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Abstract

We formulate a new connection between instance compressibility [HN10]), where the com-
pressor uses circuits from a class C, and correlation with circuits in C. We use this connection to
prove the first lower bounds on general probabilistic multi-round instance compression. We show
that there is no probabilistic multi-round compression protocol for Parity in which the compu-
tationally bounded party uses a non-uniform AC0-circuit and transmits at most n/(log(n))ω(1)

bits. This result is tight, and strengthens results of Dubrov and Ishai [DI06]. We also show that
a similar lower bound holds for Majority.

We also consider the question of round separation, i.e., whether for each r > 1, there are
functions which can be compressed better with r rounds of compression than with r− 1 rounds.
We answer this question affirmatively for compression using constant-depth polynomial-size
circuits.

Finally, we prove the first non-trivial lower bounds for 1-round compressibility of Parity by
polynomial size ACC0[p] circuits where p is an odd prime.

∗supported partially by an Ontario Ministry of Innovation fellowship and NSERC research grants.
†supported by ESPRC First Grant EP/H05068X/1.
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1 Introduction

Consider the following natural communication game between Alice and Bob. Alice is given an
input x and she wishes to decide if x ∈ L for some specified language L. Unfortunately, she only
has access to a class C of circuits which are not powerful enough to compute L. However, she is
given the option of communicating with Bob, who is trustworthy and computationally unbounded
but does not know x. How many bits of information do Alice and Bob need to exchange to decide
if x ∈ L? A trivial protocol is for Alice to send x to Bob and Bob to return the answer. Are there
problems L for which this is close to the best possible?

We call this game the C-compression game for L. Compression games were defined and studied
in the specific case where Alice has the power of polynomial time by Dell and van Melkebeek
[DvM10] 1, under the moniker of “oracle communication games”. They use a technique of Fortnow
and Santhanam [FS11a] to show lower bounds for solving SAT by deterministic multi-round games,
under the assumption that the Polynomial Hierarchy does not collapse . In contrast, C is typically
a class of non-uniform circuits in our setting, and we are interested mainly in unconditional lower
bounds. Clearly, such lower bounds can only be shown for C-compression games where there is
already a lower bound known for computing Boolean functions, otherwise we cannot even rule out
the case that there is a protocol with cost 1.

In this paper, we study C-compression games where C is AC0 or ACC0. Dubrov and Ishai [DI06]
proved a lower bound which can be interpreted in our setting as saying that there cannot be a
1-round protocol of cost O(n1−δ) for Parity on n bits in the AC0-compression game, where δ > 0 is
any constant. We prove a stronger and more general bound, which applies to probabilistic protocols
operating in an arbitrary number of rounds. We also consider the question of whether r-round
protocols are more powerful in general than r−1-round protocols, and obtain a separation for each
fixed r. Finally, we prove lower bounds for 1-round ACC0-compression games.

There are several motivations for considering compression games. One natural motivation is
to study the trade-off between communication cost and computational complexity. In a traditional
communication complexity setting, each player holds only part of the input, and is unable to
solve the problem by itself because of a lack of information. In a traditional complexity theoretic
setting, there is only one player (the algorithm), who might find it difficult to solve the problem
because of a lack of computational resources. Our setting interpolates between the two. Here,
Alice suffers from a computational bottleneck, not having the power to decide x ∈ L for herself,
while Bob suffers from an informational bottleneck, not knowing x. A similar hybrid between
computational and informational constraints was studied by Harsha et al. [HIK+07]. However,
in their setting, the traditional communication complexity convention of each player having part
of the input is maintained. By distinguishing between an informationally-constrained party and a
computationally-constrained one, we are able to obtain somewhat cleaner results.

A more immediate motivation comes from the notion of instance compression, defined by Harnik
and Naor [HN10] and studied in a number of papers since [DI06, FS11b, DvM10]. The traditional
notion of solvability of a language L involves obtaining, for each input x, a 1-bit answer indicating
whether x ∈ L or not. A more relaxed notion is to compress x, while still preserving information
about its membership in L. In other words, the question is whether there is an easily-computable
length-decreasing reduction from L to some language L′, and if so, how small is the output of the
reduction as a function of the input length? Instance compression has a variety of applications in-

1Independently, the notion of a compression game was considered by Ishai [Ish11]
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cluding cryptography [HN10], reducing the randomness complexity of sampling [DI06], kernelization
in parametrized complexity [BDFH08], succinct probabilistically checkable proofs [HN10, FS11b]
and completeness of sparse sets [BH08].

Instance compression of length n instances of a language L to length l(n) using circuits from
a class C is equivalent to solving the 1-round C-compression game for L with cost l(n). The
generalization to multiple rounds is still relevant to the above applications, as well as having
particular significance for the study of computationally-bounded leakage resilience by Faust et al.
[FRR+10]. Faust et al. show that there is a circuit transformation which converts any circuit
into a circuit resilient against leakage functions computable by AC0 circuits such that the size of
the leakage is bounded. This corresponds in a natural way to compression games. Faust et al.
prove their result by using the Dubrov-Ishai lower bound for Parity [DI06]. Our results translate
to stronger leakage resilience, and for leakage that can occur in multiple rounds so that the total
size of the leakage is bounded (corresponding to multi-round compression games).

We next describe our results and techniques in more detail.

1.1 Our Results and Techniques

A natural candidate for lower bounds on AC0-compression games is Parity, given that we know a lot
about how well constant-depth circuits can compute or approximate Parity [Ajt83, FSS84, H̊as86].
Dubrov and Ishai [DI06] show, using the method of random restrictions, that for any constant
δ < 1, Parity cannot be solved by a 1-round AC0(poly(n))-compression game with cost O(n1−δ).
Their method does not seem to extend to proving lower bounds close to linear for multi-round
protocols or for probabilistic protocols.

We essentially resolve these questions by making a novel connection between probabilistic multi-
round C-compression games and correlation with circuits in C 2. We show that any probabilistic
multi-round protocol for a C-compression game solving L in which Alice sends at most c(n) bits
implies that there is some sequence of circuits in C which have correlation at least 1/O(2c(n) with
L. Note that the correlation bound depends only on the number of bits sent by Alice. Also, the
non-uniformity of the circuit class C is crucial in deriving our connection. Using this connection
together with recent tight lower bounds on the correlation of Parity with constant-depth circuits
due to Impagliazzo, Matthews and Paturi [IMP12], we can show the following tight result:

Theorem 1.1 The cost of any probabilistic AC0(poly(n))-compression game solving Parity is Ω(n/(log(n))O(1)).
Moreover, this bound is tight in that for any d, Parity can be solved by a deterministic 1-round
AC0(poly(n))-compression game with cost O(n/(log(n))d).

Note that the upper bound is for one-round protocols while the lower bound is for probabilistic
protocols with an arbitrary number of rounds.

Theorem 1.1 has an application to leakage-resilience, and for this application it is important
that the lower bound is for Parity. Consider the problem of encoding a secret in the presence
of an adversary that may adaptively perform a sequence of measurements on the secret using
polynomial-size constant-depth circuits, such that the total number of bits obtained by the adver-
sary is n/(log(n))ω(1). Using the proof of Theorem 1.1, it can be shown that the natural XOR-based
secret sharing is secure in this setting [Ish11].

