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Abstract

Sensor networks collect data from their environment. Locat ions of
the sensors are important attributes of that information an d provide a
context to understand, and use sensor data. In this chapter, we will
discuss geometric ideas to organize sensor data using theifocations. We
will consider distributed methods for managing queries about isolated
events, queries about mobile objects, and queries for geneal signal elds.
Location based methods often operate on simple geometric donains, and
we will discuss how they can be adapted to networks with complex shapes.

1 Introduction

The data collected by a sensor has to be available to others, sinceéhsensor that
produces a piece of datum is not always the one that uses it. The caamer may
be far from the source of data and have no idea of how to nd the oe relevant
source in a large network. When the consumer asks for aggregateformation,
for example, sum or average or maximum, we face a similar problem ofamdling
data from a large group of sensors at a large communication cost.

Methods of data pre-processing distribute hints about sensor irdrmation
across the network. When done properly, pre-processing can rka it easier to
answer consumer queries { search and aggregation { and avoid tHarge costs.

Locations are a useful tool in pre-processing and an important gsect of sen-
sor data, since physical events are naturally associated with codinates instead
of ids. Locations let us associate events with the physical world { tley give
us an index of the environment; thus locations are essential toCyber Physical
Information. Interpreting and processing data by locations gives a geometric
structure to the otherwise amorphous sensor readings. As an ak&d bonus, basic
network operations of routing, communication, scheduling and mawg others can



bene t from use of locations. Since wireless communication works dy between
nearby nodes, their locations have a close relation to the overall sticture of a
network.

In this chapter, we will examine how geometric ideas can leverage thica-
tions of nodes for better utilization of sensors. We will see that gemetry plays
a role in processing the sensor data as well as in answering queries.

These location based methods can be divided into two categories byhéir
applicability. In Section 2, we discuss ways of managing data in a statiscenario
where sensors measure general physical quantities or eventschuas tempera-
ture, pressure or occurrence of re. In section 3 we will considemethods for
processing data about mobile objects. With the increasing populariy of mobile
devices, this is an important sensing category, and carries interéisg relations
to the general case. In each of Section 2 and 3, we will consider twai erent
styles of data organization { hierarchic data structures, and data distribution
in a at structure. In Section 4, we will discuss how these methods & adapted
to complex networks by construction of virtual coordinates and £gmentation
of networks.

Our goal is to keep the methods as general as possible, so that theare
applicable to the widest variety of scenarios. Therefore we will tredour network
as general communication-capable sensors distributed in a plane,itiiout any
assumption on their specic sensing capabilities or other features. We will,
however, mention relevant example applications in each case to illusate the
methods and their uses.

In the rest of this section we discuss the general model and scefa used
to describe the dierent methods. Locations and distributions of nodes are
important to storage schemes, as is routing. Let us briey review he aspects
of these topics that will be relevant to our main discussion. Readergenerally
familiar with location based algorithms and routings methods may wish b skip
ahead to the next section.

1.1 Distribution and Location of Nodes

Finding locations of nodes is a challenge on its own and much researchas
been devoted to it. The methods and protocols vary by the requirenents and
the infrastructure available, and the theoretical questions relaed to localizing
nodes are often intractable problems [10, 4]. For more related woskon this
topic see a recent survey [15]. From a practical point of view, GPS is é&com-
ing more a ordable, and localizing sensors by collaborating with nearly and
passing GPS enabled devices is often a possibility. Wireless and cellulaigeal
based localizations are also becoming and common and fairly reliable. Xeac-
curate localization will not be important to our discussions, we therdore leave
the question of localization here and assume that some form of appkimate
locations are available.

We do need some idea of how sensors are distributed in the domain. Fo
our discussion, let us assume that the nodes are distributed over tge area and
with bounded density: the number of neighbors of any node is bouneld by some



constant number. This is a reasonable assumption, since in a small geon we
would like to have only a limited number of sensors. Too many devices inlase
proximity increase costs and reduce communication e ciency [16], bt cannot
provide corresponding sensing bene ts.

For simplicity, we can discuss the performance of algorithms with regect to a
Speci ¢ sensor con guration. Let us supposen sensors are distributed in a large
enough square and with uniform density as discussed above. If canunication
ranges of sensors are bounded above and belovis by some consgrhis would
mean that the sides of this square are of length (" n), and the diameter of the
network is of the same order. TBe expected distance between artywo random
nodes in the network is also (' n).! We will discuss more general types of
networks in section 4.

1.2 Communication and Routing

To make best use of sensor networks, a sensor needs to commute&with other
nodes; it needs support from the network to forward its message Multi-hop
routing in wireless and sensor networks is a widely studied subject tht we will
not attempt to survey here, but will mention brie y a few concepts important
to our later discussion.

Flooding. This is perhaps the simplest communication technique, where the
message is sent to all neighbors of the source, and a receiver algagends it to
all its own neighbors. As a result, the message reaches all nodes imet connected
network, including the intended destination. Once the rst message is delivered,
one of the paths along which it traveled can be used for further communication
between source and the destination. This is the basis of classic ad baouting
protocols such as AODV [35] and DSR [18]. The cost of such a protots ( n)
per communication pair, since the rst message goes to all nodes.

Geographic routing. To make routing more e cient in sensor networks,
several methods make use of node locations. These schemes poggss the
network to compute a planar graph whose edges consist of commigation links
in the network (see [2]). The routing itself follows a two phase method Suppose
node s currently has a message for locationt, then s uses one of the following
tactics:

1. Greedy routing: Node s checks all its neighbors and nds neighborw that
is nearest tot. If jwtj < jstj, that is, w is nearer tot, then s sends the
message tow.

2. Perimeter mode routing: If no such w is available, the routing enters
perimeter mode, where the message moves along the face of the méa
graph containing s, until it nds w with jwtj < jstj.

See Figure 1 for an example.

1A function f(n) is said to be ( g(n)), if there are constants a;b;N such that for all



Figure 1: Greedy routing and face routing. Message path is shown ibold, and
goes through the following steps. A message far starts from x and reaches
y by a greedy step. Greedy step fails aly, so perimeter mode is initiated for
the shaded face. Message reach&s while traversing the face. Greedy mode
resumes atw since jwtj < jytj. The message traverses the face containing
location t looking for the node nearest tot.

There are several methods [2, 19, 22, 25, 26], that are variationef this
essential strategy. The most popular among these is GPSR [19], whicwe
will use as our standard reference for this class of greedy plus pereter mode
routing. We will assume for simplicity that the sensors are distributed with
su cient density that there are no large \holes" in the square network. As
such, we can say that if two nodes are distance away in the plane, the GPSR
path between them has a lengthO(d) { which is the communication cost between
these two sensors. If there is no node at the destination location, then GPSR
traverses the face containingt, and arrives at the node closest tat.

