

Advances in Neural Machine Translation

Rico Sennrich, Alexandra Birch, Marcin Junczys-Dowmunt

Institute for Language, Cognition and Computation University of Edinburgh

November 1 2016

Why we need MT

- human translation industry: \approx 666 million words / day [Pym et al., 2012]
- MT indudstry: >> 100 billion words / day [Turovsky, 2016]

demand for translation for outpaces what is humanly possible to produce \rightarrow we need fast, high-quality MT

Neural Machine Translation

Kyunghyun Cho http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

Edinburgh's* WMT results over the years

*NMT 2015 from U. Montréal: https://sites.google.com/site/acl16nmt/

neural MT has already moved from academia into production

SYSTRAN announces the launch of its "Purely Neural MT" engine, a revolution for the machine translation market

Google announces Neural Machine Translation to improve Google Translate

WIPO goes Neural

Oct 4, 2016 590 views 🖞 41 Likes 🖵 3 Comments in f 💆

- single, end-to-end trained neural network replaces collection of weak features
- good generalization via continuous space representations
 → modelling of dependencies over long distances

why now?

- neural translation dates back to at least the 80s [Allen, 1987]
- large-scale neural MT is now possible thanks to
 - large amounts of training data
 - exponential growth in computational power (GPUs!)
 - algorithmic advances

Neural Machine Translation

Neural Networks — Basics

- 2 Recurrent Neural Networks and LSTMs
- 3 Attention-based NMT Model
- Where are we now? Evaluation and challenges
 - Evaluation results
 - Comparing neural and phrase-based machine translation
- 5 Recent Research in Neural Machine Translation

Parameters:
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$
 Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters:
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$
 Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Sennrich, Birch, Junczys-Dowmunt

Neural Machine Translation

Parameters:
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$
 Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Sennrich, Birch, Junczys-Dowmunt

Neural Machine Translation

Parameters:
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$
 Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters:
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$
 Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters:
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$
 Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$

• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal:

$$J: \mathbb{R}^2 \to \mathbb{R}$$
$$\hat{\theta} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^2} J(\theta)$$

• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal:

$$J: \mathbb{R}^2 \to \mathbb{R}$$
$$\hat{\theta} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^2} J(\theta)$$

• Mean Square Error:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal:

$$J: \mathbb{R}^2 \to \mathbb{R}$$
$$\hat{\theta} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^2} J(\theta)$$

• Mean Square Error:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$
$$= \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right)^{2}$$

• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal:

$$J: \mathbb{R}^2 \to \mathbb{R}$$
$$\hat{\theta} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^2} J(\theta)$$

• Mean Square Error:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
$$= \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)^2$$

where m is the number of data points in the training set.

So, how do we find $\hat{\theta} = \mathop{\mathrm{arg\,min}}_{\theta \in \mathbb{R}^2} J(\theta)$ computationally?

So, how do we find $\hat{\theta} = \mathop{\mathrm{arg\,min}}_{\theta \in \mathbb{R}^2} J(\theta)$ computationally?

Sennrich, Birch, Junczys-Dowmunt

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 for each j

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 for each j

Step 0, $\alpha = 0.01$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 for each j

Step 1, $\alpha = 0.01$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 for each j

Step 20, $\alpha = 0.01$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 for each j

Step 200, $\alpha = 0.01$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 for each j

Step 10000, $\alpha = 0.01$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 for each j

Step 10000, $\alpha = 0.005$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 for each j

Step 10000, $\alpha = 0.02$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 for each j

Step 10, $\alpha = 0.025$

11/115

How do we calculate
$$rac{\partial}{\partial heta_j} J(heta)$$
?

How do we calculate
$$\frac{\partial}{\partial \theta_j} J(\theta)$$
?

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$
$$= \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

How do we calculate
$$rac{\partial}{\partial heta_j} J(heta)$$
?

$$\begin{aligned} \frac{\partial}{\partial \theta_j} J(\theta) &= \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{\substack{i=1 \\ m}}^m (h_\theta(x^{(i)}) - y^{(i)})^2 \\ &= 2 \cdot \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot \frac{\partial}{\partial \theta_j} (h_\theta(x^{(i)}) - y^{(i)}) \\ &= \frac{1}{m} \sum_{\substack{i=1 \\ m}}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot \frac{\partial}{\partial \theta_j} \sum_{\substack{i=0 \\ i=0}}^n \theta_i x_i^{(i)} \\ &= \frac{1}{m} \sum_{\substack{i=1 \\ m}}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \end{aligned}$$

For linear regression we have the following model:

 $h_{\theta}(x) = \theta_0 + \theta_1 x$
For linear regression we have the following model:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

and we repeat until convergence (θ_0 and θ_1 should be updated simultaneously):

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{\substack{i=1 \ m}}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{\substack{i=1 \ m}}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

To summarize what we have learned

To summarize what we have learned

When approaching a machine learning problem, we need:

• a suitable model;

- a suitable model;
- a suitable cost (or loss) function;

- a suitable model;
- a suitable cost (or loss) function;
- an optimization algorithm;

- a suitable model;
- a suitable cost (or loss) function;
- an optimization algorithm;
- the gradient(s) of the cost function (if required by the optimization algorithm).

- a suitable model; (here: a linear model)
- a suitable cost (or loss) function; (here: mean square error)
- an optimization algorithm; (here: a variant of SGD)
- the gradient(s) of the cost function (if required by the optimization algorithm).

- a suitable model; (here: a linear model)
- a suitable cost (or loss) function; (here: mean square error)
- an optimization algorithm; (here: a variant of SGD)
- the gradient(s) of the cost function (if required by the optimization algorithm).

Side note: algorithms for finding the minimum without the gradient

- a suitable model; (here: a linear model)
- a suitable cost (or loss) function; (here: mean square error)
- an optimization algorithm; (here: a variant of SGD)
- the gradient(s) of the cost function (if required by the optimization algorithm).

Side note: algorithms for finding the minimum without the gradient

• for linear regession: the normal matrix (exact);

- a suitable model; (here: a linear model)
- a suitable cost (or loss) function; (here: mean square error)
- an optimization algorithm; (here: a variant of SGD)
- the gradient(s) of the cost function (if required by the optimization algorithm).

Side note: algorithms for finding the minimum without the gradient

- for linear regession: the normal matrix (exact);
- random search;

- a suitable model; (here: a linear model)
- a suitable cost (or loss) function; (here: mean square error)
- an optimization algorithm; (here: a variant of SGD)
- the gradient(s) of the cost function (if required by the optimization algorithm).

Side note: algorithms for finding the minimum without the gradient

- for linear regession: the normal matrix (exact);
- random search;
- genetic algorithms;

• ...

A neuron

Linear regression and neural networks

The logistic function (remember this one!)

