
On the Limits of Sparsification?

Rahul Santhanam1 and Srikanth Srinivasan2

1 University of Edinburgh rsanthan@inf.ed.ac.uk??

2 DIMACS, Rutgers University srikanth@dimacs.rutgers.edu? ? ?

Abstract. Impagliazzo, Paturi and Zane (JCSS 2001) proved a sparsi-
fication lemma for k-CNFs: every k-CNF is a sub-exponential size dis-
junction of k-CNFs with a linear number of clauses. This lemma has
subsequently played a key role in the study of the exact complexity of
the satisfiability problem. A natural question is whether an analogous
structural result holds for CNFs or even for broader non-uniform classes
such as constant-depth circuits or Boolean formulae. We prove a very
strong negative result in this connection: For every superlinear function
f(n), there are CNFs of size f(n) which cannot be written as a disjunc-
tion of 2n−εn CNFs each having a linear number of clauses for any ε > 0.
We also give a hierarchy of such non-sparsifiable CNFs: For every k, there
is a k′ for which there are CNFs of size nk

′
which cannot be written as

a sub-exponential size disjunction of CNFs of size nk. Furthermore, our
lower bounds hold not just against CNFs but against an arbitrary fam-
ily of functions as long as the cardinality of the family is appropriately
bounded.

As by-products of our result, we make progress both on questions
about circuit lower bounds for depth-3 circuits and satisfiability algo-
rithms for constant-depth circuits. Improving on a result of Impagliazzo,
Paturi and Zane, for any f(n) = ω(n log(n)), we define a pseudo-random
function generator with seed length f(n) such that with high probability,
a function in the output of this generator does not have depth-3 circuits
of size 2n−o(n) with bounded bottom fan-in. We show that if we could de-
crease the seed length of our generator below n, we would get an explicit
function which does not have linear-size logarithmic-depth series-parallel
circuits, solving a long-standing open question.

Motivated by the question of whether CNFs sparsify into bounded-
depth circuits, we show a simplification result for bounded-depth cir-
cuits: any bounded-depth circuit of linear size can be written as a sub-
exponential size disjunction of linear-size constant-width CNFs. As a
corollary, we show that if there is an algorithm for CNF satisfiability
which runs in time O(2αn) for some fixed α < 1 on CNFs of linear size,
then there is an algorithm for satisfiability of linear-size constant-depth
circuits which runs in time O(2(α+o(1))n).

? This is an extended abstract with some proofs missing. The full version may be
found at [11].

?? Partially supported by ESPRC Grant EP/H05068X/1
? ? ? Work partially done as a Member at the Institute of Advanced Study, Princeton.



1 Introduction

The Satisfiability (SAT) problem is of central importance in theoretical computer
science. Since SAT is NP-complete, the NP vs P problem reduces to the question
of whether SAT has polynomial-time algorithms. We do not believe that SAT
has polynomial-time algorithms, however it is still a very interesting question
which the best algorithms are for solving SAT in the worst case. Specifically,
by how much can we improve over the “naive” brute-force search algorithm for
SAT, which enumerates over all possible 2n assignments for a SAT instance and
checks whether any of them are satisfying? A very concrete motivation for this
problem is that SAT instances need to be solved in the real world, in a variety
of contexts such as verification, automated planning and testing [6].

From a complexity-theoretic point of view, the importance of improving over
brute-force search has been illustrated by the recent results of Williams [14]
[15]. He shows that even marginal improvements over brute-force search for sat-
isfiability of Boolean circuits in a class C implies that NEXP does not have
polynomial-size circuits in the class C, for a range of natural classes C of circuits.
He applies his methodology [15] to obtain a new circuit lower bound, namely
that NEXP * ACC0, by designing an algorithm performing slightly better than
brute-force search for ACC0-SAT. In fact, there are connections between SAT
algorithms and lower bounds in the opposite direction as well, as evidenced
in recent work using lower bound techniques to design and analyze improved
Satisfiability algorithms [10] [3]. This makes the question of understanding the
complexity landscape of the SAT problem even more intriguing.

When trying to design an improved algorithm, a natural approach is to find
general structural properties of the class of instances which can be exploited
algorithmically. Some examples of such properties for SAT are the downward self-
reducibility property used to reduce the search problem to the decision version,
and the Satisfiability Coding Lemma of Paturi, Pudlak and Zane, which has
been used to design and analyze better algorithms for k-SAT as well as to prove
depth-3 circuit lower bounds for restricted classes of circuits [9] [8].