Virtual coordinates and handling network shapes. A real sensor network
will typically not be so simple as the square domain we have assumed. will
have an unknown shape, and will likely have coverage holes where treeare no
sensors. Is it still possible to apply the routing methods and the gemetric data
storage methods to these networks?

Protocols have been designed to computeirtual coordinates { assignment of
a logical or virtual location to nodes in an abstract plane [36, 34, 5, 639, 40, 45].
These methods morph the virtual network into more standard shaes, making it
easier to use routing and geometric data storage methods. A di eent approach
is proposed in [46, 47] - to decompose a complex shape into pieces;teaf which
is relatively simple, and easy to apply geometric methods.

We will discuss these methods of handling complex shapes in Section 4.

n>N ,a g(n) f(n) b g(n). Thatis, for large enough n, f (n) behaves like g(n) to within
constant factors. More details can be found in books on algor ithms. See for example [7].



2 Information Brokerage and Range Queries

An important sensor network question is searching for particular peces of in-
formation. Sensors detect and store signi cantevents and sometimes we need
to nd a particular type of event { for example, a tourist on safari may wish
to nd the elephants?. In this case, we have a sensor network monitoring the
park, and some sensoP near a group of elephants has useful information { it
has stored an \elephant detection" event. But sensorP is not aware where an
interested tourist may be. Symmetrically, nodeC is in communication with the
tourist, but has no idea whereP is.

This general problem is calledinformation Brokerage: information producer
P has some data, and informationconsumer C would like to learn this data.
We need a general method by which producer and consumer can ndach-other
easily.

The conceptually simplest protocol to handle this problem is for the on-
sumer to check every node in the network by ooding a query. This @proach
was taken in Directed Di usion [17] and TinyDB [31]. It works well when d ata
is updated often, but queries are occasional { a sensor stores dated informa-
tion, and responds to the queries it receives. However, all other ades in the
network are also required to receive and forward the query, wheter they have
relevant data or not. When searches are frequent, this becomesn unnecessary
load on the nodes, most of whom have nothing to do with the query.

We need an information brokerage scheme that makes better usd aetwork
resources { uses less communications, and balances the load agtise network.
We would like to avoid consuming energy at nodes that can not help us irour
search. All nodes reporting their data to a single server achieveshts in a way
{ it avoids ooding the network, but also overloads the server and the nodes
close to it. All the updates and queries have to be forwarded by théew nodes
leading to the server, which will quickly run out of battery. Informa tion should
be spread out to balance the storage and communication loads in theetwork.

2.1 Hashing Data to Points and Curves

One method to coordinate producers and consumers is by using csistent hash-
ing over the entire network. The idea is used in [37]. All nodes know a heh
function that can be applied to the data query or key, and it returns a location.
Let us denote this function ash.

In our example, sensorP performs the hashh(\ Elephant"), and obtains
a location { a pair of coordinates: (x;y). Node P sends a message to the
sensor at &;y) that \Elephant" or relevant data is available at P's location.
The consumerC performs the same hash when searching and obtains the same
(x;y); thus C knows which sensor must have the information.

Location (x;y) need not be a sensor location at all, a random haslkn will
almost certainly give us an empty location. We can resolve this by stang the

2This commonly used example is from [37]
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Figure 2: Geographic hash tables. The data produceP sends a message to
location (x;y) = h(key), using GPSR. The trajectory is shown as the path in
red. The data may be stored at the nodeS nearest to the location, or on the
entire perimeter around the hash location. The consumer also pesfms GPSR
with (x;y) as target and arrives at the data.

data at the sensor nearest to the location X;y) { see Figure 2. This nearest
sensor is called the home node. We saw in Section 1.2 how the home nozkn
be found using GPSR [19]. The consumer can also send a message viaSk
routing to (x;y) to arrive at this same sensor, and a return message retrieves
the data. Since hash locations are completely random, the expeatecost for a
nodeF{ either a producer or a consumer { to send a message to theakh location
is ( n). Therefore, the cost of a producer storing a piece of informatio at
thephash location, or that of a consumer retrieving it are both asynptotically
n) in expectation.

Storing a piece of data at only the home node is fragile { a failure of the
node can destroy all the stored information. For better fault tolerance, GHT
utilizes the GPSR's perimeter routing mechanism. While searching for he home
node, GPSR traverses the perimeter of the face that contains ta hash location,
and GHT stores the data at all nodes on this home perimeter at no exa
communication cost. Periodically, a probe is sent around the home péneter,
checking the health of the perimeter nodes. If some nodes haveilied and the
perimeter changed, then the new perimeter nodes are given a comf the data.

The perimeter mode storage of data has an additional advantagehiat the
consumer can get the data as soon as the search message hits squart of the
perimeter curve. If we had gone a step ahead and stored the datat all the
nodes on the path from the producer up to the home perimeter, ad sent the
consumer's search message in a path likely to touch the storage gdatit could
have collected the data without visiting the home region.

Can we stretch this idea further? Maybe we can deliberately send ta pro-
ducer's message along a path that the consumer can nd. If doneuitably, this
method may have several additional bene ts. In Figure 2, the pralucer and
consumer are fairly close, yet the search message has to travel the hash loca-
tion and back; which means slower response to the query, and adddnal load
on the home nodes and those on the path. If the search found a agby node
on the producer's storage path, these unnecessary penalties uld be avoided.



Our next brokerage technique, called Double Rulings[43, 41] exparsdthis
concept, and stores data along a path instead of at a node. The elienge is to
design the trajectories such that the search paths nd the stoage paths easily.

2.1.1 Double Rulings

Double Rulings is the general idea of storing data on a path such thathe con-
sumer's search nds it easily. Simply taking the GPSR path to the hashlocation
does not su ce { the goal is to have the intersection of search andstorage paths
close to the consumer. The close intersection means less commuriioa and
faster response to the query. It will be best to have the intersetions at di erent
points on the storage path and have the load of responding to qués more
evenly distributed. The speci c scheme we will discuss is from [43, 41].

The intuition is to design the paths as abstract curves on a sphereA type of
curves we can use are callegreat circles. These are circles that lie on the sphere
and have the largest possible diameter. On the earth for example hie equator
and the longitude circles are all great circles. The great circles on apbere are
analogous to straight lines on a plane { shortest distances are measad along
them. Just as with the plane, given two points on a sphere, there is anique
great circle through themd.

(b)

Figure 3: (a) Stereographic projection in side-view. (b) Producer st orage curves (red)
for p and p’. They are great circles passing through hash location h.

