Cooperative repositories for formal proofs

A wiki-based solution

Pierre Corbineau and Cezary Kaliszyk

Foundations group, ICIS Radboud Universiteit Nijmegen The Netherlands

TYPES topical workshop "Math Wiki" Edinburgh, 31st october-1st november 2007

Introduction

Technology

Consistency issues

The ProofWiki prototype

Conclusion

Why a library for formalized mathematics?

Proof assistants for:

- ► Software and system verification
- Formalized mathematics

A proof assistant is nothing without a library of *basic* results. 'There has to be somebody who already proved this!'

Different types of libraries:

- ► Base for new developments (standard library)
- ► Means of publishing new results

Online Math Libraries

Non-formal examples:

Mathworld and many others

Semi-organized collections:

- ► Isabelle library (HTML rendering of summary only)
- Coq (standard library & contrib) (HTML rendered)
- documentation generators

Organized collections:

- Mizar MML (Much bigger).
- Corn (also part of Coq contributions)

Searchable databases:

► HELM

Online systems:

► Logiweb (online PDF files)

Why a cooperative environment ?

- ▶ Formalizing mathematics is tedious
- We need more people involved
- ► We need more visibility (general public)
- ▶ Static online contents is not enough
- A cooperative environment creates a community
- Support for tutoring new users

The wiki architecture

Wiki:

- Online content publishing framework
- Online content edition system

Provides useful services:

- History management and (weak) version control
- Simple hyperlinks & math rendering (LATEXvc)
- Discussion threads
- Reward: instant publication

Clearly successful approach:

- Wikipedia, Wiktionary
- Specialized wikis for many software projects
- Wikis for research websites

Why a web interface for a proof assistant?

Proof assistants are:

- ▶ Difficult to install
- Greedy in resource usage

Formal proofs:

- Hardly self contained
- Strong operational meaning
 - What does this step do ?
 - ► What are we proving here ?

An interactive online interface brings:

- ▶ Immediate and easy access
- Help by observing the proof execution
- ▶ Possibility to modify and experiment
 - ► Formal proving can be fun!

Towards a collaborative online repository for formal mathematics

Combine:

- ► Community website
- ▶ Open access to formal proofs for the public
- ▶ Visible result for funding agencies
- Educational projects (undergraduate and master students)
- Development-suite for proofs
- ► Reference database (also with informal contents)

Introduction

Technology

Consistency issues

The ProofWiki prototype

Conclusion

The ProofWeb AJAX interface

Developped by C. Kaliszyk. Supports different proof assistants:

► Coq, Isabelle, Lego ...

Current use in education:

▶ Web Deduction project (RU Nijmegen, VU Amsterdam).

Embedding into a Wiki framework

Edit mode	View mode
writable	read-only
flat proof text	syntax highlighting, links
special comments	HTML documentation
executable proofs	executable proofs

Architecture

Practical issues

Security:

- ► Access control policy
- ► Arbitrary code execution & DOS attacks

Solutions used:

- Sandboxing
- ▶ Limit on session number and timeouts

Bottleneck:

- Recompiling and updating dependencies
- ▶ Use of an asynchronous crawler

Introduction

Technology

Consistency issues

The ProofWiki prototype

Conclusion

Formal vs Informal repository

Informal wiki:

- ▶ Dangling references
- ► Incomplete articles

Formal wiki:

► Keep dependencies as accurate as possible

Three consistency strategies ...

Introduction

Technology

Consistency issues

The ProofWiki prototype

Conclusion

Off the shelf components

► Prover: Coq

Documentation generator: customized coqdoc

► Web interface: ProofWeb

► Wiki Codebase: Mediawiki (PHP-based)

Dataflow

Screenshot: Edit Mode

Screenshot: View Mode

d changes

Towards a more agnostic support of proof assistants

Introduction

Technology

Consistency issues

The ProofWiki prototype

Conclusion

Future Work

- ► Ad hoc architecture (easier to manage)
- ► More proof assistants
- Formal / non formal pages (several name spaces)
- ► Import / Export feature
- ► Implement dependency control
- ► Add links from Wikipedia and attract traffic