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ABSTRACT
We study the r -gather clustering problem in a mobile and dis-

tributed se�ing. In this problem, nodes must be clustered into

groups of at least r nodes each, and the goal is to minimize the

diameter of the clusters. �is notion of clustering is motivated by

protecting user anonymity in location-based services or trajectory

publication. Prior works on r -gather problems are centralized

and cannot be easily adapted to the mobile se�ing. We describe a

distributed algorithm that produces compact clusters, within an

approximation factor 4 of the minimum cluster diameter possible.

�e algorithm can run on the mobile nodes and access points at

the network edge locally, and can handle node mobility, rapidly

switching cluster memberships as needed. �e distributed ap-

proach naturally comes with the advantage of greater resilience

and stability. Additionally, we show that it achieves local optimal-

ity; i.e., from the point of view of any particular node, the solution

is nearly as favorable as possible, irrespective of the global con�g-

uration. We also show how to cluster trajectories with dynamic

re-groupings. Further, we improve the theoretical hardness results

for the problem in the Euclidean se�ing.

CCS CONCEPTS
•Security and privacy→ Pseudonymity, anonymity and un-
traceability; •Networks→ Location based services;

KEYWORDS
Location, clustering, anonymity, in-network computing, edge com-

puting
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1 INTRODUCTION
We study the problem of clustering mobile nodes into meaningful,

highly location-dependent clusters. In order to quantify “meaning-

ful” clusters, we establish a lower bound, r , on the size of clusters.

�e resulting r -gather clustering problem is formally stated as

follows: Given a set of n points P = {p1,p2, . . . ,pn } in Euclidean

space and a value r , cluster the points into groups of at least r
points each such that the largest diameter of the clusters is mini-

mized. We consider two popular notions of “diameter” of a cluster:

the usual notion of diameter of a point set (the maximum distance

between two points of the set), and the diameter of the minimum

enclosing ball (MEB) of the set. In this paper we focus on the

r -gather problem in a mobile and distributed se�ing and propose

algorithms for this problem.

1.1 Motivation
One motivation of this version of clustering arises in location

privacy in wireless networking. With the ubiquitous use of GPS

receivers on mobile devices, it is now common practice that the

locations of these mobile devices are recorded and collected. �is

raises privacy concerns as location information is sensitive and

can be used to identify the user of the devices [9]. �is problem is

more challenging when location is part of the input in location-

based queries, for example, �nding the co�ee shop closest to the

user, querying tra�c situations, and security-related applications

such as reporting suspicious behaviors. In these se�ings, the

user submits a query to location-based services (LBS) through a

mobile device. An adversary that compromises the LBS server can

infer private information about the user. Protection of privacy is

characterized into two di�erent yet related types: query privacy,

e.g., whether an adversary can identify the user who issued the

query (i.e., associate user IDs with queries), and location privacy,

e.g., how much an adversary can learn regarding the location of a

user. �orough discussions of this topic can be found in [14, 25].

For query privacy, one approach is to use the k-anonymity

measure [26], which groups locations into clusters, each of at least

k points. In previous work [18, 22] “cloaking boxes” have been

used to group spatio-temporal user queries into a box with at

least k queries, and then the box (instead of the query locations

themselves) is submi�ed to the LBS server. In this way, the query

sender is indistinguishable from the k − 1 other users in the same

box. It is ideal to group queries from nearby locations into the

same box such that the query accuracy is maximized. Towards this

goal, the objective is to minimize the diameter of the clusters, since

this yields location data with the best possible accuracy, while
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not hurting user privacy under the k-anonymity measure. �is is

precisely the r -gather problem [2].

Apart from protecting the privacy of a single snapshot, which is

formulated by the static r -gather problem, it is natural to consider

the dynamic se�ing for mobile users. When mobile phones contin-

uously issue location-based queries, continuous spatial cloaking

boxes are created [13, 27, 28]. �e challenge is that the cloaking

box may become huge a�er a long time period – if the mobile

nodes move away from each other – leading to high computa-

tional cost and low query accuracy. Velocity of movement has

been taken into consideration in constructing these continuous

spatial cloaking boxes [23] but nothing provable has been found.

Clearly there is a tradeo� between the quality of the cluster size

and the stability of the clusters. Ideally we would like to keep tight

clusters, almost as tight as what could be achieved for the node

distribution at each snapshot, and keep the number of membership

changes low.

�e r -gather formulation also appears in protecting privacy in

trajectory publication. Here trajectories are collected and before

they are published to the third party or the public, they need

to be anomymized to remove sensitive information. Towards

this objective, one approach is to group k or more co-localized

trajectories within the same time period into a single aggregate

trajectory with k-anonymity [10]. �e IDs of the trajectories are

removed so that one cannot associate an ID with any particular

trajectory in a group of at least k . �is is essentially the r -gather

problem applied for grouping trajectories. It can be considered as

an alternative way of clustering mobile nodes. Here the cluster

memberships remain �xed and we minimize the distance between

two trajectories in the same cluster, while each cluster has a lower

bound on cardinality.

In this paper we also discuss an approach in between the two

extremes of clustering complete trajectories and clustering loca-

tion snapshots. �is approach is to split trajectories into a number

of segments that are then clustered. �is problem can be stated

as: given a parameter k specifying the maximum number of times

we can re-cluster over the time period of interest, when and how

should re-clustering be done so that the maximum cluster diameter

is minimized, while satisfying the r -gather constraint that each

cluster has at least r elements?