The sensor network itself lies on a plane. To make use of curves on pleere,
we rst need a correspondence between the sphere and the plan&his is done
through a mapping called stereographic projection Imagine the sphere is placed
on the plane. For any point h on the plane, we imagine the straight line from
h to the north pole of the sphere { its top most point. This line intersects the
sphere at another unique pointh, which is the image ofh under the stereo-
graphic projection. This idea is shown in Figure 3(a).

With this map between the plane and the sphere, we can now de ne th
storage and search curves in terms of curves on the sphere. Anxample of

3The exception to this is the special case when the two points i n question are antipodes
to each-other on the sphere, and there are an in nite number o f great circles passing through
them.



storage curves is shown in Figure 3(b) where two producers are rpped to
points p and p° on the sphere. In double ruling, the hash function gives a
location h on the sphere. The data is stored by a producer along the great
circle curve on the sphere passing through itself andh. To be precise, data is
stored along nodes on the curve in the plane that is the stereogrdpc map of
the storage curve on the sphere. By properties of stereographprojection, the
circular curves on the sphere map to circles in the plane. Thus the plbducer's
cost for storing data along any circle in the network eld is at most O(" n).*

Using curves on a sphere makes data search and retrieval easy: gaeat
circle intersects any other great circle. Thus, the consumer doed even have
to consider the hashh { it can simply send a message on a great circle and nd
any data in the network.

L(q;h)
(@)

Figure 4: (a) Double Rulings p and g are stereographic maps of producer and con-
sumer; h is the hash, h is its antipode. C(p;h) is storage curve (a great circle) and
L (qg; h) is the retrieval curve, intersecting at u and v. (b) Actual Network storage path
(red) and search and retrieval path (blue) in the plane. The h ash location is shown as
black triangle.

The knowledge of the hash function can be used to create smartgraths that
have provably small search cost. We make use ddtitude curvesfor this e cient
search and retrieval in place of great circles. A latitude curve is dened to be
one that maintains constant distance to the hash location on the spere { see
Figure 4(a)®. The advantage of such curves is that they intersect any produer

4A function f(n) is said to be O(g(n)), if there are constants b;N such that forall n>N ,
f(n) b g(n). Thatis, for large enough n, f (n) is less than g(n) tB within constant factors.
Ses [7] for details. The largest possible circular arc has le ngth O(" n) in a square of length
o( n).

5The name derives from latitudes on the earth, that maintain a  constant distance to the
poles.



curve within a distance O(d) from the consumer, whered is the distance between
the consumer and the producer on the sphere. In Figure 4(a), tis means that
either u or v { must be close to the consumerg. The location and radius of the
sphere can be chosen such that distance between any two pointsdhe plane
is at most a constant times the distance between corresponding pats on the

sphere, and the length of a path on the sphere is within a constantdctor of the

length of the corresponding path in the plane produced by the stezographic
projection. Thus, the cost of search and retrieval for the conamer is O(d ),

whered is its distance to the producer in the plane. This property is called
distance sensitive retrieval.

The storage and search paths in the plane are shown Figure 4(b).nla dis-
crete network the paths cannot be the smooth curves we congiict by projection.
The network path following the curves as shown in the gure are obained using
a general strategy of \Routing along a curve" described in [33].

Double Rulings includes GHT as a subcase { every storage curve pass
through the hash location, thus the consumer can always retrievedata from
there. This is a useful feature when a consumer wants all the dataf a particular
type instead of just one { this can be done by visiting the hash locatim. On a
sphere, its antipodeh serves as an additional proxy hash location { any great
circle passing throughh also passes througth, and the GHT style retrieval can
be performed by visiting its image in the plane.

In data searching, the great circle curves are useful for certairtypes of
searches. For example, when the consumer asks for multiple typesf data at
once, a great circle retrieval can nd all of them at once, since thea great circle
will intersect all other great circle producer curves.

(@) (b)

Figure 5: Communication load at di erent nodes. Information generat ed by one pro-
ducer, and queries issued by 500 consumers. (a) Load for doule rulings is distributed.

(b) Load when using GHT is clustered around the hash location , and therefore poorly
balanced.

One of our goals in using in-network storage is to balance the data halling
load among the nodes. Double ruling has the advantage that di erehconsumers
retrieve data from di erent parts of the producer curve, so that the tasks of



responding to query are better distributed. This e ect can be sea in Figure 5.
GHT creates high load near the hash location. The load from double rlings
is more balanced. In fact, the overall load from double rulings is lesssince it
requires less communication per query.

Location free double ruling schemes. Intersection of paths to achieve in-
formation brokerage has been used based on other structuresan the stereo-
graphic projection described in [43, 41]. We describe these methodgry brie y,

making use of Figure 6. The rst method, shown in Figure 6(a) is calledRumor
Routing, described in [3]. Here, the storage path is a random walk frm the
producer, and of some maximum length determined beforehand. Té retrieval
path is also a random walk, starting at the consumer. When the retieval path
meets the storage path, it nds the data, which is returned to the consumer.

Figure 6: (a) Rumor routing: Producer follows a random walk. Consumer also
follows a random walk until it hits the producer. (b) Landmar k based double ruling.
Landmark nodes are shown as green triangle. Hash to a tile ingead of location, then
follow GLIDER routing to reach tile. The nodes in bold are on b oundary of one or
more tiles.

The second method (Figure 6(b)) relies on landmarks to decomposéhe
network, and is described in [12]. A few nodes in the network are seled as
landmarks. All other nodes determine the landmark nearest to them, and are
grouped into \tiles" accordingly. This is easy to do by ooding messages from
the landmarks, and using that to measure the distance of each nadfrom the
di erent landmarks. The hash in this case is a complete tile. The prodwer
sends the data using a related landmark based routing scheme degxed in [11].
In each tile the path passes through, it shoots o additional branches so that
a consumer path nds an easy intersection. The consumer uses ¢hsame hash
and routing scheme, and intersects a storage node in the hash tiler @an earlier
one.

These methods have the advantage that they do not need locatiato op-

10



erate. Thus, they can be used when GPS or similar infrastructure ee not
present. However, when locations are available, they are substéially more

expensive than the methods we discussed making use of locations the next
subsection we return to our main topic of location based schemes andiscuss
how they can be divided recursively for better query response.

2.2 Hierarchical Partitions

Recursively partitioning a space is a common technique in data storag and
search mechanisms. The reader may be familiar with the binary partitoning

used in binary search on an array { where at each step the array isidided into

2 parts. By creating an abstract node for each such part, we ge& correspond-
ing abstract structure called a binary search tree, that represats the recursive
partitioning of the array. To apply similar techniques to sensor nodes in a plane
we need a two dimensional version of this idea.

