
Instance Compression for the Polynomial Hierarchy and
Beyond

Chiranjit Chakraborty
Rahul Santhanam

School of Informatics, University of Edinburgh, UK

Abstract. We define instance compressibility ([1], [7], [5], [6]) for parametric prob-
lems in PH and PSPACE. We observe that the problemΣiCircuitSAT of deciding
satisfiability of a quantified Boolean circuit with i−1 alternations of quantifiers starting
with an existential quantifier is complete for parametric problems in Σp

i with respect
to W-reductions, and that analogously the problem QBCSAT (Quantified Boolean Cir-
cuit Satisfiability) is complete for parametric problems in PSPACE with respect to
W-reductions. We show the following results about these problems:

1. CircuitSAT is non-uniformly compressible within NP implies ΣiCircuitSAT is
non-uniformly compressible within NP , for any i ≥ 1.

2. If QBCSAT is non-uniformly compressible (or even if satisfiability of quanti-
fied Boolean CNF formulae is non-uniformly compressible), then PSPACE ⊆
NP/poly and PH collapses to the third level.

Next, we define Succinct IP and show that QBFormulaSAT (Quantified Boolean
Formula Satisfiability) is in Succinct IP .

1 Introduction

An NP problem is said to be instance compressible if there is a polynomial-time
reduction mapping instances of size m and witness length n to instances of size
poly(n) (possibly of a different problem). The notion of instance compressibility for
NP problems was defined by Harnik and Naor ([1]) motivated by applications in
cryptography. This notion is closely related to the notion of polynomial kerneliz-
ability in parametrized complexity ([7], [5], [6]), which is motivated by algorithmic
applications. Fortnow and Santhanam showed ([2]) that the compressibility of the
satisfiability problem for Boolean formulae (even non-uniformly) is unlikely, since it
would imply that the Polynomial Hierarchy collapses. Since then, there’s been a very
active stream of research extending this negative result to other problems inNP ([7],
[8], [9] etc.). Instance compressibility is a useful notion from the point of view of
complexity theory as well - Buhrman and Hitchcock [10] use it to study the question
of whether NP has sub-exponentially-sparse complete sets.

Given different possibilities of application of this notion, it is a natural question
whether we can extended it to other complexity classes, such as PH and PSPACE.
Our first contribution here is to define such an extension. The key to defining instance
compressibility forNP problems is that there is a notion of “witness” for instances of
NP problems, and in general the witness size can be much smaller than the instance
size. We observe that the characterisation of PH and PSPACE using alternating
time Turing machines yields a natural notion of “guess size” - namely the total num-
ber of non-deterministic or co-non-deterministic bits used during the computation.

2 Chiranjit Chakraborty Rahul Santhanam

We use this characterisation to extend the definition of compressibility in a natural
way to parametric problems in PH and PSPACE.

There have been proposals made in the parametrized complexity setting ([12]
[11]) for defining in general the parametrized complexity analogue of a classical
complexity class. Our definition seems similar in spirit, but there are important differ-
ences. All the problems we consider are in fact fixed-parameter tractable. What we’re
interested in is whether they are instance-compressible, or equivalently whether they
have polynomial-size kernels. The theory developed so far has dealt with problems
which are in NP - we’d like to extend it to the Polynomial Hierarchy and beyond.

One of our main motivations is to provide a structural theory of compressibility,
analogous to the theory in the classical setting. Intuitively, instance compressibility
provides a different, more relaxed notion of “solvability” than the traditional notion.
So it is of interest to study what kinds of analogues to classical results hold for the new
notion. The result of Fortnow and Santhanam [2] can be thought of as an analogue
of the Karp-Lipton theorem, since non-uniform compressibility is a weakening of
the notion of non-uniform solvability. Other well-known theorems in the classical
setting are that NP has polynomial-size circuits iff all of PH does, as well as the
Karp-Lipton theorem for PSPACE. The main results we prove here are analogues
of these results for instance compressibility.

Our first main result is, if the language CircuitSAT is non-uniformly compress-
ible within NP (i.e., the reduction is to an NP problem), then so is the language
ΣiCircuitSAT , which is in some sense complete for parametric problems in Σp

i .
Note that we need a stronger assumption that in the Fortnow-Santhanam result: they
need only to assume that SAT is compressible. This reflects the fact that the result is
technically much harder - it relies on the Fortnow-Santhanam result as well as on the
techniques used in the classical case. In addition, the code used by the hypothetical
compression for CircuitSAT shows up not just in the resulting compression algo-
rithm for ΣiCircuitSAT , but also in the instance generated - this is why we need to
work with circuits, as they can simulate any polynomial-time computation. This abil-
ity to interpret code as data is essential to our proof. We give more intuition about the
proof in Section 3, where the detailed proof can also be found. We also make the ob-
servation that under the assumption that Σ3CircuitSAT is compressible (we make
no assumption about the complexity of the set we are reducing to, nor do we require
the compression to be non-uniform), it follows that all of the Polynomial Hierarchy
is as well.

Our second main result is that if QBCNFSAT is non-uniformly compressible,
the Polynomial Hierarchy collapses to the third level. The proof of this is easier,
and is an adaptation of the Fortnow-Santhanam technique to PSPACE. As they do,
we consider an “OR” version of the problem, and derive the collapse of the hierarchy
from the assumption that the OR version is compressible. In the case ofNP , showing
that compressing the OR version is at least as easy as compressing SAT is trivial;
however, this is not the case for PSPACE and this is where we need to work a little
harder.

Instance Compression for the Polynomial Hierarchy and Beyond 3

In the next section, we have defined Succinct IP . This is actually the exten-
sion of the complexity class IP . Then we have shown that, not just QBCNFSAT ,
QBFormulaSAT (Quantified Boolean Formula Satisfiability) is in Succinct IP .

There are many open problems in the compressibility theory for NP such as
whether there any unlikely consequences of SAT being probabilistically compress-
ible, and whether the problem AND-SAT is deterministically compressible. Our
hope is that extending the theory to larger classes such as PH and PSPACE will
give us more “room” to work with, and that if we manage to settle these questions for
the larger classes the techniques used can then be translated back to NP .