A more typical neuron (binary logistic regression)

Model:

$$h_{\theta}(x) = g(\sum_{i=0}^{n} \theta_i x_i) = \frac{1}{1 + e^{-\sum_{i=0}^{n} \theta_i x_i}}$$

Model:

$$h_{\theta}(x) = g(\sum_{i=0}^{n} \theta_i x_i) = \frac{1}{1 + e^{-\sum_{i=0}^{n} \theta_i x_i}}$$

• Cost function (binary crossentropy):

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Model:

$$h_{\theta}(x) = g(\sum_{i=0}^{n} \theta_i x_i) = \frac{1}{1 + e^{-\sum_{i=0}^{n} \theta_i x_i}}$$

• Cost function (binary crossentropy):

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Gradient:

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Multi-class logistic regression and neural networks

• Model:
$$h_{\Theta}(x) = [P(k|x, \Theta)]_{k=1,\dots,c} = \operatorname{softmax}(\Theta x)$$
 where $\Theta = (\theta^{(1)}, \dots, \theta^{(c)})$

• Model:
$$h_{\Theta}(x) = [P(k|x, \Theta)]_{k=1,...,c} = \operatorname{softmax}(\Theta x)$$
 where $\Theta = (\theta^{(1)}, \dots, \theta^{(c)})$

• Cost function: $J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{c} \delta(y^{(i)}, k) \log P(k|x^{(i)}, \Theta)$ where $\delta(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$

• Model:
$$h_{\Theta}(x) = [P(k|x, \Theta)]_{k=1,...,c} = \operatorname{softmax}(\Theta x)$$
 where $\Theta = (\theta^{(1)}, \dots, \theta^{(c)})$

• Cost function:
$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{c} \delta(y^{(i)}, k) \log P(k|x^{(i)}, \Theta)$$

where $\delta(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$
• Gradient: $\frac{\partial J(\Theta)}{\partial \Theta_{j,k}} = -\frac{1}{m} \sum_{i=1}^{m} (\delta(y^{(i)}, k) - P(k|x^{(i)}, \Theta)) x_j^{(i)}$

• Model:
$$h_{\Theta}(x) = [P(k|x, \Theta)]_{k=1,...,c} = \operatorname{softmax}(\Theta x)$$
 where $\Theta = (\theta^{(1)}, \dots, \theta^{(c)})$

- Cost function: $J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{c} \delta(y^{(i)}, k) \log P(k|x^{(i)}, \Theta)$ where $\delta(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$
- Gradient: $\frac{\partial J(\Theta)}{\partial \Theta_{j,k}} = -\frac{1}{m} \sum_{i=1}^{m} (\delta(y^{(i)},k) P(k|x^{(i)},\Theta)) x_j^{(i)}$
- May look complicated, but can be looked up!

• Model:
$$h_{\Theta}(x) = [P(k|x, \Theta)]_{k=1,...,c} = \operatorname{softmax}(\Theta x)$$
 where $\Theta = (\theta^{(1)}, \dots, \theta^{(c)})$

- Cost function: $J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{c} \delta(y^{(i)}, k) \log P(k|x^{(i)}, \Theta)$ where $\delta(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$
- Gradient: $\frac{\partial J(\Theta)}{\partial \Theta_{j,k}} = -\frac{1}{m} \sum_{i=1}^{m} (\delta(y^{(i)},k) P(k|x^{(i)},\Theta)) x_j^{(i)}$
- May look complicated, but can be looked up!

Multi-class logistic regression and neural networks

Deep learning: multi-layer neural networks

Can a linear model separate these dots?

Sennrich, Birch, Junczys-Dowmunt

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Sennrich, Birch, Junczys-Dowmunt

 $h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2$

Sennrich, Birch, Junczys-Dowmunt

 $h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4 + \theta_5 x_5$ where $x_3 = x_2^2, \dots$

Sennrich, Birch, Junczys-Dowmunt

 $h(x) = \sigma(\Theta_2 \sigma(\Theta_1 x))$ where $|\Theta_1| = 3 \times 3, |\Theta_2| = 3 \times 1$

Sennrich, Birch, Junczys-Dowmunt

Source: Philipp Koehn, draft chapther on neural machine translation.

Source: Philipp Koehn, draft chapther on neural machine translation.

Backpropagation – forward step

The four fundamental equations of Backpropagation

$$\delta^{L} = \nabla_{a^{L}} J(\Theta) \odot (g^{L})'(z^{L}) \quad (BP1)$$

$$\delta^{l} = ((\Theta^{l+1})^{T} \delta^{l+1}) \odot (g^{l})'(z^{l}) \quad (BP2)$$

$$\nabla_{\beta^{l}} J(\Theta) = \delta^{l} \quad (BP3)$$

$$\nabla_{\Theta^{l}} J(\Theta) = a^{l-1} \odot \delta^{l} \quad (BP4)$$

The Backpropagation Algorithm

For one training example (x,y):

- Input: Set the activations of the input layers $a^0 = x$
- Forward step: for $l = 1, \ldots, L$ calculate

$$z^{l} = \Theta^{(l)}a^{l-1} + \beta^{l}$$
 and $a^{l} = g^{l}(z^{l})$

• Output error δ^L : calculate vector

$$\delta^L = \nabla_{a^L} J(\Theta) \odot (g^L)'(z^L)$$

• Error backpropagation: for $l = L - 1, L - 2, \dots, 1$ calculate

$$\delta^l = ((\Theta^{l+1})^T \delta^{l+1}) \odot (g^l)'(z^l)$$

• Gradients:

$$\nabla_{\Theta^l} J(\Theta) = a^{l-1} \odot \delta^l$$
 and $\nabla_{\beta^l} J(\Theta) = \delta^l$
Backpropagation – backward step

One iteration:

- For all parameters $\Theta = (\Theta^1, \dots, \Theta^L)$ create zero-valued helper matrices $\Delta = (\Delta^1, \dots, \Delta^L)$ of the same size (β omitted for simplicity).
- For m examples in the batch, $i = 1, \ldots, m$:
 - Perform backpropagation for example $(x^{(i)},y^{(i)})$ and store the gradients $\nabla_{\Theta}J^{(i)}(\Theta)$

•
$$\Delta := \Delta + \frac{1}{m} \nabla_{\Theta} J^{(i)}(\Theta)$$

• Update the weights: $\Theta := \Theta - \alpha \Delta$

More complicated network architectures

- Textbook backprogagation is formulated in terms of layers, weights, biases, activations, weighted inputs, ...
- Actual architectures can contain concatenation of bidirectional RNN states, ...
- What's the derivation of the "concatenation" operation?

Computing derivatives with reverse-mode autodiff

$$f(x_1, x_2) = \sin(x_1) + x_1 x_2$$

Computing derivatives with reverse-mode autodiff

$$f(x_1, x_2) = \sin(x_1) + x_1 x_2$$

$$\frac{\partial f}{\partial x_1} = ?$$
$$\frac{\partial f}{\partial x_x} = ?$$

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation

Computation graphs to the rescue

Computation graphs to the rescue

Computation graphs to the rescue

$$f(x_1, x_2)$$

$$\bar{f} = \bar{w}_5 = 1$$

$$w_5 = w_3 + w_4 + \frac{1}{w_4}$$

$$\bar{w}_4 = \bar{w}_5 \frac{\partial w_5}{\partial w_4} = \bar{w}_5$$

$$\bar{w}_4 = \sin(w_1) \quad \sin \quad * \quad w_3 = w_1 \cdot w_2$$

$$\bar{w}_1^a = \bar{w}_4 \frac{\partial w_4}{\partial w_1} = \bar{w}_4 \cdot \cos(w_1) \quad w_1^b = \bar{w}_3 \cdot w_2$$

$$w_1 = x_1 \quad x_1$$

$$w_1 = x_1 \quad x_1$$

$$w_1 = \bar{w}_1^a + \bar{w}_1^b \qquad \frac{\partial f}{\partial x_2} = \bar{w}_2 = x_1$$

$$= \cos(x_1) + x_2$$

Computation graph for neural networks

$$a = \operatorname{softmax}(x \cdot w + b)$$

$$o = \operatorname{mean}(\operatorname{sum}(\log(a) \odot y))$$

Computation graph for neural networks

$$a_{0} = x$$

$$a_{1} = \text{ReLU}(a_{0} \cdot w_{0} + b_{0})$$

$$a_{2} = \text{ReLU}(a_{1} \cdot w_{1} + b_{1})$$

$$a_{3} = a_{2} \cdot w_{2} + b_{2}$$

$$o_{1} = \text{softmax}(a_{3})$$

$$o_2 = \text{mean}(\text{crossentropy}(a_3, y))$$

Neural Machine Translation

Neural Networks — Basics

Recurrent Neural Networks and LSTMs

- Attention-based NMT Model
- Where are we now? Evaluation and challenges
 - Evaluation results
 - Comparing neural and phrase-based machine translation
- 5 Recent Research in Neural Machine Translation

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sennrich, Birch, Junczys-Dowmunt

Neural Machine Translation

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sennrich, Birch, Junczys-Dowmunt

Neural Machine Translation

 $h_t = \tanh(W_h \cdot h_{t-1} + W_x \cdot x_t + b)$

$$h_t = \tanh(W_h \cdot h_{t-1} + W_x \cdot x_t + b)$$

 $h_t = \tanh(W \cdot [h_{t-1}, x_t] + b)$

Recurrent neural networks language models

Source: Philipp Koehn, draft chapther on neural machine translation.

