
Geometric Methods of Information Storage and

Retrieval in Sensor Networks

Rik Sarkar
Department of Informatics
The University of Edinburgh

United Kingdom
rsarkar@inf.ed.ac.uk

August 20, 2013

Abstract

Sensor networks collect data from their environment. Locations of
the sensors are important attributes of that information and provide a
context to understand, and use sensor data. In this chapter, we will
discuss geometric ideas to organize sensor data using their locations. We
will consider distributed methods for managing queries about isolated
events, queries about mobile objects, and queries for general signal fields.
Location based methods often operate on simple geometric domains, and
we will discuss how they can be adapted to networks with complex shapes.

1 Introduction

The data collected by a sensor has to be available to others, since the sensor that
produces a piece of datum is not always the one that uses it. The consumer may
be far from the source of data and have no idea of how to find the one relevant
source in a large network. When the consumer asks for aggregate information,
for example, sum or average or maximum, we face a similar problem of handling
data from a large group of sensors at a large communication cost.

Methods of data pre-processing distribute hints about sensor information
across the network. When done properly, pre-processing can make it easier to
answer consumer queries – search and aggregation – and avoid the large costs.

Locations are a useful tool in pre-processing and an important aspect of sen-
sor data, since physical events are naturally associated with coordinates instead
of ids. Locations let us associate events with the physical world – they give
us an index of the environment; thus locations are essential to Cyber Physical
Information. Interpreting and processing data by locations gives a geometric
structure to the otherwise amorphous sensor readings. As an added bonus, basic
network operations of routing, communication, scheduling and many others can

1

benefit from use of locations. Since wireless communication works only between
nearby nodes, their locations have a close relation to the overall structure of a
network.

In this chapter, we will examine how geometric ideas can leverage the loca-
tions of nodes for better utilization of sensors. We will see that geometry plays
a role in processing the sensor data as well as in answering queries.

These location based methods can be divided into two categories by their
applicability. In Section 2, we discuss ways of managing data in a static scenario
where sensors measure general physical quantities or events such as tempera-
ture, pressure or occurrence of fire. In section 3 we will consider methods for
processing data about mobile objects. With the increasing popularity of mobile
devices, this is an important sensing category, and carries interesting relations
to the general case. In each of Section 2 and 3, we will consider two different
styles of data organization – hierarchic data structures, and data distribution
in a flat structure. In Section 4, we will discuss how these methods are adapted
to complex networks by construction of virtual coordinates and segmentation
of networks.

Our goal is to keep the methods as general as possible, so that they are
applicable to the widest variety of scenarios. Therefore we will treat our network
as general communication-capable sensors distributed in a plane, without any
assumption on their specific sensing capabilities or other features. We will,
however, mention relevant example applications in each case to illustrate the
methods and their uses.

In the rest of this section we discuss the general model and scenario used
to describe the different methods. Locations and distributions of nodes are
important to storage schemes, as is routing. Let us briefly review the aspects
of these topics that will be relevant to our main discussion. Readers generally
familiar with location based algorithms and routings methods may wish to skip
ahead to the next section.

1.1 Distribution and Location of Nodes

Finding locations of nodes is a challenge on its own and much research has
been devoted to it. The methods and protocols vary by the requirements and
the infrastructure available, and the theoretical questions related to localizing
nodes are often intractable problems [10, 4]. For more related works on this
topic see a recent survey [15]. From a practical point of view, GPS is becom-
ing more affordable, and localizing sensors by collaborating with nearby and
passing GPS enabled devices is often a possibility. Wireless and cellular signal
based localizations are also becoming and common and fairly reliable. Very ac-
curate localization will not be important to our discussions, we therefore leave
the question of localization here and assume that some form of approximate
locations are available.

We do need some idea of how sensors are distributed in the domain. For
our discussion, let us assume that the nodes are distributed over large area and
with bounded density: the number of neighbors of any node is bounded by some

2

constant number. This is a reasonable assumption, since in a small region we
would like to have only a limited number of sensors. Too many devices in close
proximity increase costs and reduce communication efficiency [16], but cannot
provide corresponding sensing benefits.

For simplicity, we can discuss the performance of algorithms with respect to a
specific sensor configuration. Let us suppose n sensors are distributed in a large
enough square and with uniform density as discussed above. If communication
ranges of sensors are bounded above and below by some constants, this would
mean that the sides of this square are of length Θ(

√
n), and the diameter of the

network is of the same order. The expected distance between any two random
nodes in the network is also Θ(

√
n).1 We will discuss more general types of

networks in section 4.

1.2 Communication and Routing

To make best use of sensor networks, a sensor needs to communicate with other
nodes; it needs support from the network to forward its messages. Multi-hop
routing in wireless and sensor networks is a widely studied subject that we will
not attempt to survey here, but will mention briefly a few concepts important
to our later discussion.

Flooding. This is perhaps the simplest communication technique, where the
message is sent to all neighbors of the source, and a receiver always sends it to
all its own neighbors. As a result, the message reaches all nodes in the connected
network, including the intended destination. Once the first message is delivered,
one of the paths along which it traveled can be used for further communication
between source and the destination. This is the basis of classic ad hoc routing
protocols such as AODV [35] and DSR [18]. The cost of such a protocol is Θ(n)
per communication pair, since the first message goes to all nodes.

Geographic routing. To make routing more efficient in sensor networks,
several methods make use of node locations. These schemes preprocess the
network to compute a planar graph whose edges consist of communication links
in the network (see [2]). The routing itself follows a two phase method. Suppose
node s currently has a message for location t, then s uses one of the following
tactics:

1. Greedy routing: Node s checks all its neighbors and finds neighbor w that
is nearest to t. If |wt| < |st|, that is, w is nearer to t, then s sends the
message to w.

2. Perimeter mode routing: If no such w is available, the routing enters
perimeter mode, where the message moves along the face of the planar
graph containing s, until it finds w with |wt| < |st|.

See Figure 1 for an example.

1A function f(n) is said to be Θ(g(n)), if there are constants a, b, N such that for all

3

x
y

z w

u t

Figure 1: Greedy routing and face routing. Message path is shown in bold, and
goes through the following steps. A message for t starts from x and reaches
y by a greedy step. Greedy step fails at y, so perimeter mode is initiated for
the shaded face. Message reaches w while traversing the face. Greedy mode
resumes at w since |wt| < |yt|. The message traverses the face containing
location t looking for the node nearest to t.

There are several methods [2, 19, 22, 25, 26], that are variations of this
essential strategy. The most popular among these is GPSR [19], which we
will use as our standard reference for this class of greedy plus perimeter mode
routing. We will assume for simplicity that the sensors are distributed with
sufficient density that there are no large “holes” in the square network. As
such, we can say that if two nodes are distance d away in the plane, the GPSR
path between them has a lengthO(d) – which is the communication cost between
these two sensors. If there is no node at the destination location t, then GPSR
traverses the face containing t, and arrives at the node closest to t.

Virtual coordinates and handling network shapes. A real sensor network
will typically not be so simple as the square domain we have assumed. It will
have an unknown shape, and will likely have coverage holes where there are no
sensors. Is it still possible to apply the routing methods and the geometric data
storage methods to these networks?

Protocols have been designed to compute virtual coordinates – assignment of
a logical or virtual location to nodes in an abstract plane [36, 34, 5, 6, 39, 40, 45].
These methods morph the virtual network into more standard shapes, making it
easier to use routing and geometric data storage methods. A different approach
is proposed in [46, 47] - to decompose a complex shape into pieces, each of which
is relatively simple, and easy to apply geometric methods.

