
Advances in Neural Machine Translation

Rico Sennrich, Alexandra Birch, Marcin Junczys-Dowmunt

Institute for Language, Cognition and Computation
University of Edinburgh

November 1 2016

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 1 / 115

Machine Translation

Why we need MT
human translation industry: ≈ 666 million words / day
[Pym et al., 2012]

MT indudstry: � 100 billion words / day [Turovsky, 2016]

demand for translation for outpaces what is humanly possible to produce
→ we need fast, high-quality MT

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 1 / 115

Neural Machine Translation

Kyunghyun Cho
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 2 / 115

Edinburgh’s* WMT results over the years

2013 2014 2015 2016
0.0

10.0

20.0

30.0

20.3 20.9 20.8 21.5
19.4 20.2

22.0 22.1

18.9

24.7

B
LE

U
on

ne
w

st
es

t2
01

3
(E

N
→

D
E

)

phrase-based SMT
syntax-based SMT
neural MT

*NMT 2015 from U. Montréal: https://sites.google.com/site/acl16nmt/

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 3 / 115

https://sites.google.com/site/acl16nmt/

neural MT has already moved from academia into
production

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 4 / 115

Why neural MT?

single, end-to-end trained neural network replaces collection of weak
features

good generalization via continuous space representations
→ modelling of dependencies over long distances

why now?
neural translation dates back to at least the 80s [Allen, 1987]
large-scale neural MT is now possible thanks to

large amounts of training data
exponential growth in computational power (GPUs!)
algorithmic advances

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 5 / 115

Neural Machine Translation

1 Neural Networks — Basics

2 Recurrent Neural Networks and LSTMs

3 Attention-based NMT Model
4 Where are we now? Evaluation and chal-

lenges
Evaluation results
Comparing neural and phrase-based ma-
chine translation

5 Recent Research in Neural Machine Transla-
tion

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 6 / 115

Linear Regression

Parameters: θ =

[
θ0

θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

Data

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 7 / 115

Linear Regression

Parameters: θ =

[
θ0

θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

Data

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 7 / 115

Linear Regression

Parameters: θ =

[
θ0

θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 5. 00 + 1. 50x

Data

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 7 / 115

Linear Regression

Parameters: θ =

[
θ0

θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 6. 00 + 2. 00x

Data

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 7 / 115

Linear Regression

Parameters: θ =

[
θ0

θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 2. 50 + 1. 00x

Data

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 7 / 115

Linear Regression

Parameters: θ =

[
θ0

θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 3. 90 + 1. 19x

Data

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 7 / 115

The cost (or loss) function

We try to find parameters θ̂ ∈ R2 such that the cost function J(θ) is
minimal:

J : R2 → R

θ̂ = arg min
θ∈R2

J(θ)

Mean Square Error:

J(θ) =
1

2m

m∑

i=1

(
hθ(x

(i))− y(i)
)2

=
1

2m

m∑

i=1

(
θ0 + θ1x

(i) − y(i)
)2

where m is the number of data points in the training set.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 8 / 115

The cost (or loss) function

We try to find parameters θ̂ ∈ R2 such that the cost function J(θ) is
minimal:

J : R2 → R

θ̂ = arg min
θ∈R2

J(θ)

Mean Square Error:

J(θ) =
1

2m

m∑

i=1

(
hθ(x

(i))− y(i)
)2

=
1

2m

m∑

i=1

(
θ0 + θ1x

(i) − y(i)
)2

where m is the number of data points in the training set.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 8 / 115

The cost (or loss) function

We try to find parameters θ̂ ∈ R2 such that the cost function J(θ) is
minimal:

J : R2 → R

θ̂ = arg min
θ∈R2

J(θ)

Mean Square Error:

J(θ) =
1

2m

m∑

i=1

(
hθ(x

(i))− y(i)
)2

=
1

2m

m∑

i=1

(
θ0 + θ1x

(i) − y(i)
)2

where m is the number of data points in the training set.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 8 / 115

The cost (or loss) function

We try to find parameters θ̂ ∈ R2 such that the cost function J(θ) is
minimal:

J : R2 → R

θ̂ = arg min
θ∈R2

J(θ)

Mean Square Error:

J(θ) =
1

2m

m∑

i=1

(
hθ(x

(i))− y(i)
)2

=
1

2m

m∑

i=1

(
θ0 + θ1x

(i) − y(i)
)2

where m is the number of data points in the training set.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 8 / 115

