many examples the system is not very large and the structure of the
Petri nets that are contained in them is often simple.

2. In a large PRS there may be many Petri nets as substructures, but often
each of these Petri nets is quite small. These Petri nets are either not connected with
each other at all, or their influence on each other is very limited. Thus, they yield
small subproblems that can be solved in acceptable time.

3. Finally, the reachability problem for Petri nets has been studied for many
years and ways of dealing with it have been developed. There are semi-decision pro-
cedures that give yes�no�do not know answers in acceptable time [CH78, Mur89,
ME96]. These algorithms mostly use constraints to represent sets of states and
approximate the behavior of the system.

Therefore, the algorithms of Section 5 and Section 6 can still be useful in practice
to verify systems that are modeled with PRS. Process rewrite systems (PRS) is a
very expressive model of infinite-state concurrent systems that subsumes PAN,
PAD, Petri nets, PA-processes, pushdown processes, BPP, and BPA. PRS extends
Petri nets by introducing an operator for sequential composition. This can be seen
as the possibility to call subroutines. The calling of subroutines is already possible
in PAN-processes. However, there is a major difference: In PAN subroutines that
terminate have no effect on their caller, while in PRS subroutines can return a value
to the caller when they terminate. This is an important aspect in modeling real
programs. Thus PRS-processes can be used to model systems that exceed the
bounds of the expressiveness of Petri nets and PAN.

PRS is a very general model for concurrent systems. Thus, model checking with
many temporal logics (EF, CTL, LTL, linear time +-calculus, modal +-calculus) is
undecidable for it. This is because EF is undecidable for Petri nets [Esp97, BE97],
CTL is undecidable for BPP [EK95] and LTL and the linear time +-calculus are
undecidable for PA-processes [BH96]. However, PRS is not Turing powerful, since
reachability is still decidable.

Finally, it should be noted that PRS are (roughly) equivalent to ground AC
rewrite systems (i.e. rewrite systems without substitution, but with an associative
and commutative operator). The general idea is that, e.g., a ground AC term
Z(X+Y) (where ``+'' is the associative and commutative operator) corresponds to
a PRS-term (X&Y) .Z and vice versa.

ACKNOWLEDGMENTS

I thank Michae� l Rusinowitch and Javier Esparza for helpful discussions and three anonymous referees
for their detailed comments.

Received December 1997; final manuscript received June 14, 1999

284 RICHARD MAYR

REFERENCES

[BCS96] Burkart, O., Caucal, D., and Steffen, B. (1996), Bisimulation collapse and the process
taxonomy, in ``Proceedings of CONCUR'96'' (U. Montanari and V. Sassone, Eds.), Lect.
Notes in Comput. Sci., Vol. 1119, Springer-Verlag, Berlin.

[BE97] Burkart, O., and Esparza, J. (1997), More infinite results, Electron. Notes Theoret. Comput.
Sci. (ENTCS), Vol. 5.

[BEM97] Bouajjani, A., Esparza, J., and Maler, O. (1997), Reachability analysis of pushdown
automata: Application to model checking, in ``International Conference on Concurrency
Theory (CONCUR'97),'' Lect. Notes in Comput. Sci., Vol. 1243, Springer-Verlag, Berlin.

[BH96] Bouajjani, A., and Habermehl, P. (1996), Constrained properties, semilinear systems, and
Petri nets, in ``Proceedings of CONCUR'96'' (U. Montanari and V. Sassone, Eds.), Lect.
Notes in Comput. Sci., Vol. 1119, Springer-Verlag, Berlin.

[BK85] Bergstra, J. A., and Klop, J. W. (1985), Algebra of communicating processes with abstrac-
tion, Theoret. Comput. Sci. (TCS) 37, 77�121.

[Cau92] Caucal, D. (1992), On the regular structure of prefix rewriting, J. Theoret. Comput. Sci. 106,
61�86.