2 Some Complexity Theory Notions

Definition 1. Parametric problem: A parametric problem is a subset of { < x, 1n >
| x ∈ {0, 1}∗, n ∈ N }. The term n is known as the parameter of the problem.

NP problems in parametric form: Let’s consider some well known NP problems
in parametric form.
SAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable formula, and n is the number of variables in ϕ}.
VC = {〈 G, 1k log(m) 〉 | G has a vertex cover of size at most k, where m = |G|}.
Clique = {〈 G, 1k log(m) 〉 | G has a clique of size at least k, where m = |G|}.
DominatingSet = {〈 G, 1k log(m) 〉 | G has a dominating set of size at most k, where
m = |G|}.
OR-SAT = {〈 {ϕi }, 1n 〉 | At least one ϕi is satisfiable, and each ϕi has size at most
n}.

In our work, we insist on the parameter being interpretable as the witness size for
a natural NTM deciding the language. For example in SAT , the number of vari-
ables, which captures the witness of satisfiability problem, is taken as the parameter.
Note that in the definitions of the Clique, V C and DominatingSet problems, the
parameter is k log(m) rather than k as in the typical parametrized setting.

Definition 2. Compression of parametric problem: Suppose here L is a parametric
problem. L is said to be compressible within a complexity class A if there is a poly-
nomial p(.), and a polynomial-time computable function f , such that for each x ∈
{0, 1}∗ and n ∈N , |f(〈x, 1n〉)| ≤ p(n) and |(〈x, 1n〉)| ∈ L iff |f(〈x, 1n〉)| ∈ LA for
some language LA in the complexity class A.

Definition 3. Non-uniform Compression: A language L is said to be compressible
with advice s(., .) if the compression function is computable in deterministic polyno-
mial time when given access to an advice string of size s(m, n) which depends only
on m and n but not on the actual instance. L is non-uniformly compressible if s is
polynomially bounded in m and n.

In other words, we can say that the machine compressing the language in the preced-
ing definition takes advice in case of Non-uniform Compression.

Definition 4. W-Reduction: [1] Given parametric problems L1 and L2 , L1 W -
reduces to L2 (denoted L1 ≤w L2) if there is a polynomial-time computable function
f and polynomials p1 and p2 such that:

4 Chiranjit Chakraborty Rahul Santhanam

1.f (〈 x, 1n1 〉) is of the form 〈 y, 1n2 〉 where |y| ≤ p1(n1 + |x|) and n2 ≤ p2

(n1).
2.f (〈 x, 1n1 〉) ∈ L2 iff 〈 x, 1n1 〉 ∈ L1.

The semantics of a W -reduction is that if L1 W-reduces to L2 , it’s as hard to
compress L2 as it is to compress L1 . If L1 ≤w L2 and L2 is compressible, then L1

is compressible. One can easily prove that OR-SAT ≤w SAT .
As we have already mentioned, our primary objective is to extend the idea of com-
pression to higher classes, namely Polynomial Hierarchy and PSPACE. So, we
have considered the standard definitions of the complexity classes Σp

i and Πp
i [15]

from Polynomial Hierarchy and the class PSPACE. Let us now take some stan-
dard PH and PSPACE languages but in parametric form.

CircuitSAT = {〈C, 1n 〉 |C is a satisfiable Circuit, and n is the number of variables
in C}

ΣiSAT = {〈ϕ, 1n 〉 |ϕ is a satisfiable quantified boolean formula where odd position
quantifiers are ∃ and even position quantifiers are ∀, and n = (n1 +n2 + . . .+ni)
where ni is the number of the variables corresponding to ith quantifier}

ΣiCircuitSAT = {〈 C, 1n 〉 | C is a satisfiable quantified Circuit where odd position
quantifiers are ∃ and even position quantifiers are ∀, and n = (n1 +n2 + . . .+ni)
where ni is the number of the variables corresponding to ith quantifier}
Similarly we can define ΠiSAT and ΠiCircuitSAT in parametric form.

QBCNFSAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable quantified boolean formula in CNF ,
and n is the number of variables}

QBFormulaSAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable quantified boolean formula (not
necessarily in CNF), and n is the number of variables}
If ϕ is replaced by the circuit C, then similarly we can define QBCSAT .

OR-QBCNFSAT = {〈 {ϕi }, 1n 〉 | Each ϕi is a quantified boolean formula in
CNF and at least one ϕi is satisfiable, and each ϕi has size at most n}.

Here we would like to mention that ΣiSAT and ΣiCircuitSAT are complete for
Σp

i according to Cook-Levin reduction. Similarly QBCNFSAT, QBFormulaSAT and
QBCSAT are complete for PSPACE.

Now, We can define a parametric problem corresponding to any language L in
Σp

i , or more precisely to the i+1-ary polynomial-time computable relationR defining
L, as follows.

Definition 5. For any Σp
i language LR,we can write LR = {〈 x, 1n 〉 | ∃ u1 ∈

{0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni R (x, u1 , . . . , ui) = 1 and n =
(n1 + n2 + . . .+ ni) where ni is the parameter corresponding to ith quantifier}

We can do essentially the same thing for any language L ∈ PSPACE.
So using the general definition of compression of any language in parametric

form given above, we can define the compression for all the PH and PSPACE lan-
guages where the ”witness length” or ”guess length” is the parameter of the problem.

Proposition 1. ΣiCircuitSAT is a complete language with respect toW -reduction
for ith level of Polynomial Hierarchy.

Instance Compression for the Polynomial Hierarchy and Beyond 5

Proof. Let L ∈ Σp
i . Then there exists a polynomial-time computable relation R such

that,
x ∈ L⇔ ∃ u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni R (x, u1 , . . . , ui) =
1, where Qi denotes ∃ or ∀ depending on whether i is odd or even respectively.