The cost (or loss) function

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 5. 00 + 1. 50x

Data

J(

[
−5.00

1.50

]
) = 6.1561

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 9 / 115

The cost (or loss) function

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 6. 00 + 2. 00x

Data

J(

[
−6.00

2.00

]
) = 19.3401

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 9 / 115

The cost (or loss) function

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 2. 50 + 1. 00x

Data

J(

[
−2.50

1.00

]
) = 4.7692

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 9 / 115

The cost (or loss) function

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 3. 90 + 1. 19x

Data

J(

[
−3.90

1.19

]
) = 4.4775

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 9 / 115

The cost (or loss) function

So, how do we find θ̂ = arg min
θ∈R2

J(θ) computationally?

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 10 / 115

The cost (or loss) function

So, how do we find θ̂ = arg min
θ∈R2

J(θ) computationally?

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 10 / 115

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 0, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 11 / 115

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 0, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 11 / 115

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 1, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 11 / 115

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 20, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 11 / 115

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 200, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 11 / 115

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 10000, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 11 / 115

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 10000, α = 0.005

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 11 / 115

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 10000, α = 0.02

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 11 / 115

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 10, α = 0.025

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 11 / 115

(Stochastic) gradient descent

How do we calculate
∂

∂θj
J(θ)?

∂

∂θj
J(θ) =

∂

∂θj

1

2m

m∑

i=1

(hθ(x
(i))− y(i))2

=
1

m

m∑

i=1

(hθ(x
(i))− y(i))x

(i)
j

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 12 / 115

(Stochastic) gradient descent

How do we calculate
∂

∂θj
J(θ)?

∂

∂θj
J(θ) =

∂

∂θj

1

2m

m∑

i=1

(hθ(x
(i))− y(i))2

=
1

m

m∑

i=1

(hθ(x
(i))− y(i))x

(i)
j

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 12 / 115

(Stochastic) gradient descent

How do we calculate
∂

∂θj
J(θ)?

∂

∂θj
J(θ) =

∂

∂θj

1

2m

m∑

i=1

(hθ(x
(i))− y(i))2

= 2 · 1

2m

m∑

i=1

(hθ(x
(i))− y(i)) · ∂

∂θj
(hθ(x

(i))− y(i))

=
1

m

m∑

i=1

(hθ(x
(i))− y(i)) · ∂

∂θj

n∑

i=0

θix
(i)
i

=
1

m

m∑

i=1

(hθ(x
(i))− y(i))x

(i)
j

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 12 / 115

The update rule once again

For linear regression we have the following model:

hθ(x) = θ0 + θ1x

and we repeat until convergence (θ0 and θ1 should be updated
simultaneously):

θ0 := θ0 − α
1

m

m∑

i=1

(hθ(x
(i))− y(i))

θ1 := θ1 − α
1

m

m∑

i=1

(hθ(x
(i))− y(i))x(i)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 13 / 115

The update rule once again

For linear regression we have the following model:

hθ(x) = θ0 + θ1x

and we repeat until convergence (θ0 and θ1 should be updated
simultaneously):

θ0 := θ0 − α
1

m

m∑

i=1

(hθ(x
(i))− y(i))

θ1 := θ1 − α
1

m

m∑

i=1

(hθ(x
(i))− y(i))x(i)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 13 / 115

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model;

(here: a linear model)

a suitable cost (or loss) function;

(here: mean square error)

an optimization algorithm;

(here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

Side note: algorithms for finding the minimum without the gradient

for linear regession: the normal matrix (exact);

random search;

genetic algorithms;

...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 14 / 115

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model;

(here: a linear model)

a suitable cost (or loss) function;

(here: mean square error)

an optimization algorithm;

(here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

Side note: algorithms for finding the minimum without the gradient

for linear regession: the normal matrix (exact);

random search;

genetic algorithms;

...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 14 / 115

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model;

(here: a linear model)

a suitable cost (or loss) function;

(here: mean square error)

an optimization algorithm;

(here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

Side note: algorithms for finding the minimum without the gradient

for linear regession: the normal matrix (exact);

random search;

genetic algorithms;

...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 14 / 115

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model;

(here: a linear model)

a suitable cost (or loss) function;

(here: mean square error)

an optimization algorithm;