Perhaps the most influential such property is that of sparsifiability. The Spar-
sification Lemma of Impagliazzo, Paturi and Zane [5] plays a key role in the study
of the exact complexity of SAT. It states that for any constants ε > 0 and k a
positive integer, any k-CNF on n variables can be written as the disjunction of
2εn linear-size CNFs, where the constant factor in the size depends only on k
and ε.

The Lemma has found many different applications in both algorithmic and
lower bound contexts. Impagliazzo, Paturi and Zane [5] used a constructive ver-
sion of it in their study of sub-exponential reducibilities between NP-complete
problems. Their results indicate that the Exponential-Time Hypothesis (ETH),
which states that 3-SAT is not solvable in time 2o(n), can be used as a unifying
hypothesis in the study of exact complexity of NP-hard problems. They prove
that, for various problems such as k-SAT (where k ≥ 3 is a positive integer),
k-Colourability, Clique, Vertex Cover, Satisfiability of linear-size Boolean cir-
cuits etc., existence of a 2o(n) time algorithm is equivalent to ETH. The Lemma



has also been used to undertake more refined studies of the complexity of SAT
in terms of various parameters such as clause width and clause density [4] [2].
From the point of view of lower bounds, the Lemma has been used to construct a
small pseudorandom family of functions such that with high probability, a func-
tion in this family does not have depth-3 circuits of size 2n−o(n) and bounded
bottom fan-in. This is closely related to classical questions about lower bounds
for linear-size logarithmic-depth circuits [13].

It is natural to ask whether a similar sparsifiability property holds for broader
classes of formulae or circuits, such as CNFs or even constant-depth circuits.
Such a result would be useful in getting better algorithmic results and deriving
new lower bounds. For example, while k-SAT is solvable in time 2n−Ω(n) for
m = poly(n) and constant k, the best known algorithm for SAT on general
CNFs runs in time 2n−Ω(n/ log(m/n)). A sparsification lemma for CNFs would be
an important step towards a 2n−Ω(n) time algorithm for SAT on polynomial-size
formulae. Indeed, this has explicitly been posed as an open question by Calabro,
Impagliazzo and Paturi [2].

In this paper, we show a strong negative answer to the question of whether
CNFs (and hence also more general classes of circuits) can be sparsified.

Theorem 1. Let f : N→ N be any function such that f(n) = ω(n). Then there
is a sequence of CNFs {φn}, where for each n φn has n variables and has size
at most f(n), such that for any constants ε ∈ (0, 1] and c > 0, for all large
enough n φn cannot be written as the OR of 2n−εn CNFs of size at most cn. In
particular, CNFs are not sparsifiable.

In fact, what we show is significantly stronger - for any sequence {Fn} of
families of Boolean functions such that |Fn| = nO(n), there is a sequence of
CNFs which are not expressible as a 2n−Ω(n) size disjunction of functions in Fn.
Also, the CNFs for which we show this are very natural. The functions they
represent are the solution sets of sparse linear equations.

Theorem 1 only rules out “sparsifying” superlinear-size CNFs to linear-size
CNFs. It could potentially still be the case that n3-size CNFs are sparsifiable
into n2-size CNFs. It turns out that the counter-examples of Theorem 1 cannot
establish this stronger statement, however by using a different set of counter-
examples and a similar argument, we derive a hierarchy of non-sparsifiable CNFs.

Theorem 2. Let k and k′ > 2k be any fixed constants. There is a fixed ε > 0
and a sequence of CNFs {φn} where φn has n variables and |φn| ≤ nk

′
such that

for large enough n, φn cannot be written as the OR of 2εn CNFs of size at most
nk.

The hard CNFs are again natural - they are simply random CNFs of a spec-
ified width and size. Thus, in a sense, the proof of Theorem 2 shows that CNFs
cannot be sparsified even on average.

We motivated the question about sparsification by describing the possible
applications of a positive result. It turns out that our negative results have a
couple of interesting byproducts as well. By itself, the results give some indication
of the obstacles to designing better SAT algorithms, as well as what kinds of



instances are likely to be hard. For example it is known that in certain contexts,
such as for Resolution-based algorithms, instances encoding subspaces or random
instances are hard. Our results are in a similar spirit.