Now consider the parametric problem corresponding to L where the parameter is
the number of guess bits used by R. We know that any polynomial time computable
relation has uniform polynomial size circuits. Let Cm be the circuit on inputs of
length m - we can generate Cm from 1m in polynomial time. Hence, x ∈ L ⇔ ∃
u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni C (x, u1 , . . . , ui) = 1, where
Qi denotes ∃ or ∀ depending on whether i is odd or even respectively. This gives a
W -reduction from the parametric problem corresponding to L to ΣiCircuitSAT ,
since the length of the parameter is preserved. ♣

A similar proposition holds for ΠiCircuitSAT as well. We can also show, using
essentially the same proof, a completeness result for PSPACE.

Proposition 2. QBCSAT is a complete language for PSPACE with respect to
W-reductions.

We note that all the parametric problems we have defined so far are in fact fixed-
parameter tractable, simply by using brute force search.

Proposition 3. QBCSAT is solvable in timeO(2npoly(m)) by brute force enumer-
ation.

3 Instance Compression for Polynomial Hierarchy

3.1 Instance Compression in second level

In this section, we are going to show that non-uniform compression of CircuitSAT
within NP implies the non-uniform compression of Σ2CircuitSAT within NP as
well. In the next subsection, essentially by using induction and relating this conse-
quence, we show how to extend this to the entire Polynomial Hierarchy.

Theorem 1. CircuitSAT is non-uniformly compressible within the class NP implies
Σ2CircuitSAT is non-uniformly compressible within the class NP.

Proof. Let’s consider the parametric problem Σ2CircuitSAT first. For the sake of
convenience, we often omit the parameter when talking about an instance of this
problem. According to the definition,
C ∈ Σ2CircuitSAT ⇔ ∃ u ∈ {0, 1}n1 ∀ v ∈ {0, 1}n2 C (u, v) = 1
C /∈ Σ2CircuitSAT ⇔ ∀ u ∈ {0, 1}n1 ∃ v ∈ {0, 1}n2 C (u, v) = 0
where m is the length of the description of the circuit C and n = (n1 + n2) is the
number of variables of C.

Let us now fix a specific u = u1. Now, we can define a new languageL
′
as follows,

〈C, u1〉 ∈ L
′ ⇔ ∀ v ∈ {0, 1}n2 C (u1, v) = 1

〈C, u1〉 /∈ L
′ ⇔ ∃ v ∈ {0, 1}n2 C (u1, v) = 0

It’s clear from the above definition that L
′

is a CoNP language (of instance
size ≤ O(m + n1)) and any instance of L

′
can be polynomial-time reduced to an

6 Chiranjit Chakraborty Rahul Santhanam

instance of Circuit-UnSAT , say C
′

(because Circuit-UnSAT , the language of
all unsatisfiable circuits, is a CONP -Complete language). As shown in Proposition
1, the size of the witness will be preserved in this reduction.

C ∈ Σ2CircuitSAT ⇔ ∃u1〈C, u1〉 ∈ L
′

and 〈C, u1〉 ∈ L
′ ⇔ C

′ ∈ Circuit-
UnSAT . Here the instance length |C| = m and |C ′ | = poly(m). poly(.) is denoting
just an arbitrary polynomial function.

Let g be the polynomial-time reduction used to obtainC
′
fromC and u1. Namely,

C
′

= g(C, u1). If CircuitSAT is non-uniformly compressible within NP , using
the same compression algorithm we can now non-uniformly compress the instance
C

′
to an instance of size poly(n2) of another new language. As CircuitSAT is

compressible within NP , clearly the new language will be a CoNP language (as
C

′
is an instance of a CoNP language). Without loss of generality, we can assume

this compressed instance C
′′

is an instance of complete language Circuit-UnSAT .
Therefore, C

′ ∈ Circuit-UnSAT ⇔ C
′′

= f1(C
′
, w1) = f1(g(C, u1), w1) ∈

Circuit-UnSAT , where |C ′′ | = poly(n2) and the stringw1 (of size at most poly(m)
) is capturing the notion of polynomial size advice. Here the compression function f1

is running in polynomial(in m) time.
Now, if CircuitSAT is non-uniformly compressible within NP so is SAT as

SAT is a special case of CircuitSAT . Now, OR-SAT is also non-uniformly com-
pressible as OR-SAT W -reduces to SAT . It can be proved [2] that if OR-SAT is
non-uniformly compressible then CoNP ⊆ NP/poly.

Now combining the above statements we can say that if CircuitSAT is non-
uniformly compressible withinNP thenCoNP ⊆NP/poly. So we can now convert
our CoNP language (here Circuit-UnSAT) instance C

′′
into a NP language in-

stance using polynomial size advice. Let’s consider that NP language instance to be
a CircuitSAT instance C

′′′
. In the above procedure, the length of the instance defi-

nitely will not increase by more than a polynomial factor. So clearly |C ′′′ | = poly(n2).
So from the above arguments we can say that,

C
′ ∈ Circuit-UnSAT ⇔ C

′′′
= f2(C

′′
, w2) = f2(f1(g(C, u1), w1), w2) ∈

CircuitSAT , where |C ′′′ | = poly(n2) and the string w2 (of size at most poly(n2)
) is capturing the notion of polynomial size advice which arises in the proof of [2].
Here the function f2 is computable in polynomial(in n2) time.

Now we define a new circuit C1 as follows. C1 is a non-deterministic circuit
whose non-deterministic input is divided into two strings: u of length n1 and v
of length poly(n2). Given its non-deterministic input, C1 first computes C

′′′
= f2(

(f1(g(C, u), w1), w2). This can be done in polynomial size in m since the functions
f2, f1 and g are all polynomial-time computable and C, w1 and w2 are all fixed
strings of size polynomial in m. It then uses its input v as non-deterministic input
to C ′′′ and checks if v satisfies C ′′′. This can be done in polynomial-size since the
computation of a polynomial-size circuit can be simulated in polynomial time. If so,
it outputs 1, else it outputs 0. Now we have
C ∈ Σ2CircuitSAT ⇔ ∃ u ∈ {0, 1}n1 ∃ v ∈ {0, 1}n2 C1 (u, v) = 1
C /∈ Σ2CircuitSAT ⇔ ∀ u ∈ {0, 1}n1 ∀ v ∈ {0, 1}n2 C1 (u, v) = 0

The key point is that we have reduced our original Σ2CircuitSAT question to
a CircuitSAT question, without a super-polynomial blow-up in the witness size.