Besides the connection to location privacy issues, the r -gather

problem is a natural and useful variant of mobile clustering in

general. Many mobile applications rely on grouping the mobile

nodes into clusters for management purposes; thus, clustering

mobile nodes, including distributed clustering, has been studied in

many prior papers, e.g., in [7, 8, 11, 12, 17, 20]. However, none of

the previous work strictly enforces a lower bound on the cluster

cardinality, which is a natural condition to ensure proper allocation

of resources. In contrast, our method can handle mobile clustering

subject to a cardinality bound and is applicable to trajectories and

trajectory segments.

1.2 Related Work
�e r -gather problem has been studied for instances in general

metric spaces. Aggarwal et al. [2] give a 2-approximation algo-

rithm and show that, for r > 6, it is NP-hard to approximate with

an approximation ratio be�er than 2. �e approximation algorithm

�rst guesses the optimal diameter, then greedily selects clusters

Points Inserted: 80 r=3
Cluster 1

Cluster 2

Cluster 3

Cluster 4

(a) (b)

Figure 1: Examples: (a) A 5-gather clustering on 80 points;
(b) A 3-gather clustering on 20 trajectories, in which trajec-
tories in the same group have the same color.

with twice the diameter; �nally, a �ow algorithm is used to assign

at least r points to each cluster. �is procedure is repeated until

a good choice of diameter is found. Note that this solution only

selects input points as cluster centers.

Armon [6] extended the result of Aggarwal et al. proving that,

for r > 2, it is NP-hard to approximate with a ratio be�er than

2 for the case of general metric spaces. Armon also considers a

generalization of the r -gather clustering problem, called the r -
gathering problem, which also considers a given set of potential

cluster centers (potential “facility locations”), each having a �xed

set-up cost that is included in the objective function. Armon pro-

vides a 3-approximation for the min-max r -gathering problem and

proves that it is NP-hard to obtain a be�er approximation factor.

Additional results include various approximation algorithms for

the min-max r -gathering problem with a proximity requirement
that each point be assigned to its nearest cluster center.

For the case r = 2, both [5] and [24] provide polynomial-time ex-

act algorithms. Shalita and Zwick’s [24] algorithm runs in O (mn)
time, for a graph with n nodes andm edges. All of these algorithms

were for a centralized se�ing. Not much is known in the distributed

and mobile networks. Distributed clustering has been considered

from a general distributed computing point of view [19, 21], how-

ever, these do not satisfy the r -gather requirement. Additionally,

clustering mobile location data at the network edge requires a

local approach with which general distributed algorithms are not

compatible.

1.3 Our Results
In this paper we investigate the r -gather problem in the Euclidean

metric for dynamic/mobile nodes, and in the decentralized se�ing.

We obtain the following results.

In the decentralized se�ing we design a 4-approximation algo-

rithm in which each node makes local decisions. �e algorithm

is based on a certain type of sweeping procedure. �e sweep-

clustering of a point depends only on local con�gurations; i.e., it

is not in�uenced by outliers elsewhere in the network. �is nice

property ensures that the clustering is robust to noise/outliers,

and the size of the cluster containing a node is determined only

by the local node density. Fig. 1(a) shows an example of such

clustering. �is algorithm can be extended to the mobile se�ing,

and the solution adapts naturally according to the mobility. We

analyze the stability of this algorithm and show that under certain
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mobility models the number of changes to the clustering mem-

bership can be bounded by O (n2) for n mobile nodes, while the

optimal r -gather solution may have to change Ω(n3) times. By

relaxing the quality of clusters by a factor of 4, we achieve be�er

stability of the clustering solution.

In the se�ing of clustering trajectories, we show that if we min-

imize the maximum distance of a pair at any time of the trajectory,

then the same approximate r -gather algorithms apply for suitably

de�ned distances between trajectories (Fig. 1(b)). When we allow

k regroupings for a given parameter k and minimize the maxi-

mum diameter of the clusters, we show that one can use dynamic

programming and obtain a 2-approximation.

We also show new results on hardness of approximation for the

r -gather problem in the planar Euclidean metric. For minimizing

the largest diameter of the clusters, we show that it is NP-hard

to approximate be�er than a factor

√
2 +
√

3 ≈ 1.932 when r ≥ 3.

Recall that the diameter of a set is the maximum distance between

a pair of points in the set. For minimizing the largest radius of the

minimum enclosing balls (MEB) of the clusters, we show that it is

NP-hard to approximate be�er than a factor

√
13/2 ≈ 1.802 when

r ≥ 3.

Finally, we show clustering results and comparisons of the var-

ious algorithms introduced here on a real mobility dataset. �ese

results are reported in the same order in the next few sections.

2 A DISTRIBUTED ALGORITHM
In this section, we consider the r -gather problem as a distributed

computation problem for n nodes placed at arbitrary locations in

the plane. �e distributed, or local perspective developed here will

later be critical in building the lightweight methods for maintain-

ing clusters in motion.

We assume that a node can detect its own location, either by

the device itself, or by triangulation, utilizing locations of nearby

access points. For now, we assume that the nodes themselves

can carry out distributed computations; later, we will explain

how computations can be generalized to be carried out by local

infrastructure devices in the spirit of edge computation.

2.1 Clustering with distributed maximal
independent neighborhoods

In this subsection, we assume that the nodes are static, and our ob-

jective is to group them into compact clusters of size at least r . We

will use the r -nearest neighbor (r -NN) graph for our computations.

We count a node itself as one of its r nearest neighbors.

Symbolically, we write pi to denote the location of node i . �e

set P is the set of all node locations. For any point pi , we let p
(r )
i

denote its r th nearest neighbor in P , and we letdr (pi ) = |pi − p
(r )
i |

denote the corresponding distance. We write Nr (pi ) for the set

of r nodes nearest to point pi . �at is, Nr (pi ) are the neigh-

bors of i in the r -NN graph. We write N (P ) for the set of all

such r -neighborhoods. If Nr (pi ) ∩ Nr (pj ) = ∅, we say that the

r -neighborhoods of pi and pj are independent.