We will discuss these methods of handling complex shapes in Section 4.

n > N , a ·g(n) ≤ f(n) ≤ b ·g(n). That is, for large enough n, f(n) behaves like g(n) to within
constant factors. More details can be found in books on algorithms. See for example [7].

4

2 Information Brokerage and Range Queries

An important sensor network question is searching for particular pieces of in-
formation. Sensors detect and store significant events, and sometimes we need
to find a particular type of event – for example, a tourist on safari may wish
to find the elephants2. In this case, we have a sensor network monitoring the
park, and some sensor P near a group of elephants has useful information – it
has stored an “elephant detection” event. But sensor P is not aware where an
interested tourist may be. Symmetrically, node C is in communication with the
tourist, but has no idea where P is.

This general problem is called Information Brokerage: information producer
P has some data, and information consumer C would like to learn this data.
We need a general method by which producer and consumer can find each-other
easily.

The conceptually simplest protocol to handle this problem is for the con-
sumer to check every node in the network by flooding a query. This approach
was taken in Directed Diffusion [17] and TinyDB [31]. It works well when data
is updated often, but queries are occasional – a sensor stores updated informa-
tion, and responds to the queries it receives. However, all other nodes in the
network are also required to receive and forward the query, whether they have
relevant data or not. When searches are frequent, this becomes an unnecessary
load on the nodes, most of whom have nothing to do with the query.

We need an information brokerage scheme that makes better use of network
resources – uses less communications, and balances the load across the network.
We would like to avoid consuming energy at nodes that can not help us in our
search. All nodes reporting their data to a single server achieves this in a way
– it avoids flooding the network, but also overloads the server and the nodes
close to it. All the updates and queries have to be forwarded by the few nodes
leading to the server, which will quickly run out of battery. Information should
be spread out to balance the storage and communication loads in the network.

2.1 Hashing Data to Points and Curves

One method to coordinate producers and consumers is by using consistent hash-
ing over the entire network. The idea is used in [37]. All nodes know a hash
function that can be applied to the data query or key, and it returns a location.
Let us denote this function as h.

In our example, sensor P performs the hash h(“Elephant”), and obtains
a location – a pair of coordinates: (x, y). Node P sends a message to the
sensor at (x, y) that “Elephant” or relevant data is available at P ’s location.
The consumer C performs the same hash when searching and obtains the same
(x, y); thus C knows which sensor must have the information.

Location (x, y) need not be a sensor location at all, a random hash h will
almost certainly give us an empty location. We can resolve this by storing the

2This commonly used example is from [37]

5

P

C
S

(x, y) = h(key)

Figure 2: Geographic hash tables. The data producer P sends a message to
location (x, y) = h(key), using GPSR. The trajectory is shown as the path in
red. The data may be stored at the node S nearest to the location, or on the
entire perimeter around the hash location. The consumer also performs GPSR
with (x, y) as target and arrives at the data.

data at the sensor nearest to the location (x, y) – see Figure 2. This nearest
sensor is called the home node. We saw in Section 1.2 how the home node can
be found using GPSR [19]. The consumer can also send a message via GPSR
routing to (x, y) to arrive at this same sensor, and a return message retrieves
the data. Since hash locations are completely random, the expected cost for a
node – either a producer or a consumer – to send a message to the hash location
is Θ(

√
n). Therefore, the cost of a producer storing a piece of information at

the hash location, or that of a consumer retrieving it are both asymptotically
Θ(
√
n) in expectation.

Storing a piece of data at only the home node is fragile – a failure of the
node can destroy all the stored information. For better fault tolerance, GHT
utilizes the GPSR’s perimeter routing mechanism. While searching for the home
node, GPSR traverses the perimeter of the face that contains the hash location,
and GHT stores the data at all nodes on this home perimeter at no extra
communication cost. Periodically, a probe is sent around the home perimeter,
checking the health of the perimeter nodes. If some nodes have failed and the
perimeter changed, then the new perimeter nodes are given a copy of the data.

The perimeter mode storage of data has an additional advantage that the
consumer can get the data as soon as the search message hits some part of the
perimeter curve. If we had gone a step ahead and stored the data at all the
nodes on the path from the producer up to the home perimeter, and sent the
consumer’s search message in a path likely to touch the storage path, it could
have collected the data without visiting the home region.

Can we stretch this idea further? Maybe we can deliberately send the pro-
ducer’s message along a path that the consumer can find. If done suitably, this
method may have several additional benefits. In Figure 2, the producer and
consumer are fairly close, yet the search message has to travel to the hash loca-
tion and back; which means slower response to the query, and additional load
on the home nodes and those on the path. If the search found a nearby node
on the producer’s storage path, these unnecessary penalties would be avoided.

6

Our next brokerage technique, called Double Rulings[43, 41] expands this
concept, and stores data along a path instead of at a node. The challenge is to
design the trajectories such that the search paths find the storage paths easily.

2.1.1 Double Rulings

Double Rulings is the general idea of storing data on a path such that the con-
sumer’s search finds it easily. Simply taking the GPSR path to the hash location
does not suffice – the goal is to have the intersection of search and storage paths
close to the consumer. The close intersection means less communication and
faster response to the query. It will be best to have the intersections at different
points on the storage path and have the load of responding to queries more
evenly distributed. The specific scheme we will discuss is from [43, 41].

The intuition is to design the paths as abstract curves on a sphere. A type of
curves we can use are called great circles. These are circles that lie on the sphere
and have the largest possible diameter. On the earth for example, the equator
and the longitude circles are all great circles. The great circles on a sphere are
analogous to straight lines on a plane – shortest distances are measured along
them. Just as with the plane, given two points on a sphere, there is a unique
great circle through them3.

h

h∗

r

h̄∗

h

p
h∗

C(p′, h)

C(p, h)

p′

h̄

(a) (b)

Figure 3: (a) Stereographic projection in side-view. (b) Producer storage curves (red)
for p and p′. They are great circles passing through hash location h.

The sensor network itself lies on a plane. To make use of curves on a sphere,
we first need a correspondence between the sphere and the plane. This is done
through a mapping called stereographic projection. Imagine the sphere is placed
on the plane. For any point h∗ on the plane, we imagine the straight line from
h∗ to the north pole of the sphere – its top most point. This line intersects the
sphere at another unique point h, which is the image of h∗ under the stereo-
graphic projection. This idea is shown in Figure 3(a).

With this map between the plane and the sphere, we can now define the
storage and search curves in terms of curves on the sphere. An example of

3The exception to this is the special case when the two points in question are antipodes
to each-other on the sphere, and there are an infinite number of great circles passing through
them.

7

storage curves is shown in Figure 3(b) where two producers are mapped to
points p and p′ on the sphere. In double ruling, the hash function gives a
location h on the sphere. The data is stored by a producer along the great
circle curve on the sphere passing through itself and h. To be precise, data is
stored along nodes on the curve in the plane that is the stereographic map of
the storage curve on the sphere. By properties of stereographic projection, the
circular curves on the sphere map to circles in the plane. Thus the producer’s
cost for storing data along any circle in the network field is at most O(

√
n).4

Using curves on a sphere makes data search and retrieval easy: a great
circle intersects any other great circle. Thus, the consumer doesn’t even have
to consider the hash h – it can simply send a message on a great circle and find
any data in the network.

q

h̄

p

C(p, h)
u

v

L(q, h)

h

0

0

(a) (b)

Figure 4: (a) Double Rulings p and q are stereographic maps of producer and con-
sumer; h is the hash, h̄ is its antipode. C(p, h) is storage curve (a great circle) and
L(q, h) is the retrieval curve, intersecting at u and v. (b) Actual Network storage path
(red) and search and retrieval path (blue) in the plane. The hash location is shown as
black triangle.