Instance Compression for the Polynomial Hierarchy and Beyond 7

This allows us to apply the compressibility hypothesis again. Also, note that C1 is
computable from C in polynomial size.

After that, using the compressibility assumption for CircuitSAT , we can non-
uniformly compress C1 to an NP language instance C2 of size poly(n1 + n2). Our
final compression procedure just composes the procedures deriving C1 from C and
C2 from C1, and since each of these can be implemented in polynomial size, our
compression of the originalΣ2CircuitSAT instance is a valid non-uniform instance
compression. Thus it is shown that if CircuitSAT is non-uniformly compressible
within NP , Σ2CircuitSAT is also non-uniformly compressible within NP . ♣

3.2 Instance Compression for higher level

Now we are going to extend the idea for higher classes. It’s not difficult to see, if
Σ2CircuitSAT is non-uniformly compressible withinNP ,Π2CircuitSAT is non-
uniformly compressible within CoNP . We will use this in the following theorem.

Theorem 2. CircuitSAT is non-uniformly compressible within the class NP implies
ΣiCircuitSAT is non-uniformly compressible within the class NP for all i > 1.

Proof Outline : We are going use induction here. Let’s consider CircuitSAT is
non-uniformly compressible within NP . To prove ΣiCircuitSAT is compressible
for all i > 1, the base case i = 2, directly follows from Theorem 1. Now suppose
the statement is true for all i ≤ k. We have to prove that the statement is true for
i = k + 1 as well. So we are now assuming that ΣiCircuitSAT is non-uniformly
compressible within NP for all i ≤ k and going to prove that Σk+1CircuitSAT is
also non-uniformly compressible within NP .
Now, fixing the first variable, u1 to u

′
of Σk+1CircuitSAT instance C as before,

we can define a new language similarly as we did in the proof of Theorem 1. Using
similar argument we can introduce a circuit C1 as well. The key point is that we have
reduced our original Σk+1CircuitSAT question to a CircuitSAT question, without a
super-polynomial blow-up in the witness size. This allows us to apply the compress-
ibility hypothesis again. Also, note that C1 is computable from C in polynomial size.
Next, using the compressibility assumption for CircuitSAT , we can non-uniformly
compressC1 to anNP language instanceC2 of size poly(n1 + n

′
) i.e. poly(n1 + . . . +

nk+1). So using mathematical induction we can say ifCircuitSAT is non-uniformly
compressible within NP, ΣiCircuitSAT is also non-uniformly compressible within
NP for all i > 1. (detailed proof is mentioned in the Appendix) ♣

Corollary 1. If CircuitSAT is compressible withinNP ,ΠiCircuitSAT is also non-
uniformly compressible within NP for all i ≥ 1.

AsΠiCircuitSAT W -reduces toΣi+1CircuitSAT , Corollary 1 is trivial. The-
orems 1 and 2 require an assumption on non-uniform compressibility in NP . But we
don’t need this for compressibility of a problem higher in the hierarchy.

Proposition 4. If Σ3CircuitSAT is compressible, then ΣiCircuitSAT is com-
pressible for any i > 3.

8 Chiranjit Chakraborty Rahul Santhanam

The above proposition follows from the fact that Σ3CircuitSAT being compress-
ible implies that SAT is compressible, which implies by the result of Fortnow and
Santhanam that PH collapses to Σp

3 , and hence that every parametric problem in Σp
i

W -reduces to Σ3CircuitSAT .

4 Instance Compression for PSPACE

In this section, we show thatQBCNFSAT is unlikely to be compressible, even non-
uniformly - compressibility of QBCNFSAT implies that PSPACE collapses to
the third level of the Polynomial Hierarchy. The strategy we adopt is similar to that
in [2] where it shows, compressibility of SAT implies NP ⊆ coNP/poly. To show
their result, they used theOR-SAT problem, which is triviallyW -reducible to SAT .
Thus an incompressibility result for the OR-SAT problem translates directly to a
corresponding result for SAT .

We similarly defined OR-QBCNFSAT problem in Section 2. Unlike in the
case of OR-SAT , it is not trivial that the language OR-QBCNFSAT W -reduces
to QBCNFSAT . There are a couple of different issues. First the quantifier patterns
for the formulae {φi}, i = 1 . . .m might all be different. This is easily taken care of,
because we can assume quantifiers alternate between existential and universal - this
just blows up the number of variables for any formula by a factor of at most 2. The
more critical issue is that nothing as simple as the OR works for combining formu-
lae. ∃x∀yφ1(x, y) ∨ ∃x∀yφ2(x, y) is not equivalent to ∃x∀y(φ1(x, y) ∨ φ2(x, y)).
We’re forced to adopt a different strategy as explained below. Later we have found
similar strategy is used in [13], though it was in the context of OR-SAT , not OR-
QBCNFSAT .

Lemma 1. OR-QBCNFSAT is W-reducible to QBCNFSAT

Proof. Let 〈{φi}, 1n〉 be an instance of OR-QBCNFSAT . Assume without loss of
generality that each φi has exactly n variables and that the quantifiers alternate start-
ing with existential quantification over x1, continuing with quantification over x2, x3

etc. We construct in polynomial time in m an equivalent instance of QBCNFSAT
with at most poly(n) variables and of size poly(m). We first check if the number of
input formulae is greater than 2n or not. If yes, we solve the original instance by brute
force search and output either a trivial true formula or a trivial false formula depend-
ing on the result of the search. If not, then we define a new formula with dlog(m)e
additional variables y1, y2 . . . yk. We identify each number between 1 andm uniquely
with a string in {0, 1}k. Now we define the formula ψi corresponding to φi as follows.
Let the stringwi ∈ {0, 1}k correspond to the number i. Then ψi = z1∧z2 . . .∧zk∧φi,
where zr = yr if wr = 1 and the complement of yr otherwise. The output formula
ψ starts with existential quantification over the y variables followed by the standard
pattern of quantification over the x variables followed by the formula which is the
OR of all ψi’s, i = 1 . . .m. It is not hard to check that ψ is valid iff one of the φi’s is.
♣

Theorem 3. If QBCNFSAT is compressible, thenPSPACE ⊆NP/poly, and hence
PSPACE = Σp

3 .