Algorithm Description. Our algorithm develops and re�nes a

set G of clusters. Initially, G = ∅. We let cG denote the center of a

cluster G ∈ G.

�e basic algorithm executes the following steps to construct

the set G of clusters:

M1. At each point pi ∈ P , compute p
(r )
i , dr (pi ) and Nr (pi ).

M2. Select a maximal independent subset of neighborhoods

from the set Nr (P ), add each as a cluster in G, and mark
the nodes in the selected neighborhood sets as “clustered”.

M3. For any unmarked node pi ∈ P , assign pi to the cluster

G ∈ G whose center, cG , is closest to pi .

�e nodes that belong to r -neighborhoods of cluster centers

and are added to clusters in step M2 are called inner members

of the cluster, while nodes that are added in step M3, are called

the outer members. Note that the clustering is not unique, and a

neighborhood centered at any node is a candidate for forming an

inner cluster. One example of the result of the algorithm is shown

in Fig. 2, for neighborhoods of size 5.

�e maximal independent subset in step M2 can be computed

rapidly, in time O (logn), using the randomized distributed algo-

rithm of Alon et al. [3]. In this classical algorithm, nodes work

in a parallel distributed model. In each round, a node v marks

itself as a candidate to be in the maximal independent set (MIS)

with probability
1

2·deg(v )
. If no neighbor with higher degree is

marked, then it joins the MIS; otherwise, it unmarks itself. Any

MIS node and neighbors naturally withdraw from the contention.

�is approach leverages the parallel nature of the system to com-

plete computations in O (log) expected number of rounds of time,

where any centralized sequential algorithm would have required

at least Ω(n).
In our case, this algorithm can be adapted by constructing a

graph whose nodes correspond to elements of Nr (P ), and whose

edges link two nodes if the r -neighborhoods represented by them

have a nonempty intersection. �e maximal independent set algo-

rithm [3] operating on this graph then produces the independent

neighborhoods.

Figure 2: Clustering based on independent neighborhoods,
for r = 5. �e dark shaded disks show the inner cluster,
while the nodes in the lightly shaded regions are the outer
members of the clusters. �e randomly selected cluster cen-
ters are colored white.

Proof of approximation. We will see later that computing the

optimal r -gather clustering is NP-hard in the Euclidean se�ing.

Here we show that the simple algorithm above approximates an

optimal clustering: if DOPT is the diameter of the largest cluster

in an optimal clustering, then the diameter of any of the clusters

from the algorithm above is at most 4 · DOPT .
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First, denote by DOPT (pi ) the diameter of the cluster that con-

tains pi in any optimal clustering solution. We observe a lower

bound.

Observation 2.1. dr (pi ) ≤ DOPT (pi ).

Proof. Since any disk of radius less than dr (pi ) centered at

pi does not contain r nodes, a disk that contains pi as well as (at

least) r − 1 other nodes must have radius at least dr (pi )/2. �us,

the diameter DOPT (pi ) must be at least dr (pi ). �

Let dmax

r = maxi dr (pi ) be the largest distance from a node to

its r th nearest neighbor in the given con�guration P . We have an

easy corollary.

Observation 2.2. dmax

r ≤ DOPT .

Next, we see that in any cluster, the distance of a node from the

center can be bounded by the sum dr (pi ) + d
max

r .

Lemma 2.3. For any cluster G ∈ G and any node pi ∈ G, |pi −
cG | ≤ dr (pi ) + d

max

r .

Proof. Consider a cluster G ∈ G, centered at cG , and pi ∈ G.

If pi was assigned to cluster G in step M2, then we know that

pi ∈ Nr (cG ), implying that |pi − cG | ≤ dr (cG ) ≤ dr (pi ) + dr (cG ).
If pi was not assigned to cluster G in step M2, but was instead

assigned to G in step M3, we know, by maximality of the indepen-

dent set, that the r -neighborhood Nr (pi ) intersects some other

r -neighborhood, say Nr (pj ), that was a cluster in the maximal

independent set in step M2. (It may or may not be the case that

G = Nr (pj ).) �us, there is a node py ∈ Nr (pi ) ∩ Nr (pj ), im-

plying that |pi − py | ≤ dr (pi ) and that |py − pj | ≤ dr (pj ). �e

triangle inequality implies then that |pi − pj | ≤ |pi − py | + |py −
pj | ≤ dr (pi ) + dr (pj ) ≤ dr (pi ) + d

max

r . Since pi is closer to cG
than to the alternative center pj , we get the claimed inequality,

|pi − cG | ≤ |pi − pj | ≤ dr (pi ) + d
max

r . �

Using the properties above, it follows that the algorithm pro-

duces a 4-approximation of the diameter:

Corollary 2.4. �e diameter of any G ∈ G is at most 4DOPT .

Proof. Consider any pi ,pj ∈ G. By Lemma 2.3, |pi − cG | ≤
dr (pi ) + d

max

r ≤ 2dmax

r and |pj − cG | ≤ dr (pj ) + d
max

r ≤ 2dmax

r .

�us, by the triangle inequality, |pi − pj | ≤ 2dmax

r + 2dmax

r =

4dmax

r ≤ 4DOPT . �

�e algorithm described above allows arbitrary nodes to be

cluster centers, and therefore can result in unnatural clusters. �is

e�ect is seen in Fig. 2, where the cluster on the le� contains two rel-

atively dense subsets that could have been clusters of size 5 or more

on their own, but neither of these being in the 5-neighborhood of

the selected center, they are not in the inner cluster.