—!"#"$%(
- I"#'$%’

— I"'#"'$%&

Figure 7: A 3 level quadtree. On the left is the recursive partitioning { each

level consists of one or more square areas. At the next level easlquare is split
into 4 congruent squares. On the right is the tree { each square bmmes a node,
with edges to its children, and the parent.

Figure 7 shows aquadtree partitioning. We start with a square space at the
top level, and recursively partition it into smaller congruent squares at each
level. Recursive partitioning gives rise to an abstract tree structue shown on
the right. Each square at each level corresponds to a node in theree, thus
nodes other than the leaves have 4 children each. We can interchgaably refer
to a square or corresponding quadtree node as convenient. Theagitioning
in Figure 7 has two levels in addition to the root, in general we can haveany
number of levels. It is reasonable to assume that the nal level is oa where
the squares are unit sized. In our constant density square netwk model, unit
sized leaves imply a quadtree with (log n) levels.

This general partitioning scheme has been used in di erent ways fosensor
data handling. Here we brie y discuss a few of these.
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2.2.1 Structured Replication in GHT

GHT [37] has a variant called structured replication (Figure 8) desigred to
handle the hotspot problem of many producers trying to transmit updates to a
single hash location. In this method, each node considers a quadieatrtitioning
of the square. On each level of the partitioning, it is possible to peidrm the
hash on each square at that level, giving us '4hash location at each level.

o o o o
o o o o
o x{O o o
o o o o

Figure 8: Structured replication in GHT has a hash location in each sgare
of a quadtree partitioning. A producer (shown shaded) stores tle data at the
nearest hash location among all these.

The producer P stores the data at the single nearest hash Iacation among
all the locations. In a k level tree storage cost is reduced t@(" n=2%) , but
the search cost increases { now the consumer has to search muliglocations.
The protocol dictates that the consumer searches the hash at el 0, which
automatically forwards the message to the level 1 hashes, eachwhich forwards
the message to level 2 hashes and so on. Thus the search cosDi@“" n). This
method therefore decreases storage or update cost, but inases the search cost.
The authors point out that if the levels are such that at the lowest level squares
are constant sized, then this costsO(n) { asymptotically the same as ooding
to retrieve data from the source node.

2.2.2 Fractional Cascading and Aggregate Information

Let us consider now a di erent question { answering aggregate quées using a
hierarchical structure. Imagine all our sensors are monitoring a ignal that has
an attribute value, such as temperature. We can thus ask a quegin \Which
sensors in regionR have temperatures aboveT ?" or, \How many sensors in
region R have temperatures aboveT ?" To answer these, we need a dierent
type of data storage and retrieval than the information brokerage schemes.
The fractional cascading method [14] suggests storing at each is&or, aggre-
gate data about exponentially growing regions: a constant numbenf values for

12



each quadtree square that contains it. A sensor has detailed infonation about
the local neighborhood, and progressively coarser information atut larger re-
gions.

o o
o
o © o
o
o o o
o
o
° o o o
o ©° 4
°ceol°l*® I"#$%&'!
o
o
o o o o

Figure 9: The network from the point of view of the shaded node in gadtree
square u. It stores one aggregate (for example maximum) for each squarm
this gure.

The method starts with partitioning the square with a quadtree. Remember
that a node u in the quadtree corresponds to a square in the partitioning. Its
parent p(u) is the larger square at the previous level that contains the squas
u. Fractional cascading then proceeds by storing some values at €la sensor in
a square. At each sensor iru, it stores the maximum in the squareu, and the
maxima for each sibling ofu in the quadtree. That is, each node saves 4 values
for each level in the tree { the quadtree nodes on the path from tle leaf to the
root, and their siblings (See Figure 9). This means that on a typical tee in our
scenario, a node needs to stor®(log n) values, and the communication cost of
storing all the data in this format is O(nlogn).

The query response is done in terms o€anonical Pieces Given a regionR,
a canonical piece is a square in the partitioning that ts completely in R, but
its parent does not t { see Figure 10. To nd the true answer, we cheﬁk_each
canonical piece. The cost of this traversal can be shown to b®(D + Ak +
P logP). Here A and P are the area and perimeter ofR, while k is the number
of sensors with temperature abovel . The parameterD is the distance from the
query source to the query range { it is the unavoidable cost of commnicating
with the query region.

Sometimes we may not be interested in a such a detailed report. We nya
just ask \What is the maximum temperature in R?" to nd out if there is a
re in the region. On such a query, it is su cient to check just one no de from
each canonical piece, since every node stores the maximum valueezch square
it belongs to. The traversal can be done nicely by following a spiral pth in R
visiting the smaller pieces at the edges rst, and traversing progrssively larger

13



I I R I

DS ST EEE

Figure 10: Query response in fractional cascading. The query is tond an
aggregate (e.g. sum of values) of all sensors in the outer rectalegR shown in
bold. Each square in the gure is canonical piece { its parent squareas not in R.
The method needs to visit each canonical square once, this is dong lfollowing
the spiral path shown as dashed segments, that has lengt®(P logP).

squares inwards. The cost of visiting all the canonical pieces will beimply
O(D + P logP), taking into account the distance of R from the query point.
Similarly, it is possible to compute sums, where each node stores theus of
values in its square and their siblings at all levels. This is useful in answég
a question of type \How many animals are there in region R?" and can le
answered at the same cost.

Fractional cascading is a fundamental concept in computer algoritms [8],
and have been used in dierent elds in dierent ways. It will make fur ther
appearances in the next section when we discuss tracking mobile dees.

2.2.3 DIM: Locality Preserving Storage of Multi-dimension al Data

Sensors in a network are likely to have many di erent sensing capabilies. And
queries may be with respect to multiple parameters. Whether it is a déa center
or a wildlife preserve, we need to keep track of many di erent paraneters that
will help us understand animal behaviors, hardware failures and otkr events in
the network.

For such data, it is useful to be able to make range queries: which ldware
failures in the data center typically happen at high temperature and load con-
ditions? At which locations has the bird been spotted when temperatire was
between 30C 35 C and humidity in range 80% 100%?

To answer the queries e ciently, it helps if similar data are stored close
together. For example, if events at similar humidity and similar temperature
are stored nearby, the cost of answering the queries above will blew.

Based on this idea, DIM [28] suggests a locality preserving hashing lseme
for events. Here \locality preserving" means that it tries to place together events
that are similar in some parameters.