Andrej Karpathy: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

- Character-level language models
- Python code generation
- Poetry generation

• ...

RNNs and long distance dependencies

RNNs and long distance dependencies

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

Gated Recurrent Units (GRUs)

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$

$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$

$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

Neural Machine Translation

- Neural Networks Basics
- Recurrent Neural Networks and LSTMs

Attention-based NMT Model

- Where are we now? Evaluation and challenges
 - Evaluation results
 - Comparing neural and phrase-based machine translation
- 5 Recent Research in Neural Machine Translation

Neural Machine Translation

Kyunghyun Cho http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

decomposition of translation problem (for NMT)

- a source sentence S of length m is a sequence x_1, \ldots, x_m
- a target sentence T of length n is a sequence y_1, \ldots, y_n

$$T^* = \arg \max_{t} p(T|S)$$
$$p(T|S) = p(y_1, \dots, y_n | x_1, \dots, x_m)$$
$$= \prod_{i=1}^{n} p(y_i | y_0, \dots, y_{i-1}, x_1, \dots, x_m)$$

Translation modelling

difference from language model

• target-side language model:

$$p(T) = \prod_{i=1}^{n} p(y_i | y_0, \dots, y_{i-1})$$

translation model:

$$p(T|S) = \prod_{i=1}^{n} p(y_i|y_0, \dots, y_{i-1}, x_1, \dots, x_m)$$

- we could just treat sentence pair as one long sequence, but:
 - we do not care about p(S) (S is given)
 - we may want different vocabulary, network architecture for source text

Translation modelling

difference from language model

• target-side language model:

$$p(T) = \prod_{i=1}^{n} p(y_i | y_0, \dots, y_{i-1})$$

translation model:

$$p(T|S) = \prod_{i=1}^{n} p(y_i|y_0, \dots, y_{i-1}, x_1, \dots, x_m)$$

- we could just treat sentence pair as one long sequence, but:
 - we do not care about p(S) (S is given)
 - we may want different vocabulary, network architecture for source text

Translating with RNNs

Encoder-decoder [Sutskever et al., 2014, Cho et al., 2014]

- two RNNs (LSTM or GRU):
 - encoder reads input and produces hidden state representations
 - decoder produces output, based on last encoder hidden state
- encoder and decoder are learned jointly
 - \rightarrow supervision signal from parallel text is backpropagated

Kyunghyun Chohttp://dentlogs.nvidis.com/parallelforall/ introduction-meural-machine-translation-gpus-part-2/

Summary vector

- last encoder hidden-state "summarizes" source sentence
- with multilingual training, we can potentially learn language-independent meaning representation

[Sutskever et al., 2014]

Summary vector as information bottleneck

- can fixed-size vector represent meaning of arbitrarily long sentence?
- empirically, quality decreases for long sentences
- reversing source sentence brings some improvement [Sutskever et al., 2014]

[Sutskever et al., 2014]

Attentional encoder-decoder

encoder

- goal: avoid bottleneck of summary vector
- use bidirectional RNN, and concatenate forward and backward states \rightarrow annotation vector h_i
- represent source sentence as vector of n annotations
 → variable-length representation

Neural Machine Translation
Attentional encoder-decoder

attention

- problem: how to incorporate variable-length context into hidden state?
- attention model computes context vector as weighted average of annotations
- weights are computed by feedforward neural network with softmax activation

Kyunghyun Cho http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

simplifications of model by [Bahdanau et al., 2015] (for illustration)

- plain RNN instead of GRU
- simpler output layer
- we do not show bias terms

notation

• W, U, E, C, V are weight matrices (of different dimensionality)

- E one-hot to embedding (e.g. $50000\cdot512)$
- W embedding to hidden (e.g. $512 \cdot 1024$)
- U hidden to hidden (e.g. $1024 \cdot 1024$)
- C context (2x hidden) to hidden (e.g. $2048 \cdot 1024$)
- V_o hidden to one-hot (e.g. $1024 \cdot 50000$)
- separate weight matrices for encoder and decoder (e.g. E_x and E_y)
- input X of length T_x ; output Y of length T_y

encoder

$$\overrightarrow{h}_{j} = \begin{cases} 0, &, \text{ if } j = 0\\ \tanh(\overrightarrow{W}_{x}E_{x}x_{j} + \overrightarrow{U}_{x}h_{j-1}) &, \text{ if } j > 0 \end{cases}$$

$$\overleftarrow{h}_{j} = \begin{cases} 0, &, \text{ if } j = T_{x} + 1\\ \tanh(\overleftarrow{W}_{x}E_{x}x_{j} + \overleftarrow{U}_{x}h_{j+1}) &, \text{ if } j \leq T_{x} \end{cases}$$

$$h_{j} = (\overrightarrow{h}_{j}, \overleftarrow{h}_{j})$$

Attentional encoder-decoder: math

decoder

$$\begin{split} s_i &= \begin{cases} \tanh(W_s \overleftarrow{h}_i), &, \text{ if } i = 0\\ \tanh(W_y E_y y_i + U_y s_{i-1} + Cc_i) &, \text{ if } i > 0\\ t_i &= \tanh(U_o s_{i-1} + W_o E_y y_{i-1} + C_o c_i)\\ y_i &= \operatorname{softmax}(V_o t_i) \end{split}$$

attention model

$$\begin{split} e_{ij} &= v_a^\top \mathsf{tanh}(W_a s_{i-1} + U_a h_j) \\ \alpha_{ij} &= \mathsf{softmax}(e_{ij}) \\ c_i &= \sum_{j=1}^{T_x} \alpha_{ij} h_j \end{split}$$

Sennrich, Birch, Junczys-Dowmunt

Attention model

attention model

- side effect: we obtain alignment between source and target sentence
- information can also flow along recurrent connections, so there is no guarantee that attention corresponds to alignment
- applications:
 - visualisation
 - replace unknown words with back-off dictionary [Jean et al., 2015]
 - ...