�us, the algorithm is competitive for the worst case, but for

an individual node or neighborhood, it can be suboptimal where

nodes in dense neighborhoods are placed near the boundary of the

cluster, and far from the center. We would like results for which

clusters are more compact, as shown in Fig. 4, and each node is

represented by a cluster center close to itself. We describe next

the algorithm for such coherent clustering.

2.2 Distributed sweep algorithm with
coherence guarantee

To ensure that the dense neighborhoods form clusters, we take a

greedy approach in which we �rst create clusters in dense regions,

and then in progressively sparser regions.

At each node pi , we consider the function dr (pi ), the distance

to the r th nearest neighbor of pi . �is function can be seen as the

inverse of the local density of nodes at any point. �us, following

our strategy of progressing from dense to sparse regions, we can

process nodes by increasing value of dr .

In a distributed se�ing, instead of sorting all nodes by func-

tion values, we can proceed more locally, starting at local minima.

Intuitively, the algorithm works as follows: any node that is a

local minimum of dr , becomes a cluster center, and its r nearest

neighbors are assigned to its cluster. Following this, any node

whose r -neighborhood intersects with existing clusters gives up

the possibility of becoming a cluster center. Nodes with lowest

value of dr that have neighborhoods independent of existing clus-

ters can now become cluster centers. �is process can be seen as

an upward sweep of the dr function values, where a node does not

make a decision whether or not to become a cluster center until

all of its neighbors that have a lower value have made a decision.

�is decision making is locally sequential, but allows distributed

parallel operation overall (see Fig. 3).

dr (p): Inverse density function

Nodes

Sweep line

Figure 3: Processing nodes in the increasing order of dr can
be equivalently done by a distributed sweep. Instead of a
single sweep line, the distributed algorithm is equivalent
to multiple sweep lines starting at each minimum. Nodes
become cluster centers if none of their r -neighbors are clus-
tered or claiming to be centers.

Algorithm description. We present here a more formal descrip-

tion of the algorithm. We assume that the function values are

distinct at all nodes; ties can be broken by node ids. Each node pi
maintains two variables:

• Its cluster center pointer, intialized to NULL. When node

pi is assigned a cluster, its cluster center pointer is as-

signed.

• A decision state, decided/undecided, to indicate whether

pi is still in contention for becoming a cluster center.

Each node pi is initially in contention to become cluster center;

we prefer nodes pi with smaller values of dr (pi ). �e algorithm

operates in rounds. In each round, every undecided and unclus-

tered node pi requests permission from nodes in Nr (pi ) to become

a cluster center. A�er all responses from nodes in Nr (pi ) arrive at

pi , pi will make a decision as follows.

(1) If all nodes in Nr (pi ) grant permission: then pi be-

comes a cluster center, and all nodes in Nr (pi ) are marked

as clustered and decided. Additionally, they all set their

cluster center pointer to pi .
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(2) If one or more nodes in Nr (pi ) deny permission for
pi : then pi marks itself as decided, implying that it will

not try to become a cluster center any more.

(3) If one ormorenodes inNr (pi ) deferpermission: then

pi does not make a decision and tries again in the next

round.

Any nodepj that receives a permission request frompi responds

as follows:

(1) If pj is clustered: then pj denies permission to pi ;
(2) Else, if all undecided nodes pj′ ∈ Nr (pj ) have values

dr (pj′ ) > dr (pi ): then node pj gives permission to pi ;
(3) Else: pj defers permission to pi .

�e “defer” response from pj essentially implies that the local

sweep has not yet reached the neighborhood, and thus pj does

not have the information to grant or deny permission to pi . Any

node le� unclustered a�er all nodes have set state to decided, is

assigned to the cluster of the nearest center, as in step M3.

Let us refer to the 2-hop neighbors of pi as N 2

r (i ). Formally:

N 2

r (i ) = {k : Nr (i ) ∩ Nr (k ) , ∅}. �e following observation

implies that the algorithm terminates:

Observation 2.5. In each round, at least one node sets the state
to decided.

Proof. Let us suppose to the contrary that in some round

no node makes a decision, but there are undecided nodes in the

system. In the subset U of undecided nodes, suppose pi is a node

where dr (i ) the minimum at i within N 2

r (i ) ∩ U (note that one

such minimum must exist since dr is unique at each node).

Since pi does not make a decision, it must be that all nodes in

Nr (i ) have deferred permission. �erefore, for any j ∈ Nr (pi ) we

can conclude that pj is unclustered since otherwise pj would have

denied permission. Since pj defers permission, it must be that at

least one node pk ∈ Nr (pj ) ∩U satis�es dr (pk ) < dr (pi ). Since

pk ∈ N 2

r (pi ), this contradicts the earlier conclusion that pi is a

minimum of dr in N 2

r (pi ).
�

�e correctness property that any cluster produced by this algo-

rithm has at least r nodes is easy to see. When a cluster center pi
is marked, it is assigned its r nearest neighbors. Since any of these

neighbors then deny permission to their other neighbors, no node

in N 2

r (pi ) can become a center, and thus clusters cannot overlap.

All nodes are clustered, since the �nal step of the algorithm is to

assign cluster centers to all unclustered nodes.

�e result of this algorithm is shown in Fig. 4. We see that

the greedy approach yields results, and for the same point set

as Fig. 2, in this case we get smaller and more compact clusters.

�e following theorem formalizes the fact that for every node, its

assigned cluster center is a good representative.

Theorem 2.6. If node pi belongs to clusterG with center cG , then
|pi −cG | ≤ 2dr (pi ). Also, for any two nodespi ,pj in the same cluster
G, |pi − pj | ≤ 2dr (pi ) + 2dr (pj ).