2It has been pointed out to us by an anonymous referee that a similar connection in a somewhat different setting
is implicit in the work of Harsha et al. [HIK+07]
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Since our connection between compression and correlation holds generically, we also obtain
conditional lower bounds on probabilistic SIZE(poly)-compression for NP based on a plausible
complexity assumption. To the best of our knowledge, this is the first evidence that NP is not
probabilistically compressible by polynomial-size circuits. Also, using a communication complexity
reduction from Parity to Majority, we can show lower bounds for Majority with parameters similar
to those in Theorem 1.1.

We next consider the question of round separations for AC0-compression games. The question
of round separations is a classical one in communication complexity introduced by Papadimitriou
and Sipser [PS84], and resolved in a sequence of papers [PS84, DGS87, NW93]. The standard
example of a problem that is hard for multiple rounds is the Pointer Chasing problem. Unlike in the
standard communication setting, in a compression game Alice has the entire input to herself. Hence
information-theoretic techniques used in the communication setting cannot be directly implemented
in the compression setting. The way we get around this problem is by devising a new Pointer
Chasing problem in which Alice has to compute a hard function to determine a pointer. The
intuition is that for a computationally bounded Alice, this is the same as a missing pointer and
she has to seek Bob’s help to determine the right pointer. Justifying this intuition is subtle and
requires technical work involving random restrictions. More precisely, we show the following:

Theorem 1.2 For every constant r ≥ 2, there exists a Boolean function Tm,mr−1

(
hPAR,Parity

)
on

n = O(mr) input bits satisfying the following:

• the deterministic AC0
(
poly(n)

)
-compression game for the function can be solved with cost

O(m) in r rounds.

• every probabilistic AC0
(
poly(n)

)
-compression game for the function requires cost ω

(
m2−ε) to

solve in r − 1 rounds, for each constant ε > 0.

Finally, we explore the problem of proving incompressibility results for circuit classes for which
strong correlation bounds are not known unconditionally. The smallest such natural class of circuits
is perhaps AC0 augmented with MODp gates for an odd prime p, known as ACC0[p]. To the best
of our knowledge, no lower bounds were known on even the cost of 1-round compression games.
We prove the following:

Theorem 1.3 Let p be a fixed odd prime. The cost of any 1-round randomized ACC0[p]
(
poly(n)

)
-

compression game solving Parity is Ω
(√
n/(log n)O(1)

)
.

1.2 Plan of the Paper

In Section 2, we introduce the basic notions needed in this work. In Section 3, we formalize the
connection between correlation and compression. We then use it to prove Theorem 1.1 showing
the incompressibility of Parity by AC0

(
poly(n)

)
circuits. In Section 4, we establish Theorem 1.2.

In Section 5, we give lower bounds for 1-round ACC0[p] compression games for Parity, proving
Theorem 1.3. Finally, in Section 6, we point out directions for further research.

2 Preliminaries

We assume a basic familiarity with complexity theory. The Complexity Zoo (which can be found
at http://qwiki.caltech.edu/wiki/ComplexityZoo) is an excellent resource for basic definitions
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and statements of results. Another good reference is the book by Arora and Barak [AB09]. We
will also be making use of standard concepts from the area of communication complexity [KN97].

We will typically use C to refer to a class of (sequences of) circuits in a given format, eg. AC0

(constant-depth circuits with unbounded fan-in AND and OR gates), Formula (circuits with binary
AND and OR gates), and Ckt (circuits with gates of bounded fan-in). In general, given a circuit
class C and a size function s : N→ N, C(s) denotes the circuit class C restricted to circuits of size
O(s). Occasionally, we will abuse notation and use C(s) to refer to the class of languages accepted
by circuits from C of size O(s). By the size of a circuit, we will always mean the number of wires
rather than the number of gates.

We say a class C of circuits is closed under OR if for any sequence of circuit families {Dn},
where for each n, Dn is a family of circuits from C on n bits, the circuit sequence {∨Dn} belongs to
C. For example, the circuit classes AC0, Formula and Ckt are closed under OR, but the circuit class
AC0

d of constant-depth circuits of depth d is not. Similarly, we define closure of a class of circuits
under AND. A class C of circuits is closed under negation if for any sequence {Cn} of circuits,
where each Cn is on n bits, the sequence {¬Cn} is also in C. For example, AC0, Formula and Ckt
are closed under negation but the class of monotone circuits is not.

For a language L ⊆ {0, 1}∗, Ln = L ∩ {0, 1}n.
Given a circuit class C and a language L, the C-compression game for L between two players

Alice and Bob is a communication game played as follows. A C-bounded protocol Q in the game
consists of a sequence of circuits {Cn}, Cn ∈ C for Alice and a strategy for Bob, i.e., a function from
sequences of messages to messages. Initially, Alice has the input x, while Bob has no information.
The goal of the game is to decide whether x ∈ L. In a 1-round protocol, Alice sends Bob a single
message y1 obtained by applying C|x| to x, after which Bob announces whether or not x ∈ L. In
general, in an r-round protocol, Alice and Bob exchange messages y1, z1, y2 . . . yr, where for each
i, yi is Alice’s message in the ith round and zi−1 is Bob’s message in the i’th round. For each i,
yi is obtained by applying a fixed circuit C|x| to 〈x, y1, z1 . . . zi−1〉, while zi is an arbitrary function
of y1, z1 . . . yi, i.e., the history of the protocol so far. We denote the transcript of a protocol Q on
input x, i.e., the complete sequence of messages exchanged, by TQ(x).

A protocol Q solves the C-compression game for L if there is a set A such that for each x ∈
{0, 1}∗, x ∈ L iff TQ(x) ∈ A. The communication cost of Q is the total length of messages sent
by Alice, i.e., Σr

i=1|yi|. Note that we do not count the messages sent by Bob when measuring the
communication cost. The length of the messages sent by Bob is only restricted implicitly by the
fact that Alice uses a circuit C ∈ C to compute her messages. If this circuit is polynomial-size, for
instance, we can assume wlog that Bob sends only poly(n) length messages, for any extra message
bits cannot affect Alice’s messages and hence cannot affect the success of the protocol.

Given functions c : N → N and r : N → N, we say that the C-compression game for L can
be solved with cost c in r rounds if there is a C-bounded protocol Q solving the game such that
on any input of length n, the protocol has cost at most c(n) and uses at most r(n) rounds. We
say simply that the C-compression game for L can be solved with cost c if there is a C-bounded
protocol solving the game with cost at most c.

Note that for any L and any non-trivial circuit class C, the C-compression game for L can be
solved with cost n by a 1-round protocol in which Alice simply sends her input to Bob. Note also
that the implicit restriction on the length of Bob’s messages via the circuit class C is important
- another way of solving a C-compression game is for Bob to send Alice the truth-table of L and
Alice to retrieve L(x) from the truth-table.
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In case L can be solved by circuits in the class C, the C-compression game has a trivial protocol
- Alice decides for herself whether x ∈ L and sends the answer to Bob. This gives a protocol with
cost 1.