Instance Compression for the Polynomial Hierarchy and Beyond 9

Proof. Let ϕ be any OR-QBCNFSAT instance of size m consisting of the dis-
junction of Quantified Boolean Formula (QBF) in CNF , each of size at most n.
Using Lemma 1, ifQBCNFSAT is compressible,OR-QBCNFSAT is also com-
pressible. So ϕ is compressible. Rest of the proof follows the similar technique used
by Fortnow and Santhanam [2], which more generally shows that any language L
for which OR-L is compressible lies in coNP/poly. Thus, since QBCNFSAT
is PSPACE-complete and PSPACE is closed under complementation, a com-
pression for it implies PSPACE is in NP/poly. Hence by the result of Yap [3], it
follows that PH collapses to the third level. Combining this with the Karp-Lipton
theorem for PSPACE, we have that PSPACE = Σp

3 . ♣

5 Succinct IP and PSPACE

IP is the class of problems solvable by an interactive proof system. An interactive
proof system consists of two machines, a Prover, P , which presents a proof that a
input string is a member of some language, and a V erifier, V , that checks that the
presented proof is correct. Now we are extending this idea of IP to Succinct IP ,
where the total number of bits communicated between prover and the verifier is
polynomially bounded in parameter length.

We define V erifier to be a function V that computes its next transmission to the
Prover from the message history sent so far. The function V has three inputs:
(1) Input String, (2) Random input and (3) Partial message history

m1#m2# . . .#mi is used to represent the exchange of messages m1 through
mi between P and V . The Verifier’s output is either the next message mi+1 in the
sequence or accept or reject, designating the conclusion of the interaction. Thus V
has the function from V : Σ∗ × Σ∗ × Σ∗→ Σ∗ ∪ { accept, reject }.
The Prover is a party with unlimited computational ability. We define it to be a
function P with two inputs:
(1) Input String and (2) Partial message history
The Prover’s output is the next message to the Verifier. Formally, P : Σ∗ × Σ∗ →
Σ∗. Next we define the interaction between Prover and the Verifier. For particular
input string w and random string r, we write (V ↔ P)(w, r) = accept if a message
sequence m1 to mk exists for some k whereby

1. for 0 ≤ i < k, where i is an even number, V (w, r, m1#m2# . . .#mi) = mi+1;
2. 0 < i < k, where i is an odd number, P (w, m1#m2# . . .#mi) = mi+1; and
3. the final message mk in the message history is accept.

In the definition of the class Succinct IP , the lengths of the Verifier’s random input
and each of the messages exchanged are p(n) for some polynomial p that depends
only on the Verifier. Here n is the parameter length of input instance. Besides, total
bits of messages exchanged is at most p(n) as well.

Succinct IP: A language L (⊆ {〈x, 1n〉|x ∈ {0, 1}∗, n ∈ N}) is in Succinct IP
if there exist some polynomial time function V and arbitrary function P , with
total poly(n) many bits of messages communicated between them and for every
function P̃ and string w,

10 Chiranjit Chakraborty Rahul Santhanam

1. w ∈ L implies Pr[V ↔ P] ≥ 2/3, and
2. w /∈ L implies Pr[V ↔ P̃] ≤ 1/3.

Here poly(n) denotes some polynomial that depends only on the Verifier and n
is the parameter length of input instance w.

We know that QBFormulaSAT is in IP , as IP = PSPACE. But we can even
prove something more. Not only for QBCNFSAT , we can construct Succinct IP
protocol for QBFormulaSAT as well.

Proposition 5. QBFormulaSAT ∈ Succinct IP

Proof Outline : The key idea is to take an algebraic view of boolean formulae by
representing them as polynomials as follows (for 0/1 values).
x ∧ y↔ X . Y , x̄↔ 1 - X and x ∨ y↔ X*Y = 1 - (1 - X)(1 - Y)
We are considering the inputs are from some finite field F. So, if there is a boolean
formula φ(x1, x2, . . . , xn) of length m, we can easily convert that into a polynomial
p of degree at most m following the rules described above.
Let’s consider the given a quantified Boolean formula is
Ψ = Q1 x1 Q2 x2 Q3 x3 . . . Qn xn φ(x1, . . . , xn), where the size of Ψ is m. φ is
any boolean formula over n variables.

But because of multiplication, exponent of a variable may grow exponentially.
So, to arithmetize Ψ we introduce some new terms in quantification to as follows,
Ψ

′
= Q1 x1 R x1 Q2 x2 R x1 R x2 Q3 x3 R x1 R x2 R x3 . . . Qn xn R x1 R x2 . . .

R xn φ(x1, . . . , xn).
Then we arithmetize the quantifiers as well in standard way [14]. We can actually
follow the same IP protocol [14] for QBCNFSAT and see that the degree of the
polynomial exchanged at each stage between P and V is atmost 2. Coefficients of
the polynomials are from the field F which is in poly(n). So O(log(poly(n))) size
messages are sent in any phase. Number of such phases k are bounded by O(n2). So
it’s succinct.