Proof. Regarding the �rst statement, if pi = cG then the claim

is trivially true. If not, then there exists a node py ∈ Nr (pi ) ∩
Nr (pj ) for some cluster center pj , where py denied permission

to pi . �en, dr (pj ) ≤ dr (pi ), since otherwise py could not have

denied permission to pi while granting one to pj . �us |pi − pj | ≤

Figure 4: Coherent clustering: smaller, more compact clus-
ters than those in Fig. 2.

|pi − py | + |py − pj | ≤ dr (pi ) + dr (pj ) ≤ 2dr (pi ). If pj = cG , then

this concludes the proof. If pj , cG , then since a�er all decisions,

each unclustered node is assigned to the nearest center, we have

|pi − cG | ≤ |pi − pj | ≤ 2dr (pi ).
To obtain the second claim we apply the triangle inequality. �

�is proof implies that the center assigned to any node is at

distance at most twice the distance to its r th nearest neighbor,

irrespective of locations of the rest of the point set. �us, nodes in

dense regions are guaranteed to be assigned to a correspondingly

nearby cluster center. Nodes in sparse regions may have corre-

spondingly distant centers, but in sparse regions, OPT cannot do

much be�er.

�e results above apply to any metric space. �us, we can

perform clustering using L1,L2, . . . ,L∞ or any other metric as

required.

Also observe that all results in this section apply to a weighted

version of r -gather, in which each node has a weight, and the total

weight in each cluster is required to be at least r .

3 THE r -gather CLUSTERING IN THE
MOBILE SETTING

When we consider nodes that move over time, the nature of the

problem changes. Depending on the application, we can consider

clustering of mobile nodes in two di�erent ways:

(1) Maintain dynamic clustering of node locations. As

nodes move, update the clusters to be a good clustering

of the current locations of mobile nodes.

(2) O�line clustering of trajectories. Given the recorded

trajectories of nodes, cluster them into groups that stay

close at all times and thus have similar trajectories.

�e online version (1) can be seen as the dynamic case of main-

taining instantaneous clustering of node locations we have dis-

cussed above. �e o�ine version (2) can be seen as the data

analysis version where we look at mobility pa�erns to �nd groups

or communities of nodes. A variant of (2) is the case in which we

allow nodes to belong to di�erent groups at di�erent time periods,

as can be expected in location data over long periods.

3.1 Dynamic distributed clustering of node
locations

In this subsection, we consider the problem of distributedly up-

dating clusters as nodes move, so that at any instant we have a

good clustering of current locations. �e challenge in maintaining
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the clusters in the face of mobility is to dynamically update the

cluster membership while maintaining stability and coherence.

Mobility and computation. We assume that the mobile nodes

are tracked by a static infrastructure, which may consist of a sensor

network, communication network, access points, or any combina-

tion thereof. Localizations may be obtained either through GPS

or through local triangulations. �e static system acts as an edge

computing infrastructure so that the location data and updates

can be handled locally without the need for long communication

and server bo�lenecks.

For simplicity, we assume that computations are carried out

using the L∞ metric. Note that analogous results hold for other

metrics; further, L∞ distances approximate Euclidean distances

within a constant factor. �e advantage of the L∞ metric is that

disks in this metric take the shape of axis-aligned squares that can

tile the plane. �is feature is useful in the location management

we use below.

Mobility and locationmanagement. We assume that a location

service such as [1] is runnning on the edge system for location

and computation management. �is service works as follows. It

divides the plane into a quadtree hierarchy, in which a square

region is recursively subdivided into four square subregions. �e

lowest level with smallest squares (of unit length) is called level

0, the next level is level 1 etc. A square sα at a level α has 8

neighbors at the same level, and we write this neighborhood as

N (sα ) (see Fig. 5). In the following, these squares are our unit of

measurement.

Each square at each level is assigned a location server by the

infrastructure. �e presence of a mobile node is noted at the server

for squares containing the node at each level. To avoid excessive

updates to the hierarchy, when a nodem leaves a square sα , the

servers at levelα+1 are not updated immediately. Instead, the node

simply leaves a pointer at sα to the new host form in N (sα ). �e

level α + 1 gets updated when the node has passed out of N (sα ).
�is lazy scheme guarantees a low amortized communication

cost to keep the data up to date. In particular, assuming that

communication cost between location servers distance d apart is

bounded by O (d ), the amortized update cost is O (d logd ) when a

mobile node travels a distance d .

Clustering using location hierarchy. �is location hierarchy

can be used to generate approximate r − NN graphs and run the

static algorithms described above. �e clustering is carried out

by these location servers using the weighted version of r -gather,

in which the weight for each server equals the number of mobile

nodes in its square. In this approach, for any nodem, we consider

the neighborhoods of squares at di�erent levels containing it. We

write them as N (sα (m)). And we look for the lowest level at which

N (sα (m)) contains at least r nodes.

�us, when a node m makes a query for the neighborhood

that contains at least r nodes, the query travels up the hierarchy

through servers for squares hosting m, and eventually arrives at a

sα such that N (sα (m)) reports to contain at least r nodes. �us we

have found a neighborhood ofm that contains at least r nodes. We

can assume the corresponding distance d ′r (m) = 2 · 2α . Also note

that the previous neighborhood at level α − 1 did not contain r
nodes. �us, we know that our estimated ′ is a good approximation

of the correct distance: d ′r (m) ≤ 2 · dr (m).

Due to the lazy update scheme, some of the mobile nodes may

have moved to nearby squares, and we must accommodate this

possibility. To ensure that the neighborhood contains r nodes,

we should take the union of neighborhoods of all the squares in

N (sα (m)), and set d ′r (m) = 3.2α . �us we have d ′r (m) = 3 · 2α ,

and d ′r (m) ≤ 3 · dr (m). Let us write the extended neighbor-

hood computed as the neighbors of N (sα (m)) as E (sα (m)) =⋃
x ∈N (sα ) N (x ) (See Fig. 5).