14



Let us suppose for the moment that we havek di erent binary parameters.
We can ask: \Was the temperature low or high?", \Was the humidity a bove or
below 50%?" and similar questions about every parameter. Thus e#&cevent is
accompanied by a bit vectorb of length k. To each possible bit vector, we will
assign a zone { a region of the network { where the correspondingvents will
be stored.

This method is inspired by a dierent type of space partition called kd{
trees[8]. We start with our square network regionR, and partition it recursively,
diving each region into two according to the next bit bfi] of b. If index i is even,
we split R with a vertical line, and depending onHi] being 0 or 1, we choose left
or right. Similarly, if i is odd, we split R with a horizontal line and depending
on if Bfi] being 0 or 1, we choose bottom or top. Figure 11 shows an example
how we can map any bit vector to a unique region of the network.

Figure 11: Any bit vector can be assigned to a unique region in the netork.

Thus, given an event whose binary properties are represented by, we have
a way to map it to a region, and events with same properties will be maped
to and stored in the same region. Observe that parameters whosealues are
earlier in the sequence have greater weight in determining the neighirhood of
storage, creating an imbalance in the signi cance of di erent paraneters.

The case where parameter values are not binary can be handled bysider-
ing the binary representation of the values. For simplicity, let us sayeach value
is an integer in the range [0 to 2 1], represented byv bits. The rst bit is
the most signi cant { it determines if the value is in the range [0 to 2V * 1] or
[2Y !to2Y]. Given that the rst bit determines if the value is in the left or right
half of the range, the second bit determines if the value is in the loweor upper
half of the reduced range, and so on. To magk such values to the network,
we utilize this bit representation concept. The rst k bits of b are the most
signi cant bits if the k values, the nextk bits store the second most signi cant
bits of the values and so on.
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3 Mobility Management and Tracking

Let us revisit a question we had considered in the previous section. Aourist
asks \Where can | nd an elephant?" We discussed some methods dirokerage
that helps the tourist to nd the animals of interest. These brokerage methods
work well as long as the animals stay in their place, or move very rarelyWhat
happens when the animals are active and move continuously? In sucbtases,
methods such as GHT and Double Rulings have to continuously updatehe
storage data { by sending messages on long paths or curves.

This is identical to a common question in mobile networks. \Where is use
x?" which is important when placing a call to user x in cellular networks. Cel-
lular networks handle mobility by assigning to each phone a \home" sever
and having the phone update this server suitably. In a sensor netark the
corresponding strategy will be updating a hash location in GHT or senling a
message along a double ruling path every timex moves, which is impractical
for frequently moving targets.

The general problem of tracking and nding mobile objects is therebre a
challenging topic in sensor networks. It is particularly important and di cult
in the case when the tracked object is a frequently moving device sih as phone,
or a GPS in a fast moving car. The question of detecting a nearby taget
and detecting its movements and location are themselves subjectsf extensive
research. However, our topic of discussion in this chapter is sensdata, we will
therefore focus on managing the tracking information obtained bythe sensors.
For simplicity, we can assume for example, that the mobile devices ar&PS
enabled and are willing to cooperate by communicating their true locatons.

3.1 Hierarchic Tracking Data

Hierarchic data in quadtree format is relevant to tracking mobile objects as it is
to tracking isolated data. The methods using hierarchic informationfundamen-
tally use the fractional cascading concept of storing more detailednformation
about the local neighborhood, and lower resolution data about regpns farther
away.

GLS: Grid location service. This method was originally described for mobile
ad-hoc networks in [27], but is based on the same essential ideas thae are
using in sensor networks.

GLS assumes a global total ordering oh node ids in a cyclic directed list:
L=0;12:::;n 1(modn). Suppose the node with idx belongs to a square
s¢ at level i. GLS storesx's location at the node whose id is the rst after x
in the sequencelL among nodes ins’. Then it repeats the procedure for the
siblings of s and similarly stores the id of x at the successor ofx in each of
these squares.

You may have already noticed the similarity to fractional cascading that we
saw in section 2.2.2. The information in a squares; at level i is replicated in
each of its siblings. The di erence is that in section 2.2.2 we dealt with oty the
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aggregate value, and every node in & stored the same level value. In GLS,
there is no aggregation. The information about nodex is stored at exactly one
node in squares®, and at one node in each sibling square.

When nodey searches forx, it sends a search message to the node rst in
L after x for which y has location information. This node performs the same
operation again, looking forx. It can be shown that this is guaranteed to reach
a location server ofx, which will be able to forward the message directly tox.
The initial registration of x's location and updates on moving can be executed
using the same basic operation. Wherx wants to select and update a location
server in a squares, it sends an update message t8. The message starts as a
search forx inside s and will nd the node that should be x's location server.
Thus, using the same elegant primitive, GLS handles both the fundarantal
operations of searches and updates.

The di culty in GLS is that the search cost can be disproportionately large
compared to the distance betweernx and y. When these two nodes are close
but lie in di erent squares of the quadtree partitioning, the search may have to
take a long path. The same problem can arise wher moves. A small move of
X can produce a costly update. We will discuss next a method that soks this
problem.

LLS : The locality aware location service. This hierarchic method [1] uses
location servers at di erent levels of the quadtree. For a mobile no@ x, there
is a hash locationh(x) at the root level of the quadtree that stores its data.
Similarly, there is a hash location hg(x) for any squares at any other level of
the partitioning. These locations act as location servers forx. Any other node
that looks for x can get the information by communicating with a few of these
servers.

Figure 12: Basic search in hierarchic mobility tracking. Only relevan t part of quadtree
is drawn. Supposem is the lowest level square (leaf node in the quadtree) that contains
the mobile user. The quadtree nodes on the path from m to the root have information

about the mobile user. The consumer at node ¢ searches ancestors ot until it hits p
{ the common ancestor with m. The search then proceeds down the tree to nd m
and the precise location of the user.
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At any time, if x is in squares; at level i, then the location server athgx (x)
stores location ofx. In fact, it only notes a pointer to the square at leveli +1
that contains x. There are O(logn) dierent location servers { one at each
level { that carry information about x's location at any time. This is di erent
from structured replication in GHT. In structured replication, the re is a similar
hierarchy of hash locations, but the data is stored at only one of tem, whereas
in LLS, information is stored at one server for each level. And in contast
to GLS, the server hsx(x) at level i only records the leveli + 1 square s,
containing x, but not its exact address. This has the advantage that whenx
moves anywhere inside that squares’ , the server hgx (x) does not need to be
updated.

When a di erent node y wants to nd the location of x, or to communicate
with it, an inductive search is performed. The lowest level squaresjy containing
y is checked rst. To be precise, the location server alhsjy (x) is asked forx's

location. If this fails, the higher level server ins ; is checked and so on, until
a server with information about x is found at some level { which may be the
top level h(x) in the worst case. Next, the query has to follow pointers down
the levels to the leaves. An example is shown in Figure 12.

