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Abstract. A graph embedding is a representation of the vertices of a
graph in a low dimensional space, which approximately preserves proper-
ties such as distances between nodes. Vertex sequence based embedding
procedures use features extracted from linear sequences of vertices to
create embeddings using a neural network. In this paper, we propose
diffusion graphs as a method to rapidly generate vertex sequences for
network embedding. Its computational efficiency is superior to previous
methods due to simpler sequence generation, and it produces more ac-
curate results. In experiments, we found that the performance relative
to other methods improves with increasing edge density in the graph.
In a community detection task, clustering nodes in the embedding space
produces better results compared to other sequence based embedding
methods.

1 Introduction

Embedding graphs into a low dimensional Euclidean spaces is a way of simpli-
fying the graph information by associating each node with a point in the space.
Thus, various methods of graph embedding have been developed and applied to
different domains, such as visualisation [10], community and cluster identifica-
tion [27], localisation of wireless devices [22], network routing [21], construction
of approximate distance oracle [12] etc. Graph embeddings usually aim to pre-
serve proximity – nearby nodes on the graph should have similar coordinates –
in addition to properties specific to the application.

In recent years, sequence based graph embedding methods have been devel-
oped as a way of generating Euclidean representations using sequence of vertices
obtained from random walks. These methods are inspired by Word2Vec – a
method to embed words into Euclidean space based on sequences in which they
occur. Word2vec takes short sequences of words from a document and uses them
to train a neural network; in the process it obtains an embedding for the words.
The embedding space acts as an abstract latent space of features, and usually
places two words close if they frequently occur nearby in the sequences [16,15].
Sequence based graph embedding methods on the other hand obtain their vertex
sequences by random walk on graphs and then apply analogous neural network
methods for the embedding. The random walk has the advantage that it obtains



a view of the neighborhood, without having to compute and store complete
neighborhoods, which can be expensive in a large graph with many high degree
vertices.

However, random walks are inefficient for generating proximity statistics.
They are known to spread slowly, and revisit a vertex many times producing
redundant information [3]. As a result, they require many steps or many restarts
to cover the neighborhood of a node. Methods like Node2vec [9] try to bias the
walks away from recently visited nodes, but in the process they incur a cost
due to the complexity of modifying transition probabilities with each step. We
instead use a diffusion process that samples a subgraph of the neighborhood,
from which several walks can be generated more efficiently.

0 0.5 1

0

0.5

1

Relative graph distance
approximation error

C
D

F

D2V d=2 d=32 d=128
N2V d=2 d=32 d=128

(a) (b)

Fig. 1: (a) Cumulative distribution of the shortest path distance approximation error on the PPI
network [5] (|V |=3,890) for embedding dimension d. The distortion for our method (D2V) is much
smaller than state of the art (N2V). The distortion error for nodes u and v is defined as eu,v =
|d(u, v)− γ · ‖Xv −Xu‖| /d(u, v). Embeddings were created with parameter settings such that n =
10, ŵ = 10, α = 0.025, k = 1, l = 40 (D2V) and l = 80 (N2V). The best inout and return parameters
of N2V were chosen with grid search over {0.25, 0.5, 1, 2, 4}. (b) Visualization of a Watts-Strogatz
graph [25] with our embedding procedure.

Our Contributions. In our method, we extract a subgraph of the neighbor-
hood of a node using a diffusion-like process, and call it a diffusion graph. On this
subgraph, we compute an Euler tour to use as a sequence. By covering all adja-
cencies in the graph, the Euler tour contains a more complete view of the local
neighborhood than random walks. We refer to this sequence generating method
as Diff2Vec (D2V). The sequences generated by Diff2Vec are then used to train
a neural network with one hidden layer containing d neurons for d-dimensional
embedding. The input weights of the neurons determine the embedding of the
nodes. We found in experiments that this system has several desirable properties.

Due to its better coverage of neighborhoods, Diff2Vec can operate with
smaller neighborhood samples. As a result, it is more efficient than existing
methods. In our experiments with a basic implementation, it turned out to be



several times faster. In particular, it scales better with increasing density (vertex
degrees) of graphs.

Our experiments also show that the embedding preserves graph distances
to a high accuracy. On experiments of community detection, we found that
clustering applied to the embedding produces communities of high quality –
verified by the high modularity of the clusters. The quality of clusters is robust to
hyperparameter changes including parameters such as the embedding dimension
and number of diffusion graphs generated per node.