More concretely, motivated by Theorem 1, we construct a simple new sub-
exponential time reduction from satisfiability on linear-size constant-depth cir-
cuits to k-SAT. The motivation is to apply Theorem 1 to show that CNFs cannot
in general be sparsified into linear-size constant depth circuits. We cannot simply
use the stronger form of Theorem 1 for arbitrary families of functions of small
enough cardinality here, as we are unable to bound the number of functions
computed by unbounded fan-in linear-size constant-depth circuits by nO(n). In-
stead, we show a positive result that any linear-size constant-depth circuit can be
written as an OR of 2εn k-CNFs for any ε > 0 and k depending only on ε. This
decomposition can actually be done constructively, and this gives us the reduc-
tion we mentioned before. The decomposition also implies that superlinear-size
CNFs cannot be sparsified into linear-size constant-depth circuits.

Theorem 3. Let {fn} be a sequence of Boolean functions on n bits, such that
fn is computed by linear-size constant-depth circuits. For any constant ε > 0,
there is a constant k such that fn is the disjunction of 2εn functions each of
which is computed by a k-CNF of linear size.

Theorem 1 also has an application to circuit lower bounds. Here we are
concerned with lower bounds for depth-3 circuits where there is a bound on the
bottom fan-in. If we could show that there is an explicit function which does not
have size 2n/2 depth-3 circuits with bottom fan-in O(1), this would be a lower
bound breakthrough, as using a connection due to Valiant[13] it would imply
a superlinear-size lower bound against logarithmic-depth series-parallel circuits.
Valiant argues that the series-parallel restriction on the structure of the circuit is
interesting because the best-known circuits for many problems are series-parallel.
Impagliazzo, Paturi and Zane [5] make progress on this question by constructing
an explicit pseudo-random family of 2O(n2) functions such that most functions
in the family do not have size 2n−Ω(n) depth-3 circuits with bottom fan-in O(1).
We improve their result by reducing the size of the function family down to nf(n)

for any f(n) = ω(n). We also argue that a further improvement of the family
size to 2cn for c < 1 would actually imply a breakthrough lower bound for an
explicit function.

In the theorem below, a Σ3 circuit is an unbounded fan-in depth 3 circuit
where the top gate is an OR. Note that when trying to prove a lower bound for
an explicit function, we can assume wlog that the top gate is an OR.

Theorem 4. For each f(n) = ω(n), there is a sequence {Fn} of families of
Boolean functions on n bits, where Fn has size at most nf(n), such that with
probability 1−o(1), a random function from Fn does not have Σk

3 circuits of size
2n−Ω(n) with bottom fan-in O(1). Moreover, given i ∈ [1, nf(n)] in binary and
x ∈ {0, 1}n, there is a polynomial-time algorithm for evaluating the i’th function
in Fn on x.



2 Preliminaries

2.1 Basic complexity notions

We assume a basic knowledge of complexity theory. Standard references for this
include the book by Arora and Barak [1] and the Complexity Zoo3.

When discussing sparsification, we find it convenient to talk of non-uniform
complexity measures. A non-uniform complexity measure CSIZE associates with
each integer n and size bound s, a class of Boolean functions CSIZE(s(n)) on
n bits, such that for any s′ ≥ s, CSIZE(s(n))) ⊆ CSIZE(s′(n)). We will be
concerned mainly with measures which correspond directly to standard models
of computation, such as CNFs, CNFs of constant width (referred to as O(1)-
CNFs), constant-depth unbounded fan-in circuits (AC0), Boolean formulae and
Boolean circuits.

By the size of a CNF, we will typically mean the number of clauses. If we
mean the total number of literal occurrences, we will make this explicit.

As we will be studying lower bounds for depth-3 circuits, we require some
notation for such circuits. Define Σk

d to be the set of depth d circuits with top
gate OR such that each bottom gate has fan-in at most k. It is known that anyΣk

3

circuit for the Parity function or the Majority function requires Ω(2n/k) gates,
and such bounds are tight for k = O(

√
n). For k = 2, a 2n−o(n) size lower bound

is known for an explicit function in P, however not even an Ω(2n/2) size lower
bound is known for an explicit function for any k > 2. Using a connection due to
Valiant [13], this question can be related to classical lower bound questions about
linear-size logarithmic-depth Boolean circuits. Valiant’s results imply that linear-
size logarithmic-depth Boolean circuits with bounded fan-in can be computed
by depth-3 unbounded fan-in circuits of size O(2n/ log logn) with bottom fan-in
limited by nε for arbitrarily small ε. If in addition, the graph of connections of
the circuit is restricted to be series-parallel, the simulation can be modified to
give size 2n/2 and fan-in O(1).

Given functions f, g : N → R>0, we occasionally use f � g to denote
f(n) = o(g(n)). This notation makes the transitivity of the o(·) relation more
transparent.

