
A Canonical Local Representation of Binding

A Canonical 1 Local Representation of Binding

Randy Pollack
LFCS, University of Edinburgh

Masahiko Sato
Graduate School of Informatics, Kyoto University

Version of March 26, 2009

1 α -equivalence is identity

A Canonical Local Representation of Binding

Isabelle theory files:
http://homepages.inf.ed.ac.uk/rpollack/export/SatoPollackIsabelle.tgz

Full paper (submitted):
http://homepages.inf.ed.ac.uk/rpollack/export/SatoPollack09.pdf

A Canonical Local Representation of Binding

Outline

Introduction: Local Representations

Symbolic Expressions (sexpr)

Syntax

B-Algebras, Substitution and Equivariance

Lambda Terms: internal syntax

Variable-Closed Sexprs

A Canonical Representation

Examples: β -reduction and typing

A Canonical Local Representation of Binding

Introduction: Local Representations

Outline

Introduction: Local Representations

Symbolic Expressions (sexpr)

Syntax

B-Algebras, Substitution and Equivariance

Lambda Terms: internal syntax

Variable-Closed Sexprs

A Canonical Representation

Examples: β -reduction and typing

A Canonical Local Representation of Binding

Introduction: Local Representations

Local Representations
Syntactically distinct classes for (locally) bound variables vs (globally
bound) “free” parameters.

I The idea goes back to Frege, Gentzen and Prawitz.

Different styles:

I Locally named: two species of names.
I McKinna/Pollack (1993) formalized Pure Type System metatheory.

I Not canonical representation.
I This talk: idea of Sato allows canonical representation.

I Locally nameless: names for parameters, de Bruijn indices for
locally bound variables.

I Canonical representation.
I POPL’08 paper by Ademir, Chargueraud, Pierce, Pollack and

Weirich.

A Canonical Local Representation of Binding

Introduction: Local Representations

Local Representations are Concrete

I Close to informal usage.
I “Anything true can be proved.”
I Relatively light infrastructure

(compared to Twelf or nominal Isabelle).
I Can be used in intensional logics (e.g. Coq).

Some technologies make local representations convenient:

I McKinna/Pollack style strengthened induction and inversion.
I Urban and Pollack, WMM’07, Strong Induction Principles in the

Locally Nameless Representation of Binders.
I POPL’08 paper by Ademir, Chargueraud, Pierce, Pollack and

Weirich.

A Canonical Local Representation of Binding

Symbolic Expressions (sexpr)

Outline

Introduction: Local Representations

Symbolic Expressions (sexpr)

Syntax

B-Algebras, Substitution and Equivariance

Lambda Terms: internal syntax

Variable-Closed Sexprs

A Canonical Representation

Examples: β -reduction and typing

A Canonical Local Representation of Binding

Symbolic Expressions (sexpr)

Syntax

Syntax
Names:

I Natural numbers N used for local variables: x , y , z .
I Countable set X of atoms, used for global parameters: X , Y , Z .

I Only relation needed on X is decidable equality.
I Nominal Isabelle atom type is convenient for X .

Symbolic Expressions (S[X]):
I The syntax of pure λ -terms, ranged over by M, N, P, Q :

M ::= x | X | (P Q) | [x]M
I Usual induction principles for this datatype.
I Name-carrying syntax.

I In general, may be other classes of variables, parameters and
expressions

I e.g. types and terms in F<: ,

A Canonical Local Representation of Binding

Symbolic Expressions (sexpr)

Syntax

Occurrences of (Global) Parameters

I Define X] A means “ X does not occur syntactically in A ”.
I We use X] A polymorphically for . . .

I X from any type of parameters
I A from types of structures: terms, contexts, judgements, . . .

I Each instance of] is easily defined by structural recursion.
I In nominal Isabelle, our] corresponds to nominal freshness

(also written]).
I Nominal Isabelle provides] polymorphic over classes of atoms

and finitely supported structures for free.

A Canonical Local Representation of Binding

Symbolic Expressions (sexpr)

Syntax

Occurrences of Local Variables (LV)

I Defined by structural recursion.
I Respects intended scoping of abstraction.