(@) (b)

Figure 13: (a) The black shaded nodes arex's location servers. The numbers next to
them are the level of the quadtree that they correspond to. y searches forx, and nds

a trace of x at level 1. (b) At any level, x's location is stored at eight adjacent squares
in addition to the host, When x moves to one of these squares, no updates take place.
However, on the next move an update is triggered and all twelv e squares are updated.

This basic search idea has a disadvantage that in certain cases, tteearch
cost may be much higher than the distance betweerx and y { this search is
not distance sensitive. See for example the case in Figure 1% and y are
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geographically close, buty has to communicate with the distant location server
\1"to nd x. This happens because the two nodes are separated at a high level
of the partitioning, although they are quite close in location. The sane issue
can cause the update cost ok to be high whenx crosses this boundary.

To make the search distance sensitive, LLS replicateg's location data at
the eight level i squares neighborings!. This replication guarantees that the
search incurs a communication cosO(d) where the distance betweenx and y
is d. It also makes it possible to keep the update costs distance sensigvby
making updates in a lazy manner. Whenx moves to one of the neighboring
square, no updates are performed. Wherx moves out of this neighborhood,
an update is performed to remove the outdated information and toenter the
new information in the new neighborhood. Thereforex drags with it a sliding
window of servers at each level { see Figure 13(b). The idea is to defaupdates
to avoid unnecessary communication. On average, if a node movesdistanced,
then this scheme can be shown to have update costs @i(dlogd). The cost is
amortized. That means, the average cost over many moves is guanteed to be
low, but the update cost at a particular step can be arbitrarily high compared
to the movement at that step.

During a search, it is possible that due to the lazy update scheme, aesver
claiming to have the target is in fact in error. However in such a casethe target
is guaranteed to be in one of the neighboring squares. It can be s that this
does not increase the asymptotic search cost.

In the next section we will consider a di erent problem of aggregatequeries:
answering a question of type: \How many device are in an arbitrary egion R
of the network?" LLS, based on its information of node locations ca answer
this question the same way that range queries are answered in theattional
cascading method of section 2.2.2 { using the spiral traversal of cenical pieces
shown in gure 10. While this works, the query process is not e cient since
the preprocessing carried out by LLS was not designed for such gstions. The
algorithm in [29] is more e cient in answering such queries. There the pepro-
cessing is based on computing a harmonic function that makes it eadp answer
such aggregate questions. However, the computation of a harmé function
and its subsequent updates can be expensive; we will instead look atdi erent
method for answering counting queries in the next subsection.

In summary, the utility of LLS and GLS is in search and communication with
individual mobile nodes. The hierarchic partitioning scheme provides he bene t
that the search process operates in a small neighborhood of thaigry origin, and
goes to broader regions only when that is necessary. The updatese performed
lazily { delayed as much as possible to minimize costs. Thus the locationesvers
provide an essential prerequisite of point to point communication: tey nd a
particular user based on the device identi er.

3.2 Dierential tracking forms: Aggregate tracking

Beyond the question of tracking movements of individual users, wecan ask
questions about aggregates of users. This is analogous to the rga queries we
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had considered in the previous section. Now we wish to answer quéshs of
type: \How many users are there in a regionR?" This is useful when we wish
to quickly nd the tra c density in arbitrary regions of the network , or the
number of people in the neighborhood of a sporting venue.

It is possible to answer the question using the location server hierahy of
LLS. We can use the spiral traversal method shown in gure 10, ad answer the
question the same way. However, there are a few aspects of LL&&t we wish
to improve upon:

1. Search Costs: While the canonical traversal is nice, we do not know
where the dierent location servers in a canonical square may be. W
would need to search all nodes in each square, and therefore all des in
R to nd the answer.

2. Update Costs: The costs of updating location servers may be high, even
when a node moves a small distance. This is particularly signi cant whe
updates are very frequent, for example when tracking moving veicles {
with high speeds and large numbers.

3. Privacy: LLS requires tracking each device at every moment. The users
may wish not to be tracked with such precision. We would like to keep
the counting information, without following the precise movement of in-
dividual devices.

For this problem, we nd it bene cial to leave the hierarchic fraction ally
cascaded data format and return to a at data model once more.The model is
based on the concept of ai erential form in mathematics. This fundamental
concept can be adapted to sensor networks by interpreting it as eights on edges
of a planar graph [38]. We will address a more general problem of coting the
total weight of targets in an arbitrary region. Counting targets is a special cas
of this question with each target having weight 1.

We rst compute a planar graph in the network the way we discussedfor
routing(section 1.2). This graph needs to be one such that when aatrget crosses
an edge of this graph, one or more sensor detects this fact { forxample, by an
explicit update from the target itself, or by a localization carried pout by the
sensors. We assign a weight to each edge. This weight functionis a special
one; it is constructed to have two important local properties:

1. The weight is directed: (ab) = (ba). That is, if a message moving from
a to b sees a weightw, then a message moving fronb to a sees a weight
w.

2. If the weight of targets in facef is w, then a message traveling along the
boundary edges off in a clockwise direction sees a total edge weight of
w. A message traveling along the boundary of a face without targetsees
a total weight zero.

It turns out that having these two simple properties allow very sophisticated
tracking: we can nd the weight of targets inside any region R just from the
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weights of edges on the boundary oR. For a facef , let us refer to the boundary
of f traversed clockwise as@f We can treat the regionR to be a collection of
faces, and denote its boundary by@ R

Figure 14: The weight inside a collection of facesf1;f,;::: can be obtained by simply
adding the weights on the boundary of the collection. For every edge abin the interior,
weights (ab) and (ba) cancel, leaving only the outer perimeter edges.

To obtain the total weight on faces insideR, it is su cient to add the weights
of edges on@R Thus, we nd the total weight inside R simply by making a
clockwise tour of its boundary, without ever entering R at all! Figure 14 shows
the intuition behind this idea. For a formal proof, see [38].

When a target moves, we need to update these weights. Supposdaget of
weight w moves from facef ; to facef, above, crossing the edgab, the function

is updated by (ab) (ab w (or equivalently, (ba) (ba) + w). It
is easy to check that this update reduces the weight on the boundg of f, by
w, and increases the weight around , by the same amount. The function is
called adi erential tracking form.

Initializing the function  requires setting its value on the edges suitably. To
do this, we can assume that the target arrived at its current posiion through
some arbitrary path from the exterior, and update the edges it waild have
crossed on such a path (see Figure 15). This is done in a more congst and
e cient way by constructing a dual of the planar graph and using a spanning
tree of this dual to nd paths for all targets. This method works at O(n)
communication complexity.