Besides, we can prove, for ’yes’ instance, there is no error. Otherwise, the prob-
ability Pr[V rejects] ≥ (1 − 2/|F|)k−1 which is very close to 1 for sufficiently
large values of |F|. Even, it will be sufficient for us if |F| is bounded by a large
enough polynomial in n. So we can construct a Succinct Interactive proof protocol
for QBFormulaSAT . (detailed proof is mentioned in the Appendix) ♣

Problem in finding Succinct IP protocol for QBCSAT: In case of QBCSAT ,
similar arithmetization technique will give polynomial of degree much larger size,
actually exponential in m. As a result, for polynomial (in m) size field F, the error
bound will be much higher. Now, to reduce the error, we have to use Field F of larger
size, basically exponential inm. This will give us each coefficients of the polynomials
exchanged between prover and verifier to be of size log(epoly(m)), i.e. poly(m).
So, it’s not succinct any more. So we can construct IP protocol for QBCSAT , but
still don’t know how to make it succinct.

Instance Compression for the Polynomial Hierarchy and Beyond 11

6 Future Directions

There are various possible directions. Suppose CircuitSAT is compressible within a
class C. Here we have considered C to be the class NP and got some interesting
results. For any general class C we know from [2] that the immediate consequence
is the collapse of Polynomial Hierarchy at third level. But it’s still not known how
our results for compression at second level of Polynomial Hierarchy will be af-
fected for compression into an arbitrary classC. Besides, one could try to work under
the weaker assumption that SAT or OR-SAT or OR-CircuitSAT is compressible
instead of CircuitSAT . We also don’t know whether there are similar implications
for probabilistic compression where we allow certain amount of error in compression.
One can even try to find a Succinct IP protocol for QBCSAT to show Succinct
IP = PSPACE or try to find some negative implications of such protocol existing
for QBCSAT .

References

1. D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applications.
In Proceedings if the 47th Annual IEEE Symposium on Foundations of Computer Science, pages
719-728, 2006.

2. L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for NP.
Journal of Computer and System Sciences, 77(1):91-106, January 2011. Special issues celebrating
Karp’s Kyoto Prize.

3. Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science, 26: 287-300, 1983.

4. Leonard Adleman. Two theorems on random polynomial time. In Proceedings of the 20th Annual
IEEE Symposium on the Foundations of Computer Science, pages 75-83, 1978.

5. R. Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
6. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
7. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, Danny Hermelin: On problems

without polynomial kernels. J. Comput. Syst. Sci. 75(8): 423-434 (2009)
8. Stefan Kratsch, Magnus Wahlstrom: Preprocessing of Min Ones Problems: A Dichotomy CoRR

abs/0910.4518: (2009)
9. Holger Dell, Dieter van Melkebeek: Satisfiability allows no nontrivial sparsification unless the

polynomial-time hierarchy collapses. STOC 2010: 251-260
10. H. Buhrman, J. M. Hitchcock: NP-Hard Sets are Exponentially Dense Unless NP is contained in

coNP/poly. Elect. Colloq. Comput. Complex. (ECCC) 15(022): (2008).
11. K.A. Abrahamson, R.G. Downey, and M.R. Fellows. Fixed-parameter tractability and complete-

ness IV: On completeness for W[P] and PSPACE analogs. Annals of pure and applied logic,
73:235-276, 1995.

12. J. Flum and M. Grohe. Describing parameterized complexity classes. Information and Computation
187, 291-319 (2003)

13. Y. Chen, J. Flum, M. Mller. Lower bounds for kernelizations. CRM Publications, Nov. 2008.
14. M. Sipser. Introduction to the Theory of Computation.Course Technology, 2nd edition, 2005.
15. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University

Press, 2009.

12 Chiranjit Chakraborty Rahul Santhanam

Appendix:

Theorem 2: CircuitSAT is non-uniformly compressible within NP implies that
ΣiCircuitSAT is non-uniformly compressible within NP for all i > 1.

Proof. Suppose C is a ΣiCircuitSAT instance. So from the definition we can say
that,
C ∈ ΣiCircuitSAT ⇔ ∃ u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni C (u1

, . . . , ui) = 1,
where Qi denotes ∃ or ∀ depending on whether i is odd or even respectively.

Now, suppose CircuitSAT is compressible. To prove ΣiCircuitSAT is com-
pressible for all i > 1, we have to check the base case at the first place, that is for
the case when i = 2. From the Theorem 1, we can say that if CircuitSAT is non-
uniformly compressible within NP , Σ2CircuitSAT is also non-uniformly com-
pressible within NP . So the statement is true for base case.

Now suppose the statement is true for all i ≤ k. We have to prove that the state-
ment is true for i = k + 1 as well. So, assuming CircuitSAT is non-uniformly com-
pressible within NP implies ΣiCircuitSAT is non-uniformly compressible within
NP for all i ≤ k, we have to prove that Σk+1CircuitSAT is also non-uniformly
compressible within NP .

Suppose C is a Σk+1CircuitSAT instance of size m. So from the definition we
can say that,
C ∈Σk+1CircuitSAT ⇔∃ u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qk+1 uk+1 ∈ {0, 1}nk+1

C (u1 , . . . , uk+1) = 1,
whereQk+1 denotes ∃ or ∀ depending on whether (k+1) is odd or even respectively.

Now, let’s fix u1 to u
′
. So now we can define a new language as follows,

〈C, u′〉 ∈ L′ ⇔ ∀ u2 ∈ {0, 1}n2 . . . Qk+1 uk+1 ∈ {0, 1}nk+1 C (u
′
, u2 , . . . , uk+1)

= 1,
whereQk+1 denotes ∃ or ∀ depending on whether (k+1) is odd or even respectively.

So it’s clear from the above definition that L
′

is a Πp
k language (of instance size

≤ O(m+ n1)) and any instance of L
′

can be polynomially reduced to an instance of
ΠkCircuitSAT (becauseΠkCircuitSAT is aΠp

k -Complete language). As shown
in Proposition 1, the size of the witness will be preserved in this reduction. So this
reduction is essentially a W -reduction. Suppose this Πp

kCircuitSAT instance is C
′
.

So from the above arguments,
C ∈Σk+1CircuitSAT ⇔∃u

′〈C, u
′〉 ∈L′

and 〈C, u
′〉 ∈L′⇔C

′ ∈ΠkCircuitSAT
Here the instance length |C| = m and |C ′ | = poly(m). poly(.) is denoting just an ar-
bitrary polynomial function.