As defined above, protocols in the C-compression game are deterministic and solve L on all
inputs. We can extend this in a natural way to probabilistic and average-case C-compression games.
In a probabilistic C-compression game, Alice has private randomness and each message of hers is
obtained by applying her circuit to the history of the protocol together with her private randomness.
A probabilistic protocol Q consists of a sequence of randomized circuits for Alice and a strategy for
Bob. For error function ε : N→ [0, 1] and a cost function c : N→ N, the protocol solves L with cost
c and error at most ε if the total length of messages sent by Alice on any run of the protocol is at
most c(|x|) and there is a set A such that if x ∈ L, then Pr(TQ(x) ∈ A) > 1− ε(|x|), and if x 6∈ L,
then Pr(TQ(x) ∈ A) 6 ε(|x|). Given a function q : N → [0, 1], an average-case protocol Q for L
with success rate q is a deterministic protocol such that there is a set A for which, for at least q(n)
fraction of inputs x of length n, x ∈ L iff TQ(x) ∈ A. If the circuit class C is non-uniform, then any
probabilistic protocol with error at most ε(n) can be converted to an average-case protocol with
success rate 1− ε(n) simply by fixing the private randomness of Alice so as to maximize the success
rate.

We seek to prove upper and lower bounds on the cost of compression games for interesting
languages L and classes C of circuits. For most of the paper, the focus will be on AC0, the class of
polynomial-size constant-depth circuits with AND and OR gates, where the gates have unbounded
fan-in. We always measure size as a function of the input length |x|.

One of the main ideas in our paper is to connect cost of C-compression games with correlation
bounds against C. Given a class C of circuits, a language L and a function s : N → [0, 1], L has
correlation at most s with C if for any circuit C ∈ C and all n ∈ Nat, Prx∈{0,1}n C(x) = L(x) 6
1/2 + s(|x|)/2.

The following inequality, called the Chernoff bound, will be useful in Section 4. We denote the
expectation of a random variable X by E[X].

Theorem 2.1 (Chernoff bound) [DP09] Let X =
∑

iXi be a sum of independent random vari-
ables, each of which takes value in [0, 1] . Then, Pr

[
|X−E[X]| > ε ·E[X]

]
< 2 · exp

(
− ε2/3 ·E[X]

)
,

where ε > 0 is any constant.

3 Compression implies correlation

In this section, we show that for classes of circuits C closed under OR and negation, if the C-
compression game for L can be solved with low cost, then L correlates well with some circuit
in C. We show this first for deterministic compression games, and then extend the argument to
probabilistic and average-case games. A crucial feature of our connection between compression and
correlation is that it works for multi-round games - this enables us to strengthen and generalize the
lower bound of Dubrov and Ishai [DI06] for solving Parity with 1-round AC0-compression games.

First, we require the following folklore lemma saying that if a language is computed by an OR
of circuits from a class C which is not too large, then it correlates reasonably well with some circuit
in C. This lemma follows, for instance, from the Discriminator Lemma [HMP+93].

Lemma 3.1 Let C be any circuit class containing circuits for the constant functions 0 and 1. Let
f : N→ N be a function such that f(n) > 2 for all n, and L ⊆ {0, 1}∗ be a language such that for
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each n, Ln is computed by the OR of at most f(n) circuits from C. Then L has correlation at least
1/O(f(n)) with C.

Proof: Fix n and let Ci,n, 1 6 i 6 f(n) be a family of f(n) circuits each on n bits from the class C
such that Ln is the OR of some subset of those circuits. If smaller than a 1/2−1/(2f(n)) fraction of
strings of length n belong to Ln, then Ln has correlation at least 1/f(n) with the constant function
1 and hence with C. So assume that at least a 1/2−1/(2f(n)) fraction of strings of length n belong
to Ln. Then, since Ln is computed by the OR of the Ci,n’s, there must be some j such that Cj,n is
1 for at least a 1/(4f(n)) fraction of strings of length n; moreover each 1-input to Cj,n is a 1-input
to Ln. Consider the set of inputs Xn of length n for which Cj,n evaluates to 0. If Ln is 0 for at
least half these inputs, then Cj,n has correlation at least 1/(4f(n)) with Ln, otherwise the constant
function 1 has correlation at least 1/(4f(n)) with Ln. In either case, Ln has correlation at least
1/(4f(n)) with C. �

Lemma 3.2 Let c : N→ N be a function such that c(n) 6 n for all n, C be a class of circuits closed
under OR and negation, s : N→ N be a size function such that s = Ω(n), and L be a language. If
there is a C(s(n))-compression game for L with cost at most c(n), then L has correlation at least
1/O(2c(n)) with C(s(n)).

Proof: Suppose there is a C(s(n))-compression game for L with cost at most c(n). Let {Cn} be
the sequence of C-circuits used by Alice in her protocol, with the size of each circuit Cn being at
most s(n), and let f be Bob’s strategy. We define some notions that will be useful in the proof.

A candidate transcript T =< y1, z1, y2 . . . yr > is simply a tuple of strings which can be in-
terpreted as a sequence of messages in the protocol. Note that a candidate transcript might not
actually correspond to any real protocol. We say that a candidate transcript is Bob-consistent if
for each i, 1 6 i 6 r − 1, zi = f(y1 . . . yi). Informally, a Bob-consistent candidate transcript looks
OK from Bob’s point of view, in that every message zi is actually obtained by applying his strategy
f to the history so far. A simple, but crucial, point is that the question of whether a candidate
transcript is Bob-consistent depends only on the transcript itself, and not on x. This is because
Bob has no information about x - his view of the protocol is defined entirely by messages from
Alice.

We say that a candidate transcript is Alice-consistent on an input x if for each i, 1 6 i 6 r,
yi = C|x|(x, y1, z1 . . . zi−1). Namely, Alice’s message is actually obtained by applying the appropriate
circuits C|x| to the history so far. We say that a candidate transcript is consistent on input x if it
is both Bob-consistent and Alice-consistent on x. Moreover, we say that a candidate transcript is
accepting if after receiving the message yr, Bob announces that the input is in L. Note that again
the question of whether a transcript is accepting depends only on the transcript and not on x. We
say that the candidate transcript is t-bounded if

∑r
i=1 |yi| 6 t.

Now, x ∈ L iff there is a candidate transcript T =< y1, z1 . . . yr > such that T is consistent
on x and accepting, and moreover T is c(|x|)-bounded. One direction of this claim is immediate
- if x ∈ L, then the transcript of the protocol given by C|x| and strategy f for Bob is consistent
and accepting, and satisfies the condition that the total length of messages sent by Alice is at most
c(|x|). Conversely, suppose there is a candidate transcript T that is consistent on x and accepting.
Since the protocol is Alice-consistent on x, we have that y1 is indeed the first message sent by Alice.
Since the protocol is Bob-consistent, we have that z1 is indeed the first message sent in response to
Bob. Continuing inductively, we have that for each round i, the messages sent by Bob and Alice
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are indeed zi−1 and yi. Since the transcript is accepting, we have that Bob does accept at the end
of the protocol, which implies x ∈ L by the assumption that the protocol is a correct protocol for
the C-compression game for L.

We would like to take advantage of this characterisation to design circuits checking if x ∈ L.
The idea is to cycle over Bob-consistent accepting c(|x|)-bounded candidate transcripts checking
for each one whether it is Alice-consistent or not. Doing this exhaustively would take exponential
size, but in fact we can write the global check as an OR of small circuits, where the OR is not too
large. This will imply that L correlates reasonably well with some circuit in C, by using Lemma
3.1.