The di erential tracking form has several nice properties. It is tolerant to
coverage holes: even if a target enters a hole and is currently not ithe range
of any sensor, its information is stored at the boundary of the hole and for
any region that contains the hole, this method still returns the cormrect answer.
For the same reasons, it is also tolerant to sensor failures. The mebd can be
made locally adaptive to insertion of new sensors and movements ofi¢ sensors
themselves. The tracking is also anonymous { we update someoneassing an
edge, but not the identity of the user or device. In fact, the entire protocol
works without any need for identi cation.

The most important property, from a performance point of view, is that
updates are very inexpensive. The weights on the edges can be mtimed

21



(b) (©

Figure 15: (a) Suppose the single targef has weightw. Then for a loop L that

contains T, (L) = w. Such a loop is shown in bold. (b) A targetT enters the
network along the red curve updates a sequence of edges shownbiald blue. If

the T is already at the position, we can imagine thatT entered through some
such path. (c) The trail corresponds to a path in the dual graph. The edges to
be updated are precisely the duals of the edges on this path.

locally by the sensors that are the end points of the edge. When a tget
crosses the edge, this is detected locally, and this weight is modi edThat is all
that is needed. When a target moves a distance, the update cost isO(d) { the
number of edges crossed by the target. E cient updates are critcal to tracking
mobile objects, since movement of devices or vehicles are generallyualm more
frequent that queries. The completely local update has the additimal advantage
that it does not require participation of sensors far from the regiam of activity,
which can happen, for example, in LLS. It is therefore possible for ensors to
stay in sleep mode while there is no activity in the neighborhood.

In general, it is useful to maintain di erent tracking forms for di er ent cat-
egories of objects which we may want to search or count. This is pécularly
useful for example for the tourist looking for elephant type of quey we discussed
earlier, or for a traveller searching for a cab. It is shown in [38] thatby repeated
application of the counting query, such questions can be answereat a distance
sensitive cost ofO(d).

Other than moving targets, tracking forms are also useful in aggegating
general signals monitored by sensors. We simply need to treat theignal value
at a sensor as the target weight at that location. For example, supose we
wish to nd the average temperature. We need two tracking forms one for
temperature, one for node count. By nding the sum of temperatures and
dividing by the number of sensors in any region, we easily nd the aveage.

On the whole, this method is very robust and exible. The ability to com pute
sums of values can potentially be extended to compute other typesf functions
of sensor values. Exactly how to achieve such extensions and exgcwhat can
be achieved with this method remains to be investigated.
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4  Networks with Complex Shape:
Segmentation and Virtual Coordinates

We had started o assuming that our sensors are in a nice square Ik, and
we applied plane geometry without regard for obstacles. Reality mayot be so
accommodating. Obstacles like buildings may creatéolesin the sensor network
or the perimeter may be irregular instead of a square. What happes to the
hierarchic and at structure algorithms when they encounter the boundary of
such a gap in the network?

Empty regions in a sensor network are often governed by the neast sensor.
Recall what DIM [28] does: it stores data at zones determined by itsattributes
(attr 1; attr »;:::). In irregular networks the data aimed at zones in large empty
regions are recorded by sensors at their boundary, and are alsefrieved at
the boundary. While this works, it is not the most e cient. See for ex ample

@) (b)

Figure 16: (a) A network whose boundary does not match the square. (b) Load
distribution of DIM for a set of random data. The boundaries a re overloaded while
interior nodes have much lower workload. The variation in lo ad between di erent
boundary points comes from the design of the algorithm.

Figure 16. The network in 16(a) has an irregular shape, and we applyDIM to
the bounding box shown as the black square. All data hashed to thempty
white regions are eventually stored at nodes nearest to these rams { at the
network boundaries. These boundary nodes store a higher fraicin of data than
others as shown in 16(b).

The problem is not speci ¢ to DIM. GHT and all the hierarchic data han dling
methods rely on \nearby" sensors in some way or the other, and tarefore show
similar imbalance against boundary nodes. Double ruling and other pédt based
methods are also not immune. A path that encounters a hole will typially
move along the boundary to nd a way to the destination. Routing methods
like GPSR frequently move along hole boundaries in perimeter mode, ahcreate
heavy loads there. Without any special care, workload distributionwill generally
be heavily against boundary nodes, resulting in hotspots, delays, 1@ e ciency,
and possibly loss of packets.
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The di culties appear largely from our misplaced assumption of a simple
square network. If we take the precise network shape and adja®ur algorithms
not to stray outside, they may operate in a balanced way. However there
are several practical and theoretical hurdles to this ideal apprach. E ciently
describing a convoluted boundary and storing it at each sensor is dicult in
general, and impossible for a su ciently complicated boundary. Evenif we can
somehow gure out the boundaries and their descriptions, it is not dear how to
adjust our algorithms. Hashes and space partitions that are natwal in a square,
are hard to adapt to arbitrary shapes. Instead we will discuss twoother methods
of handling complex shapes. The rst is to decompose a network intasimpler
pieces and apply the algorithms independently in each piece. The sewd is to
create virtual coordinates with simple shapes thus eliminating the ppblems of
complicated boundaries.

4.1 Network decomposition

The network of Figure 16(a) has a natural structure made of ve approximately
square shapes. Figure 17(a) shows a decomposition of this type.odes belong-
ing to the same segment after decomposition are shown in the samelor. The

(@) (b)

Figure 17: (a) The network decomposed into segments forming simple shges. Each
segment is shown in a dierent color, along with its own bound ing box. (b) Load

distribution when DIM is applied to segment-wise bounding b oxes instead of the global
range. Bounding boxes may have partial overlaps, and those rodes have to operate for
both the squares and therefore take double the load as seen abve. But load balance
is still better than Figure 16.

segmented network can now be covered by ve bounding boxes { anfor each
segment. Instead of dividing event ranges into two parts and allocting to two

parts of the network, we can now divide them into 5 parts of suitablesizes, and
allocate to di erent segments proportional to sizes. In each segmnt, we follow
the usual DIM method of binary space partitions to allocate eventsto zones in
the bounding box. As a result, the allocation of zones is tight with repect to
the actual sensor distribution and the imbalance at boundaries disppears { see
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Figure 17(b). Other data storage schemes will have similar improverants.