≥ dr (m)

≤ 3dr (m)≤ 2dr (m)
m2

α

sα E (sα )N (sα )

≤ dr (m)

Figure 5: Neighborhoods for mobile node m. Server for
sα (m) detects that there are at least r nodes in N (sα (m)).It
reports E (sα (m)) as the neighborhood containing r nodes.

�us, with this method, we select the area E (sα ) as the neigh-

borhood of a node. �e weight in this neighborhood is the number

of mobile nodes in the neighborhood. �e weighted versions for

algorithms from the previous section apply directly. �e approx-

imations hold with a further multiplicative factor of 3, as our

measure of dr (m) is o� by a factor of at most 3.

Cluster maintenance in location hierarchy. Next, we modify

this protocol to adapt to mobility of nodes. In this modi�ed ver-

sion, each server sα (m), stores the count of all nodes in the region

N (sα (m)). Observe that since we take the extended neighborhood,

a node moving from N (sα (m)) to a neighboring square does not

require an immediate update to d ′r (m). �e update is made only

when it passes out of the extended neighborhood. �us, the num-

ber of updates caused by the mobility of a node isO (x logx ) when

the node has moved a distance x (see [1]).

�e server sα (i ) simply updates its nodes count on these events

and does not modify cluster, until it detects that number of nodes

in its neighborhood has fallen below r , in which case it triggers

a re-clustering for all clusters with centers in the neighborhood

N (sα+2 (m)). �is guarantees that cluster sizes of r are preserved.

Complexity of computing r -NN. If the area of the mobility

region is A, then the hierarchy has O (lgA) levels. At each level,

a server needs a constant number of messages to check if its

neighborhood has weight of r . �us, the neighborhoods containing

r nodes around each location (server in the system) are computed

at O (lgA) messages, and a total cost of O (A lgA) to build the

neighborhoods for all servers.

Number of Changes in Clustering Solution. Besides the clus-

tering quality, we also hope that the clusters are stable and co-

herent over time. Here we argue an upper bound on the num-

ber of changes of clustering membership in our algorithm. �e

clustering produced by our algorithm does not change if all the

points’ r -neighborhoods remain the same. �us, we can simply

bound the number of changes to the r -neighborhoods. Again
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as an upper bound for that, we bound the number of times

that the r -th nearest neighbor of pi changes, for a �xed i . We

de�ne fj (t ) = |pi (t ) − pj (t ) |, where pi (t ) describes the posi-

tion of pi at time t . �us, the r -th nearest neighbor of pi is

described by the complexity of r -th levels in the arrangement

of { f1 (t ), f2 (t ), · · · , fi−1 (t ), fi+1 (t ), · · · , fn (t )}. �e complexity

of the r -th level, when the trajectories are algebraic of con-

stant degree (a common assumption on motion complexity,in

order to compare the complexity or stability of a structure) is

O (min{rn,n4/3}) [16]. �us, the total number of changes to the

clustering solution isO (min{n2r ,n7/3}). When r is a constant, this

is quadratic complexity.

Last, we show a lower bound on the number of changes needed

if we maintain the optimal solution at all times. We show that in

this se�ing, the optimal clustering may change as many as Ω(n3)
times. Consider this example: n/2 points lie on a line, with the

points evenly spaced with spacing 1, and 3 points are clustered on

top of each other at each end. In this example, r = 3. �e optimal

clustering of the points on the line is to have three points in a row

be in one cluster with a diameter of 2. �ere are three di�erent

such clusterings which di�er in the parity of the clusterings. In

each clustering, there are O (n) clusters. If another point vi travels

along the line, when it is within the boundaries of a cluster, it

will just join that cluster. However, when it reaches the boundary

of a cluster and exits it, the optimal clustering would be to shi�

the parity of the clustering (e.g., from the top con�guration to the

bo�om con�guration as shown in Fig. 6). �is results in a change in

all of the clusters along the line. �e clustering changes every time

the point travels a distance of 2. �erefore, as the point vi travels

along the line, the number of times the entire clustering changes

is Ω(n), which results in a total of Ω(n2) changes to individual

clusters. We will now send n/2 points along the line; thus, the

total number of clusters that change is Ω(n3).

vi

vi

Figure 6: Lower bound of Ω(n3) changes to the optimal mo-
bile r -gather.

To summarize, our algorithm is comparably much more stable,

incurring O (n2) changes while the optimal clustering might need

to change Ω(n3) times.

3.2 Clustering trajectories
In the second se�ing, we group the trajectories into clusters such

that trajectories in the same cluster are ‘similar’ and each cluster

has at least r trajectories. To make it concrete, suppose the distance

function dt (p,q) is |p (t ) − q(t ) | for two trajectories p (t ) and q(t )
over a time periodT . We de�ne the distance between p, q in a time

period of [1,T ] to be d (p,q) = maxt ∈T dt (p,q). We would like to

minimize the largest diameter of each cluster over the entire time

period. �e clustering membership does not change over time.

First we show that the distance d (p,q) forms a metric:

Lemma 3.1. �e function d (p,q) is a metric.

Proof. �e function by de�nition is symmetric, follows the

identity condition, and is always non-negative. To show that the

metric follows the triangle equality, we �rst assume that there is

a pair of trajectories x and z where d (x , z) > d (x ,y) + d (y, z) for

some y. �ere is some time t ∈ T , where dt (x , z) = d (x , z). By the

triangle inequality,

dt (x , z) ≤ dt (x ,y) + dt (y, z).