Now consider any Bob-consistent accepting c(|x|)-bounded candidate transcript T . Note that
there are at most 2c(|x|) such transcripts, even though we are placing no a priori bound on the
length of Bob’s messages. For each sequence of messages y1, y2 . . . yr sent by Alice of total length
at most c(|x|), since Bob’s strategy is deterministic, there is at most one Bob-consistent accepting
candidate transcript containing these messages in the y-positions of the tuple.

For each T as described in the paragraph above, we construct a circuit C ′T which checks whether
T is Alice-consistent. The key idea here is local checkability - rather than simulating a run of the
protocol, C ′T checks in parallel for each round whether the message sent by Alice in that round is
consistent with the history. Thus the top gate of C ′T is an AND gate of fan-in r, where r is half
the number of elements in the tuple T . The i’th input to the AND gate, 1 6 i 6 r, is a circuit
checking whether yi is consistent with x, y1 . . . zi−1. This is done simply by simulating C|x| on
< x, y1 . . . zi−1 > and checking using O(|yi|) OR and negation gates whether the output is precisely
yi.

For each T which is Bob-consistent, accepting and c(|x|)-bounded, the total size of C ′T is at
most r +

∑r
i=1 |yi|+ O(s). This is O(s) since c(n) 6 n and s(n) = Ω(n). By the assumption that

the circuit class C is closed under OR and negation, we have that each circuit C ′T belongs to C,
moreover it is in C(s) by the previous line.

Now, by the characterization of L in terms of consistent accepting c(n)-bounded transcripts, we
have that for each n, Ln is computed by the OR over the at most 2c(n) Bob-consistent accepting
candidate transcripts T of C ′T . Applying Lemma 3.1, this implies that L has at least correlation
1/O(2c(n)) with C(s). �

We apply Lemma 3.2 to obtain lower bounds on AC0-compression for the Parity language.
Dubrov and Ishai [DI06] considered this question. In our terminology, they study the cost of 1-
round AC0-compression games for Parity. They showed that for any constant δ > 0, Parity cannot
be solved with a 1-round compression game of cost n1−δ. We improve this bound, and more
significantly, extend it to the setting of multi-round games. To this end, we exploit the connection
with correlation given by Lemma 3.2, and use the following recent result of Impagliazzo, Mathews
and Paturi [IMP12], which settles an open problem posed by Hastad in his doctoral dissertation
[H̊as87] 3.

Theorem 3.3 [IMP12] For any size function s : N → N and positive integer d, Parity has corre-
lation at most 2−n/O((log(s))d−1) with AC0-circuits of size s and depth d.

3Independently, and around the same time, Hastad himself has proved a version of the following result with slightly
weaker parameters using a somewhat different technique. His result is still unpublished.
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Theorem 3.4 The cost of any AC0(poly(n))-compression game solving Parity is Ω(n/(log(n))O(1)).
Moreover, this bound is tight in that for any d, Parity can be solved by a 1-round AC0(poly(n))-
compression game with cost O(n/(log(n))d).

Proof: Suppose there is an AC0(poly(n))-compression game solving Parity with cost c(n). By
Lemma 3.2, Parity has correlation at least 1/O(2c(n)) with polynomial-sized AC0-circuits of depth
d, for some fixed d. By Theorem 3.3, Parity has correlation at most 2−n/O(log(n))d−1

with AC0-
circuits of poly(n) size and depth d. Thus we get that c(n) = Ω(n/(log(n))O(1)).

To show that the bound is tight, we use the fact that for any d, Parity can be solved on instances
of length (log(n))d by polynomial-sized AC0-cricuits of depth d + 1 just by a simple divide-and-
conquer technique. This gives the following strategy for Alice in a 1-round AC0-compression game
for Parity. She divides the input into n/(log(n))d blocks of log(n)d bits each (we assume for
simplicity here that n is a power of two - this doesn’t affect the asymptotics). She computes Parity
on each block using polynomial-sized AC0 circuits of depth d and sends the resulting values to Bob.
Bob computes the parity of the bits he sent and accepts iff the computed value is 1. The cost of
this protocol is O(n/(log(n))d). �

Apart from the fact that Theorem 3.4 says something interesting about games with an arbitrary
number of rounds, one advantage of the proof technique is that complexity lower bounds for circuit
classes yield communication lower bounds for the compression game in a modular fashion. In
contrast, the proof of Dubrov and Ishai [DI06] adapts the classical random restriction technique
used to prove constant-depth circuit lower bounds to the setting of compression.

Perhaps the biggest advantage of our proof technique, though, is that it says something about
probabilistic compression. In the setting of parameterized instance compression [FS11a, DvM10],
getting complexity-theoretic evidence against general probabilistic compression of NP problems
is a major open question. In our setting of AC0-compression games, we are able to resolve this
question for the Parity problem, and indeed for any language which has small correlation with
constant-depth circuits.

Our lower bounds work in the more general setting of average-case compression. The natural
strategy is to prove an analogue of Lemma 3.1 saying that if an OR of circuits correlates well with
some Boolean function, then one of the circuits correlates well with the function. Unfortunately,
this is not true in general. Instead, we show a refined version stating that if an OR of disjoint
circuits (namely, circuits such that no two different ones output 1 on the same input) correlates
well with some balanced Boolean function, then one of the circuits correlates well with the function.
Then, taking advantage of the structure of the Proof of Lemma 3.2, we are able to establish a
connection between average-case compression and correlation.

The following lemma is new to the best of our knowledge, and might be of independent interest.

Lemma 3.5 Let C be any circuit class. Let f : N→ N be any function, and {Fn} be a sequence of
families of circuits from C such that for each n, Fn contains at most f(n) circuits, each one on n
bits, satisfying the condition that for each input y ∈ {0, 1}n and distinct circuits C1, C2 ∈ Fn, either
C1(y) = 0 or C2(y) = 0. Let ε : N→ [0, 1] be an arbitrary function, and L ⊆ {0, 1}∗ be a balanced
language (i.e., Ln has exactly 2n−1 strings for each n) such that for each n, Ln has correlation at
least ε(n) with the OR of circuits in {Fn}. Then there is a sequence of circuits {Cn} such that for
each n, Cn ∈ Fn and Cn has correlation at least ε(n)/f(n) with Ln.
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Proof: Fix n and let the circuits in Fn be C1, C2 . . . Ck, where k 6 f(n). By assumption, the
circuits in Fn all have disjoint 1-sets, and the OR of the circuits, denoted by C, has correlation at
least ε(n) with Ln. We think of Ln as a Boolean function f . It would be convenient to assume that
each Ci, C and f outputs a value in {1,−1} (with 0 mapped to 1 and 1 to -1).