The knowledge of the hash function can be used to create smarter paths that
have provably small search cost. We make use of latitude curves for this efficient
search and retrieval in place of great circles. A latitude curve is defined to be
one that maintains constant distance to the hash location on the sphere – see
Figure 4(a)5. The advantage of such curves is that they intersect any producer

4A function f(n) is said to be O(g(n)), if there are constants b,N such that for all n > N ,
f(n) ≤ b · g(n). That is, for large enough n, f(n) is less than g(n) to within constant factors.
See [7] for details. The largest possible circular arc has length O(

√
n) in a square of length

O(
√
n).

5The name derives from latitudes on the earth, that maintain a constant distance to the
poles.

8

curve within a distance O(d) from the consumer, where d is the distance between
the consumer and the producer on the sphere. In Figure 4(a), this means that
either u or v – must be close to the consumer q. The location and radius of the
sphere can be chosen such that distance between any two points on the plane
is at most a constant times the distance between corresponding points on the
sphere, and the length of a path on the sphere is within a constant factor of the
length of the corresponding path in the plane produced by the stereographic
projection. Thus, the cost of search and retrieval for the consumer is O(d∗),
where d∗ is its distance to the producer in the plane. This property is called
distance sensitive retrieval.

The storage and search paths in the plane are shown Figure 4(b). In a dis-
crete network the paths cannot be the smooth curves we construct by projection.
The network path following the curves as shown in the figure are obtained using
a general strategy of “Routing along a curve” described in [33].

Double Rulings includes GHT as a subcase – every storage curve passes
through the hash location, thus the consumer can always retrieve data from
there. This is a useful feature when a consumer wants all the data of a particular
type instead of just one – this can be done by visiting the hash location. On a
sphere, its antipode h̄ serves as an additional proxy hash location – any great
circle passing through h also passes through h̄, and the GHT style retrieval can
be performed by visiting its image in the plane.

In data searching, the great circle curves are useful for certain types of
searches. For example, when the consumer asks for multiple types of data at
once, a great circle retrieval can find all of them at once, since the a great circle
will intersect all other great circle producer curves.

0

20

40

60

80

100

120

0

20

40

60

80

100

120

(a) (b)

Figure 5: Communication load at different nodes. Information generated by one pro-
ducer, and queries issued by 500 consumers. (a) Load for double rulings is distributed.
(b) Load when using GHT is clustered around the hash location, and therefore poorly
balanced.

One of our goals in using in-network storage is to balance the data handling
load among the nodes. Double ruling has the advantage that different consumers
retrieve data from different parts of the producer curve, so that the tasks of

9

responding to query are better distributed. This effect can be seen in Figure 5.
GHT creates high load near the hash location. The load from double rulings
is more balanced. In fact, the overall load from double rulings is less, since it
requires less communication per query.

Location free double ruling schemes. Intersection of paths to achieve in-
formation brokerage has been used based on other structures than the stereo-
graphic projection described in [43, 41]. We describe these methods very briefly,
making use of Figure 6. The first method, shown in Figure 6(a) is called Rumor
Routing, described in [3]. Here, the storage path is a random walk from the
producer, and of some maximum length determined beforehand. The retrieval
path is also a random walk, starting at the consumer. When the retrieval path
meets the storage path, it finds the data, which is returned to the consumer.

P

C

P

C

(a) (b)

Figure 6: (a) Rumor routing: Producer follows a random walk. Consumer also
follows a random walk until it hits the producer. (b) Landmark based double ruling.
Landmark nodes are shown as green triangle. Hash to a tile instead of location, then
follow GLIDER routing to reach tile. The nodes in bold are on boundary of one or
more tiles.

The second method (Figure 6(b)) relies on landmarks to decompose the
network, and is described in [12]. A few nodes in the network are selected as
landmarks. All other nodes determine the landmark nearest to them, and are
grouped into “tiles” accordingly. This is easy to do by flooding messages from
the landmarks, and using that to measure the distance of each node from the
different landmarks. The hash in this case is a complete tile. The producer
sends the data using a related landmark based routing scheme described in [11].
In each tile the path passes through, it shoots off additional branches so that
a consumer path finds an easy intersection. The consumer uses the same hash
and routing scheme, and intersects a storage node in the hash tile or an earlier
one.

These methods have the advantage that they do not need locations to op-

10

erate. Thus, they can be used when GPS or similar infrastructure are not
present. However, when locations are available, they are substantially more
expensive than the methods we discussed making use of locations. In the next
subsection we return to our main topic of location based schemes and discuss
how they can be divided recursively for better query response.

2.2 Hierarchical Partitions

Recursively partitioning a space is a common technique in data storage and
search mechanisms. The reader may be familiar with the binary partitioning
used in binary search on an array – where at each step the array is divided into
2 parts. By creating an abstract node for each such part, we get a correspond-
ing abstract structure called a binary search tree, that represents the recursive
partitioning of the array. To apply similar techniques to sensor nodes in a plane
we need a two dimensional version of this idea.

Level 2

Level 1

Level 0

Figure 7: A 3 level quadtree. On the left is the recursive partitioning – each
level consists of one or more square areas. At the next level each square is split
into 4 congruent squares. On the right is the tree – each square becomes a node,
with edges to its children, and the parent.

Figure 7 shows a quadtree partitioning. We start with a square space at the
top level, and recursively partition it into smaller congruent squares at each
level. Recursive partitioning gives rise to an abstract tree structure shown on
the right. Each square at each level corresponds to a node in the tree, thus
nodes other than the leaves have 4 children each. We can interchangeably refer
to a square or corresponding quadtree node as convenient. The partitioning
in Figure 7 has two levels in addition to the root, in general we can have any
number of levels. It is reasonable to assume that the final level is one where
the squares are unit sized. In our constant density square network model, unit
sized leaves imply a quadtree with Θ(logn) levels.

This general partitioning scheme has been used in different ways for sensor
data handling. Here we briefly discuss a few of these.

11

2.2.1 Structured Replication in GHT

GHT [37] has a variant called structured replication (Figure 8) designed to
handle the hotspot problem of many producers trying to transmit updates to a
single hash location. In this method, each node considers a quadtree partitioning
of the square. On each level of the partitioning, it is possible to perform the
hash on each square at that level, giving us 4i hash location at each level i.

P

Figure 8: Structured replication in GHT has a hash location in each square
of a quadtree partitioning. A producer (shown shaded) stores the data at the
nearest hash location among all these.

The producer P stores the data at the single nearest hash location among
all the locations. In a k level tree storage cost is reduced to O(

√
n/2k) , but

the search cost increases – now the consumer has to search multiple locations.
The protocol dictates that the consumer searches the hash at level 0, which
automatically forwards the message to the level 1 hashes, each of which forwards
the message to level 2 hashes and so on. Thus the search cost is O(2k

√
n). This

method therefore decreases storage or update cost, but increases the search cost.
The authors point out that if the levels are such that at the lowest level squares
are constant sized, then this costs O(n) – asymptotically the same as flooding
to retrieve data from the source node.

2.2.2 Fractional Cascading and Aggregate Information

Let us consider now a different question – answering aggregate queries using a
hierarchical structure. Imagine all our sensors are monitoring a signal that has
an attribute value, such as temperature. We can thus ask a question “Which
sensors in region R have temperatures above T ?” or, “How many sensors in
region R have temperatures above T ?” To answer these, we need a different
type of data storage and retrieval than the information brokerage schemes.

The fractional cascading method [14] suggests storing at each sensor, aggre-
gate data about exponentially growing regions: a constant number of values for

12

each quadtree square that contains it. A sensor has detailed information about
the local neighborhood, and progressively coarser information about larger re-
gions.