The remainder of the paper is structured as follows. In Section 2 we overview
related literature. The theoretical background on sequence based graph embed-
ding is discussed in Section 3. Our sampling procedure is introduced in Section
4. Experimental results are analyzed in Section 5 and the paper concludes with
Section 6.

2 Related Works

In this section we discuss the most well known graph embedding techniques and
recent developments regarding them. The well known embedding techniques use
a matrix that describes the graph and factorize it in order to create the embed-
ding of the network. One can factorize the adjacency, neighbourhood overlap or
Laplacian matrices. Based on the properties of the matrix either eigenvalue de-
composition or some variant of stochastic gradient descent is used to obtain the
graph embedding. These embedding methods all have a weakness, namely that
they are computationally expensive. We refer the reader to the recent survey
in [8] for a broader overview of graph embedding, and focus here on relevant
neural network based embeddings.

Sequence based embedding. Node sequence based graph embedding meth-
ods were inspired by word embedding procedures, specifically by the skip-gram
model [15,16]. The generation of node sequence based graph embeddings consists
of three phases. First, the algorithm creates vertex sequences - usually by a ran-
dom process. Second, features that are extracted from the synthetic sequences
describe the approximated proximities of nodes. Finally, the embedding itself is
learned using the extracted node specific features with a neural network which
has a single hidden layer. Sequence based embedding originates from the Deep-
Walk model [18] which uses random walks to generate node sequences. This
approach was improved upon by Node2Vec (henceforth N2V) [9] which uses
second-order random walks to generate the vertex sequences. Second-order ran-
dom walks alternate between depth-first and breadth-first search on the graph in
a random, but somewhat controlled way. In this attempt to have greater control
on random walks, N2V introduces parameters that affect the embedding quality
and are hard to optimize.

Other neural network based approaches. Other graph embedding methods
that use neural networks are all based on the of encoding a matrix representation
of the graph. At the same time they maintain first and higher order proximities
or distances. The matrix representation used for creating the embedding can be



the adjacency or the random walk transmission probability matrix [24,4]. Recent
developments in graph signal processing allow the use of generic vertex features
in addition when an embedding is created [23]. Building on this progress of graph
signal processing graph convolutional deep neural networks were introduced that
create embeddings that use generic vertex features [11].

3 Feature extraction and neural network embedding

Feature extraction. In this section, we discuss the technique of generating
embeddings when given some sequences of vertices. The sequence generation
will be taken up in the following section.

We start with extracting features called hitting frequency vectors – denoting
frequencies with which vertices occur near each other. The graph is denoted by
G(V,E). The set of vertices is V and the edge set is E. We assume that the
graph is undirected and unweighted. Let us consider an example to see how an
embedding is generated.
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ŷv

xv

(b)

Fig. 2: (a) Graph with linear vertex sequences. The three vertex sequences listed are used for feature
extraction in our example. (b) Architecture of the example neural network.

Consider the example in Figure 2(a). The vertex set contains nodes a, b, c, d, e
and nodes are indexed respectively from 1 to 5, and suppose we are given the 3
node sequences in the figure. To generate features from the sequences we choose
a sliding window size denoted by ŵ which limits the maximal graph proximity
among nodes that we are going to approximate. In this case we choose ŵ = 1. We
calculate the co-occurrence frequencies for node c as follows – we count how many
times other nodes appeared at given positions before and after c limited by the
window’s size. In this toy example it means positions at maximal 1 step before or
after c in the sequence. Counts at different positions are stored in separate vectors
for each node. The resulting frequency vectors are as follows: yc,−1 =

[
1 1 0 2 0

]
and yc,+1 =

[
0 0 0 4 0

]
. Components of the vectors can be interpreted as noisy

proximity statistics in the graph. The idea is that nearby nodes will have higher



values in each-other’s vectors. We concatenate these vectors to form a vector
of 2 · ŵ · |V | components and call it the hitting frequency vector yv of a node
v. We construct such a hitting frequency vector for each node from the given
sequences.

Learning an embedding from the features. For each vertex v ∈ V , we
wish to compute a coordinate in Rd. The set of hitting frequency vectors is a
representation of the graph in R|V |×2·ŵ·|V |, which we have to reduce to a R|V |×d
space.

We write as xv the indicator (sometimes called hot-one) vector for v, which
has |V | elements, all of which are zero, except the element at index of v, which
is set to 1.