Kyunghyun Cho http://devblogs.rividia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

attention model also works with images:

[Cho et al., 2015]

Attention model

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word) [22]

[Cho et al., 2015]

score a translation

p(La, croissance, économique, s'est, ralentie, ces, dernières, années, . | Economic, growth, has, slowed, down, in, recent, year, .) = ?

generate the most probable translation of a source sentence $\rightarrow \text{decoding}$

 $y^* = \operatorname{argmax}_{y} p(y | \mathsf{Economic}, \mathsf{growth}, \mathsf{has}, \mathsf{slowed}, \mathsf{down}, \mathsf{in}, \mathsf{recent}, \mathsf{year}, .)$

exact search

- generate every possible sentence T in target language
- $\bullet \ \mbox{compute score} \ p(T|S)$ for each
- pick best one
- intractable: $|vocab|^N$ translations for output length $N \rightarrow$ we need approximative search strategy

approximative search/1

- at each time step, compute probability distribution $P(y_i|X, y_{\leq i})$
- select y_i according to some heuristic:
 - sampling: sample from $P(y_i|X, y_{\leq i})$
 - greedy search: pick $\operatorname{argmax}_{y} p(y_i | X, y_{\leq i})$

continue until we generate <eos>

efficient, but suboptimal

approximative search/2: beam search

- maintain list of K hypotheses (beam)
- at each time step, expand each hypothesis k: $p(y_i^k|X, y_{< i}^k)$
- select K hypotheses with highest total probability:

$$\prod_{i} p(y_i^k | X, y_{< i}^k)$$

- relatively efficient
- currently default search strategy in neural machine translation
- small beam ($K \approx 10$) offers good speed-quality trade-off

Ensembles

- at each timestep, combine the probability distribution of *M* different ensemble components.
- combine operator: typically average (log-)probability

$$\log P(y_i|X, y_{< i}) = \frac{\sum_{m=1}^{M} \log P_m(y_i|X, y_{< i})}{M}$$

- requirements:
 - same output vocabulary
 - same factorization of Y
- internal network architecture may be different
- source representations may be different (extreme example: ensemble-like model with different source languages [Junczys-Dowmunt and Grundkiewicz, 2016])

Ensembles

recent ensemble strategies in NMT

- ensemble of 8 independent training runs with different hyperparameters/architectures [Luong et al., 2015a]
- ensemble of 8 independent training runs with different random initializations [Chung et al., 2016]
- ensemble of 4 checkpoints of same training run [Sennrich et al., 2016a]
 - ightarrow probably less effective, but only requires one training run

[Sennrich et al., 2016a]

- Neural Networks Basics
- 2 Recurrent Neural Networks and LSTMs
 - Attention-based NMT Model
- Where are we now? Evaluation and challenges
 - Evaluation results
 - Comparing neural and phrase-based machine translation
- 5 Recent Research in Neural Machine Translation

- attentional encoder-decoder networks have become state of the art on various MT tasks
- your mileage may vary depending on
 - language pair and text type
 - amount of training data
 - type of training resources (monolingual?)
 - hyperparameters

system	BLEU	official rank
uedin-nmt	34.2	1
metamind	32.3	2
uedin-syntax	30.6	3
NYU-UMontreal	30.8	4
online-B	29.4	5-10
KIT/LIMSI	29.1	5-10
cambridge	30.6	5-10
online-A	29.9	5-10
promt-rule	23.4	5-10
KIT	29.0	6-10
jhu-syntax	26.6	11-12
jhu-pbmt	28.3	11-12
uedin-pbmt	28.4	13-14
online-F	19.3	13-15
online-G	23.8	14-15

Table: WMT16 results for EN \rightarrow DE

system	BLEU	official rank
uedin-nmt	38.6	1
online-B	35.0	2-5
online-A	32.8	2-5
uedin-syntax	34.4	2-5
KIT	33.9	2-6
uedin-pbmt	35.1	5-7
jhu-pbmt	34.5	6-7
online-G	30.1	8
jhu-syntax	31.0	9
online-F	20.2	10

Table: WMT16 results for DE \rightarrow EN

system	BLEU	official rank
uedin-nmt	34.2	1
metamind	32.3	2
uedin-syntax	30.6	3
NYU-UMontreal	30.8	4
online-B	29.4	5-10
KIT/LIMSI	29.1	5-10
cambridge	30.6	5-10
online-A	29.9	5-10
promt-rule	23.4	5-10
KIT	29.0	6-10
jhu-syntax	26.6	11-12
jhu-pbmt	28.3	11-12
uedin-pbmt	28.4	13-14
online-F	19.3	13-15
online-G	23.8	14-15

Table: WMT16 results for EN \rightarrow DE

system	Bleu	official rank
uedin-nmt	38.6	1
online-B	35.0	2-5
online-A	32.8	2-5
uedin-syntax	34.4	2-5
KIT	33.9	2-6
uedin-pbmt	35.1	5-7
jhu-pbmt	34.5	6-7
online-G	30.1	8
jhu-syntax	31.0	9
online-F	20.2	10

Table: WMT16 results for DE \rightarrow EN

o pure NMT

system	BLEU	official rank
uedin-nmt	34.2	1
metamind	32.3	2
uedin-syntax	30.6	3
NYU-UMontreal	30.8	4
online-B	29.4	5-10
KIT/LIMSI	29.1	5-10
cambridge	30.6	5-10
online-A	29.9	5-10
promt-rule	23.4	5-10
KIT	29.0	6-10
jhu-syntax	26.6	11-12
jhu-pbmt	28.3	11-12
uedin-pbmt	28.4	13-14
online-F	19.3	13-15
online-G	23.8	14-15

Table: WMT16 results for EN \rightarrow DE

system	BLEU	official rank
uedin-nmt	38.6	1
online-B	35.0	2-5
online-A	32.8	2-5
uedin-syntax	34.4	2-5
KIT	33.9	2-6
uedin-pbmt	35.1	5-7
jhu-pbmt	34.5	6-7
online-G	30.1	8
jhu-syntax	31.0	9
online-F	20.2	10

Table: WMT16 results for DE \rightarrow EN

pure NMTNMT component

uedin-nmt	25.8	1
NYU-UMontreal	23.6	2
jhu-pbmt	23.6	3
cu-chimera	21.0	4-5
cu-tamchyna	20.8	4-5
uedin-cu-syntax	20.9	6-7
uedin-cu-syntax online-B	20.9 22.7	6-7 6-7
online-B online-A	20.9 22.7 19.5	6-7 6-7 15
online-B online-A cu-TectoMT	20.9 22.7 19.5 14.7	6-7 6-7 15 16

uedin-nmt	31.4	1
jhu-pbmt	30.4	2
online-B	28.6	3
PJATK	28.3	8-10
PJATK online-A	28.3 25.7	8-10 11

Table: WMT16 results for CS \rightarrow EN

uedin-nmt	28.1	1-2
QT21-HimL-SysComb	28.9	1-2
KIT	25.8	3-7
uedin-pbmt	26.8	3-7
online-B	25.4	3-7
uedin-Imu-hiero	25.9	3-7
RWTH-SYSCOMB	27.1	3-7
LIMSI	23.9	8-10
Imu-cuni	24.3	8-10
jhu-pbmt	23.5	8-11
usfd-rescoring	23.1	10-12

Table: WMT16 results for EN \rightarrow RO

Table: WMT16 results for EN \rightarrow CS

online-B	39.2	1-2
uedin-nmt	33.9	1-2
uedin-pbmt	35.2	3
uedin-syntax	33.6	4-5
online-A	30.8	4-6
jhu-pbmt	32.2	5-7
LIMSI	31.0	6-7

Table: WMT16 results for RO \rightarrow EN

PROMT-rule	22.3	1
amu-uedin	25.3	2-4
online-B	23.8	2-5
uedin-nmt	26.0	2-5
online-G	26.2	3-5
NYU-UMontreal	23.1	6
jhu-pbmt	24.0	7-8
LIMSI	23.6	7-10
LIMSI online-A	23.6 20.2	7-10 8-10
LIMSI online-A AFRL-MITLL-phr	23.6 20.2 23.5	7-10 8-10 9-10
LIMSI online-A AFRL-MITLL-phr AFRL-MITLL-verb	23.6 20.2 23.5 20.9	7-10 8-10 9-10 11

uedin-pbmt	23.4	1-4
online-G	20.6	1-4
online-B	23.6	1-4
UH-opus	23.1	1-4
PROMT-SMT	20.3	5
UH-factored	19.3	6-7
uedin-syntax	20.4	6-7
online-A	19.0	8
jhu-pbmt	19.1	9