2.2 Sparsification and simplification

Definition 1. Given non-uniform complexity measures CSIZE and C′SIZE,
and functions s, s′ : N → N, we say that there is a (C, s, C′, s′)-sparsification if
for any constant ε > 0 and any function f ∈ CSIZE(O(s)), f is the OR of at
most 2εn functions each belonging to CSIZE(O(s′)). We say that C is sparsifiable
to C′ if there is a (C, nk, C′, n)-sparsification for each k, and we say simply that
C is sparsifiable if C is sparsifiable to C.

Definition 2. Given non-uniform complexity measures CSIZE and C′SIZE,
and function s : N → N, we say that there is an OR-simplification of C to C′

3 http://qwiki.stanford.edu/index.php/Complexity Zoo



at size s if there is a (C, s, C′, s)-sparsification. We say that there is an OR-
simplification of C to C′ if there is an OR-simplification of C to C′ at size n.

The following proposition is immediate since sub-exponential size ORs are
closed under composition.

Proposition 1. If C is sparsifiable to C′ and there is an OR-simplification of C′
to C, then C is sparsifiable.

There are many interesting positive results on sparsification and simplifica-
tion. Impagliazzo, Paturi and Zane [5] showed that k-CNFs are sparsifiable for
any constant k. Improved parameters were obtained by [2].

Lemma 1 (Sparsification Lemma). [5] [2] Let k > 0 be any integer. For any
constant ε > 0, there exists a constant c(k, ε) such that for large enough n, any
k-CNF over n variables can be expressed as the OR of 2εn k-CNFs each of size
at most c(k, ε)n.

The original proof of Lemma 1 [5] yielded c doubly exponential in k but this
was subsequently improved to singly exponential in k. Using results of Miltersen,
Radhakrishnan and Wegener [7], it can be shown that an exponential dependence
on k is necessary.

Schuler [12] showed that there is an OR-simplification of CNFs to O(1)-
CNFs. This follows from the following more general lemma, the proof of which
is similar and is deferred to the full version.

Lemma 2. For any constant ε ∈ (0, 1] and function c : N → N, every CNF ϕ
with at most cn clauses can be written as the OR of at most 2εn many k-CNFs
with at most cn clauses, where k = O( 1

ε log( cε )).

Note that when c is a constant in Lemma 2, k is a constant as well.

Corollary 1. There is an OR-simplification of CNFs to O(1)-CNFs.

3 The Limits of sparsification

3.1 Non-sparsifiability of CNFs

We will show that there are CNFs of slightly superlinear size that cannot be
written as a subexponential OR of CNFs of linear size.

Given `, r ∈ N, let S`,r denote the collection of all r-tuples of subsets of [n] of
size `. Given S = (S1, . . . , Sr) ∈ S`,r, let ϕS denote some CNF for the following
function:

GS =
r∧
i=1

¬
⊕
j∈Si

xj

Though the above function has not been written in CNF form, it is easy to
see that for any S as above, ϕS can be chosen to be CNFs of size at most r2`.

Lemma 3. Fix any `, r : N→ N. Then we have that for any S ∈ S`,r, the CNF
ϕS has at least 2n−r satisfying assignments.



Proof. This follows from the fact that any homogeneous system of r linear equa-
tions has at least 2n−r solutions over F2. ut

Now we proceed to the proof of the main lemma. Given a CNF formula ϕ,
let Sat(ϕ) denote the set of satisfying assignments of ϕ.

Fix a T ⊆ [n] and assume that S ∈
(
[n]
`

)
is chosen uniformly at random. Given

η ∈ [0, 1], we call S (1 − η)-balanced w.r.t. T if |S ∩ T | ≥ (1 − η) ES [|S ∩ T |].
We call S balanced w.r.t. T if S is 1/2-balanced w.r.t. T . Given S ∈ S`,r, we say
that S is (1− η)-balanced w.r.t. T (balanced w.r.t. T ) if at least half the Si are
(1− η)-balanced w.r.t. T (respectively, balanced w.r.t. T ).

We need the following technical lemma regarding balance.

Lemma 4. Let ε, η ∈ (0, 1) be constants. Fix ` = `(n), r = r(n) such that 1 �
`(n) and n/`� r(n). Assume T ⊆ [n] such that |T | ≥ εn. Then for a randomly
chosen S ∈ S`,r, we have PrS [S is not (1− η)-balanced w.r.t. T ] = 1

2ω(n) .