A schematic of the neural network architecture is in Figure 2(b). The neural
network has d hidden neurons, each with |V | inputs and 2 · ŵ · |V | outputs.
The incoming and outgoing weight matrices of the hidden neurons are written
as Win and Wout. To train the neural network, the training algorithm uses
input output pairs of the form (xv,yv) corresponding to each vertex v. Thus,
the neural network learns to associate with each vertex, an output that is its
hitting frequency vector. After the training, the incoming weight matrix Win

(of dimension d× |V |) gives the d dimensional embedding of the vertices.
In more detail, the neural network is designed as follows. For any v, we can

define

hv = σ(Win · xv + bin) (1)

where in our case σ(Win ·xv+bin) = Win ·xv+bin. And bin is the bias vector.
The output of the network is given by Equation 2, with the predicted hitting
frequency vector ŷv on the left hand side. The activation function Φ in the final
layer is chosen as the hierarchical softmax function.

ŷv = Φ(Wout · hv + bout) (2)

The goal is to approximate yv. We define the approximation error as the
loss function L – the multinomial log loss of yv and ŷv, written as L(yv, ŷv) =
−yv · log(ŷv). Over all vertices, our minimization objective is given as:

min
∑
v∈V
L (yv, Φ(Wout · hv + bout)) (3)

The weight matrix Win is the embedding itself – for each v in V we have
a d dimensional representation in a latent space. The weight matrix is used to
approximately reconstruct the hitting frequencies of a node. If two nodes have
similar hitting frequency vectors, meaning that their proximity is high, they
will also have a similar latent space representation. Our goal is the efficient
and scalable learning of the embedding so we use asynchronous gradient descent
(ASGD, [20]). Analogous to previous works [18,9], we used hierarchical softmax
activation, with which the computational complexity of a training epoch (while
we decrease the learning rate from starting value to zero) is O(|V | log(|V |)). We
refer to the embedding as X, and the embedding of node v is noted by Xv.



4 Sequence generation algorithm and design

To generate sequences in the neighborhood of a node, we first compute a diffusion
graph, and then use that to compute vertex sequences.

Diffusion graph generation. We emulate a simple diffusion-like random pro-
cess starting from a vertex v to sample a subgraph of l vertices near v. The
diffusion graph G̃ is initialized with {v}. Next, at each step, we sample a random

node u from G̃ and from the neighbors of u in the original graph G, we select w.
We add w to the set of vertices in G̃, and add the edge (u,w) to G̃. This process

is repeated until G̃ has l nodes. An example of a diffusion graph is depicted on
Figure 3.

Data: G – Graph object.
l – Number of nodes sampled.
v – Starting node .

Result: P – Eulerian sequence from v.

1 VG̃ ← {v}
2 while |VG̃ | < l do

3 w ← Random Sample(VG̃)

4 u← Random Sample(NG (w))
5 if u /∈ VG̃ then
6 VG̃ ← VG̃ ∪ {u}
7 EG̃ ← EG̃ ∪ {(u,w)}
8 end

9 end

10 G̃ ← Duplicate Edges(G̃)

11 P ← Random Eulerian Circuit(G̃, v)

Algorithm 1: Graph sampling
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Fig. 3: Diffusion graph example

Node sequence sampling. To generate sequences from the subgraph G̃, we
take the following approach. We convert G̃ into a multigraph by doubling each
edge into two edges. A connected graph where every node has an even degree is
Eulerian1, and the Euler walk is easy to find [26]. We use this method to find the
Euler walk and use that as a vertex sequence. Observe that this diffusion graph
sampling and sequence generation can be performed in parallel across many
machines, since each diffusion graph can be generated independent of others
(see schematic on Figure 4). The generated sequences are then used to produce
graph embedding using neural networks as seen in the previous section. Note that
an Euler walk has the nice property that it captures every adjacency relation
in the subgraph into a linear sequence using asymptotically optimal space. This
property then helps our method perform better both in the sense of efficiency
and quality of results.

1 Contains a walk that passes through every edge exactly once



Data: G – Graph embedded.
p – Sequence samples per node.
l – Number of nodes per sample.
d – Dimension of embedding.
k – Number of epochs.
ŵ – Size of sliding window.
α – Learning rate.

Result: X – Embedding of graph G.