(here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

Side note: algorithms for finding the minimum without the gradient

for linear regession: the normal matrix (exact);

random search;

genetic algorithms;

...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 14 / 115

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model;

(here: a linear model)

a suitable cost (or loss) function;

(here: mean square error)

an optimization algorithm;

(here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

Side note: algorithms for finding the minimum without the gradient

for linear regession: the normal matrix (exact);

random search;

genetic algorithms;

...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 14 / 115

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model; (here: a linear model)

a suitable cost (or loss) function; (here: mean square error)

an optimization algorithm; (here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

Side note: algorithms for finding the minimum without the gradient

for linear regession: the normal matrix (exact);

random search;

genetic algorithms;

...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 14 / 115

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model; (here: a linear model)

a suitable cost (or loss) function; (here: mean square error)

an optimization algorithm; (here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

Side note: algorithms for finding the minimum without the gradient

for linear regession: the normal matrix (exact);

random search;

genetic algorithms;

...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 14 / 115

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model; (here: a linear model)

a suitable cost (or loss) function; (here: mean square error)

an optimization algorithm; (here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

Side note: algorithms for finding the minimum without the gradient

for linear regession: the normal matrix (exact);

random search;

genetic algorithms;

...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 14 / 115

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model; (here: a linear model)

a suitable cost (or loss) function; (here: mean square error)

an optimization algorithm; (here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

Side note: algorithms for finding the minimum without the gradient

for linear regession: the normal matrix (exact);

random search;

genetic algorithms;

...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 14 / 115

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model; (here: a linear model)

a suitable cost (or loss) function; (here: mean square error)

an optimization algorithm; (here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

Side note: algorithms for finding the minimum without the gradient

for linear regession: the normal matrix (exact);

random search;

genetic algorithms;

...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 14 / 115

A neuron

1

x1

x2

· · ·

xn

z =

n∑

i=0

θixi

Input function

g(z)

Activation function

Output

θ0

θ1

θ2

θn

Features

Input layer

Neuron

Layer 1

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 15 / 115

Linear regression and neural networks

1

x1

x2

· · ·

xn

z =

n∑

i=0

θixi

Input function

g(z) = z

Activation function

Output

θ0

θ1

θ2

θn

Features

Input layer

Neuron

Layer 1

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 16 / 115

The logistic function (remember this one!)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 17 / 115

A more typical neuron (binary logistic regression)

1

x1

x2

· · ·

xn

z =
n∑

i=0

θixi

Input function

g(z) =
1

1 + e−z

Activation function

Output

θ0

θ1

θ2

θn

Features

Input layer

Neuron

Layer 1

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 18 / 115

Binary logistic regression

Model:

hθ(x) = g(
∑n

i=0 θixi) =
1

1 + e−
∑n

i=0 θixi

Cost function (binary crossentropy):

J(θ) = − 1

m
[
∑m

i=1 y
(i) log hθ(x

(i)) + (1− y(i)) log(1− hθ(x(i)))]

Gradient:

∂J(θ)
∂θj

=
1

m

m∑

i=1

(hθ(x
(i))− y(i))x

(i)
j

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 19 / 115

Binary logistic regression

Model:

hθ(x) = g(
∑n

i=0 θixi) =
1

1 + e−
∑n

i=0 θixi

Cost function (binary crossentropy):

J(θ) = − 1

m
[
∑m

i=1 y
(i) log hθ(x

(i)) + (1− y(i)) log(1− hθ(x(i)))]

Gradient:

∂J(θ)
∂θj

=
1

m

m∑

i=1

(hθ(x
(i))− y(i))x

(i)
j

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 19 / 115

Binary logistic regression

Model:

hθ(x) = g(
∑n

i=0 θixi) =
1

1 + e−
∑n

i=0 θixi

Cost function (binary crossentropy):

J(θ) = − 1

m
[
∑m

i=1 y
(i) log hθ(x

(i)) + (1− y(i)) log(1− hθ(x(i)))]

Gradient:

∂J(θ)
∂θj

=
1

m

m∑

i=1

(hθ(x
(i))− y(i))x

(i)
j

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 19 / 115

Multi-class logistic regression and neural networks

1

x1

x2

· · ·

xn

∑

∑

∑

P (c = 0|Θ, X)

P (c = 1|Θ, X)

P (c = 2|Θ, X)