In this setting, we make the following two observations. First, the correlation between any Ci
and f is just

∣∣Ex[f(x)Ci(x)]
∣∣. Second,

C(x) =
k∑
i=1

Ci(x)− (k − 1)

Hence, by linearity of expectation and using the fact that f is balanced, we get

ε(n) ≥
∣∣∣∣Ex[C(x)f(x)

]∣∣∣∣ =
∣∣∣∣ k∑
i=1

Ex
[
Ci(x)f(x)

]∣∣∣∣
By triangle inequality and averaging, there exists an i such that

∣∣Ex[Ci(x)f(x)]
∣∣ ≥ ε(n)/k, which

finishes the argument. �

Lemma 3.6 (Compression-Correlation) Let c : N→ N be a function such that c(n) 6 n for all
n, C be a class of circuits closed under negation, s : N→ N be a size function such that s = Ω(n),
and L be a balanced language. Let q : N → [0, 1] be a function such that q(n) > 1/2 for all n. If
there is an average-case C(s(n))-compression game for L with cost at most c(n) and success rate at
least q(n), then there exists circuits C1, . . . , Cc(n), each Ci ∈ C(s(n)), such that L has correlation
at least (2q(n)− 1)/O(2c(n)) with the circuit AND ◦

(
C1, . . . , Cc(n)

)
.

Proof: The proof follows the lines of the proof of Lemma 3.2. The main observation is that the
circuits C ′T are disjoint, and hence we can apply Lemma 3.5. The OR of the circuits C ′T will have
correlation at least 2q(n) − 1 with Ln by the assumption on the success rate of the average-case
protocol, and hence we get that C(s(n)) has correlation at least (2q(n)− 1)/O(2c(n)) with L. �

In the next subsections, we exploit the Compression-Correlation Lemma to show that Parity
remains strongly incompressible by some natural classes of bounded depth circuits.

3.1 Application to AC0

The following is the first strong lower bound on probabilistic multiround compression by a very
natural and well studied class of circuits. It significantly extends the earlier lower bound for 1-round
compression obtained by Dubrov and Ishai [DI06].

Theorem 3.7 The cost of any probabilistic AC0(poly(n))-compression game solving Parity with
error 1/2− 1/2n

o(1)
is Ω(n/(log(n))O(1)).

Proof: Using Lemma 3.6 and Theorem 3.3, we have that any average-case AC0(poly(n))-compression
game solving Parity with success rate 1/2+1/2n

o(1)
has cost Ω(n/(log(n))O(1)). The theorem follows

from this and the fact that any probabilistic protocol with error at most ε(n) yields an average-case
protocol with success rate at least 1− ε(n). �
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3.2 Circuits with only MODp gates

Finally, we show incompressibility by bounded depth circuits comprising only MODp gates, when
p is a fixed prime. In order to do this, we will make use of the following correlation bound that is
implicit in the work of Chattopadhyay and Wigderson [CW09].

Theorem 3.8 Let C1, . . . , Ct be any circuits of depth d of any size on n input variables, comprising
only MODp and NOT gates where p is an odd prime. Let f be the boolean function computed by
the circuit AND ◦

(
C1, . . . , Ct

)
. Then,

Corr
(
f,PARITY

)
≤ exp

(
− α(p)(p−1)d · n

)
,

where α(p) is a constant determined by p.

Combining our Compression-Correlation Lemma with Theorem 3.8, we immediately get the
following very strong bound:

Theorem 3.9 Let p be any fixed odd prime. The cost of any probabilistic CC0[p](s(n))-compression
game solving Parity with error 1/2− 1/2o(n) is Ω(n).

3.3 More general circuits

Since the Compression-Correlation Lemma is very general, it can be used to derive compression
lower bounds for C-compression games for larger classes C under complexity assumptions. As an
example, we have the following result:

Corollary 3.10 Suppose there is a language L ∈ NP such that any sequence of polynomial-size
circuits has correlation at most 1/2n

Ω(1)
with L. Then the SIZE(poly(n))-compression game for L

has cost Ω(nΩ(1)).

As far as we are aware, this is the first lower bound on probabilistic multi-round (or even single-
round) compression for NP based on a plausible complexity assumption relating to solvability by
polynomial-size circuits.

A natural question is whether our techniques can be applied to get lower bounds in the C-
compression game for some Boolean function f for which it is known that f correlates well with C.
The answer is positive: we are able to show similar lower bounds as in Theorem 3.4 for solving the
Majority problem using AC0-compression games. The Majority problem asks whether at least half
the bits in the input are 1. Note that Majority is a monotone function, and that any monotone
function is known to have correlation at least log(n)/n with one of its input bits by a classic result
of Kahn, Kalai and Linial [KKL88].

The key idea in showing the lower bound for Majority is to reduce from Parity to Majority
within the setting of compression games. We only know how to do the reduction using a multi-
round compression game where the number of rounds grows with n, but here we reap the advantages
of proving a lower bound for Parity in AC0-compression games with an arbitrary number of rounds.

Lemma 3.11 Let c : N → N, c(n) 6 n and r : N → N, r(n) 6 n be functions. Suppose that the
AC0(poly(n))-compression game for Majority can be solved with cost c(n) in r(n) rounds. Then the
AC0(poly(n))-compression game for Parity can be solved with cost c(2n)dlog(n)e in r(2n)dlog(n)e
rounds.
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Proof: Suppose that there is an efficient protocol to solve Majority in the AC0-compression game.
The idea is to use this protocol together with binary search to find the weight wt(x) of the input x.
By weight here, we mean the number of 1’s in the input. Given the weight of the input x, Parity
can be decided easily by a low-cost 1-round protocol.

Let x of length n be the input to Alice. We assume wlog that n is a power of 2 - if not, Alice
simply pads her input to the next highest power of 2, adding equal numbers of zeroes and ones if
n is even and one more zero than ones if n is odd. We define the following protocol between Alice
and Bob, which is divided into “super-rounds”. Each super-round consists of an execution of an
efficient protocol Q for Majority on some input. In the first super-round, Alice and Bob solve the
question of whether the majority of bits in Alice’s input x are 1 or not. If the answer is “yes”,
Alice pads her input with n/2 0’s and runs the protocol Q on the new input. Namely, she tries to
determine whether wt(x) > 3n/4 or not. If the answer is “no”, Alice pads her input with n/2 1’s
and runs the protocol Q on the new input. Namely, she tries to determine whether wt(x) > n/4 or
not. In general, after the i’th super-round, Alice knows that the weight of x lies in some interval
of length at most n/2i, and in the next super-round, she tries to reduce the size of this interval by
a factor of 2.

After log(n) many super-rounds, Alice knows the weight of the input, which implies that she
also knows the parity (since a constant-depth circuit of polynomial size can decide parity given the
weight of the input). The total number of rounds of the protocol is at most r(2n)dlog(n)e, since the
protocol Q is run at most dlog(n)e times, each time on an input of size at most 2n. The total cost
is at most c(2n)dlog(n)e, again by the same argument. The circuits used by Alice to implement
this reduction are still constant-depth polynomial size. This completes the proof. �

Theorem 3.12 The AC0(poly(n))-compression game for Majority cannot be solved with cost O(n/(log(n))O(1)).