1 G1, . . .GS ← Component Extraction(G)
2 Samples← []
3 for i in 1 : p do

4 Walks← {}
5 l′ ← l
6 for j in 1:|{G1,G2, . . .GS}| do

7 if
∣∣VGj ∣∣ < l′ then

8 l′ ←
∣∣VGj ∣∣

9 end
10 for v in V do
11 Walks(v)← Traceback(Gj , v, l′)
12 end

13 end
14 Samples(i)←Walks

15 end
16 X← Learn Embedding(Samples, d, ŵ, α, k)

Algorithm 2: Learning from sequences

...

...

Coordinator

Worker1 Workern

Sequences1 Sequencesn

Samples

Workers

Embedding

G, l G, l

Fig. 4: Outline of parallel processing.

5 Experiments

In our experiments we compare our method D2V with the state of the art N2V [9]
method. We look at quality of embeddings and the computational performance.
The main observations from the experiments are:

– With increasing size and density of graphs, efficiency of D2V scales better
than that of N2V.

– The D2V embedding preserves distances well between most pairs of nodes:
in 128 dimensional embedding, over 90% pairs suffer a distortion smaller
than 20%. In any dimensions, it performs bettern than N2V.

– Clustering of the D2V embedding works well for community detection, and
performs better than N2V measured by the modularity of clusters.

– The representation quality obtained by D2V regarding community detection
is quite robust to changes of feature vector dimension, window size, diffusion
number, sampled vertex set cardinality and ASGD iteration number.

Computational efficiency. In the first series of experiments we measured the
average graph pre-processing and sequence generation times on a Barabasi-
Albert graph [2]. Pre-processing in this case involves reading the graph and
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Fig. 5: Barabasi-Albert graph – mean sequence generation and pre-processing time. Columns report
mean sequence generation and graph pre-processing time in seconds based on 100 replications. For
the graph size benchmarks the number of vertices was set at 103, 104 and 105 while the average
degree was fixed to be 10. In case of the average degree experiments the degree was set as 8, 16
and 32 while number of vertices was 104. The generated vertex sequences have length 80 and the
vertical axis is on a log scale. (a) Number of vertices – average sequence generation. (b) Average
degree – average sequence generation. (c) Number of vertices – average pre-processing time. (d)
Average degree – average pre-processing time. Results imply that our method is robust to graph
densification.

creating suitable data structures. N2V in particular requires data structures to
regularly update the random walk probabilities. Note that it is the preprocess-
ing and sequence generation where these two methods differ, as they use similar
methods for training neural networks.

In separate experiments we modified the size of the graph and the average
degree. The results are plotted on Figure 5. Graph the densification slows down
N2V considerably both in the sequence generation and pre-processing phase.
We could also conclude that on a fixed size dense graph D2V is slightly faster.
Similar trends were seen in other models of random graphs.

Blogcatalog PPI Wikipedia
|V |=10,312 |V |=3,890 |V |=4,777

|E|=333,982 |E|=38,739 |E|=92,517

N2V D2V N2V D2V N2V D2V

Sequence generation 59.089 19.983 4.253 4.684 12.135 6.879

Pre-processing 784.899 3.231 12.797 0.362 185.287 0.667

Table 1: Computation time on real life graphs. BlogCatalog: Is a social network of bloggers, nodes
are bloggers and links are social relationships [1]. PPI: is a protein-protein interaction network of
humans [5]. Wikipedia: Is a word co-occurrence network based on a chunk of the Wikipedia corpus
[13]. Columns report running time in seconds extracted from 100 experiments on the datasets. Bold
numbers mark the fastest mean pre-processing – sequence generation times on a given dataset.

We tested computation times on a number of real world networks. Again
we measured average graph pre-processing and sequence generation times (Ta-
ble 1). Our results show that on larger networks D2V has a consistent advantage
performance wise.