[CH78] Cousot, P., and Halbwachs, N. (1978), Automatic discovery of linear restraints among
variables of a program, in ``5th ACM Symposium on Principles of Programming
Languages,'' ACM Press, New York.

[Chr93] Christensen, S. (1993), ``Decidability and Decomposition in Process Algebras,'' Ph.D. thesis,
Edinburgh University.

[Dic13] Dickson, L. E. (1913), Finiteness of the odd perfect and primitive abundant numbers with
distinct factors, Am. J. Math. 35, 413�422.

[EK95] Esparza, J., and Kiehn, A. (1995), On the model checking problem for branching time logics
and Basic Parallel Processes, in ``CAV'95,'' Lect. Notes in Comput. Sci., Vol. 939,
pp. 353�366, Springer-Verlag, Berlin.

[Esp97] Esparza, J. (1997), Decidability of model checking for infinite-state concurrent systems, Acta
Inform. 34, 85�107.

[HU79] Hopcroft, J. E., and Ullman, J. D. (1979), ``Introduction to Automata Theory, Languages
and Computation,'' Addison�Wesley, Reading, MA.

[Jan90] Janc� ar, P. (1990), Decidability of a temporal logic problem for Petri nets, Theoret. Comp.
Sci. 74, 71�93.

[Kuc96] Kuc� era, A. (1996), Regularity is decidable for normed PA processes in polynomial time, in
``Foundations of Software Technology and Theoretical Computer Science (FST6TCS'96),''
Lect. Notes in Comput. Sci., Vol. 1180, Springer-Verlag, Berlin.

[Lip76] Lipton, R. (1976), ``The Reachability Problem Requires Exponential Space,'' Technical
Report 62, Department of Computer Science, Yale University.

[May84] Mayr, E. (1984), An algorithm for the general Petri net reachability problem, SIAM J.
Comput. 13, 441�460.

[May97a] Mayr, R. (1997), Combining Petri nets and PA-processes, in ``International Symposium on
Theoretical Aspects of Computer Software (TACS'97)'' (M. Abadi and T. Ito, Eds.), Lect.
Notes in Comput. Sci., Vol. 1281, Springer-Verlag, Berlin.

[May97b] Mayr, R. (1997), Model checking PA-processes, in ``International Conference on Con-
currency Theory (CONCUR'97),'' Lect. Notes in Comput. Sci., Vol. 1243, Springer-Verlag,
Berlin.

[May97c] Mayr, R. (1997), Process rewrite systems, Vol. 7, ``Proceedings of Expressiveness in Con-
currency (EXPRESS'97),'' Electronic Notes in Theoretical Computer Science (ENTCS).

[May98] Mayr, R. (1998), ``Decidability and Complexity of Model Checking Problems for Infinite-
State Systems,'' Ph.D. thesis, TU-Mu� nchen.

285PROCESS REWRITE SYSTEMS

[ME96] Melzer, S., and Esparza, J. (1996), Checking system properties via integer programming,
in ``Proc. of ESOP'96'' (H. R. Nielson, Ed.), Lecture Notes in Computer Science, Vol. 1058,
pp. 250�264, Springer-Verlag, Berlin.

[Mil89] Milner, R. (1989), ``Communication and Concurrency,'' Prentice�Hall, Englewood Cliffs, NJ.

[Mol96] Moller, F. (1996), Infinite results, in ``Proceedings of CONCUR'96'' (U. Montanari and
V. Sassone, Eds.), Lect. Notes in Comput. Sci., Vol. 1119, Springer-Verlag, Berlin.

[Mur89] Murata, T. (1989), Petri nets: Properties, analysis and applications, Proc. IEEE 77(4),
541�580.

286 RICHARD MAYR

	1. INTRODUCTION
	2. TERMS AND REWRITE SYSTEMS
	FIG. 1

	3. THE INTUITION
	4. THE PRS-HIERARCHY IS STRICT
	5. THE REACHABILITY PROBLEM
	6. THE REACHABLE PROPERTY PROBLEM
	7. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