Suppose g is the function to obtain C
′

from C, running in polynomial (in m)
time. Namely, C

′
= g(C, u

′
).

From the induction hypothesis we can say, ΣkCircuitSAT is non-uniformly
compressible within NP . So any ΠkCircuitSAT instance, say C

′
is non-uniformly

compressible to a CoNP instance as ΠkCircuitSAT = coΣkCircuitSAT . After
compression suppose the instance is C

′′
which, without loss of generality, we can

take as a Circuit-UnSAT instance. Here |C ′′ | = poly(n
′
) where n

′
= (n2 + n3 +

Instance Compression for the Polynomial Hierarchy and Beyond 13

. . .+ nk+1)
So, C

′ ∈ ΠkCircuitSAT ⇔ C
′′ ∈ Circuit-UnSAT .

So from the above arguments we can say,
C

′ ∈ΠkCircuitSAT ⇔C
′′

= f1(C
′
,w1) = f1(g(C, u

′
),w1) ∈Circuit-UnSAT ,

where |C ′′ | = poly(n
′
) and the string w1 (of size at most poly(m)) is capturing the

notion of polynomial size advice. Here the compression function f1 is running in
polynomial(in m) time.

Now, if CircuitSAT is non-uniformly compressible within NP so is SAT as
SAT is a special case of CircuitSAT . Now, OR-SAT is also non-uniformly com-
pressible as OR-SAT is W -reduced to SAT .

It can be proved that [2] , ifOR-SAT is non-uniformly compressible thenCoNP
⊆ NP/poly.

Now combining the above statements we can say that if CircuitSAT is non-
uniformly compressible withinNP thenCoNP ⊆NP/poly. So we can now convert
our CoNP language (here Circuit-UnSAT) instance C

′′
into a NP language

instance using polynomial size advice. Let’s consider that NP language instance to
be a CircuitSAT instance C

′′′
. In the above procedure, the length of the instance

definitely will not increase. So clearly |C ′′′ | = poly(n
′
).

So from the above arguments we can say that,
C

′ ∈ ΠkCircuitSAT ⇔ C
′′′

= f2(C
′′
, w2) = f2(f1(g(C, u

′
), w1), w2) ∈

CircuitSAT , where |C ′′′ | = poly(n
′
) and the string w2 (of size at most poly(n

′
)

) is capturing the notion of polynomial size advice which arises in the proof of [2].
Here the compression function f2 is running in polynomial(in n

′
) time.

Now we define a new circuit C1 as follows. C1 is a non-deterministic circuit
whose non-deterministic input is divided into two strings: u1 of length n1 and v
of length poly(n

′
). Given its non-deterministic input, C1 first computes C

′′′
= f2(

(f1(g(C, u1), w1), w2). This can be done in polynomial size in m since the functions
f2, f1 and g are all polynomial-time computable and C, w1 and w2 are all fixed
strings of size polynomial in m. It then uses its input v as non-deterministic input
to C ′′′ and checks if v satisfies C ′′′. This can be done in polynomial-size since the
computation of a polynomial-size circuit can be simulated in polynomial time. If so,
it outputs 1, else it outputs 0.

Now we have,
C ∈ Σk+1CircuitSAT ⇔ ∃ u1 ∈ {0, 1}n1 ∃ v ∈ {0, 1}n

′
C1 (u1, v) = 1

C /∈ Σk+1CircuitSAT ⇔ ∀ u1 ∈ {0, 1}n1 ∀ v ∈ {0, 1}n
′
C1 (u1, v) = 0

The key point is that we have reduced our original Σk+1CircuitSAT question
to a CircuitSAT question, without a super-polynomial blowup in the witness size.
This allows us to apply the compressibility hypothesis again. Also, note that C1 is
computable from C in polynomial size.

Next, using the compressibility assumption forCircuitSAT , we can non-uniformly
compressC1 to anNP language instanceC2 of size poly(n1 + n

′
) i.e. poly(n1 + n2 +

. . . + nk+1). Our final compression procedure just composes the procedures deriving
C1 from C and C2 from C1, and since each of these can be implemented in poly-
nomial size, our compression of the original Σk+1CircuitSAT instance is a valid
non-uniform instance compression.

14 Chiranjit Chakraborty Rahul Santhanam

So using mathematical induction we can say if CircuitSAT is non-uniformly
compressible within NP, ΣiCircuitSAT is also non-uniformly compressible within
NP for all i > 1. ♣

Proposition 5: QBFormulaSAT ∈ Succinct IP
We are now basically going to scrutinize the formal proof of the part, PSPACE

⊆ IP [14]. So we are going to use the same arithmetization technique. Interestingly,
not only for CNF SAT , Formula SAT version (Quantified) has Succinct IP as
well.

Proof. The key idea is to take an algebraic view of boolean formulae by representing
them as polynomials. We are considering the inputs are from some finite field F. We
can see that 0, 1 can be thought of both as truth values and as elements of F. Thus
we have the following correspondence between formulas and polynomials when the
variables take 0/1 values:
x ∧ y↔ X . Y
x̄↔ 1 - X
x ∨ y↔ X*Y = 1 - (1 - X)(1 - Y)
So, if there is a boolean formula φ(x1, x2, . . . , xn) of lengthm, we can easily convert
that into a polynomial p of degree at most m following the rules described above.

Let’s consider the given a quantified Boolean formula is
Ψ = Q1 x1 Q2 x2 Q3 x3 . . . Qn xn φ(x1, . . . , xn),
where the size of Ψ is m. φ is any boolean formula over n variables.

To arithmetize Ψ we introduce some new terms in quantification and rewrite the
expression in the following manner:
Ψ

′
=Q1 x1 Rx1 Q2 x2 Rx1 Rx2 Q3 x3 Rx1 Rx2 Rx3 . . . Qn xn Rx1 Rx2 . . . R xn

φ(x1, . . . , xn),
We now rewrite this Ψ

′
as follows : Ψ

′
= S1 x1 S2 x2 S3 x3 . . . Sk xk [φ],

where each Si ∈ { ∃,∀, R }. We are going to define R very soon. We can see that
value of k can be atmost O(n2).