LV(X)
4
= {}

LV(x)
4
= {x}

LV((M N))
4
= LV(M) ∪ LV(N)

LV([x]M)
4
= LV(M)− {x}

A Canonical Local Representation of Binding

Symbolic Expressions (sexpr)

B-Algebras, Substitution and Equivariance

B-Algebras

I A B-algebra is a triple

〈A, () : A× A → A, [] : N× A → A〉

where A is a set containing N as a subset.
I A B-algebra homomorphism is a function h on B-algebras s.t.:

1. h(x) = x (h fixes N),
2. h((M N)) = (h(M) h(N)),
3. h([x]M) = [x]h(M).

A Canonical Local Representation of Binding

Symbolic Expressions (sexpr)

B-Algebras, Substitution and Equivariance

Free B-Algebras: Substitution Abstractly

I S[X] is a free B-algebra with free generating set X .

〈S[X], () : S× S → S, [] : N× S → S〉

I Let B be a B-algebra; any ρ : X → B can be uniquely extended
to a B-algebra homomorphism [ρ] : S[X] → B :

1. [ρ]X 4
= ρ(X) .

2. [ρ]x 4= x .

3. [ρ](M N)
4
= ([ρ]M [ρ]N) .

4. [ρ][x]M 4
= [x][ρ]M .

I In particular, a finite map ρ : X → S is a substitution.
I [ρ] : S → S is an endomorphism

A Canonical Local Representation of Binding

Symbolic Expressions (sexpr)

B-Algebras, Substitution and Equivariance

Substitution, Concretely
I If ρ : Xi 7→ Mi (and fixes the rest) then [ρ] is concretely defined

by structural recursion:

[Mi/Xi]x = x
[Mi/Xi]Y = if Xi = Y then Mi else Y
[Mi/Xi](N1 N2) = (([Mi/Xi]N1) [Mi/Xi]N2)
[Mi/Xi]([x]N) = [x][Mi/Xi]N

I Deterministic: no choosing arbitrary names.
I Thus has natural properties; e.g.

[X/X]M = M.
X] M ⇒ [P/X]M = M.

I Does not prevent capture, e.g. [x/X][x]X = [x]x .
I Will only be use in safe ways.

A Canonical Local Representation of Binding

Symbolic Expressions (sexpr)

B-Algebras, Substitution and Equivariance

Equivariance
I GX group of finite permutations of X (with composition).
I For π ∈ GX , [π] : S → S is a B-algebra automorphism.
I GX acts on B-algebra S[X] by group action [π]M .

I [πσ]M = [π][σ]M ,
I []M = M .

I Suppose that GX acts on two sets U, V .
I f : U → V is equivariant if ∀π u. f ([π]u) = [π]f (u) .
I U or V might be a product (e.g. multi-argument f).
I U or V might have trivial GX action (e.g. N or B , truth values).

I If R : U → B is an equivariant relation

∀π u. R([π]u) = [π]R(u) = R(u)

then the relation is preserved by permutations of parameters.
I Can permute parameters in arguments about equivariant

relations.

A Canonical Local Representation of Binding

Symbolic Expressions (sexpr)

B-Algebras, Substitution and Equivariance

Not Substitution: a purely technical operation

I Used to fill a “hole” (free variable) created by going under a
binder.

I Defined by structural recursion:

[M/y]x = if y = x then M else x
[M/y]X = X
[M/y]([x]N) = [x](if y = x then N else [M/y]N)
[M/y](N1 N2) = (([M/y]N1) [M/y]N2)

I Not a B-algebra homomorophism.
I E.g. doesn’t fix N .

I Does not prevent capture, e.g. [x/y][x]y = [x]x .

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

Outline

Introduction: Local Representations

Symbolic Expressions (sexpr)

Syntax

B-Algebras, Substitution and Equivariance

Lambda Terms: internal syntax

Variable-Closed Sexprs

A Canonical Representation

Examples: β -reduction and typing

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

Symbolic expressions vs λ -terms

Sexprs do not faithfully represent λ -terms for two reasons.

1. Local variables may appear unbound in sexprs.
I ‘X ’ is an sexpr representing a λ -term with one (particular) global

variable.
I ‘x ’ is an sexpr, but is not intended to represent any λ -term.
I The fix: select the set of sexprs with no unbound variables

(variable closed, vclosed).
I Substitution is capture-avoiding on vclosed .

2. Different sexprs in vclosed may represent the same λ -term.
I ‘[x]x ’ and ‘[y]y ’
I The fix: select a canonical subset of vclosed .