Proof. A simple concentration equality tells us that for any i ∈ [r],
PrSi [Si not (1− η)-balanced] ≤ 2−Ω(`). Hence, given a set of r/2 many Si, the
probability that none of them are balanced w.r.t. T is bounded by 2−Ω(`r) =
2−ω(n+r), where the last equality follows from the fact that r � n/`. By a
union bound, it follows that the probability that there exists a subset of S
of size r/2 all of whose elements are not (1 − η)-balanced w.r.t T is at most(
r
r/2

)
2−ω(n) ≤ 2r2−ω(n+r) ≤ 2−ω(n). The lemma now follows since this event

corresponds precisely to S not being balanced w.r.t T . ut

Lemma 5. Fix constants c, ε > 0. Let ` = `(n), r = r(n) be parameters such
that 1� ` = O(log n), n/`� r � n. Fix any collection A of subsets of {0, 1}n
of size at most ncn such that each A ∈ A has size at least 2εn. Then, for a
random S ∈ S`,r, we have PrS [∃A ∈ A : A ⊆ Sat(ϕS)] = o(1).

Proof. Fix any A ∈ A. Since Sat(ϕ) is a subspace of Fn2 , we see that A ⊆ Sat(ϕ)
iff Span(A) ⊆ Sat(ϕ), where Span(A) is the span of A in Fn2 . Hence, we assume
wlog that every A ∈ A is actually a subspace of dimension at least εn. Fix such
a subspace A. Let d ≥ εn denote the dimension of A.

By Gaussian elimination, we can choose a d× n matrix M(A) such that the
rows of M(A) generate A and after some column permutations, M(A) = [Id M ′]
where Id denotes the d×d identity matrix. Let the variables indexed by the first
d columns of M(A) be denoted S(A).

Consider a uniformly random S = (S1, . . . , Sr) ∈ S`,r. For i ∈ [r] let χi
denote the characteristic vector of Si. It is easily seen that A ⊆ Sat(ϕS) iff each
χi ∈ A⊥, where A⊥ denotes the dual space of A.

We now consider the probability that χi ∈ A⊥ for any fixed i. This happens
iff M(A)χi = 0. Note that this event can occur with probability at least 1

2O(`)

if, for example, M ′ = 0 and it happens that Si ⊆ [n] \ S(A). We now show that
this probability is much lower if we condition on the event that Si is balanced
w.r.t. S(A).

Say we condition on |Si ∩ S(A)| = q, where q ∈ [`]. Note that picking a
random Si conditioned on this event is equivalent to picking a random subset



S′i of S(A) of size q and a random subset S′′i of S(A) of size ` − q and setting
Si = S′i ∪ S′′i . Let χ′i and χ′′i denote the characteristic vectors of S′i and S′′i
respectively. Then, M(A)χi = 0 iff Idχ

′
i + M ′χ′′i = 0 iff χ′i = M ′χ′′i . For any

fixed choice of χ′′i , the probability over the choice of χ′i that this occurs is at
most 1/

(
d
q

)
≤ (q/εn)q ≤ 1

(εn)Ω(q) . Hence, conditioned on Si being balanced w.r.t.
S(A), we see that the probability that M(A)χi = 0 is at most 1

(εn)Ω(ε`) ≤ 1
nΩ(`) .

Using the fact that r = ω(n/`), this implies that PrS [∀i ∈ [r] : M(A)χi =

0 | S balanced w.r.t. S(A)] ≤
(

1
nΩ(`)

)r/2 = 1
nω(n) . (∗)

We are now ready to bound the probability that there exists a subspaceA ∈ A
that is contained in Sat(ϕS). Let E1(A) denote the event that A ⊆ Sat(ϕS).
Given T ⊆ [n] s.t. |T | ≥ εn, let E2(T ) denote the event that S is not balanced
w.r.t. T . We have

Pr
S

[
∨
A

E1(A)] ≤ Pr
S

[
∨
A

E1(A) ∨
∨

T⊆[n]:|T |≥εn

E2(T )]

= Pr
S

[
∨
T

E2(T )] + Pr
S

[
∨
A

E1(A) ∧ ¬
∨
T

E2(T )]

≤
∑
T

Pr
S

[E2(T )] +
∑
A

Pr
S

[E1(A) ∧ ¬E2(S(A))]

≤
∑
T

Pr
S

[E2(T )] +
∑
A

Pr
S

[E1(A) | ¬E2(S(A))]

≤ 2n · 1
2ω(n)

+ ncn · 1
nω(n)

= o(1)

where the last inequality follows from Lemma 4 and (∗). This concludes the
proof of the lemma. ut
Theorem 5. Fix any constants c > 0 and ε ∈ (0, 1]. Say S is chosen uniformly
at random from S`,r, where `, r are as in the statement of Lemma 5. Then, the
probability that ϕS can be written as a union of at most 2n−εn many CNFs of
size at most cn is o(1).