Proof: Suppose the AC0(poly(n))-compression game for Majority can be solved with the stated
cost. Then, by applying Lemma 3.11, we get that the AC0(poly(n))-compression game for Parity
can be solved with cost O(n/(log(n))O(1)), which contradicts Theorem 3.4. �

4 The power of interaction

In order to separate the power of r+ 1 round compression from r round compression, we introduce
the notion of a tree function, inspired by pointer chasing problems defined in standard 2-party
communication complexity [PS84, DGS87, NW93]. Fix a pointer function h : {0, 1}m → [`] and
a Boolean function f : {0, 1}m → {0, 1}. Then, for each integer i ≥ 1, we define the boolean tree
function TFm,`i (h, f) of height i composing h and f as follows. Let T `i denote the complete `-ary
tree of height i. For i ≥ 1, the input of TFm,`i (h, f) is a boolean string of length m(1+`+ · · ·+`i−1)
that is interpreted to assign each node of tree T `i with an m-bit label in the following natural way:
the first m bits of the input label the root of T `i . The next m` bits of the input are grouped into
` equal sized blocks C1, . . . , C`, where each block Ci has m bits. Each of the m blocks is used to
label a distinct node at level 1 of the tree. Proceeding in this way, we assign labels to all nodes of
the tree T `i . We define the tree function TFm,`i (h, f) by induction on i: TFm,`1 (h, f) first evaluates
h on the label y of the root node of the tree T `1 to obtain the index of a child of the root. Then
f is applied to the label of the pointed child node. In general, TFm,`i (h, f) for i > 1, evaluates h
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on the label of the root node of T `i to travel to a child node Q. Then, we apply TFm,`i−1 (h, f) to the
string formed by concatenating the labels of the nodes of the subtree of height i− 1 rooted at Q.

Note that for any reasonably powerful circuit class C, such as AC0, and for any integer r > 2,
there is a simple deterministic protocol solving the C-compression game for TFm,mr−1

(
h, f

)
in r

rounds with cost O(m). This is because, starting with the root node label, Alice can send Bob the
label of the current node. Bob responds by evaluating h on it, expecting Alice to send back the
label of the relevant child. The interaction continues until Alice sends the label of the relevant leaf,
at which point Bob evaluates f on the label and thereby decides whether the input is a YES input.

The question we want to understand is what happens when the game has only r− 1 rounds. It
would seem that if h is extremely hard for C and f is incompressible by C, then the best that a
protocol with r − 1 rounds can do is follow the r round game until the r − 2th round, and then in
the final round Alice transmits the m-bit label of the relevant node at level r−2 in Tmr−1 along with
the labels of all its m children. In such a protocol, in the final round, Alice communicates Ω(m2)
bits. A natural question is to understand for which h, f and C this is unavoidable in C-compression
games. In this section, we describe a simple h and f for which the above is essentially an optimal
strategy to follow for AC0

(
poly(n)

)
-compression games.

We will use Parity as our function f , and the pointer function h is also based on Parity as
follows. Divide the m bits of input to the pointer function into log(`) equal sized blocks. We
assume wlog that ` is a power of 2, and that log(`) divides m. First, hPAR evaluates the parity
of each block to generate a log(`) bit string y. Then, it outputs the number in [`] whose binary
encoding is y. We now state the main theorem of this section.

Theorem 4.1 (restatement of Theorem 1.2) For every constant r ≥ 2, the function TFm,mr−1

(
hPAR,Parity

)
on n = O(mr) input bits satisfies the following:

• there is a deterministic r-round AC0
(
poly(n)

)
-compression game of cost O(m) that solves it.

• every (r−1)-round probabilistic AC0
(
poly(n)

)
-compression game solving it has cost ω

(
m2−ε),

for each constant ε > 0.

Our argument for proving this theorem is based on the random restriction method. The random
restriction method was developed in a series of works by [Ajt83, FSS84, Yao86, Cai86, H̊as87] for
showing that Parity is not efficiently approximable by AC0 circuits. Below, we briefly recall the
relevant results needed for our argument.

A restriction ρ is a map from the set of input indices [n] → {0, 1, ∗}. The indices that are
mapped to 0/1 by ρ are called fixed and the ones that are assigned ∗ are called free. For any
function f on {0, 1}n and any restriction ρ to its variables, we denote by fρ the boolean function
naturally induced from f on variables left free by ρ. The reason why restrictions are going to be
useful for us is that fρ becomes simple for a “typical” ρ. More precisely, let 0 ≤ p ≤ 1 be any real
number. Then, let Πp

n be the distribution on restrictions generated by independently fixing each
input variable with probability (1− p)/2 (respectively (1− p)/2) to 0 (respectively 1) and leaving
it free with probability p.

Lemma 4.2 [CW04] Let f be a CNF (or DNF) formula with clause width t on m variables. Let
ρ be a random restriction sampled from Πp

n. Then, there exists a constant γ > 0 such that the
probability of fρ not having a decision tree of height at most s is less than

(
γpt
)s.
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A well known consequence of Lemma 4.2 is the following corollary, whose proof we furnish below
for the sake of completeness.

Corollary 4.3 Let f be a function computed by an AC0 circuit of size S and depth d and c > 0 be
some constant. Let p = 1/

(
(2γc)d(log n)d−1

)
. Then

Pr
ρ∼Πpn

[
h
(
fρ
)
> c log n

]
≤ S · 1

nc

where h
(
fρ
)

denotes the height of the best decision tree for fρ.

Proof: This can be shown by a simple inductive argument using Lemma 4.2. Assume, as our
inductive hypothesis, the following: let i ≥ 2 and pi = 1/

(
(2γc)i(log n)i−1

)
. Let Gi be the set of

gates in the ith layer of C and let Si be the number. Further, let S≤i =
∑i

j=1 Sj . Our inductive
hypothesis is the following:

Pr
ρ∼Π

pi
n

[
∃g ∈ Gi : h

(
fgρ
)
> c log n

]
≤ S≤i ·

1
nc
,

where fg is the function computed at gate g. Now, if the ith layer of the circuit has AND
(OR) gates then one can assume w.l.o.g that i + 1th layer has OR (AND) gates. In this case,
assuming that each fgρ has a decision tree of height at most c log n, we represent fgρ as a DNF of
width at most c log n by using the small height decision tree. This collapses layers i and i + 1
and hence the output of every gate at layer i + 1 is a DNF of width c log n under the restriction
ρ. We apply Lemma 4.2 to each such DNF by hitting with a fresh random restriction of the free
variables with p = 1/

(
2γc log n

)
and t = c log n. Clearly, the probability that any fixed such DNF

under the next round of restriction fails to have a decision tree of height at most c log n is at most
2−c logn = n−c. Applying the union bound to Si+1 such DNF’s (one for each gate at layer i + 1)
immediately completes the induction, modulo establishing the base case of i = 1. When i = 1,
each gate is a CNF or DNF of width 1. Thus, using a restriction with p = 1/(2γ) in the Switching
Lemma easily establishes the desired base case. �

Corollary 4.3 and Lemma 4.2 will be our main tool for simplifying the circuits employed in an
AC0-compression game. The whole point will be to argue that while the circuits will simplify, the
pointer function still remains complex over the free variables.

Theorem 4.1 easily follows from the main technical result of this section stated below, by a
standard application of Yao’s minmax principle.

Theorem 4.4 Let δ < 1 be any fixed number and r ≥ 2 be an arbitrary integer. Then, every (r−1)-
round deterministic AC0

(
poly(n)

)
-compression game of cost ω

(
mδ`

)
solves TFm,`r−1

(
hPAR, Parity

)
correctly for at most 1/2 + o(1) fraction of the inputs, if m = `Θ(1).