Square u

Figure 9: The network from the point of view of the shaded node in quadtree
square u. It stores one aggregate (for example maximum) for each square in
this figure.

The method starts with partitioning the square with a quadtree. Remember
that a node u in the quadtree corresponds to a square in the partitioning. Its
parent p(u) is the larger square at the previous level that contains the square
u. Fractional cascading then proceeds by storing some values at each sensor in
a square. At each sensor in u, it stores the maximum in the square u, and the
maxima for each sibling of u in the quadtree. That is, each node saves 4 values
for each level in the tree – the quadtree nodes on the path from the leaf to the
root, and their siblings (See Figure 9). This means that on a typical tree in our
scenario, a node needs to store O(log n) values, and the communication cost of
storing all the data in this format is O(n log n).

The query response is done in terms of Canonical Pieces. Given a region R,
a canonical piece is a square in the partitioning that fits completely in R, but
its parent does not fit – see Figure 10. To find the true answer, we check each
canonical piece. The cost of this traversal can be shown to be O(D +

√
Ak +

P logP). Here A and P are the area and perimeter of R, while k is the number
of sensors with temperature above T . The parameter D is the distance from the
query source to the query range – it is the unavoidable cost of communicating
with the query region.

Sometimes we may not be interested in a such a detailed report. We may
just ask “What is the maximum temperature in R?” to find out if there is a
fire in the region. On such a query, it is sufficient to check just one node from
each canonical piece, since every node stores the maximum value of each square
it belongs to. The traversal can be done nicely by following a spiral path in R
visiting the smaller pieces at the edges first, and traversing progressively larger

13

Figure 10: Query response in fractional cascading. The query is to find an
aggregate (e.g. sum of values) of all sensors in the outer rectangle R shown in
bold. Each square in the figure is canonical piece – its parent square is not in R.
The method needs to visit each canonical square once, this is done by following
the spiral path shown as dashed segments, that has length O(P logP).

squares inwards. The cost of visiting all the canonical pieces will be simply
O(D + P logP), taking into account the distance of R from the query point.
Similarly, it is possible to compute sums, where each node stores the sum of
values in its square and their siblings at all levels. This is useful in answering
a question of type “How many animals are there in region R?” and can be
answered at the same cost.

Fractional cascading is a fundamental concept in computer algorithms [8],
and have been used in different fields in different ways. It will make further
appearances in the next section when we discuss tracking mobile devices.

2.2.3 DIM: Locality Preserving Storage of Multi-dimensional Data

Sensors in a network are likely to have many different sensing capabilities. And
queries may be with respect to multiple parameters. Whether it is a data center
or a wildlife preserve, we need to keep track of many different parameters that
will help us understand animal behaviors, hardware failures and other events in
the network.

For such data, it is useful to be able to make range queries: which hardware
failures in the data center typically happen at high temperature and load con-
ditions? At which locations has the bird been spotted when temperature was
between 30◦C − 35◦C and humidity in range 80%− 100%?

To answer the queries efficiently, it helps if similar data are stored close
together. For example, if events at similar humidity and similar temperature
are stored nearby, the cost of answering the queries above will be low.

Based on this idea, DIM [28] suggests a locality preserving hashing scheme
for events. Here “locality preserving” means that it tries to place together events
that are similar in some parameters.

14

Let us suppose for the moment that we have k different binary parameters.
We can ask: “Was the temperature low or high?”, “Was the humidity above or
below 50%?” and similar questions about every parameter. Thus each event is
accompanied by a bit vector b of length k. To each possible bit vector, we will
assign a zone – a region of the network – where the corresponding events will
be stored.

This method is inspired by a different type of space partition called kd–
trees [8]. We start with our square network region R, and partition it recursively,
diving each region into two according to the next bit b[i] of b. If index i is even,
we split R with a vertical line, and depending on b[i] being 0 or 1, we choose left
or right. Similarly, if i is odd, we split R with a horizontal line and depending
on if b[i] being 0 or 1, we choose bottom or top. Figure 11 shows an example
how we can map any bit vector to a unique region of the network.

01 110

1110

1111

101100000

0011

0010

Figure 11: Any bit vector can be assigned to a unique region in the network.

Thus, given an event whose binary properties are represented by b, we have
a way to map it to a region, and events with same properties will be mapped
to and stored in the same region. Observe that parameters whose values are
earlier in the sequence have greater weight in determining the neighborhood of
storage, creating an imbalance in the significance of different parameters.

The case where parameter values are not binary can be handled by consider-
ing the binary representation of the values. For simplicity, let us say each value
is an integer in the range [0 to 2v − 1], represented by v bits. The first bit is
the most significant – it determines if the value is in the range [0 to 2v−1− 1] or
[2v−1 to 2v]. Given that the first bit determines if the value is in the left or right
half of the range, the second bit determines if the value is in the lower or upper
half of the reduced range, and so on. To map k such values to the network,
we utilize this bit representation concept. The first k bits of b are the most
significant bits if the k values, the next k bits store the second most significant
bits of the values and so on.

15

3 Mobility Management and Tracking

Let us revisit a question we had considered in the previous section. A tourist
asks “Where can I find an elephant?” We discussed some methods of brokerage
that helps the tourist to find the animals of interest. These brokerage methods
work well as long as the animals stay in their place, or move very rarely. What
happens when the animals are active and move continuously? In such cases,
methods such as GHT and Double Rulings have to continuously update the
storage data – by sending messages on long paths or curves.

This is identical to a common question in mobile networks. “Where is user
x?” which is important when placing a call to user x in cellular networks. Cel-
lular networks handle mobility by assigning to each phone a “home” server
and having the phone update this server suitably. In a sensor network the
corresponding strategy will be updating a hash location in GHT or sending a
message along a double ruling path every time x moves, which is impractical
for frequently moving targets.

The general problem of tracking and finding mobile objects is therefore a
challenging topic in sensor networks. It is particularly important and difficult
in the case when the tracked object is a frequently moving device such as phone,
or a GPS in a fast moving car. The question of detecting a nearby target
and detecting its movements and location are themselves subjects of extensive
research. However, our topic of discussion in this chapter is sensor data, we will
therefore focus on managing the tracking information obtained by the sensors.
For simplicity, we can assume for example, that the mobile devices are GPS
enabled and are willing to cooperate by communicating their true locations.

3.1 Hierarchic Tracking Data

Hierarchic data in quadtree format is relevant to tracking mobile objects as it is
to tracking isolated data. The methods using hierarchic information fundamen-
tally use the fractional cascading concept of storing more detailed information
about the local neighborhood, and lower resolution data about regions farther
away.

GLS: Grid location service. This method was originally described for mobile
ad-hoc networks in [27], but is based on the same essential ideas that we are
using in sensor networks.

GLS assumes a global total ordering of n node ids in a cyclic directed list:
L = 0, 1, 2, . . . , n − 1(mod n). Suppose the node with id x belongs to a square
sxi at level i. GLS stores x’s location at the node whose id is the first after x
in the sequence L among nodes in sxi . Then it repeats the procedure for the
siblings of sxi and similarly stores the id of x at the successor of x in each of
these squares.

You may have already noticed the similarity to fractional cascading that we
saw in section 2.2.2. The information in a square si at level i is replicated in
each of its siblings. The difference is that in section 2.2.2 we dealt with only the

16

aggregate value, and every node in a si stored the same level i value. In GLS,
there is no aggregation. The information about node x is stored at exactly one
node in square sxi , and at one node in each sibling square.

When node y searches for x, it sends a search message to the node first in
L after x for which y has location information. This node performs the same
operation again, looking for x. It can be shown that this is guaranteed to reach
a location server of x, which will be able to forward the message directly to x.
The initial registration of x’s location and updates on moving can be executed
using the same basic operation. When x wants to select and update a location
server in a square s, it sends an update message to s. The message starts as a
search for x inside s and will find the node that should be x’s location server.
Thus, using the same elegant primitive, GLS handles both the fundamental
operations of searches and updates.