Proof. Assume that for some S, ϕS can be written as an OR of at most
2n−εn many CNFs of size at most cn. By Lemma 2, each such CNF can
be written as a union of at most 2εn/2 many k-CNFs of size at most cn,
where k = k(c, ε) is a constant. Moreover, Lemma 3 implies that |Sat(ϕS)| ≥
2n−r = 2n−o(n). Hence, it must be the case that there is some k-CNF ψ
of size at most cn such that |Sat(ψ)| ≥ 2εn/4 and Sat(ψ) ⊆ Sat(ϕS). Let
A =

{
Sat(ψ)

∣∣ ψ a k-CNF, Size(ψ) ≤ cn, and |Sat(ψ)| ≥ 2εn/4
}

; clearly, |A| ≤(
(2n)k

cn

)
≤ nkcn. We have seen above that if ϕS can be written as an OR of at

most 2n−εn many CNFs of size at most cn, then there must be an A ∈ A such
that A ⊆ Sat(ϕS). By Lemma 5, the probability that this happens is o(1). Hence,
the theorem follows. ut

The above easily yields Theorem 1 by choosing ` = ω(1) small enough and
r = n/

√
` so that f(n) ≥ n2`/

√
`, and then using Theorem 5 to yield existence

of CNFs of the desired size which are non-sparsifiable.



3.2 A Hierarchy Theorem for Non-Sparsifiability

Theorem 5 shows the existence of CNFs of slightly super-linear size which cannot
be sparsified into linear-size CNFs. A natural question is whether there is a
hierarchy of such non-sparsifiable CNFs: is it true that for each k, there is an
k′ > k such that there are CNFs of size nk

′
which cannot be sparsified into CNFs

of size nk.
First note that the hard CNFs we’re looking for cannot be of the form ϕS

for some S ∈ S`,r. This is because the corresponding function GS trivially has
formulae of size o(n log(n)) over the basis {∧,∨,⊕}, and so also is sparsifiable
into formulae of the same size over this basis. Lemma 5 shows non-sparsifiability
into any class of functions of small enough cardinality, so we cannot hope to
strengthen Lemma 5 to get the desired result for k > 1.

Instead, we use a random CNF ψ with a prescribed width and clause density.
Fix n ∈ N and ` : N → N. We denote by Ψn,`(n) the collection of all CNF
formulas on n boolean variables of width exactly `(n) with 2`(n) many clauses
(with possible repetitions). To sample a random ψ from Ψn,`(n), we simply sample
2`(n) random clauses of width `(n). We establish the following theorem, whose
proof is omitted in this version.

Theorem 6. Fix constants c ≥ 1, η > 0. Assume ` = `(n) = (2c + η) log n.
Then, then there exists a fixed δ = δ(η, c) > 0 such that the probability that a
random ψ sampled from Ψn,` can be written as an OR of at most 2δn many CNFs
of size at most O(nc) is at most 3/4 + o(1). In particular, there is no (CNF,
n2c+η, CNF, nc)-sparsification.

Theorem 6 straightaway implies Theorem 2.

4 Simplifying AC0 to CNFs

In this section, all AC0 circuits considered will have AND gates as their output
gates. Note that any AC0 circuit can be converted to this form by adding an
additional AND gate at the output, hence increasing the size and depth by 1.

Definition 3. Given s, d, k ∈ N, an AC0 circuit C with an AND gate as its
output gate is said to be (s, d, k)-bounded if it has size at most s, depth at most
d, and all of its gates except the output gate have fanin bounded by k.

Fact 7 For constants d, k ∈ N and any s ∈ N, any (s, d, k)-bounded AC0 circuit
can be written as a CNF of size O(s) and width kd.

Definition 4. Given N, s, k ∈ N, a set C of at most N (s, d, k)-bounded AC0

circuits is said to be an (N, s, d, k)-disjoint system if the set of satisfying assign-
ments of each pair of distinct circuits C1 6= C2 from C are disjoint. The function
computed by C is defined to be

∨
C∈C C.

Lemma 6. Fix constants c, d ∈ N such that d ≥ 2 and ε ∈ (0, 1]. There exists
a k = k(c, d, ε) and a c′ = c′(c, d, ε) such that for any AC0 circuit C of depth d
and size at most cn on n variables, there is an (2εn, c′n, d, k)-disjoint system C
that computes the same function as C.