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

Symbolic expressions vs λ -terms

Sexprs do not faithfully represent λ -terms for two reasons.

1. Local variables may appear unbound in sexprs.
I ‘X ’ is an sexpr representing a λ -term with one (particular) global

variable.
I ‘x ’ is an sexpr, but is not intended to represent any λ -term.
I The fix: select the set of sexprs with no unbound variables

(variable closed, vclosed).
I Substitution is capture-avoiding on vclosed .

2. Different sexprs in vclosed may represent the same λ -term.
I ‘[x]x ’ and ‘[y]y ’
I The fix: select a canonical subset of vclosed .

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

Symbolic expressions vs λ -terms

Sexprs do not faithfully represent λ -terms for two reasons.

1. Local variables may appear unbound in sexprs.
I ‘X ’ is an sexpr representing a λ -term with one (particular) global

variable.
I ‘x ’ is an sexpr, but is not intended to represent any λ -term.
I The fix: select the set of sexprs with no unbound variables

(variable closed, vclosed).
I Substitution is capture-avoiding on vclosed .

2. Different sexprs in vclosed may represent the same λ -term.
I ‘[x]x ’ and ‘[y]y ’
I The fix: select a canonical subset of vclosed .

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

Symbolic expressions vs λ -terms

Sexprs do not faithfully represent λ -terms for two reasons.

1. Local variables may appear unbound in sexprs.
I ‘X ’ is an sexpr representing a λ -term with one (particular) global

variable.
I ‘x ’ is an sexpr, but is not intended to represent any λ -term.
I The fix: select the set of sexprs with no unbound variables

(variable closed, vclosed).
I Substitution is capture-avoiding on vclosed .

2. Different sexprs in vclosed may represent the same λ -term.
I ‘[x]x ’ and ‘[y]y ’
I The fix: select a canonical subset of vclosed .

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

Variable-Closed Sexprs

Variable-Closed Sexprs
A predicate meaning “no free variables”.

vclosed X
vclosed M vclosed N

vclosed (M N)

vclosed M
vclosed [x][x/X]M

I Every parameter is vclosed and no variable is vclosed .
I Use vclosed induction instead of sexpr structural induction . . .
I . . . no case for free variables.

I Essential property: vclosed is closed under substitution:

vclosed M ∧ vclosed N ⇒ vclosed [M/X]N

Trivial to prove.

Remark: We could equivalently replace the last rule with

vclosed [X/x]M
vclosed [x]M

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

Variable-Closed Sexprs

Variable-Closed Sexprs(2)

I Think of vclosed as a “weak typing judgement”.
I vclosed terms behave well for substitution, just as well-typed

terms behave well for computation.
I ‘vclosed M ’ is provably equivalent to ‘ LV(M) = {} ’.

I Thus vclosed is intuitively correct.
I It is the induction principle for vclosed that we want.

Remark: The vclosed representation has been used for a big
formalisation of type theory [McKinna/Pollack, TLCA’93].

I The technology of [McKinna/Pollack] is another story . . .
I . . . it is necessary for the present story too.
I Remember: vclosed representation not canonical.

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

A Canonical Representation

A Canonical Representation

I Consider the vclosed rules:

vclosed X
vclosed M vclosed N

vclosed (M N)

vclosed M
vclosed [x][x/X]M

The variable ‘x ’ is not determined in the rule for abstraction.
I To define a canonical relation L , choose ‘x ’ deterministically:

X : L
M : L N : L

(M N) : L
M : L x = HX (M)

[x][x/X]M : L

where H : X× S → N is a function.
I Still to do: define H such that L is closed under substitution.

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

A Canonical Representation

The Height Function
H : X× S → N defined by structural recursion:

HX (Y)
4
=

{
1 if X = Y
0 if X 6= Y

HX (x)
4
= 0

HX ((M N))
4
= max(HX (M), HX (N))

HX ([x]M)
4
=

{
HX (M) if HX (M) = 0 or x = 0 or HX (M) > x
x + 1 otherwise

I HX (M) = 0 iff X] M .
I HX (M) = n + 1 iff X occurs in M , and (writing M as a tree):

I either n = 0 and no path from the root to X goes through a
non-zero binder,

I or n is the largest among all the binders encountered going down
the tree from the root to any occurrence of X .