The difficulty in GLS is that the search cost can be disproportionately large
compared to the distance between x and y. When these two nodes are close
but lie in different squares of the quadtree partitioning, the search may have to
take a long path. The same problem can arise when x moves. A small move of
x can produce a costly update. We will discuss next a method that solves this
problem.

LLS : The locality aware location service. This hierarchic method [1] uses
location servers at different levels of the quadtree. For a mobile node x, there
is a hash location h(x) at the root level of the quadtree that stores its data.
Similarly, there is a hash location hs(x) for any square s at any other level of
the partitioning. These locations act as location servers for x. Any other node
that looks for x can get the information by communicating with a few of these
servers.

m
c

u

Figure 12: Basic search in hierarchic mobility tracking. Only relevant part of quadtree
is drawn. Suppose m is the lowest level square (leaf node in the quadtree) that contains
the mobile user. The quadtree nodes on the path from m to the root have information
about the mobile user. The consumer at node c searches ancestors of c until it hits p
– the common ancestor with m. The search then proceeds down the tree to find m

and the precise location of the user.

17

At any time, if x is in square sxi at level i, then the location server at hsx
i
(x)

stores location of x. In fact, it only notes a pointer to the square at level i + 1
that contains x. There are O(log n) different location servers – one at each
level – that carry information about x’s location at any time. This is different
from structured replication in GHT. In structured replication, there is a similar
hierarchy of hash locations, but the data is stored at only one of them, whereas
in LLS, information is stored at one server for each level. And in contrast
to GLS, the server hsx

i
(x) at level i only records the level i + 1 square sxi+1

containing x, but not its exact address. This has the advantage that when x
moves anywhere inside that square sXi , the server hsx

i
(x) does not need to be

updated.
When a different node y wants to find the location of x, or to communicate

with it, an inductive search is performed. The lowest level square syj containing
y is checked first. To be precise, the location server at hs

y

j
(x) is asked for x’s

location. If this fails, the higher level server in syj−1 is checked and so on, until
a server with information about x is found at some level – which may be the
top level h(x) in the worst case. Next, the query has to follow pointers down
the levels to the leaves. An example is shown in Figure 12.

x

y

0

1

2

3

(a) (b)

Figure 13: (a) The black shaded nodes are x’s location servers. The numbers next to
them are the level of the quadtree that they correspond to. y searches for x, and finds
a trace of x at level 1. (b) At any level, x’s location is stored at eight adjacent squares
in addition to the host, When x moves to one of these squares, no updates take place.
However, on the next move an update is triggered and all twelve squares are updated.

This basic search idea has a disadvantage that in certain cases, the search
cost may be much higher than the distance between x and y – this search is
not distance sensitive. See for example the case in Figure 13: x and y are

18

geographically close, but y has to communicate with the distant location server
“1” to find x. This happens because the two nodes are separated at a high level
of the partitioning, although they are quite close in location. The same issue
can cause the update cost of x to be high when x crosses this boundary.

To make the search distance sensitive, LLS replicates x’s location data at
the eight level i squares neighboring sxi . This replication guarantees that the
search incurs a communication cost O(d) where the distance between x and y
is d. It also makes it possible to keep the update costs distance sensitive by
making updates in a lazy manner. When x moves to one of the neighboring
square, no updates are performed. When x moves out of this neighborhood,
an update is performed to remove the outdated information and to enter the
new information in the new neighborhood. Therefore x drags with it a sliding
window of servers at each level – see Figure 13(b). The idea is to delay updates
to avoid unnecessary communication. On average, if a node moves a distance d,
then this scheme can be shown to have update costs of O(d log d). The cost is
amortized. That means, the average cost over many moves is guaranteed to be
low, but the update cost at a particular step can be arbitrarily high compared
to the movement at that step.

During a search, it is possible that due to the lazy update scheme, a server
claiming to have the target is in fact in error. However in such a case, the target
is guaranteed to be in one of the neighboring squares. It can be shown that this
does not increase the asymptotic search cost.

In the next section we will consider a different problem of aggregate queries:
answering a question of type: “How many device are in an arbitrary region R
of the network?” LLS, based on its information of node locations can answer
this question the same way that range queries are answered in the fractional
cascading method of section 2.2.2 – using the spiral traversal of canonical pieces
shown in figure 10. While this works, the query process is not efficient since
the preprocessing carried out by LLS was not designed for such questions. The
algorithm in [29] is more efficient in answering such queries. There the prepro-
cessing is based on computing a harmonic function that makes it easy to answer
such aggregate questions. However, the computation of a harmonic function
and its subsequent updates can be expensive; we will instead look at a different
method for answering counting queries in the next subsection.

In summary, the utility of LLS and GLS is in search and communication with
individual mobile nodes. The hierarchic partitioning scheme provides the benefit
that the search process operates in a small neighborhood of the query origin, and
goes to broader regions only when that is necessary. The updates are performed
lazily – delayed as much as possible to minimize costs. Thus the location servers
provide an essential prerequisite of point to point communication: they find a
particular user based on the device identifier.

3.2 Differential tracking forms: Aggregate tracking

Beyond the question of tracking movements of individual users, we can ask
questions about aggregates of users. This is analogous to the range queries we

19

had considered in the previous section. Now we wish to answer questions of
type: “How many users are there in a region R?” This is useful when we wish
to quickly find the traffic density in arbitrary regions of the network, or the
number of people in the neighborhood of a sporting venue.

It is possible to answer the question using the location server hierarchy of
LLS. We can use the spiral traversal method shown in figure 10, and answer the
question the same way. However, there are a few aspects of LLS that we wish
to improve upon:

1. Search Costs: While the canonical traversal is nice, we do not know
where the different location servers in a canonical square may be. We
would need to search all nodes in each square, and therefore all nodes in
R to find the answer.

2. Update Costs: The costs of updating location servers may be high, even
when a node moves a small distance. This is particularly significant when
updates are very frequent, for example when tracking moving vehicles –
with high speeds and large numbers.

3. Privacy: LLS requires tracking each device at every moment. The users
may wish not to be tracked with such precision. We would like to keep
the counting information, without following the precise movement of in-
dividual devices.

For this problem, we find it beneficial to leave the hierarchic fractionally
cascaded data format and return to a flat data model once more. The model is
based on the concept of a differential form in mathematics. This fundamental
concept can be adapted to sensor networks by interpreting it as weights on edges
of a planar graph [38]. We will address a more general problem of counting the
total weight of targets in an arbitrary region. Counting targets is a special case
of this question with each target having weight 1.

We first compute a planar graph in the network the way we discussed for
routing(section 1.2). This graph needs to be one such that when a target crosses
an edge of this graph, one or more sensor detects this fact – for example, by an
explicit update from the target itself, or by a localization carried pout by the
sensors. We assign a weight to each edge. This weight function ξ is a special
one; it is constructed to have two important local properties:

1. The weight is directed: ξ(ab) = −ξ(ba). That is, if a message moving from
a to b sees a weight w, then a message moving from b to a sees a weight
−w.

2. If the weight of targets in face f is w, then a message traveling along the
boundary edges of f in a clockwise direction sees a total edge weight of
w. A message traveling along the boundary of a face without targets sees
a total weight zero.