Proof. The proof is by induction on d. We need a small variant of Lemma 2,
which gives us the base case of d = 2:

Claim. For any c ∈ N and ε ∈ (0, 1], there exists a k = k(c, ε) ∈ N such that
for any collection S of at most cn many clauses (respectively, terms), there
is a partition of {0, 1}n into at most 2εn many parts such that in each part,
each clause (resp. term) in S has size at most k. Moreover, each element of the
partition is specified by a k-CNF with at most (c+ 1)n clauses.

Proof. We prove the result in the case of clauses; the proof for terms is almost
identical. Let k be a parameter that we will choose later. As long as there is a
clause of width at least k, choose k literals from the clause and split the remainder
of the space into two parts depending on whether the disjunction of these literals
is satisfied or not. Call the branch where the literals are not satisfied the good
branch. Along the good branch, we can set k variables to some boolean values;
along the other branch, we still end up satisfying the clause.

Note that there can be only cn + n/k many steps overall, since every step
either satisfies a clause or sets k variables. Moreover, there can be at most n/k
many good steps along any branch. This means that the total number of branches
is bounded by

(
cn+n/k
n/k

)
≤
(
(c+1)n
n/k

)
≤ (ek(c + 1))n/k ≤ 2O(log(kc)n/k) ≤ 2εn for

large enough k depending on c and ε.
Note, moreover, that inputs corresponding to each branch is given by a k-

CNF, where k with at most cn+ n/k · k = (c+ 1)n many clauses. ut

The above claim easily implies that for any CNF ϕ with at most cn clauses,
there is a (2εn, (2c + 1)n, 2, k)-disjoint system computing the same function as
ϕ, where k is as defined in Claim 4.

Now consider a circuit of depth d > 2. Let C<d be the circuit C up to layer
d − 1, with the layer of height 1 gates being replaced by a new set of variables
y1, . . . , ym, where m ≤ cn. By applying the induction hypothesis to C<d with
ε = ε/(2c), we see that there exist c1, k1 ∈ N and a (2εn/2, c1n, d−1, k1)-disjoint
system C that computes the same function as C<d on inputs coming from {0, 1}m.

Moreover, by applying Claim 4 to the AND and OR gates at height 1, there
exists k2 ∈ N and a partition P of {0, 1}n into at most 2εn/2 parts, each of which
is specified by a k2-CNF of size at most (c+1)n, such that in each partition, each
gate at height 1 depends on at most k2 variables. For each P ∈ P, let ϕP denote
the k2-CNF of size at most (c+ 1)n that accepts exactly the inputs in P ; given
any circuit C ′ ∈ C, let CP denote the circuit C ′′ ∧ ϕP , where C ′′ is obtained by
substituting for each yi the corresponding term or clause of width at most k2

that agrees with the corresponding gate on inputs from the set P of inputs. The
set of all such circuits CP gives us a (2εn, (c1 + c+ 1)n, d,max{k1, k2})-disjoint
system that computes the same function as the circuit C. ut

Corollary 2. There is an OR-simplification of AC0 to O(1)-CNFs. In particu-
lar, we have:

1. For any function f(n) = ω(n) and constants c, ε > 0, there is a sequence of
CNFs {ϕn}, where ϕn has n variables and size at most f(n) such that ϕn



cannot be written as an OR of at most 2n−εn many AC0 circuits of depth d
and size at most cn.

2. If satisfiability of linear-size CNFs can be tested in time 2αn for some fixed
α < 1, then satisfiability of linear-size AC0 circuits can also be tested in time
2(α+ε)n, for any fixed ε > 0.

Proof. That there is an OR-simplification of AC0 to O(1)-CNFs follows directly
from Lemma 6 and Fact 7. Item 1 then follows from Theorem 1. Item 2 follows
trivially. ut

Theorem 3 follows from Corollary 2.

5 Circuit lower bounds for depth-3 circuits

Impagliazzo, Paturi and Zane [5] showed that non-sparsifiability is closely con-
nected to lower bounds for depth-3 circuits with bounded bottom fan-in. It is a
long-standing open problem to find an explicit Boolean function which requires
Σk

3 circuits of size 2ω(n/k), where k is the bottom fan-in.
It is implicit in [5] that there is no (AC0[⊕], n2, C, n)-sparsification for any

complexity measure CSIZE such that there are at most nO(n) Boolean functions
in CSIZE(O(n)). They use this to construct an explicit family of 2O(n2) Boolean
functions such that with probability close to 1, a random function from this
family does not have Σk

3 circuits of size 2n−o(n) for k = o(log log(n)). Note
that such a lower bound holds for a purely random Boolean function using a
straightforward counting argument; what their result gives is a pseudo-random
function family of significantly smaller size for which the lower bound still holds
with high probability. Their result relies on the sparsification lemma first proved
in the same paper. Using our result, we can prove Theorem 4, which reduces
the size of the family down to nf(n) for any f(n) = ω(n), which, as we show, is
“close” to getting the lower bound for an explicit function.