Table: WMT16 results for FI \rightarrow EN

online-G 15.4 1-3 abumatra-nmt 17.2 1-4 online-B 1-4 abumatran-combo 17.4 3-5 UH-opus 16.3 4-5 NYU-UMontreal abumatran-pbsmt 14.6 6-8 online-A 6-8 jhu-pbmt 13.8 9-10 UH-factored 12.8 9-12 10-13 aalto 11.6 ihu-hltcoe 11.9 10 - 13UUT 11.6 11-13

Table: WMT16 results for EN→FI

Table: WMT16 results for EN→RU

amu-uedin	29.1	1-2
online-G	28.7	1-3
NRC	29.1	2-4
online-B	28.1	3-5
uedin-nmt	28.0	4-5
online-A	25.7	6-7
AFRL-MITLL-phr	27.6	6-7
AFRL-MITLL-contrast	27.0	8-9
PROMT-rule	20.4	8-9

Table: WMT16 results for RU \rightarrow EN

Sennrich, Birch, Junczys-Dowmunt

- Neural Networks Basics
- 2 Recurrent Neural Networks and LSTMs
- Attention-based NMT Model
- Where are we now? Evaluation and challenges
 - Evaluation results
 - Comparing neural and phrase-based machine translation
- 5 Recent Research in Neural Machine Translation

ambiguity

words are often polysemous, with different translations for different meanings

system	sentence
source	Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference	There he was attacked again by his original attacker and another male.
uedin-nmt	There he was attacked again by the racket and another male person.
uedin-pbsmt	There, he was at the club and another male person attacked again.

Schläger

ambiguity

words are often polysemous, with different translations for different meanings

system	sentence				
source	Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.				
reference	There he was attacked again by his original attacker and another male.				
uedin-nmt	There he was attacked again by the racket and another male person.				
uedin-pbsmt	There, he was at the club and another male person attacked again.				
	Schläger				
ra	acket				

ambiguity

words are often polysemous, with different translations for different meanings

system	sentence
source	Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference	There he was attacked again by his original attacker and another male.
uedin-nmt	There he was attacked again by the racket and another male person.
uedin-pbsmt	There, he was at the club and another male person attacked again.
	Schläger
re	acket attacker
	system source reference uedin-nmt uedin-pbsmt

Sennrich, Birch, Junczys-Dowmunt

ambiguity

words are often polysemous, with different translations for different meanings

Sennrich, Birch, Junczys-Dowmunt

word order

there are systematic word order differences between languages. We need to generate words in the correct order.

system	sentence
source	Unsere digitalen Leben haben die Notwendigkeit, stark, lebenslustig und erfolgreich zu erscheinen, verdoppelt []
reference	Our digital lives have doubled the need to appear strong, fun-loving and successful []
uedin-nmt	Our digital lives have doubled the need to appear strong, lifelike and successful []
uedin-pbsmt	Our digital lives are lively, strong, and to be successful, doubled []

grammatical marking system

grammatical distinctions can be marked in different ways, for instance through word order (English), or inflection (German). The translator needs to produce the appropriate marking.

> English ... because the dog chased the man. German ... weil der Hund den Mann jagte.

multiword expressions

the meaning of non-compositional expressions is lost in a word-to-word translation

system	sentence			
source	He bends over backwards for the team, ignoring any pain.			
reference	Er zerreißt sich für die Mannschaft, geht über Schmerzen drüber.			
	(lit: he tears himself apart for the team)			
uedin-nmt	Er beugt sich rückwärts für die Mannschaft, ignoriert jeden Schmerz.			
	(lit: he bends backwards for the team)			
uedin-pbsmt	Er macht alles für das Team, den Schmerz zu ignorieren.			
	(lit: he does everything for the team)			

subcategorization

Words only allow for specific categories of syntactic arguments, that often differ between languages.

Englishhe remembers his medical appointment.Germaner erinnert sich an seinen Arzttermin.English*he remembers himself to his medical appointment.German*er erinnert seinen Arzttermin.

agreement

inflected forms may need to agree over long distances to satisfy grammaticality.

Englishthey can not be foundFrenchelles ne peuvent pas être trouvées

morphological complexity

translator may need to analyze/generate morphologically complex words that were not seen before.

German	Abwasserbehandlungsanlage		
English	waste water treatment plant		
French	station d'épuration des eaux résiduaires		

system	sentence
source	Titelverteidiger ist Drittligaabsteiger SpVgg Unterhaching.
reference	The defending champions are SpVgg Unterhaching, who have been relegated to the third league.
uedin-nmt	Defending champion is third-round pick SpVgg Underhaching.
uedin-pbsmt	Title defender Drittligaabsteiger Week 2.

open vocabulary

languages have an open vocabulary, and we need to learn translations for words that we have only seen rarely (or never)

system	sentence
source	Titelverteidiger ist Drittligaabsteiger SpVgg Unterhaching.
reference	The defending champions are SpVgg Unterhaching, who have been relegated to the third league.
uedin-nmt	Defending champion is third-round pick SpVgg Underhaching.
uedin-pbsmt	Title defender Drittligaabsteiger Week 2.

discontinuous structures

a word (sequence) can map to a discontinuous structure in another language.

English I do **not** know French Je **ne** sais **pas**

system	sentence
source	Ein Jahr später machten die Fed-Repräsentanten diese Kürzungen rückgängig.
reference	A year later, Fed officials reversed those cuts.
uedin-nmt	A year later, FedEx officials reversed those cuts.
uedin-pbsmt	A year later, the Fed representatives made these cuts.

discourse

the translation of referential expressions depends on discourse context, which sentence-level translators have no access to.

English	I made a decision.	Please respect it.
French	J'ai pris une décision.	Respectez-la s'il vous plaît.
French	J'ai fait un choix.	Respectez-le s'il vous plaît.

assorted other difficulties

- underspecification
- ellipsis
- lexical gaps
- Ianguage change
- language variation (dialects, genres, domains)
- ill-formed input

human analysis of NMT (reranking) [Neubig et al., 2015]

- NMT is more grammatical
 - word order
 - insertion/deletion of function words
 - morphological agreement
- minor degradation in lexical choice?

Comparison between phrase-based and neural MT

analysis of IWSLT 2015 results [Bentivogli et al., 2016]

- human-targeted translation error rate (HTER) based on automatic translation and human post-edit
- 4 error types: substitution, insertion, deletion, shift

avetem	HTER (no <i>shift</i>)			HTER
system	word	lemma	% Δ	(<i>shift</i> only)
PBSMT [Ha et al., 2015]	28.3	23.2	-18.0	3.5
NMT [Luong and Manning, 2015]	21.7	18.7	-13.7	1.5

- word-level is closer to lemma-level performance: better at inflection/agreement
- improvement on lemma-level: better lexical choice
- fewer shift errors: better word order
Comparison between phrase-based and neural MT

analysis of IWSLT 2015 results [Bentivogli et al., 2016]

- human-targeted translation error rate (HTER) based on automatic translation and human post-edit
- 4 error types: substitution, insertion, deletion, shift

avetem	HT	ER (no <i>sl</i>	HTER	
System	word	lemma	$\%\Delta$	(<i>shift</i> only)
PBSMT [Ha et al., 2015]	28.3	23.2	-18.0	3.5
NMT [Luong and Manning, 2015]	21.7	18.7	-13.7	1.5

- word-level is closer to lemma-level performance: better at inflection/agreement
- improvement on lemma-level: better lexical choice
- fewer shift errors: better word order

Comparison between phrase-based and neural MT

analysis of IWSLT 2015 results [Bentivogli et al., 2016]