It turns out that having these two simple properties allow very sophisticated
tracking: we can find the weight of targets inside any region R just from the

20

weights of edges on the boundary of R. For a face f , let us refer to the boundary
of f traversed clockwise as ∂f . We can treat the region R to be a collection of
faces, and denote its boundary by ∂R.

a

b

c df1

ξ(∂f1) ξ(∂f2)+

+

ξ(ca)

ξ(ab)

ξ(bc)

ξ(ad)

ξ(db)

ξ(ba)

ξ(ca)

ξ(bc)

ξ(ad)

ξ(db)

=

=

ξ(∂(f1 + f2))

f2

Figure 14: The weight inside a collection of faces f1, f2, . . . can be obtained by simply
adding the weights on the boundary of the collection. For every edge ab in the interior,
weights ξ(ab) and ξ(ba) cancel, leaving only the outer perimeter edges.

To obtain the total weight on faces inside R, it is sufficient to add the weights
of edges on ∂R. Thus, we find the total weight inside R simply by making a
clockwise tour of its boundary, without ever entering R at all! Figure 14 shows
the intuition behind this idea. For a formal proof, see [38].

When a target moves, we need to update these weights. Suppose a target of
weight w moves from face f1 to face f2 above, crossing the edge ab, the function
ξ is updated by ξ(ab) ← ξ(ab) − w (or equivalently, ξ(ba) ← ξ(ba) + w). It
is easy to check that this update reduces the weight on the boundary of f1 by
w, and increases the weight around f2 by the same amount. The function ξ is
called a differential tracking form.

Initializing the function ξ requires setting its value on the edges suitably. To
do this, we can assume that the target arrived at its current position through
some arbitrary path from the exterior, and update the edges it would have
crossed on such a path (see Figure 15). This is done in a more consistent and
efficient way by constructing a dual of the planar graph and using a spanning
tree of this dual to find paths for all targets. This method works at O(n)
communication complexity.

The differential tracking form has several nice properties. It is tolerant to
coverage holes: even if a target enters a hole and is currently not in the range
of any sensor, its information is stored at the boundary of the hole, and for
any region that contains the hole, this method still returns the correct answer.
For the same reasons, it is also tolerant to sensor failures. The method can be
made locally adaptive to insertion of new sensors and movements of the sensors
themselves. The tracking is also anonymous – we update someone crossing an
edge, but not the identity of the user or device. In fact, the entire protocol
works without any need for identification.

The most important property, from a performance point of view, is that
updates are very inexpensive. The weights on the edges can be maintained

21

T

L

ξ(L) = w

T

(a) (b) (c)

Figure 15: (a) Suppose the single target T has weight w. Then for a loop L that
contains T , ξ(L) = w. Such a loop is shown in bold. (b) A target T enters the
network along the red curve updates a sequence of edges shown in bold blue. If
the T is already at the position, we can imagine that T entered through some
such path. (c) The trail corresponds to a path in the dual graph. The edges to
be updated are precisely the duals of the edges on this path.

locally by the sensors that are the end points of the edge. When a target
crosses the edge, this is detected locally, and this weight is modified. That is all
that is needed. When a target moves a distance d, the update cost is O(d) – the
number of edges crossed by the target. Efficient updates are critical to tracking
mobile objects, since movement of devices or vehicles are generally much more
frequent that queries. The completely local update has the additional advantage
that it does not require participation of sensors far from the region of activity,
which can happen, for example, in LLS. It is therefore possible for sensors to
stay in sleep mode while there is no activity in the neighborhood.

In general, it is useful to maintain different tracking forms for different cat-
egories of objects which we may want to search or count. This is particularly
useful for example for the tourist looking for elephant type of query we discussed
earlier, or for a traveller searching for a cab. It is shown in [38] that by repeated
application of the counting query, such questions can be answered at a distance
sensitive cost of O(d).

Other than moving targets, tracking forms are also useful in aggregating
general signals monitored by sensors. We simply need to treat the signal value
at a sensor as the target weight at that location. For example, suppose we
wish to find the average temperature. We need two tracking forms: one for
temperature, one for node count. By finding the sum of temperatures and
dividing by the number of sensors in any region, we easily find the average.

On the whole, this method is very robust and flexible. The ability to compute
sums of values can potentially be extended to compute other types of functions
of sensor values. Exactly how to achieve such extensions and exactly what can
be achieved with this method remains to be investigated.

22

4 Networks with Complex Shape:

Segmentation and Virtual Coordinates

We had started off assuming that our sensors are in a nice square field, and
we applied plane geometry without regard for obstacles. Reality may not be so
accommodating. Obstacles like buildings may create holes in the sensor network
or the perimeter may be irregular instead of a square. What happens to the
hierarchic and flat structure algorithms when they encounter the boundary of
such a gap in the network?

Empty regions in a sensor network are often governed by the nearest sensor.
Recall what DIM [28] does: it stores data at zones determined by its attributes
(attr1, attr2, . . .). In irregular networks the data aimed at zones in large empty
regions are recorded by sensors at their boundary, and are also retrieved at
the boundary. While this works, it is not the most efficient. See for example

0

50

100

150

200

250

(a) (b)

Figure 16: (a) A network whose boundary does not match the square. (b) Load
distribution of DIM for a set of random data. The boundaries are overloaded while
interior nodes have much lower workload. The variation in load between different
boundary points comes from the design of the algorithm.

Figure 16. The network in 16(a) has an irregular shape, and we apply DIM to
the bounding box shown as the black square. All data hashed to the empty
white regions are eventually stored at nodes nearest to these regions – at the
network boundaries. These boundary nodes store a higher fraction of data than
others as shown in 16(b).

The problem is not specific to DIM. GHT and all the hierarchic data handling
methods rely on “nearby” sensors in some way or the other, and therefore show
similar imbalance against boundary nodes. Double ruling and other path based
methods are also not immune. A path that encounters a hole will typically
move along the boundary to find a way to the destination. Routing methods
like GPSR frequently move along hole boundaries in perimeter mode, and create
heavy loads there. Without any special care, workload distribution will generally
be heavily against boundary nodes, resulting in hotspots, delays, low efficiency,
and possibly loss of packets.

23

The difficulties appear largely from our misplaced assumption of a simple
square network. If we take the precise network shape and adjust our algorithms
not to stray outside, they may operate in a balanced way. However, there
are several practical and theoretical hurdles to this ideal approach. Efficiently
describing a convoluted boundary and storing it at each sensor is difficult in
general, and impossible for a sufficiently complicated boundary. Even if we can
somehow figure out the boundaries and their descriptions, it is not clear how to
adjust our algorithms. Hashes and space partitions that are natural in a square,
are hard to adapt to arbitrary shapes. Instead we will discuss two other methods
of handling complex shapes. The first is to decompose a network into simpler
pieces and apply the algorithms independently in each piece. The second is to
create virtual coordinates with simple shapes thus eliminating the problems of
complicated boundaries.

4.1 Network decomposition

The network of Figure 16(a) has a natural structure made of five approximately
square shapes. Figure 17(a) shows a decomposition of this type. Nodes belong-
ing to the same segment after decomposition are shown in the same color. The

0

50

100

150

200

250

(a) (b)

Figure 17: (a) The network decomposed into segments forming simple shapes. Each
segment is shown in a different color, along with its own bounding box. (b) Load
distribution when DIM is applied to segment-wise bounding boxes instead of the global
range. Bounding boxes may have partial overlaps, and those nodes have to operate for
both the squares and therefore take double the load as seen above. But load balance
is still better than Figure 16.

segmented network can now be covered by five bounding boxes – one for each
segment. Instead of dividing event ranges into two parts and allocating to two
parts of the network, we can now divide them into 5 parts of suitable sizes, and
allocate to different segments proportional to sizes. In each segment, we follow
the usual DIM method of binary space partitions to allocate events to zones in
the bounding box. As a result, the allocation of zones is tight with respect to
the actual sensor distribution and the imbalance at boundaries disappears – see

24

Figure 17(b). Other data storage schemes will have similar improvements.
The network segmentation idea and the results above are from [46, 47]. The

decomposition was obtained by taking the distance of nodes from the bound-
aries, and constructing a discrete representation of the gradient vector field of
this distance. The different segments correspond to partitioning the vector field
according to its different sinks or end points, and computed distributedly in-
network. This method simply tries to divide the network into its constituent
large pieces, and not specifically into squares. Smaller segments generally have
tighter bounding boxes, and as a result better balanced performance.