The network segmentation idea and the results above are from [46}7]. The
decomposition was obtained by taking the distance of nodes from t bound-
aries, and constructing a discrete representation of the gradidnvector eld of
this distance. The di erent segments correspond to partitioning the vector eld
according to its dierent sinks or end points, and computed distributedly in-
network. This method simply tries to divide the network into its const ituent
large pieces, and not speci cally into squares. Smaller segments gerally have
tighter bounding boxes, and as a result better balanced performace.

Managing the network in suitable partitions has been considered in dierent
scenarios. Decomposing the network in convex regions can help inuting, since
simple greedy routing works well in convex shapes. This has led to the ort
of decomposing the network into Greedily Routable Regions [21]. Otheconvex
decompositions have helped in localization methods [30].

As we saw above, once the network is segmented, the data storaglgorithm
takes into account this split at the top level of operation and divides data into
the segments. This method needs the storage algorithm to be awarof the
segmentation and may be impractical and ine cient when many segmats are
connected in complicated ways. Our next method tries to avoid thes issues by
creating virtual coordinates.

4.2 Virtual coordinates

Virtual coordinates are a simple concept. Instead of using the relalocations,
each sensor is assigned a di erent logical coordinate to simplify datarocessing.
In our case, we want coordinates that give a simple virtual shape ta network
in place of the original complex one { hopefully one that balances the lad for
our storage algorithms.

(@) (b)
Figure 18: (a) Triangulated network. (b) Virtual coordinates with cir  cular holes. The

shape of the network is transformed by Ricci Flow to obtain coordinates with circular
holes.
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Figure 18(b) shows a type of virtual coordinates where each hole dundary
of 18(a) is converted into a circle, and the outer boundary of the ®twork be-
comes the outer circular boundary. This con guration is easier to dcescribe than
the original one. A circle is represented by its center and radius, ths the entire
network is now described by just three numbers per boundary.

The transformation of Figure 18 is obtained by conformal deformations of
the original network. A conformal deformation is equivalent to loca scaling
{ either contraction or expansion { at each point in the network. Ricci Flow
is a particular technique of repeated applications of such deformabns that
achieves the transformation of arbitrary boundaries to circle. Application of this
method requires a triangulated planar graph. Thus the Ricci Flow algrithm
described in [39] starts with a distributed method of triangulating networks.
This triangulated state is visible in Figure 18 { each face of the graph,except
the holes, is a triangle.

(@) (b) ()

Figure 19: The virtual coordinates can be re ected in a circular bounda ry. (a) At
each re ection, a boundary goes to a circle. (b & c) The re ect ions can be repeated
in the new circular boundaries until holes are negligibly sm all.

The network still has large holes and we need a method to solve the Ilda
imbalance of storage schemes. This is done by a technique calledcular re-
ections . Similar to re ecting gures about a line in the plane, it is possible to
perform re ections about a circle { points outside the circle are seminside and
vice versa. For each hole boundary, we perform such a re ectionhat creates
a copy of the network inside it, see Figure 19(a). There are two nice ects of
this re ection. First, it lIs up much of the holes, reducing empty spa ce, and
second, the circular boundaries map to circular hole boundaries ins& This sec-
ond property means that we can repeat the entire process in thesnew circular
boundaries and reduce empty space inde nitely: Figure 19(b & c).

Finally, we can now have a network with only small and insigni cant amount
of empty spaces inside. For any point that was in a large empty spacpreviously,
now it is possible to nd a re ected image of a node close to it. A messag
intended for this point goes to this node instead of the boundary, hus giving
us a more balanced storage. Routing to a point inside a \hole" is simple {
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re ection preserves continuity at the boundary, and thus it is possible to reach
the interior point by simple greedy routing. Either the storage or the routing

do not require us to compute the re ected images of the nodes befehand {

they can be decided on the y as needed. And we also do not need taaosider
an in nite number of re ections, a few levels of re ections su ce in m ost cases.
See the discussions in [40] for more details of this method.

Several other methods of computing virtual coordinates exist, with di er-
ent properties and applications. The reader is may nd interesting ideas in
hyperbolic virtual coordinates [24, 45]. However, these and mosttber virtual
coordinates [11, 13, 32, 36] are designed for routing, and not faftata storage.

5 Discussion

We hope that the reader got an impression of the variety of techniges and ideas
that can be brought into play with locations as the primary index. Beyond the

natural localization of sensor data by coordinates, many intereshg queries are
location oriented. Whether we look for the nearest cab or ask forlie average
temperature in a part of the city; we are interested not in the whole of network

data, but only in a geometric local part of it, and our methods shouldbe designed
accordingly.

The impact of locations and geometry is almost always useful when Idang
for simple yet e cient methods to handle sensor data. See for examle [9],
which uses a gossip algorithm on sensor networks to compute aveyes of sensor
values. Instead of exchanging information with neighbors as in a trditional
gossip algorithm, here the nodes perform gossip with random locatits in the
network. As a result, the algorithm converges to the desired redty such as
the average temperature, much faster in this method. Fractiondly cascaded
hierarchic information can also be computed, using a di erent gossigechnique
called spatial gossip [42, 44]. This protocol computes and stores logaggregates
at each node. For any leveli of the hierarchy, a nodep receives the aggregate
of all nodes within a distance 2 of p. This is analogous to the quadtree based
methods we saw earlier, except that unlike a quadtree, here the &rage is of a
disk centered exactly at each nodep. This technique in fact relies on an idea
from social networks: a model for creating small world graphs [2320].

The concepts in processing information in sensor networks are mergeneral
than the applications to sensor networks themselves. With low powenodes and
the need to process large quantities of data at minimal communicatio, sensor
networks are a more restrictive and challenging platform than mostothers. A
method that is suitable for sensor networks is also likely to be e cient in other
networks with suitable adaptation. The approach of treating all nodes as mini-
mal and equivalent aids this generality. Since we do not assume speci network
con gurations or special abilities on part of some nodes, these mébds are likely
to be easily adaptable. Such exibility is important in the ever changing world
of modern wireless and sensor networks.

Here we mentioned only a few works in this domain, and that too only
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super cially. Our goal was to introduce some elementary yet impor@ant ideas
in the topic. The reader is encouraged to look into the original articles and
the many other works for more details, subtleties and elegant ideas this fast
developing area.

As sensor networks and similar systems become common in the reabvid,
our views on them will surely change. We will learn how they are deployg and
used, and face new challenges. We will need to adapt our existing algthms,
and develop new models, applications and algorithms to adjust to thenew
networks.

With the popularity of location enabled portable devices, the tracking, stor-
ing and managing of location data are becoming more important. Sincenuch of
our data, including photos, notes and messages are now locationdged, we can
develop new types of applications taking advantage of these featas. At the
same time, we can rethink our existing ideas and protocols for a loc&in-aware
world.
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