- human-targeted translation error rate (HTER) based on automatic translation and human post-edit
- 4 error types: substitution, insertion, deletion, shift

avetem	HT	ER (no <i>sl</i>	HTER	
System	word	lemma	$\%\Delta$	(<i>shift</i> only)
PBSMT [Ha et al., 2015]	28.3	23.2	-18.0	3.5
NMT [Luong and Manning, 2015]	21.7	18.7	-13.7	1.5

- word-level is closer to lemma-level performance: better at inflection/agreement
- improvement on lemma-level: better lexical choice
- fewer shift errors: better word order

Comparison between phrase-based and neural MT

analysis of IWSLT 2015 results [Bentivogli et al., 2016]

- human-targeted translation error rate (HTER) based on automatic translation and human post-edit
- 4 error types: substitution, insertion, deletion, shift

avetem	HT	ER (no <i>sl</i>	HTER	
system	word	lemma	% Δ	(<i>shift</i> only)
PBSMT [Ha et al., 2015]	28.3	23.2	-18.0	3.5
NMT [Luong and Manning, 2015]	21.7	18.7	-13.7	1.5

- word-level is closer to lemma-level performance: better at inflection/agreement
- improvement on lemma-level: better lexical choice
- fewer shift errors: better word order

Fluency

Fluency

Fluency

phrase-based SMT

- log-linear combination of many "weak" features
- data sparsenesss triggers back-off to smaller units
- strong independence assumptions

neural MT

- end-to-end trained model
- generalization via continuous space representation
- output conditioned on full source text and target history

Neural Machine Translation

- 1 Neural Networks Basics
- 2 Recurrent Neural Networks and LSTMs
- 3 Attention-based NMT Model
- Where are we now? Evaluation and challenges
 - Evaluation results
 - Comparing neural and phrase-based machine translation

Recent Research in Neural Machine Translation

Efficiency

speed bottlenecks

- matrix multiplication
 - \rightarrow use of highly parallel hardware (GPUs)
- size of output layer scales with vocabulary size. Solutions:
 - LMs: hierarchical softmax; noise-contrastive estimation; self-normalization
 - NMT: approximate softmax through subset of vocabulary [Jean et al., 2015, Mi et al., 2016, L'Hostis et al., 2016]

NMT training vs. decoding (on fast GPU)

- training: slow (1-3 weeks)
- decoding: fast (100 000–500 000 sentences / day)^a

^awith NVIDIA Titan X and amuNMT (https://github.com/emjotde/amunmt)

Efficiency

- aggressive batching during decoding
 - compute all prefixes in beam in single batch
 - compute multiple sentences in single batch
- 8-bit inference [Wu et al., 2016]
- knowledge distillation: student network mimics teacher [Kim and Rush, 2016]

Sennrich, Birch, Junczys-Dowmunt

Neural Machine Translation

Why is vocabulary size a problem?

- size of one-hot input/output vector is linear to vocabulary size
- large vocabularies are space inefficient
- large output vocabularies are time inefficient
- typical network vocabulary size: 30 000-100 000

What about out-of-vocabulary words?

- training set vocabulary typically larger than network vocabulary (1 million words or more)
- at translation time, we regularly encounter novel words:
 - names: Barack Obama
 - morph. complex words: Hand/gepäck/gebühr ('carry-on bag fee')
 - numbers, URLs etc.

Solutions

- copy unknown words, or translate with back-off dictionary [Jean et al., 2015, Luong et al., 2015b, Gulcehre et al., 2016]
 → works for names (if alphabet is shared), and 1-to-1 aligned words
- use subword units (characters or others) for input/output vocabulary
 → model can learn translation of seen words on subword level
 → model can translate unseen words if translation is *transparent*
- active research area [Sennrich et al., 2016c, Luong and Manning, 2016, Chung et al., 2016, Ling et al., 2015, Costa-jussà and Fonollosa, 2016, Zhao and Zhang, 2016, Lee et al., 2016]

transparent translations

- some translations are semantically/phonologically transparent
- morphologically complex words (e.g. compounds):
 - solar system (English)
 - Sonnen|system (German)
 - Nap|rendszer (Hungarian)
- named entities:
 - Obama(English; German)
 - Обама (Russian)
 - オバマ (o-ba-ma) (Japanese)
- cognates and loanwords:
 - claustrophobia(English)
 - Klaustrophobie(German)
 - Клаустрофобия (Russian)

Subword neural machine translation

Flat representation [Sennrich et al., 2016c, Chung et al., 2016]

sentence is a sequence of subword units

Hierarchical representation [Ling et al., 2015, Luong and Manning, 2016]

- sentence is a sequence of words
- words are a sequence of subword units

open question: should attention be on level of words or subwords?

Sennrich, Birch, Junczys-Dowmunt

Neural Machine Translation

Choice of subword unit

- characters: small vocabulary, long sequences
- morphemes (?): hard to control vocabulary size
- hybrid choice: shortlist of words, subwords for rare words
- variable-length character n-grams: byte-pair encoding (BPE)

open research question which subword segmentation is best choice in terms of *efficiency* and *effectiveness*.

iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac

iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac ZabdZabac	Z=aa

iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac	7
ZabdZabac	Z=aa V-ab
ZYdZYac	i –ab

iteratively replace most frequent byte pair in sequence with unused byte

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	freq	freq	symbol pair	new symbol
word	печ			
'l o w '	5			
'l o w e r '	2			
'n e w e s t '	6			
'widest'	3			
	I			

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	freq	freq	symbol pair		new symbol
'l o w '	5	9	('e', 's')	\rightarrow	'es'
'l o w e r '	2				
'n e w es t '	6				
'widest'	3				

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

	r	freq	symbol pair		new symbol
word	treq	9	('e', 's')	\rightarrow	'es'
'l o w '	5	q	('es' 't')	, 	'ost'
'l o w e r '	2	5	(63,1)	-7	631
'n e w est <∕w>'	6				
'w i d est '	3				
	1				

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	frog	freq	symbol pair		new symbol
		9	('e', 's')	\rightarrow	'es'
10W	5	9	('es', 't')	\rightarrow	'est'
'l o w e r '	2	g	('est' '')	\rightarrow	'est
'n e w est<∕w>'	6	Ŭ	(001, 4/112)	/	001/11/
'w i d est<∕w>'	3				

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	frog	freq	symbol pair		new symbol
		9	('e', 's')	\rightarrow	'es'
10 W	5	9	('es', 't')	\rightarrow	'est'
10 w e r	2	9	('est'. '')	\rightarrow	'est'
'n e w est'	6	7	('l' 'o')	\rightarrow	'lo'
'w i d est'	3	,	(1, 0)		10
	1				

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	freq	freq	symbol pair		new symbol
		9	('e', 's')	\rightarrow	'es'
'IOW '	5	9	('es', 't')	\rightarrow	'est'
Now er	2	9	('est', '')	\rightarrow	'est'
n e w est	6	7	('l', 'o')	\rightarrow	'lo'
WIDEST	3	7	('lo', 'w')	\rightarrow	'low'

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'lowest'	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'l o w es t '	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'l o w est '	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'l o w est'	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'lo w est'	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'low est'	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

Fully Character-level NMT [Lee et al., 2016]

- character-to-character model requires no language-specific segmentation
- drawback: RNN over characters is slow (especially attention!)
- (shorter) segment sequences are obtained from characters via convolution and max-pooling layers

an incomplete selection

- different encoder architectures:
 - convolution network [Kalchbrenner and Blunsom, 2013, Kalchbrenner et al., 2016]
 - TreeLSTM [Eriguchi et al., 2016]
- modifications to attention mechanism
 [Luong et al., 2015a, Feng et al., 2016, Zhang et al., 2016]
- deeper networks [Zhou et al., 2016, Wu et al., 2016]
- coverage model [Mi et al., 2016, Tu et al., 2016b, Tu et al., 2016a]