4.1 Warm-up: 2 vs 1 rounds

We first present the separation of the power of 2-round compression games from that of 1-round
compression games. In addition to this being a clean way of conveying our main idea, it also is the
base case of our inductive argument for Theorem 4.4.
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Lemma 4.5 Let δ < 1 be any constant. Every 1-round deterministic AC0
(
poly(n)

)
-compression

game solving TFm,`1

(
hPAR, Parity

)
with cost O

(
mδ`

)
errs on at least 1/2 − o(1) fraction of the

inputs, if m = `Θ(1).

Proof: Let C = C1, . . . , Ct be a circuit used by Alice to send t bits to Bob in a 1-round game,
where the ith bit is the output of Ci. Let each Ci be a circuit of size at most nc and depth d, where
c, d are arbitrary constants. We show below that if t = O

(
mδ`

)
for any δ < 1, the protocol errs on

at least 1/2− o(1) fraction of the inputs.
Assume t = mδ` for some δ = 1 − β0 with β0 > 0 being a constant. Let β < β0 and c′ =

c + 2 be new constants. We will first show that if we sample a restriction ρ from Πp
n, with p =

1/
(
2mβ(2γc′)d(log n)d−1

)
, then each of the circuit Ci simplifies a lot. In particular, each restricted

Ci depends on a constant number of free variables with high probability. From this we will conclude
that the labels of almost all leaf nodes of Tm1 have many free variables and yet Cρ depends on only
a few free variables from each such label. It will be simple to derive our claim from this. Forthwith
the details.

It will be convenient to sample ρ by first sampling ν from Πp1
n with p1 = 1/

(
2(2γc′)d(log n)d−1

)
and then sampling η from Πp2

n′ , where n′ is the number of free variables in ν and p2 = 1/mβ.
Invoking Corollary 4.3 and union bound, with probability 1 − O(t/nc

′−c), each Cνi has a decision
tree of height less than (c′+1) log n. Hence, each Cνi is now expressible as a CNF of width less than
(c′ + 1) log n. Let n′ be the number of free variables. We hit Cν with a second random restriction
η sampled from Πp2

n′ . Let w be any positive integer. Then, using the Switching Lemma for CNF’s
of width less than (c′ + 1) log n, some Cηνi does not have a decision tree of height less than w with
probability at most t ×

(
γ(c′ + 1) log n/mβ

)w. Recall t = mδ` and let ` = mα. Fix w to be a
constant so that βw > δ + α. Hence, with probability (1− o(1)), every Cηνi has a decision tree of
height less than w. Thus, Cρ depends on at most mδ`2w = O(mδ`) free variables.

We now show that this implies that almost all leaf-node labels have at least one free variable on
which Cρ does not depend. First note that the expected number of free variables in the label of any
leaf-node of Tm1 is pm/2 = m1−βp1/2. Applying the Chernoff and union bound, with probability
at least 1−2` · exp

(
−O(m1−βp1)

)
, each leaf node label of Tm1 has at least m1−βp1/2 free variables.

Call a depth-1 label bad, if Cρ depends on every variable of the label. However, we observed
that Cρ depends on at most mδ`2w = O(mδ`) free variables in total. Hence, the number of bad
labels, denoted by N , is at most O

(
m1−β0`/(p1m

1−β)
)

= O
(

`
mεp1

)
, where ε = β0 − β > 0. Since

p1 = 1/O
(
(log n)d

)
, for constant d, only 1

mεp1
= o(1) fraction of the ` depth-1 labels are bad. Thus,

in each of at least `(1− o(1)) many depth-1 labels, there exist a free variable on which Cρ does not
depend.

We now use some simple properties of our pointer function hPAR to finish the argument. Recall
that there are log ` blocks of inputs to hPAR, each of size m/(log `). Hence, again using the Chernoff
and union bound, with probability 1− o(1), each block has at least m1−βp1/(2 log `) free variables.
Hence, if we set the free variables of the label of the root note randomly, the root node pointer of
Tm1 points to any fixed child node with equal probability, i.e. probability exactly 1/`. In particular,
with probability 1 − o(1), the pointer function at the root node evaluates to a child node whose
label is not bad. This label, by definition, contains a variable on which the restricted circuit of
Alice Cρν does not depend. Hence, the output of Bob is correct only half the time for this case.

It is easy to verify that the above argument shows that the uniform distribution on the set
of inputs of the tree function is hard. This is because our argument used random restrictions in
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which conditioned on the fact that an input bit is fixed, it is fixed with equal probability to 1 or
0. Thus, we conclude that any deterministic 1-round compression game of cost O

(
mδ`

)
, gives the

right answer on at most 1/2 + o(1) fraction of the inputs, if δ < 1. �

4.2 r vs r+1 rounds

Here, we extend the previous argument above to arbitrary constant number of rounds:
Proof:[of Theorem 4.4] Note that we proved the base case of this for r = 2 in Lemma 4.5. We prove
the general case by an inductive argument employing a round elimination technique. Let Σ be a
(r − 1)-round deterministic game of cost O(mδ`) bits purportedly solving TFm,`r−1

(
hPAR, Parity

)
of

cost O(mδ`) bits. We derive, by round elimination, a family of (r− 2)-round games Σ1, . . . ,Σk for
solving TFm

θ,`
r−2

(
hPAR, Parity

)
, each of cost O(mδ`) bits, where δ < θ < 1 are constants and the

following holds: let c and ci be respectively the probability that Σ and Σi give the right answer.
Then, our reduction ensures that c = max{c1, . . . , ck} + o(1). This would complete the proof
invoking the Inductive hypothesis, i.e. each ci ≤ 1/2 + o(1). Below we first give the general idea of
our round elimination technique employing random restrictions.

Let the compressor circuit employed by Alice for the first round of the game be C = C1, . . . , Ct,
where t = O(mδ`) and δ = 1 − β0, with β0 > 0. Let each Ci have size at most nc and depth d,
where c, d are constants. We first show that one can hit C with a random restriction ρ that leaves
many free variables and yet achieves the following: there are many subtrees such that the restricted
circuit Cρ of Alice depends only on very few variables occuring in the subtree. This will allow us
to conclude that for almost all assignments to the free variables of the root node of tree Tmr−1, the
remaining r − 2 rounds of the game Σ is solving a height r − 1 tree function induced by such a
subtree rooted at a child node of the root. Forthwith more details.

Mimicking the argument in the proof of Lemma 4.5, we first hit C with two rounds of ran-
dom restriction. Let the resulting restriction be ρ, where ρ is sampled from Πp

n, with p =
1/
(
2mβ(2γc′)d(log n)d−1

)
, β < β0, c′ > c + 2. Then, just as before, the probability that some

Cρi does not have a decision tree of height less than w, is at most O
(
t(1/nc

′−c + (c′ + 1)w/mβw)
)
.

Choosing w to be a constant such that βw > δ + α, where mα = `, makes this probability tiny.
Hence, with probability (1 − o(1)), Cρ depends on at most mδ`2w = O

(
m1−β0`

)
variables. Fix

β < β′ < β0. Call a subtree rooted at a child node of the root of Tmr−1 to be bad if Cρ de-
pends on more than m1−β′ variables occuring in the labels of this subtree. The total number of
bad subtrees is at most O

(
m1−β0`
m1−β′

)
= O

(
`/mβ0−β′

)
. Hence, with probability 1 − o(1), at least

N = `
(
1−O(1/mβ0−β′)

)
subtrees are not bad.