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

A Canonical Representation

Some Properties of H (on raw sexprs)

I H is equivariant: HX (M) = H[π]X ([π]M) .
I Y] M ⇒ HX (M) = HY ([Y/X]M) .
I X 6= Y ∧ X] Q ⇒ HX ([Q/Y]M) = HX (M) .
I A key lemma:

x ≥ HX (M) ∧ x 6∈ LV(M) ⇒ [Z/x][x/X]M = [Z/X]M.

I A common case is when X = Z and we have:

x ≥ HX (M) ∧ x 6∈ LV(M) ⇒ [X/x][x/X]M = M.

I Why the first side condition? [X/1][1/X]([1]X) = [1]1 6= [1]X
I x ≥ HX (M) means x does not occur as a binder on any path

from the root of M to an occurrence of X .

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

A Canonical Representation

Equivalent Forms of L

X : L
M : L N : L

(M N) : L
M : L x = HX (M)

[x][x/X]M : L
(∗)

I (∗) can equivalently be written

X] M [X/x]M : L x = HX ([X/x]M)

[x]M : L
(∗∗)

I In (∗∗) X varies independently of M .
I Any sufficiently fresh X will do in the premises of (∗∗) . . .
I . . . so the following rule is also equivalent

∀X . (X] M ⇒ [X/x]M : L ∧ x = HX ([X/x]M))

[x]M : L
(∗∗∗)

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

A Canonical Representation

Some Properties of L
I L is equivariant: M : L ⇒ [π]M : L
I The following strong induction rule is admissible

(1) ∀X . Φ(X)
(2) ∀M N. M : L ∧ Φ(M) ∧ N : L ∧ Φ(N) ⇒ Φ((M N))
(3) ∀x M. (∀X . X] M ⇒

x = HX ([X/x]M) ∧ [X/x]M : L ∧ Φ([X/x]M)) ⇒
Φ([x]M)

∀N. N : L ⇒ Φ(N)

I To understand this rule, see [McKinna/Pollack, TLCA’93] or
[Ayedemir et.al., POPL’08].

I Nominal Isabelle can automatically infer a similar strong induction
principle.

I Now can prove the key theorem: L is closed by substitution:

M : L ∧ N : L ⇒ [M/X]N : L

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

Examples: β -reduction and typing

Example: β -reduction

[x]P : L N : L
(([x]P) N) → [N/x]P

(β)

M1 → M2 N : L
(M1 N) → (M2 N)

M : L N1 → N2

(M N1) → (M N2)

M → N x = HX (M) y = HX (N)

[x][x/X]M → [y][y/X]N
(ξ)

I Note change of bound names in rule (ξ) . . .
I . . . and side conditions on x and y .

I → is equivariant.
I M → N implies M : L and N : L .

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

Examples: β -reduction and typing

Example: Simple Type Assignment
I Let S, T range over simple types.
I A type context, Γ , is a set of pairs (X , T) such that no two

different pairs have the same first component.

(X , T) ∈ Γ

Γ ` X : T
Γ ` M : S→T Γ ` M : S

Γ ` (M N) : T

Γ ∪ (X , S) ` M : T x = HX (M)

Γ ` [x][x/X]M : S→T

I Type assignment is equivariant.
I Γ ` M : T ⇒ M : L .
I To prove weakening of ` we must derive a strengthened

induction principle, as usual.
I Nominal Isabelle can do this automatically.

A Canonical Local Representation of Binding

Lambda Terms: internal syntax

Examples: β -reduction and typing

Conclusion

I We presented a canonical name-carrying representation of
binding.

I Well formed terms are an inductively defined subset of a
datatype.

I All definitions by structural recursion.
I More beautiful than [McKinna/Pollack, TLCA’93] . . .

I . . . ours is canonical.
I More beautiful than locally nameless [Ayedemir et.al., POPL’08]

. . .
I . . . name carrying, no indexes.

I Light infrastructure.
I Formalisable in intensional constructive logic in a few days.

I Can use nominal Isabelle package for some free automation.

	Introduction: Local Representations
	Symbolic Expressions (sexpr)
	Syntax
	B-Algebras, Substitution and Equivariance

	Lambda Terms: internal syntax
	Variable-Closed Sexprs
	A Canonical Representation
	Examples: -reduction and typing