Managing the network in suitable partitions has been considered in different
scenarios. Decomposing the network in convex regions can help in routing, since
simple greedy routing works well in convex shapes. This has led to the effort
of decomposing the network into Greedily Routable Regions [21]. Other convex
decompositions have helped in localization methods [30].

As we saw above, once the network is segmented, the data storage algorithm
takes into account this split at the top level of operation and divides data into
the segments. This method needs the storage algorithm to be aware of the
segmentation and may be impractical and inefficient when many segments are
connected in complicated ways. Our next method tries to avoid these issues by
creating virtual coordinates.

4.2 Virtual coordinates

Virtual coordinates are a simple concept. Instead of using the real locations,
each sensor is assigned a different logical coordinate to simplify data processing.
In our case, we want coordinates that give a simple virtual shape to a network
in place of the original complex one – hopefully one that balances the load for
our storage algorithms.

(a) (b)

Figure 18: (a) Triangulated network. (b) Virtual coordinates with circular holes. The
shape of the network is transformed by Ricci Flow to obtain coordinates with circular
holes.

25

Figure 18(b) shows a type of virtual coordinates where each hole boundary
of 18(a) is converted into a circle, and the outer boundary of the network be-
comes the outer circular boundary. This configuration is easier to describe than
the original one. A circle is represented by its center and radius, thus the entire
network is now described by just three numbers per boundary.

The transformation of Figure 18 is obtained by conformal deformations of
the original network. A conformal deformation is equivalent to local scaling
– either contraction or expansion – at each point in the network. Ricci Flow
is a particular technique of repeated applications of such deformations that
achieves the transformation of arbitrary boundaries to circle. Application of this
method requires a triangulated planar graph. Thus the Ricci Flow algorithm
described in [39] starts with a distributed method of triangulating networks.
This triangulated state is visible in Figure 18 – each face of the graph, except
the holes, is a triangle.

(a) (b) (c)

Figure 19: The virtual coordinates can be reflected in a circular boundary. (a) At
each reflection, a boundary goes to a circle. (b & c) The reflections can be repeated
in the new circular boundaries until holes are negligibly small.

The network still has large holes and we need a method to solve the load
imbalance of storage schemes. This is done by a technique called circular re-
flections. Similar to reflecting figures about a line in the plane, it is possible to
perform reflections about a circle – points outside the circle are sent inside and
vice versa. For each hole boundary, we perform such a reflection that creates
a copy of the network inside it, see Figure 19(a). There are two nice effects of
this reflection. First, it fills up much of the holes, reducing empty space, and
second, the circular boundaries map to circular hole boundaries inside. This sec-
ond property means that we can repeat the entire process in these new circular
boundaries and reduce empty space indefinitely: Figure 19(b & c).

Finally, we can now have a network with only small and insignificant amount
of empty spaces inside. For any point that was in a large empty space previously,
now it is possible to find a reflected image of a node close to it. A message
intended for this point goes to this node instead of the boundary, thus giving
us a more balanced storage. Routing to a point inside a “hole” is simple –

26

reflection preserves continuity at the boundary, and thus it is possible to reach
the interior point by simple greedy routing. Either the storage or the routing
do not require us to compute the reflected images of the nodes beforehand –
they can be decided on the fly as needed. And we also do not need to consider
an infinite number of reflections, a few levels of reflections suffice in most cases.
See the discussions in [40] for more details of this method.

Several other methods of computing virtual coordinates exist, with differ-
ent properties and applications. The reader is may find interesting ideas in
hyperbolic virtual coordinates [24, 45]. However, these and most other virtual
coordinates [11, 13, 32, 36] are designed for routing, and not for data storage.

5 Discussion

We hope that the reader got an impression of the variety of techniques and ideas
that can be brought into play with locations as the primary index. Beyond the
natural localization of sensor data by coordinates, many interesting queries are
location oriented. Whether we look for the nearest cab or ask for the average
temperature in a part of the city; we are interested not in the whole of network
data, but only in a geometric local part of it, and our methods should be designed
accordingly.

The impact of locations and geometry is almost always useful when looking
for simple yet efficient methods to handle sensor data. See for example [9],
which uses a gossip algorithm on sensor networks to compute averages of sensor
values. Instead of exchanging information with neighbors as in a traditional
gossip algorithm, here the nodes perform gossip with random locations in the
network. As a result, the algorithm converges to the desired result, such as
the average temperature, much faster in this method. Fractionally cascaded
hierarchic information can also be computed, using a different gossip technique
called spatial gossip [42, 44]. This protocol computes and stores logn aggregates
at each node. For any level i of the hierarchy, a node p receives the aggregate
of all nodes within a distance 2i of p. This is analogous to the quadtree based
methods we saw earlier, except that unlike a quadtree, here the average is of a
disk centered exactly at each node p. This technique in fact relies on an idea
from social networks: a model for creating small world graphs [23, 20].

The concepts in processing information in sensor networks are more general
than the applications to sensor networks themselves. With low power nodes and
the need to process large quantities of data at minimal communication, sensor
networks are a more restrictive and challenging platform than most others. A
method that is suitable for sensor networks is also likely to be efficient in other
networks with suitable adaptation. The approach of treating all nodes as mini-
mal and equivalent aids this generality. Since we do not assume specific network
configurations or special abilities on part of some nodes, these methods are likely
to be easily adaptable. Such flexibility is important in the ever changing world
of modern wireless and sensor networks.

Here we mentioned only a few works in this domain, and that too only

27

superficially. Our goal was to introduce some elementary yet important ideas
in the topic. The reader is encouraged to look into the original articles and
the many other works for more details, subtleties and elegant ideas in this fast
developing area.

As sensor networks and similar systems become common in the real world,
our views on them will surely change. We will learn how they are deployed and
used, and face new challenges. We will need to adapt our existing algorithms,
and develop new models, applications and algorithms to adjust to the new
networks.

With the popularity of location enabled portable devices, the tracking, stor-
ing and managing of location data are becoming more important. Since much of
our data, including photos, notes and messages are now location tagged, we can
develop new types of applications taking advantage of these features. At the
same time, we can rethink our existing ideas and protocols for a location-aware
world.

References

[1] I. Abraham, D. Dolev, and D. Malkhi. LLS: a locality aware location service
for mobile ad hoc networks. In DIALM-POMC ’04: Proceedings of the 2004
joint workshop on Foundations of mobile computing, pages 75–84, 2004.

[2] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. Wireless Networks, 7(6):609–616,
2001.

[3] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks.
In Proc. of the 1st ACM Int’l Workshop on Wireless Sensor Networks and
Applications (WSNA), pages 22–31, September 2002.

[4] J. Bruck, J. Gao, and A. Jiang. Localization and routing in sensor net-
works by local angle information. In Proc. of the Sixth ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’05),
pages 181–192, May 2005.

[5] J. Bruck, J. Gao, and A. Jiang. MAP: Medial axis based geometric routing
in sensor networks. Wireless Networks, 13(6):835–853, 2007.

[6] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron.
Virtual ring routing: Network routing inspired by DHTs. In SIGCOMM’06,
2006.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press / McGraw-Hill, Cambridge, Mass., 2001.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin,
1997.