We next show how to derive our desired family of r − 2 round compression games for tree
functions induced by the non-bad subtrees. Recall there are O(`r) nodes in Tmr−1. Further, the
label of each non-leaf node is divided into blocks of size m/(log `). Hence, by Chernoff and union
bounds, no block in a label of a node has less than m1−β/O((log `)(log n)d) variables free in ρ with
probability at least 1 − O(`r log `) × exp

(
− Ω(m1−β/((log `)(log n)d))

)
. Consider any assignment

a of all free variables in labels of all non-root nodes of Tmr−1 that occur in bad subtrees rooted at
level 1. Further, let b be an assignment to variables in the non-bad subtrees on which Cρ depends.
Note that b still leaves O

(
m1−β/((log `)(log n)d))

)
variable free in each block of a label in a non-

bad subtree. Now consider a random assignment x to the free variables of the root label of Tmr−1.
With probability 1, Cρ is fixed and so the compressor circuit of Alice sends a fixed message. Bob’s
response also gets completely determined independent of how the yet unfixed variables belonging
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to the non-bad subtrees rooted at level 1 are assigned. However, hPAR evaluates to any given
child node of the root with equal probability, i.e. probability 1/`. Hence, we conclude that with
probability

(
1 − 1/mβ0−β′

)
, hPAR

ρ

(
x
)

activates a non-bad subtree of height (r − 1). Thus, with
probability (1 − o(1)) the remaining rounds of the game yield a (r − 2)-round compression of
TF

O(mθ),`
r−1

(
h, Parity

)
to O(mδ`) many bits, for θ = 1− β. Note that by our setting of parameters,

θ > δ. This completes the induction. �

Proof:[of Theorem 4.1] The proof of the upper bound follows easily using a straightforward deter-
ministic protocol. The proof of the lower bound for (r − 1)-rounds follows from Theorem 4.4 by
appealing to the standard arument of showing that probabilistic games (circuits) imply determin-
istic games (non-uniform circuits) of the same cost that give the right answer on a fraction of the
inputs that is bounded away from 1/2. �

5 Beyond correlation

Most of the techniques presented so far in this work for proving incompressibility, rely on methods
that yield quite strong upper bounds on correlation.

Here, we take up one of the lowest complexity classes for which strong bounds on correlation are
not known. Specifically, we consider the class of AC0 circuits augmented with MODp gates, denoted
by ACC0[p], where p is an odd prime. The classical result of Smolensky [Smo87] yields that functions
computed by such circuits of polynomial size and constant depth have correlation O(1/

√
n) with

the parity function. This is a weak bound which cannot be used to prove incompressibility using
the connection with correlation described in Section 3 of this work. In fact, to the best of our
knowledge, no non-trivial lower bound was known for even the 1-round compressibility of Parity
by such circuits before our work. Our main result in this sectiob provides such a lower bound. We
make use of the following two results from the classical work of Razborov and Smolensky.

Theorem 5.1 (Razborov[Raz87],Smolensky[Smo87]) Let f be any boolean function computed
by an ACC0[p] circuit of constant depth and poly size. Then, there exists a MOD − p polynomial
P of degree O(log n)O(1) that approximates f well, i.e. Prx

[
f(x) 6= P (x)

]
= O

(
1/2(logn)O(1))

.

The above is complemented by the following inapproximability result:

Theorem 5.2 (Smolensky) Let p be an odd prime and let P be a MOD− p polynomial of o(
√
n)

degree. Then, Prx
[
PARITY(x) 6= P (x)

]
≥ 1/2− Ω

(
1/
√
n
)
.

Combining the two above theorems, we show the following:

Theorem 5.3 (restatement of Theorem 1.3) Let p be a fixed odd prime. The cost of any 1-
round randomized ACC0[p]

(
poly(n)

)
-compression game solving Parity is Ω

(√
n/(log n)O(1)

)
.

Proof: Let C = C1, . . . , Ct be the 1-round compressor, where each Ci is an ACC0[p]
(
poly(n)

)
circuit. Using Theorem 5.1, we obtain polynomials P1, . . . , Pt, such that for each i, Prx

[
Ci(x) 6=

Pi(x)
]

= O
(
1/2(logn)O(1))

and degree of Pi is O
(
(log n)O(1)

)
.

The first key observation is that the indicator function for the set of inputs that lead the
compressor to output a fixed message has a low degree polynomial approximator. More precisely,
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let a be any message and let Xa ≡
{
x ∈ {0, 1}n |C(x) = a

}
. We construct a polynomial that

approximates the indicator for Xa, denoted by 1Xa , as follows: for each i ≤ t, define polynomial
Qai (x) to be 1 − Pi(x) if ai = 0, else define it just to be Pi(x). Then, it is easily verified that the
following

1Xa(x) =
t∏
i=1

Qai (x).

holds for all x on which each Pi(x) = Ci(x).
Let A ⊆ {0, 1}t, be the subset of messages for which the Solver outputs 1. Define,

Q(x) =
∑
a∈A

t∏
i=1

Qai (x).

Thus, Q(x) = Parity(x) holds for each x such that Pi(x) = Ci(x) for all i ≤ t and the Solver gave
the right answer on x in the compression game. Hence, Prx

[
Q(x) 6= Parity(x)

]
≤ ε+ t/qpoly(n),

where ε is the error probability of the compression game. As error probability can be assumed
to be 1/3, Parity is approximated by Q(x) on 2/3 − o(1) fraction of the inputs. However, the
degree of Q(x) is just t(log n)O(1). If t =

√
n/
(

log n
)ω(1), then we derive a contradiction invoking

Theorem 5.2. This completes the argument. �

6 Open Problems

In general, one would like to understand better the connection between correlation and compression.
While we showed tight lower bounds for AC0-compression games using recent strong bounds on
correlation between Parity and polynomial size AC0 circuits, there are functions and circuit classes
for which such bounds on correlation do not exist. One can, in principle, still hope to prove tight
bounds in many such cases. For example for Majority, we obtained a tight compression bound by
reduction from Parity. For separating the power of r rounds from r− 1 rounds, we worked directly
with random restrictions avoiding4 a black-box usage of correlation bounds. However for ACC0[p]
circuits, where proving strong correlation bounds is a major open problem, we could only show
Ω
(√
n/(log n)O(1)

)
bounds on the 1-round compression. It would be interesting to tighten this

bound. More so, as widely conjectured correlation bounds for ACC0[p] imply the imcompressibility
of the Parity function by such circuits when p is an odd prime.

It would also be interesting to show tighter separations between r-round and r−1-round games.
One natural approach, which has been used in the traditional communication complexity setting,
is to use information cost arguments. It doesn’t seem easy to apply such arguments directly in our
setting - for example, in the AC0-compression game for Parity, Alice can easily “randomize” the
input by using a random self-reduction, thus communicating only 1 bit of information about the
input. It’s still possible that computational analogues of information cost could be used to make
our arguments cleaner and to get tighter results.

4Note that our formulation of the connection between compression and correlation is insensitive to the number of
rounds in the compression game.
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