In addition, clearly dt (x ,y) ≤ d (x ,y), and dt (y, z) ≤ d (y, z). �is

contradicts our assumption and concludes our proof. �

With this distance metric, we can now apply either our ap-

proximation algorithms above, or the 2-approximation from [2].

�is distance measure results in clustering together trajectories of

mobile agents based on who were close at all times, analogous to

�nding groups that travelled together. �e algorithm we described

works for any metric space and is possible to use it on a di�erent

metric such as the Frechet distance [4] to cluster based on similar

travel pa�erns irrespective of time.

3.3 Clustering trajectories with regrouping.
Now, we consider the more general se�ing in which nodes are

allowed to change groups over time. We allow K regroupings of

the nodes over a given time horizon. We use the same distance

metric as in Lemma 3.1 above.

Each regrouping allows all clusters to be modi�ed or changed

completely. We claim that with the assumption that the trajectories

are piecewise-linear, we can optimize the choice of regrouping

times, using dynamic programming, in conjunction with any α-

approximation algorithm (e.g., α = 2 for the algorithm of [2], or

α = 4 for our distributed algorithm described earlier) for the static

case, achieving the same approximation factor α for the optimal

regrouping problem.

We consider the time horizon to be discretized and indexed by

integers t ∈ [0,T ]. Each trajectory is a piecewise-linear function

that only changes directions at times in [0,T ]. LetCt ′,t denote the

maximum diameter of a cluster in the α-approximation clustering

computed at time t ′, over the time period [t ′, t]. We can compute

and store in a table the values Ct ′,t .

A subproblem, speci�ed by (t ,k ), seeks to determine the optimal

value, S (t ,k ), that is the minimum possible diameter of the points

of the trajectories in a cluster, over the time period [0, t], using

exactly k regroupings.

�en, the main recursion in our dynamic program is given by

optimizing over all choices of time t ′ ∈ (0, t] when the last (kth)

regrouping should be done:

S (t ,k ) = min

0<t ′≤t
max{S (t ′,k − 1),Ct ′,t }, k > 1

with the base of the recursion given by S (t , 1) = C0,t , the solution

corresponding to a single grouping done at time 0, and active over

the time horizon [0, t]. Our overall objective is to determine the

value S (T ,K ), corresponding to having K regroupings over the

full time horizon. �e dynamic program takes time O (KT 2) to

evaluate the values S (t ,k ), a�er computation of the O (T 2) table

entries Ct ′,t .

Theorem 3.2. We can achieve an α -approximation for the mobile
r -gather problem, when K regroupings are allowed, by optimizing
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the choice of regrouping times, while utilizing, at each regrouping,
an α-approximation algorithm for the static clustering problem.

Note that our lower bound proofs on the approximation factor

for the static r -gather apply as well to the mobile r -gather problem.

�e points arranged in any of the lower bound proofs can be static

points for the duration of [0,T ] or may move in a way that the

distances between points do not increase. �en the arguments for

static r -gather translate to this simple version of dynamic r -gather

directly.

4 HARDNESS OF APPROXIMATION
In this section, we consider the r -gather problem in the Euclidean

plane and show lower bounds on approximation in this case. Recall

that, in general metric spaces, it is known that it is NP-hard to

approximate be�er than a factor 2 (see [2]).

For minimizing the largest diameter of the clusters, we show

that it is still NP-hard to approximate be�er than a factor√
2 +
√

3 ≈ 1.932 when r ≥ 3 even in Euclidean se�ing. For

minimizing the largest radius of the minimum enclosing balls

(MEB) of the clusters, we show that it is NP-hard to approximate

be�er than a factor

√
13/2 ≈ 1.802, when r ≥ 3.

Theorem 4.1. For the r -gather problem for minimizing the max-
imum MEB, it is NP-hard to approximate be�er than a factor of
√

13/2 ≈ 1.802 when r ≥ 3.

Proof. We reduce from the NP-hard problem called the planar

circuit SAT [15]. We are given a planar directed acyclic graph.

Each node in the graph is either a source (of in-degree zero), a

NAND gate (of in-degree 2 and any out-degree), or a sink (out-

degree zero). �ere is exactly one sink and its in-degree must be

one. �e question is whether the edges (aka wires) can be colored

with the two colors TRUE and FALSE such that the following

holds:

• �e value of the edge going to the sink is TRUE.

• �e value of any edge out of a NAND gate is the NAND

of the truth values of the two edges going into the gate.

• �e value of an edge out of a source can be anything.

(r − 1) (1) (r − 1) (1) (1)(r − 1)

Figure 7: A wire gadget

A wire gadget consists of a line of points that alternate between

a single point and a group of r−1 points at the same location. Fig. 7

illustrates such an example. In the �gure, a point may represent

multiple points in the same location, the number of which is noted

in parenthesis. All distances between adjacent groups of points

on a wire are distance 1 apart. �e parity of the clusters chosen

signify a true signal or a false signal. If the cluster has r − 1 points

�rst, followed by one point of distance one away, the signal of

the wire is true. In this �gure the solid clusters are true and the

dashed clusters indicate a false signal.

It is simple to enforce the output to be a true signal by ending

the output wire with a single point. �e beginning of the input

wires have a group of r points so that the inputs can be either true

or false. Fig. 8 illustrates the NAND gadget, a universal gate. �e

solid clusters illustrate two true inputs into the gate and a false

output. If either or both of the inputs is false, then two groups

of points in the triangle (or all three) will become a cluster and

the output will be true. Fig. 9 illustrates the spli�er circuit which

serves the role of a wire spli�ing into two carrying the same signal.