28

[9] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright. Geographic gossip:
efficient aggregation for sensor networks. In IPSN ’06: Proceedings of the
fifth international conference on Information processing in sensor networks,
pages 69–76, 2006.

[10] T. Eren, D. Goldenberg, W. Whitley, Y. Yang, S. Morse, B. Anderson,
and P. Belhumeur. Rigidity, computation, and randomization of network
localization. In Proceedings of the 23rd Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM’04), volume 4,
pages 2673–2684, March 2004.

[11] Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang. GLIDER: Gra-
dient landmark-based distributed routing for sensor networks. In Proc.
of the 24th Conference of the IEEE Communication Society (INFOCOM),
volume 1, pages 339–350, March 2005.

[12] Q. Fang, J. Gao, and L. J. Guibas. Landmark-based information storage
and retrieval in sensor networks. In The 25th Conference of the IEEE
Communication Society (INFOCOM’06), volume 1, pages 339–350, April
2006.

[13] R. Fonesca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and
I. Stoica. Beacon vector routing: Scalable point-to-point routing in wireless
sensornets. In Proc. of the 2nd Symposium on Networked Systems Design
and Implementation (NSDI), pages 329–342, May 2005.

[14] J. Gao, L. Guibas, J. Hershberger, and L. Zhang. Fractionally cascaded in-
formation in a sensor network. In Proc. of the 3rd International Symposium
on Information Processing in Sensor Networks (IPSN’04), pages 311–319,
April 2004.

[15] J. Gao and L. J. Guibas. Geometric algorithms for sensor networks. Philo-
sophical Transactions of the Royal Society A, 2011.

[16] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE
Transactions on Information Theory, 46(2):388–404, March 2000.

[17] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a
scalable and robust communication paradigm for sensor networks. In ACM
Conf. on Mobile Computing and Networking (MobiCom), pages 56–67,
2000.

[18] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless
networks. In Imielinski and Korth, editors, Mobile Computing, volume 353.
Kluwer Academic Publishers, 1996.

[19] B. Karp and H. Kung. GPSR: Greedy perimeter stateless routing for wire-
less networks. In Proc. of the ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom), pages 243–254, 2000.

29

[20] D. Kempe, J. Kleinberg, and A. Demers. Spatial gossip and resource loca-
tion protocols. In STOC ’01: Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 163–172, New York, NY, USA,
2001. ACM Press.

[21] A.-M. Kermarrec and G. Tan. Greedy geographic routing in large-scale
sensor networks: a minimum network decomposition approach. In Pro-
ceedings of the eleventh ACM international symposium on Mobile ad hoc
networking and computing, MobiHoc ’10, pages 161–170, New York, NY,
USA, 2010. ACM.

[22] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing
made practical. In Proceedings of the Second USENIX/ACM Symposium
on Networked System Design and Implementation (NSDI 2005), May 2005.

[23] J. Kleinberg. The small-world phenomenon: an algorithm perspective. In
STOC ’00: Proceedings of the thirty-second annual ACM symposium on
Theory of computing, pages 163–170, 2000.

[24] R. Kleinberg. Geographic routing using hyperbolic space. In Proceedings of
the 26th Conference of the IEEE Communications Society (INFOCOM’07),
pages 1902–1909, 2007.

[25] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc
routing: Of theory and practice. In Proc. 22nd ACM Int. Symposium on
the Principles of Distributed Computing (PODC), pages 63–72, 2003.

[26] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc
routing: of theory and practice. In PODC ’03: Proceedings of the twenty-
second annual symposium on Principles of distributed computing, pages
63–72, 2003.

[27] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris. A
scalable location service for geographic ad hoc routing. In Proceedings of the
6th annual international conference on Mobile computing and networking,
MobiCom ’00, 2000.

[28] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range
queries in sensor networks. In Proceedings of the first international confer-
ence on Embedded networked sensor systems, pages 63–75, 2003.

[29] H. Lin, M. Lu, N. Milosavljević, J. Gao, and L. Guibas. Composable infor-
mation gradients in wireless sensor networks. In Proc. of the International
Conference on Information Processing in Sensor Networks (IPSN’08),
pages 121–132, April 2008.

[30] W. Liu, D. Wang, H. Jiang, W. Liu, and C. Wang. Approximate convex de-
composition based localization in wireless sensor networks. In INFOCOM,
pages 1853–1861, 2012.

30

[31] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a tiny
aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, 2002.

[32] T. Moscibroda, R. O’Dell, M. Wattenhofer, and R. Wattenhofer. Virtual
coordinates for ad hoc and sensor networks. In Proceedings of the 2004
joint workshop on Foundations of mobile computing, DIALM-POMC ’04,
pages 8–16, New York, NY, USA, 2004. ACM.

[33] B. Nath and D. Niculescu. Routing on a curve. SIGCOMM Comput.
Commun. Rev., 33(1):155–160, 2003.

[34] J. Newsome and D. Song. GEM: graph embedding for routing and data-
centric storage in sensor networks without geographic information. In Sen-
Sys ’03: Proceedings of the 1st international conference on Embedded net-
worked sensor systems, pages 76–88, 2003.

[35] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector routing.
In Proc. of the 2nd IEEE Workshop on Mobile Computing Systems and
Applications, pages 90–100, 1999.

[36] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing
without location information. In Proceedings of the 9th annual international
conference on Mobile computing and networking, pages 96–108, 2003.

[37] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. GHT: A geographic hash table for data-centric storage in sen-
sornets. In Proc. 1st ACM Workshop on Wireless Sensor Networks ands
Applications, pages 78–87, 2002.

[38] R. Sarkar and J. Gao. Differential forms for target tracking and aggregate
queries in distributed networks. In proceedings of The 16th Annual Inter-
national Conference on Mobile Computing and Networking (MOBICOM),
2010.

[39] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. Greedy routing with
guaranteed delivery using ricci flows. In Proc. of the 8th International Sym-
posium on Information Processing in Sensor Networks (IPSN’09), April
2009.

[40] R. Sarkar, W. Zeng, J. Gao, and X. D. Gu. Covering space for in-network
sensor data storage. In Proc. of the 9th International Symposium on Infor-
mation Processing in Sensor Networks (IPSN’10), April 2010.

[41] R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage in
sensor networks. In Proc. of the ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom), pages 286–297, September
2006.

31

[42] R. Sarkar, X. Zhu, and J. Gao. Hierarchical spatial gossip for multi-
resolution representations in sensor networks. In Proc. of the International
Conference on Information Processing in Sensor Networks (IPSN’07),
pages 420–429, April 2007.

[43] R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage in
sensor networks. IEEE/ACM Trans. Netw., 17(6):1902–1915, Dec. 2009.

[44] R. Sarkar, X. Zhu, and J. Gao. Hierarchical spatial gossip for multiresolu-
tion representations in sensor networks. ACM Trans. Sen. Netw., 8(1):4:1–
4:24, Aug. 2011.

[45] W. Zeng, R. Sarkar, F. Luo, X. D. Gu, and J. Gao. Resilient routing for
sensor networks using hyperbolic embedding of universal covering space. In
Proc. of the 29th Annual IEEE Conference on Computer Communications
(INFOCOM’10), April 2010.

[46] X. Zhu, R. Sarkar, and J. Gao. Shape segmentation and applications in
sensor networks. In Proceedings of the 26th Conference of the IEEE Com-
munications Society (INFOCOM’07), pages 1838–1846, May 2007.

[47] X. Zhu, R. Sarkar, and J. Gao. Segmenting a sensor field: Algorithms and
applications in network design. ACM Trans. Sen. Netw., 5(2):12:1–12:32,
Apr. 2009.

32