Algorithm Blogcatalog PPI Wikipedia Flickr Youtube Markercafe

Fast Greedy 0.2069 0.3029 0.1456 0.4517 – 0.2597

Walktrap 0.1766 0.2571 0.0553 0.4873 – 0.2026

Eigenvector 0.2035 0.2262 0.0915 0.4810 – 0.2455

K-means D2V 0.2225 0.3365 0.1420 0.5078 0.6265 0.2818

K-means N2V 0.2184 0.3270 0.1376 0.3647 0.4862 0.2630

Hierarchical D2V 0.1610 0.2618 0.0696 – – –

Hierarchical N2V 0.1149 0.2774 0.0709 – – –

Table 2: Clustering quality measured by modularity. Numbers in the columns represent modularity
scores of the clusterings. The baseline community detection algorithms can be found in [6,19,17].
Bold numbers note the highest modularity value obtained on the dataset. Dashes denote missing
modularity values when obtaining a clustering was not feasible due to computational complexity of
the algorithm. Embeddings were created with baseline parameter settings such that d = 128, n = 10,
ŵ = 10, α = 0.025, k = 1, l = 40 (D2V) and l = 80 (N2V). The best input and return parameters
of N2V were chosen with grid search over {0.25, 0.5, 1, 2, 4} while the cluster number varied between
2 and 50. Clusterings with the best modularity were taken. The distance measure was the Euclidean
distance in the latent space and hierarchical clustering used Ward’s linkage. Besides the earlier used
datasets we chose 3 additional social networks to asses the representation quality. Flickr: A network
of Flickr users [14]. Youtube: Is a friendship network of Youtube users [28]. Markercafe: Is data
from an Israeli social network [7].

Node distance approximation. Using the PPI network we measure how well
the shortest path distance of nodes d(u, v) can be approximated by the Euclidean
distance of nodes in the embedding space. The relative approximation error eu,v
for a given pair of nodes u, v is defined by Equation (4) as the absolute difference
between d(u, v) and the scaled Euclidean distance to d(u, v). The factor γ adjusts
for the uniform scaling over the graph. We take the γ that minimises the sum
of errors.

eu,v =

∣∣∣∣d(u, v)− γ · ‖Xv −Xu‖
d(u, v)

∣∣∣∣ (4)

We plotted cumulative distribution of the relative approximation error for differ-
ent embedding dimensions on Figure 1a. With a 32 dimensional D2V embedding
one can approximate half of the shortest path distances with a relative error be-
low 20%. Increasing the embedding dimension to 128 allows to approximate 90%
of shortest paths with an approximation error below 20%. Finally, we also plotted
the approximation error obtained with N2V embeddings. A 32 dimensional N2V
embedding can only approximate roughly 10% of the shortest path distances
with a relative error below 20%. Moreover, increasing the N2V embedding di-
mension does not decrease the distortion considerably. We conclude that on this
graph D2V approximates graph distances better than N2V.

Community detection. We evaluated the utility of the embedding in commu-
nity detection. We clustered the embedded nodes in the embedding space using



k-means clustering, and then computed the modularity [17] of the clusters as a
quality measure. The experiments involved six different datasets with number
of vertices ranging from few thousands to millions and we compared our results
to clusterings obtained with standard community detection methods.

Results are seen in Table 2. We used k-means clustering and hierarchical
clustering to extract node groups. Our results show that k-means clustering of the
embeddings outperforms all other methods on most of the datasets. Moreover,
D2V (our method) results in clusterings that are higher quality than clusters
created with N2V.
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Fig. 6: Sensitivity of k-means clustering performance to change of embedding method parameters.
Embeddings were created with baseline parameter settings such that d = 128, n = 10, ŵ = 10,
α = 0.025, k = 1 and l = 40. Manipulated parameters are on the horizontal axis and clustering
performance measured by modularity is on the verticals. (a) Feature vector size. (b) Window size.
(c) Sampled vertex set size. (d) Number of diffusions. (e) ASGD iterations. (f) Initial learning rate.

To test the robustness of the representation quality we carried out a complete
sensitivity analysis on the Flickr dataset. We manipulated parameters of the em-
bedding procedure and we observed how the modularity of k-means clustering
of the nodes changes. Our results are on subplots of Figure 6. The experimental
results support that the representation quality is robust to feature vector size,
window size, diffusion number, sampled vertex set cardinality and ASGD iter-
ation number changes. We also observe a sudden drop in cluster quality as the
learning rate is increased above 0.14.



6 Conclusions

In this work we proposed Diff2Vec a node sequence based graph embedding
model that uses diffusion processes on graphs to create vertex sequences. We
implemented this method in Python and demonstrated that the design of the
algorithm results in fast sequence creation in realistic settings. It also allows
parallel vertex sequence generation which leads to additional speed up. We sup-
ported evidence that the computational performance of our method is robust to
graph densification and growth. We confirmed that node features created with
Diff2Vec are useful features for downstream machine learning tasks. We gave a
detailed evaluation of the representation quality of embeddings on shortest path
distance approximation and the machine learning task of community detection.
Our findings show that besides the favourable computational performance the
representation quality itself is competitive with other methods. We conclude
that our work is an important contribution towards solving large scale network
analysis problems.
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