�e solid clusters indicate a true signal and the dashed clusters

indicate a false signal. If the planar circuit SAT is satis�able, the

r -gather problem has a solution of cluster diameter of 1 – only

the solid or dashed clusters are used. Otherwise, the r -gather

solution uses clusters that are formed by three groups of points.

�e smallest of such clusters have two from the triangle and one

adjacent to the triangle (see the shaded cluster). �e diameter of

such a cluster is

√
13/2 ≈ 1.802.

Finally, note that in order to connect the wires, they must be

able to turn somehow. We can bend the wire such that no three

groups of points can form a cluster that has diameter smaller than
√

13/2. �us concludes our proof. �

(1)

(r − 1)

(1)

(1)

(1)

(r − 1)

(r − 1)(r − 1) (1)

Figure 8: NAND gadget

(1)

(r − 1)

(r − 2) (1)

(1)

(r − 1)

(1)

(r − 1) (2)

Figure 9: A splitter gadget

Theorem 4.2. For the r -gather problem for minimizing the max-
imum diameter (as the distance between furthest pair), it is NP-hard

to approximate be�er than a factor of
√

2 +
√

3 ≈ 1.932 when r ≥ 3.

Proof. �e proof is almost the same as the proof of �eorem 4.1

except that with the di�erent de�nition of diameter, the triangles in
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the gadgets are slightly larger. �e pairs in a solid or dashed cluster

are distance 1 apart. �e shaded cluster has diameter

√
2 +
√

3. �

5 EXPERIMENTAL RESULTS
We implemented our distributed approximation algorithm and

tested its performance against the existing centralized method

from [2] and a baseline of local density: the distance to the r th

nearest neighbor: dmax

r . We used a real dataset of moving cars in

Shenzhen, China. All cars had their GPS points sampled every 5

minutes in sync for 24 hours. Our main observations are that:

• Our distributed algorithm performs on par with the cen-

tralized algorithm [2] on real location data, and both pro-

duce cluster diameters close to the baseline lower bound

of dmax

r .

• In clustering trajectories, our distributed algorithm analo-

gously performs on par with [2] and the lower bound.

• On mobility data representing trajectories of moving vehi-

cles, the dynamic algorithm produces smaller, more com-

pact clusters than those produced by clustering whole

trajectories.

We discuss the results in more detail below.

For brevity in the �gure legends, we refer to the centralized

algorithm [2] as the “2-APX” algorithm, while our distributed

algorithm with a 4-approximation guarantee is referred to as the

“4-APX” algorithm. Fig. 10 compares the maximum cluster sizes of

the two algorithms. It also plots the baseline lower bound of dmax

r .
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Figure 10: Cluster diameters for di�erent cluster size lower
bounds r for centralized 2-APX and distributed 4-APX algo-
rithms on 150 stationary points from a random snapshot
in the data. �e distributed algorithm performs compara-
bly and o�en better than the centralized, and close to the
lower bound.

For the experiments, we took a random snapshot of 150 arbi-

trarily selected cars from the dataset and calculated the maximum

cluster diameter returned by both algorithms for increasing values

of r . We see that in fact both algorithms stay within a factor of 2

of the lower bound, and the distributed algorithm o�en performs

be�er than the centralized one. Similar pa�erns hold for other

snapshots (See Fig. 12).

Next, we conducted experiments on clustering whole trajecto-

ries. We took a random sample of 150 trajectories. Each trajectory

contained 100 sample points. And we clustered them using the

metric de�ned in Subsection 3.2. Fig. 11 compares the clustering

quality of the two algorithms for trajectories.
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Figure 11: Cluster diameters for di�erent cluster size lower
bounds r for centralized 2-APX and distributed 4-APX al-
gorithms on 150 trajectories, 100 GPS points per trajec-
tory. �e distributed algorithm performs comparably but
slightly worse than the centralized, but still close to the
lower bound.

We see that once again, both algorithms perform similarly and

have cluster diameters within a factor of about 2 of the bound.

In this case, however, the distributed algorithm performs slightly

worse than the centralized algorithm with occasional larger spikes.

Finally, we compared changing cluster diameters in the mobile

case, between the results of statically clustering whole trajectories

(Subsection 3.2) and dynamic location clustering (Subsection 3.1).

In the �rst case, the output is only one clustering of the mobile

nodes and the cluster membership of a node does not change,

while in the second case, in each snapshot, a fresh clustering is

computed, and a node’s membership may change.

Fig. 12 shows results for a set of 150 trajectories, each trajectory

containing 50 sample points. We set r = 5 for this experiment.

Fig. 12 shows that while the static o�ine clustering has consistent

cluster membership, the diameter can grow large when the nodes

move apart. �e dynamic distributed clustering incurs chang-

ing cluster memberships, but consistently produces tighter, more

coherent clusters and can produce results online.

6 CONCLUSION
In this paper we investigated the r -gather problem – a variant

of geometric clustering – for the mobile se�ings, with the goal

of enabling anonymity in location based services. We described

distributed clustering methods with provable results, and showed

that the solution can be adapted to cluster mobile devices in a

distributed, online computation se�ing. We improved hardness

results for metrics in the Euclidean se�ing, and proposed an al-

gorithm for the dynamic se�ing when nodes move around and
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Figure 12: Comparing a static Clustering on Trajectories
(blue) vs Dynamic Clustering at each time-step (green). �e
dynamic online clustering produces tighter, more compact
clusters. �e experiment was run on 150 trajectories with
50 sample points per trajectory.

regrouping is allowed. We evaluated the algorithms on a real

data set and show that the distributed algorithm actually performs

comparably in practice, in terms of maximum cluster diameter.

We expect that the algorithms �nd other applications in mobile

computing.
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