- problem: at training time, target-side history is reliable; at test time, it is not.
- solution: instead of using gold context, sample from the model to obtain target context [Shen et al., 2016, Ranzato et al., 2016, Bengio et al., 2015, Wiseman and Rush, 2016]
- more efficient cross entropy training remains in use to initialize weights

system	sentence
source	Ein Jahr später machten die Fed-Repräsentanten diese Kürzungen rückgängig.
reference	A year later, Fed officials reversed those cuts.
uedin-nmt	A year later, FedEx officials reversed those cuts.
uedin-pbsmt	A year later, the Fed representatives made these cuts.

problem

- RNN is locally normalized at each time step
- given Fed: as previous word, Ex is very likely in training data: p(Ex|Fed:) = 0.55
- Iabel bias problem: locally-normalized models may ignore input in low-entropy state

potential solutions (speculative)

- sampling at training time
- bidirectional decoder [Liu et al., 2016, Sennrich et al., 2016a]
- context gates to trade-off source and target context [Tu et al., 2016]
why monolingual data for phrase-based SMT?

- more training data
- relax independence assumptions

why monolingual data for neural MT?

- more training data
- more appropriate training data (domain adaptation)
- relax independence assumptions X

Training data: monolingual

Solutions/1

- shallow fusion: rescore beam with language model [Gülçehre et al., 2015]
- deep fusion: extra, LM-specific hidden layer [Gülçehre et al., 2015]

[Gülçehre et al., 2015]

Training data: monolingual

Solutions/2

 decoder is already a language model. Train encoder-decoder with added monolingual data [Sennrich et al., 2016b]

$$t_i = \tanh(U_o s_{i-1} + V_o E_y y_{i-1} + C_o c_i)$$

 $y_i = \operatorname{softmax}(W_o t_i)$

- how do we get approximation of context vector c_i ?
 - dummy source context (moderately effective)
 - automatically back-translate monolingual data into source language

name	2014	2015
PBSMT [Haddow et al., 2015]	28.8	29.3
NMT [Gülçehre et al., 2015]	23.6	-
shallow fusion [Gülçehre et al., 2015]	23.7	-
deep fusion [Gülçehre et al., 2015]	24.0	-
NMT baseline	25.9	26.7
+back-translated monolingual data	29.5	30.4

Table: DE \rightarrow EN translation performance (BLEU) on WMT training/test sets.

Multi-source translation [Zoph and Knight, 2016]

we can condition on multiple input sentences

- benefits:
 - one source text may contain information that is undespecified in other
 - \rightarrow possible quality gains
- o drawbacks:
 - we need multiple source sentences at training and decoding time

Multilingual models [Dong et al., 2015, Firat et al., 2016a]

we can share layers (encoder/decoder/attention) of the model across language pairs

- benefits:
 - transfer learning from one language pair to the other
 - scalability: no need for $N^2 N$ independent models for N languages
- o drawbacks:
 - no successful generalization to language pairs with no training data (but: synthetic training data works: [Firat et al., 2016b])

Multilingual models [Lee et al., 2016]

- single, character level encoder trained on multiple languages
 - more compact model
 - occasional quality improvements over single language pairs
 - robust towards (synthetic) code-switched input

Firat and Cho: https://ufal.mff.cuni.cr/mtni6/files/ 12 -recent -advances-and -future -of -meural -mt -or hat-firat.pdf

Multi-task models [Luong et al., 2016]

- other tasks can be modelled with sequence-to-sequence models
- we can share layers between translation and other tasks

NMT as a component in log-linear models

Log-linear models

- model ensembling is well-established
- reranking output of phrase-based/syntax-based with NMT [Neubig et al., 2015]
- incorporating NMT as a feature function into PBSMT [Junczys-Dowmunt et al., 2016]
 - \rightarrow results depend on relative performance of PBSMT and NMT

Linguistic Features [Sennrich and Haddow, 2016] a.k.a. Factored Neural Machine Translation

motivation: disambiguate words by POS

English	German
close _{verb}	schließen
close _{adj}	nah
close _{noun}	Ende

sourceWe thought a win like this might be close_{adj}.referenceWir dachten, dass ein solcher Sieg nah sein könnte.baseline NMT* Wir dachten, ein Sieg wie dieser könnte schließen.

Linguistic Features: Architecture

use separate embeddings for each feature, then concatenate

baseline: only word feature $E(close) = \begin{bmatrix} 0.5\\ 0.2\\ 0.3\\ 0.1 \end{bmatrix}$

|F| input features

$$E_1(close) = \begin{bmatrix} 0.4\\ 0.1\\ 0.2 \end{bmatrix} \quad E_2(adj) = \begin{bmatrix} 0.1 \end{bmatrix} \quad E_1(close) \parallel E_2(adj) = \begin{bmatrix} 0.4\\ 0.1\\ 0.2\\ 0.1 \end{bmatrix}$$

Fo (7

secondary literature

- lecture notes by Kyunghyun Cho: [Cho, 2015]
- chapter on *Neural Network Models* in "Statistical Machine Translation" by Philipp Koehn http://mt-class.org/jhu/assets/papers/neural-network-models.pdf

NMT tools

- dl4mt-tutorial (theano) https://github.com/nyu-dl/dl4mt-tutorial (our branch: nematus https://github.com/rsennrich/nematus)
- nmt.matlab https://github.com/lmthang/nmt.matlab
- seq2seq (tensorflow) https://www.tensorflow.org/versions/r0.8/tutorials/seq2seq/index.html
- neural monkey (tensorflow) https://github.com/ufal/neuralmonkey
- seq2seq-attn (torch) https://github.com/harvardnlp/seq2seq-attn

- sample files and instructions for training NMT model https://github.com/rsennrich/wmt16-scripts
- pre-trained models to test decoding (and for further experiments) http://statmt.org/rsennrich/wmt16_systems/

 lab on installing/using Nematus: http://ufal.mff.cuni.cz/mtm16/files/ 13-nematus-lab-rico-sennrich.pdf

Bibliography I

Allen, R. B. (1987).

Several studies on natural language and back-propagation. In In Proceedings of the IEEE First International Conference on Neural Networks, pages 335–341, San Diego, CA. IEEE.

Bahdanau, D., Cho, K., and Bengio, Y. (2015).

Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the International Conference on Learning Representations (ICLR).

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015).

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. CoRR, abs/1506.03099.

Bentivogli, L., Bisazza, A., Cettolo, M., and Federico, M. (2016).

Neural versus Phrase-Based Machine Translation Quality: a Case Study. In $\underline{\mathsf{EMNLP}}$ 2016.

Cho, K. (2015).

Natural Language Understanding with Distributed Representation. CoRR, abs/1511.07916.

Cho, K., Courville, A., and Bengio, Y. (2015).

Describing Multimedia Content using Attention-based Encoder-Decoder Networks.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014).

Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational Linguistics.

Bibliography II

Chung, J., Cho, K., and Bengio, Y. (2016).

A Character-level Decoder without Explicit Segmentation for Neural Machine Translation. CoRR, abs/1603.06147.

Costa-jussà, R. M. and Fonollosa, R. J. A. (2016).

Character-based Neural Machine Translation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 357–361. Association for Computational Linguistics.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015).

Multi-Task Learning for Multiple Language Translation.

```
In
```

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference of pages 1723–1732, Beijing, China. Association for Computational Linguistics.

Eriguchi, A., Hashimoto, K., and Tsuruoka, Y. (2016).