Proof (of Theorem 4). The function family {Fn} we use is simply the set {GS},
where S ∈ S`,r, with ` and r chosen as in the proof of Theorem 1. The bound
on the cardinality of Fn and the polynomial-time evaluability of functions in
Fn are clear. We will show that if a function f cannot be written as an OR of
2n−εn CNFs of linear size for any ε > 0, then it does not have Σk

3 circuits of size
2n−o(n) with bottom fan-in O(1). Thus the theorem follows using Theorem 5.

Suppose, on the contrary, that there is a constant c < 1 such that f has Σk
3

circuits of size 2cn with bottom fan-in k = O(1). Consider the gates with output
wires feeding in to the top OR gate. Each such gate computes an O(1)-CNF.
By Lemma 1, for any ε > 0 each such gate can be written as the OR of 2εn

O(1)-CNFs of size O(n). By choosing ε such that ε+ c < 1, we get that f is the
OR of 2c

′n functions, each of which has CNFs of size O(n) for some c′ < 1. This
contradicts the assumption on f , hence we are done. ut

Theorem 8. Suppose there is a sequence {Fn} of families of Boolean functions
on n bits, where Fn has size at most 2n−Ω(n), such that for large enough n, there



exists a function fn ∈ Fn such that fn does not have Σk
3 circuits of size 2n−o(n)

with bottom fan-in k(n) = O(1) (resp. no(1)). Also assume that given i ∈ [1, |Fn|]
in binary and x ∈ {0, 1}n, there is a polynomial-time algorithm for evaluating
the i’th function in Fn on x. Then there is a Boolean function g ∈ P such
that g does not have linear-size logarithmic-depth series-parallel circuits (resp.
linear-size logarithmic-depth circuits).

The proof is omitted in this version.

References

1. Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

2. Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between
clause width and clause density for SAT. In Proceedings of IEEE Conference on
Computational Complexity, pages 252–260, 2006.

3. Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability
algorithm for AC0. In Proceedings of Symposium on Discrete Algorithms, page To
appear, 2012.

4. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal
of Computer and System Sciences, 63(4):512–530, 2001.

5. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems
have strongly exponential complexity? Journal of Computer and System Sciences,
62(4):512–530, 2001.

6. Sharad Malik and Lintao Zhang. Boolean satisfiability from theoretical hardness
to practical success. Communications of the ACM, 52(8):76–82, 2009.

7. Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo Wegener. On converting
cnf to dnf. Theoretical Computer Science, 347(1–2):325–335, 2005.

8. Ramamohan Paturi, Pavel Pudlak, Mike Saks, and Francis Zane. An improved
exponential-time algorithm for k-sat. In Proceedings of 39th International Sympo-
sium on Foundations of Computer Sciece (FOCS), pages 628–637, 1998.

9. Ramamohan Paturi, Pavel Pudlak, and Francis Zane. Satisfiability coding lemma.
In Proceedings of 38th International Symposium on Foundations of Computer Sci-
ence (FOCS), pages 566–574, 1997.

10. Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and
QBF satisfiability. In Proceedings of 51st Annual IEEE Symposium on Foundations
of Computer Science, pages 183–192, 2010.

11. Rahul Santhanam and Srikanth Srinivasan. On the limits of sparsification. Elec-
tronic Colloquium on Computational Complexity (ECCC), 18:131, 2011.

12. Rainer Schuler. An algorithm for the satisfiability problem of formulas in conjunc-
tive normal form. J. Algorithms, 54(1):40–44, 2005.

13. L. G. Valiant. Graph-theoretic arguments in low-level complexity. In J. Gruska, ed-
itor, Proceedings of the 6th Symposium on Mathematical Foundations of Computer
Science, volume 53 of LNCS, pages 162–176, Tatranská Lomnica, Czechoslovakia,
September 1977. Springer.

14. Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. In Proceedings of the 42nd Annual ACM Symposium on Theory of Com-
puting, pages 231–240, 2010.

15. Ryan Williams. Non-uniform ACC circuit lower bounds. In Proceedings of 26th
Annual IEEE Conference on Computational Complexity, pages 115–125, 2011.