For each i ≤ k we define the function fi. We define fk(x1, x2,. . . , xn) to be the
polynomial p [i.e. p(x1, x2, . . . , xn)] obtained by arithmetizing φ. For i < k we define
fi in terms of fi+1:

Si+1 =∀: fi(. . .) = fi+1(. . . , 0).fi+1(. . . , 1);
Si+1 =∃: fi(. . .) = fi+1(. . . , 0)*fi+1(. . . , 1);
Si+1 =R: fi(. . . , a) = (1-a)fi+1(. . . , 0) + afi+1(. . . , 1).
Here we reorder the inputs of the functions in such a way that variable yi+1 is

always the last argument. If S is ∃ or ∀, fi has one fewer input variable than fi+1

does. But if S is R, both of them have same number of arguments. Here “. . .” can be
replace by a1 through aj for appropriate values of j.

We can observe that operation R on polynomial doesn’t change their values for
boolean inputs. So f0() is still the truth value of Ψ . Now we can observe that these
Rx operation produces a result that is linear in x. We added Rx1 Rx2 . . . Rxi after
Qixi in Ψ

′
in order to reduce the degree of each variable to 1 prior to the squaring

due to arithmetizing Qi.

Instance Compression for the Polynomial Hierarchy and Beyond 15

We are now ready to describe the protocol. Here P is denoted to be the prover
and V to be the verifier as we always use.

Phase 0: [P sends f0()]
P → V : P sends f0() to V . V checks that f0() = 1 and rejects if not.
.
.
.

Phase i: [P persuades V that fi−1(r1, . . .) is correct if fi(r1, . . . , r) is correct]
P → V : P sends the coefficients of fi(r1, . . . , z) as a polynomial in z. (Here r1 . . .
denotes a setting of the variables to the previously selected random values r1, r2, . . .
)
V uses these coefficients to evaluate fi(r1, . . . , 0) and fi(r1, . . . , 1). Then it checks
that the polynomial degree is at most 2 and that these identities hold:

fi−1(r1, . . .) =
{
fi(r1, . . . , 0).fi(r1, . . . , 1) if Si = ∀
fi(r1, . . . , 0) ∗ fi(r1, . . . , 1) if Si = ∃

and

fi−1(r1, . . . , r) = (1− r)fi(r1, . . . , 0) + rfi(r1, . . . , 1) if Si = R

If either fails, V rejects.
V → P : V picks a random boolean value r from F and sends it to P . If Si = R, this
r replaces the previous r
Then it goes to phase i+1, where P must persuade V that fi(r1, . . . , r) is correct.
.
.
.

Phase k+1: [V checks directly that fk(r1, . . . , rn) is correct]
V evaluates p(r1,. . .,rn) to compare with the value V has for fk(r1, . . . , rn). If they
are equal, V accepts, otherwise V rejects. That completes the description of the pro-
tocol.

Here polynomial p is nothing but the arithmetization of the formula φ, as we
have already seen. It can be shown that the evaluation of this polynomial can be
done in polynomial time by following ways. We can simply replace all the three or
more input gates (nodes) in the formula φ, by equivalent two input nodes. This will
introduce some extra gates (nodes), but now the number of gates in the formula is
polynomially bounded in m.

Now for the evaluation of the polynomial p for r1, . . . , rn, we will consider the
modified φ and apply the arithmetization for the nodes individually. We will evaluate
the nodes from lower level. Before we evaluate for any node, corresponding inputs
are already evaluated and ready to use. Evaluation for each node will take constant
amount of time. So total evaluation of p for r1, . . . , rn through modified φ will take
poly(m) time.

16 Chiranjit Chakraborty Rahul Santhanam

Now we can try to prove that the probability of error is bounded within the limit.
If the prover P always returns the correct polynomial, it will always convince V . If
P is not honest then we are going to prove that V rejects with high probability:

Pr[V rejects] ≥ (1− d/|F|)k

where d is the highest degree of the polynomial sent in each stage. We can see that
value of k can be atmost O(n2). As the value of d is 2 in our case, the right hand
side of the above expression is at least (1 - 2k/|F|), which is very close to 1 for
sufficiently large values of |F|. It will be sufficient for us if |F| is bounded by a large
enough polynomial in n.

Now we are going to see how the proof works when the proves is trying to cheat
for “no” instance. In the first round, the prover P should send f0() which must be
1. Then P is supposed to return the polynomial f1. If it indeed returns f1 then since
f1(0) + f1(1) 6= f0() by assumption, V will immediately reject (i.e., with probability
1). So assume that the prover returns some s(X1), different from f1(X1). Since the
degree d non-zero polynomial s(X1) - f1(X1) has at most d roots, there are at most
d values r such that s(r) = f1(r). Thus when V picks a random r,

Prr[s(r) 6= f1(r)] ≥ (1− d/|F|) . . . (1)

Then the prover is left with an incorrect claim to prove in all the phases. So
prover should lie continuously. If P is lucky, V will not understand the lie. By the
induction hypothesis, the prover fails to prove this false claim with probability at least
≥ (1− d/|F|)k−1. Base case is easy to see from (1). Thus we have,

Pr[V rejects] ≥ (1− d/|F|).(1− d/|F|)k−1 = (1− d/|F|)k

If P is not lucky, as the verifier is evaluating p() explicitly in the last stage, V will
anyway detect the lie.

Here in the description of the protocol, we can see that the degree of the polyno-
mial at each stage is atmost 2. So we need just constant number of coefficients for
encoding such polynomials. coefficients are from the field F which is of size poly(m).
So O(log(poly(m))) i.e. O(poly(n)) size messages are sent in any phase. Even, it
will be sufficient for us if |F| is bounded by a large enough polynomial in n. Num-
ber of such phases are bounded by (k+1) which is O(n2). So we have constructed a
Succinct Interactive proof protocol for QBFormulaSAT . ♣