Tree-to-Sequence Attentional Neural Machine Translation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 823–833. Association for Computational Linguistics.

Implicit Distortion and Fertility Models for Attention-based Encoder-Decoder NMT Model. CoRR, abs/1601.03317.

Firat, O., Cho, K., and Bengio, Y. (2016a).

Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism.

In

Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Langua pages 866–875. Association for Computational Linguistics.

Bibliography III

Firat, O., Sankaran, B., Al-Onaizan, Y., Yarman-Vural, F. T., and Cho, K. (2016b). Zero-Resource Translation with Multi-Lingual Neural Machine Translation. <u>CoRR</u>, abs/1606.04164.

Gage, P. (1994).

A New Algorithm for Data Compression. C Users J., 12(2):23–38.

Gülçehre, c., Firat, O., Xu, K., Cho, K., Barrault, L., Lin, H., Bougares, F., Schwenk, H., and Bengio, Y. (2015).

On Using Monolingual Corpora in Neural Machine Translation. CoRR, abs/1503.03535.

Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., and Bengio, Y. (2016).

Pointing the Unknown Words.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 140–149. Association for Computational Linguistics.

Ha, T.-L., Niehues, J., Cho, E., Mediani, M., and Waibel, A. (2015).

The KIT translation systems for IWSLT 2015.

In Proceedings of the International Workshop on Spoken Language Translation (IWSLT), pages 62-69.

Haddow, B., Huck, M., Birch, A., Bogoychev, N., and Koehn, P. (2015).

The Edinburgh/JHU Phrase-based Machine Translation Systems for WMT 2015.

In Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 126–133, Lisbon, Portugal. Association for Computational Linguistics.

Bibliography IV

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015).

On Using Very Large Target Vocabulary for Neural Machine Translation.

In

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference of pages 1–10, Beijing, China. Association for Computational Linguistics.

Junczys-Dowmunt, M., Dwojak, T., and Sennrich, R. (2016).

The AMU-UEDIN Submission to the WMT16 News Translation Task: Attention-based NMT Models as Feature Functions in Phrase-based SMT.

In Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 316–322, Berlin, Germany. Association for Computational Linguistics.

Junczys-Dowmunt, M. and Grundkiewicz, R. (2016).

Log-linear Combinations of Monolingual and Bilingual Neural Machine Translation Models for Automatic Post-Editing. In <u>Proceedings of the First Conference on Machine Translation</u>, pages 751–758, Berlin, Germany. Association for Computational Linguistics.

Kalchbrenner, N. and Blunsom, P. (2013).

Recurrent Continuous Translation Models.

In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle. Association for Computational Linguistics.

Kalchbrenner, N., Espeholt, L., Simonyan, K., van den Oord, A., Graves, A., and Kavukcuoglu, K. (2016).

Neural Machine Translation in Linear Time. ArXiv e-prints.

Kim, Y. and Rush, A. M. (2016). Sequence-Level Knowledge Distillation. CoRR, abs/1606.07947.

Bibliography V

Lee, J., Cho, K., and Hofmann, T. (2016).

Fully Character-Level Neural Machine Translation without Explicit Segmentation. ArXiv e-prints.

L'Hostis, G., Grangier, D., and Auli, M. (2016).

Vocabulary Selection Strategies for Neural Machine Translation. ArXiv e-prints.

Ling, W., Trancoso, I., Dyer, C., and Black, A. W. (2015).

Character-based Neural Machine Translation. <u>ArXiv e-prints</u>.

Liu, L., Utiyama, M., Finch, A., and Sumita, E. (2016). Agreement on Target-bidirectional Neural Machine Translation . In <u>NAACL HLT 16</u>, San Diego, CA.

Luong, M., Le, Q. V., Sutskever, I., Vinyals, O., and Kaiser, L. (2016).

Multi-task Sequence to Sequence Learning. In ICLR 2016.

Luong, M.-T. and Manning, C. D. (2015).

Stanford Neural Machine Translation Systems for Spoken Language Domains. In Proceedings of the International Workshop on Spoken Language Translation 2015, Da Nang, Vietnam.

Luong, M.-T. and Manning, D. C. (2016).

Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1054–1063. Association for Computational Linguistics.

Bibliography VI

Luong, T., Pham, H., and Manning, C. D. (2015a).

Effective Approaches to Attention-based Neural Machine Translation.

In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1412–1421, Lisbon, Portugal. Association for Computational Linguistics.

Luong, T., Sutskever, I., Le, Q., Vinyals, O., and Zaremba, W. (2015b).

Addressing the Rare Word Problem in Neural Machine Translation.

In

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference of pages 11–19, Beijing, China. Association for Computational Linguistics.

Mi, H., Sankaran, B., Wang, Z., and Ittycheriah, A. (2016).

A Coverage Embedding Model for Neural Machine Translation. ArXiv e-prints.

Mi, H., Wang, Z., and Ittycheriah, A. (2016).

Vocabulary Manipulation for Neural Machine Translation. CoRR, abs/1605.03209.

Neubig, G., Morishita, M., and Nakamura, S. (2015).

Neural Reranking Improves Subjective Quality of Machine Translation: NAIST at WAT2015. In Proceedings of the 2nd Workshop on Asian Translation (WAT2015), pages 35–41, Kyoto, Japan.

Pym, A., Grin, F., and Sfreddo, C. (2012).

The status of the translation profession in the European Union, volume 7.

Bibliography VII

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016).

Sequence Level Training with Recurrent Neural Networks. In $\underline{\mathsf{ICLR}\ 2016}.$

Linguistic Input Features Improve Neural Machine Translation. In Proceedings of the First Conference on Machine Translation, Volume 1: Research Papers, pages 83–91, Berlin, Germany. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016a).

Edinburgh Neural Machine Translation Systems for WMT 16.

In Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 368–373, Berlin, Germany. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016b).

Improving Neural Machine Translation Models with Monolingual Data.

In <u>Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</u>, pages 86–96, Berlin, Germany. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016c).

Neural Machine Translation of Rare Words with Subword Units.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for Computational Linguistics.

Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2016).

Minimum Risk Training for Neural Machine Translation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany.

Bibliography VIII

Sutskever, I., Vinyals, O., and Le, Q. V. (2014).

Sequence to Sequence Learning with Neural Networks.

In

Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, pages 3104–3112, Montreal, Quebec, Canada.

Tu, Z., Liu, Y., Lu, Z., Liu, X., and Li, H. (2016).

Context Gates for Neural Machine Translation. ArXiv e-prints.

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016a).

Coverage-based Neural Machine Translation. CoRR, abs/1601.04811.

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016b).

Modeling Coverage for Neural Machine Translation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 76–85. Association for Computational Linguistics.

Turovsky, B. (2016).

Ten years of Google Translate.

https://googleblog.blogspot.co.uk/2016/04/ten-years-of-google-translate.html.

Sequence-to-Sequence Learning as Beam-Search Optimization. CoRR, abs/1606.02960.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., and Dean, J. (2016). Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. ArXiv e-prints.

Zhang, B., Xiong, D., and Su, J. (2016).

Recurrent Neural Machine Translation. <u>CoRR</u>, abs/1607.08725.

Zhao, S. and Zhang, Z. (2016).

An Efficient Character-Level Neural Machine Translation. <u>ArXiv e-prints</u>.

Zhou, J., Cao, Y., Wang, X., Li, P., and Xu, W. (2016).

Deep Recurrent Models with Fast-Forward Connections for Neural Machine Translation. Transactions of the Association of Computational Linguistics – Volume 4, Issue 1, pages 371–383.

Zoph, B. and Knight, K. (2016). Multi-Source Neural Translation. In NAACL HLT 2016.