θ
(0)
0

θ
(0)
1

θ
(0)
2

θ
(0)
n

θ
(2)
n

Features

Input layer

Layer 1

g(z) = softmax(z)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 20 / 115

Multi-class logistic regression

Model: hΘ(x) = [P (k|x,Θ)]k=1,...,c = softmax(Θx) where
Θ = (θ(1), . . . , θ(c))

Cost function: J(Θ) = − 1
m

∑m
i=1

∑c
k=1 δ(y

(i), k) logP (k|x(i),Θ)

where δ(x, y) =

{
1 if x = y
0 otherwise

Gradient:
∂J(Θ)

∂Θj,k
= − 1

m

∑m
i=1(δ(y(i), k)− P (k|x(i),Θ)) x

(i)
j

May look complicated, but can be looked up!

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 21 / 115

Multi-class logistic regression

Model: hΘ(x) = [P (k|x,Θ)]k=1,...,c = softmax(Θx) where
Θ = (θ(1), . . . , θ(c))

Cost function: J(Θ) = − 1
m

∑m
i=1

∑c
k=1 δ(y

(i), k) logP (k|x(i),Θ)

where δ(x, y) =

{
1 if x = y
0 otherwise

Gradient:
∂J(Θ)

∂Θj,k
= − 1

m

∑m
i=1(δ(y(i), k)− P (k|x(i),Θ)) x

(i)
j

May look complicated, but can be looked up!

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 21 / 115

Multi-class logistic regression

Model: hΘ(x) = [P (k|x,Θ)]k=1,...,c = softmax(Θx) where
Θ = (θ(1), . . . , θ(c))

Cost function: J(Θ) = − 1
m

∑m
i=1

∑c
k=1 δ(y

(i), k) logP (k|x(i),Θ)

where δ(x, y) =

{
1 if x = y
0 otherwise

Gradient:
∂J(Θ)

∂Θj,k
= − 1

m

∑m
i=1(δ(y(i), k)− P (k|x(i),Θ)) x

(i)
j

May look complicated, but can be looked up!

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 21 / 115

Multi-class logistic regression

Model: hΘ(x) = [P (k|x,Θ)]k=1,...,c = softmax(Θx) where
Θ = (θ(1), . . . , θ(c))

Cost function: J(Θ) = − 1
m

∑m
i=1

∑c
k=1 δ(y

(i), k) logP (k|x(i),Θ)

where δ(x, y) =

{
1 if x = y
0 otherwise

Gradient:
∂J(Θ)

∂Θj,k
= − 1

m

∑m
i=1(δ(y(i), k)− P (k|x(i),Θ)) x

(i)
j

May look complicated, but can be looked up!

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 21 / 115

Multi-class logistic regression

Model: hΘ(x) = [P (k|x,Θ)]k=1,...,c = softmax(Θx) where
Θ = (θ(1), . . . , θ(c))

Cost function: J(Θ) = − 1
m

∑m
i=1

∑c
k=1 δ(y

(i), k) logP (k|x(i),Θ)

where δ(x, y) =

{
1 if x = y
0 otherwise

Gradient:
∂J(Θ)

∂Θj,k
= − 1

m

∑m
i=1(δ(y(i), k)− P (k|x(i),Θ)) x

(i)
j

May look complicated, but can be looked up!

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 21 / 115

Multi-class logistic regression and neural networks

1

x1

x2

· · ·

xn

∑

∑

∑

P (c = 0|Θ, X)

P (c = 1|Θ, X)

P (c = 2|Θ, X)

θ
(0)
0

θ
(0)
1

θ
(0)
2

θ
(0)
n

θ
(2)
n

Features

Input layer

Layer 1

g(z) = softmax(z)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 22 / 115

Deep learning: multi-layer neural networks

x1

x2

· · ·

xn

a
(1)
1

a
(1)
2

a
(1)
3

1

a
(2)
1

a
(2)
2

a
(2)
3

1

a
(3)
1

1
β

(1)
1

Θ
(1)
1,1

Θ
(1)
2,1

Θ
(1)
n,1

Θ
(1)
n,3

β
(2)
1

Θ
(2)
1,1

Θ
(2)
2,1

Θ
(2)
3,1

Θ
(2)
3,3

β
(3)
1

Θ
(3)
1,1

Θ
(3)
2,1

Θ
(3)
3,1

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 23 / 115

Why multiple-layers?

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Can a linear model separate these dots?

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 24 / 115

Why multiple-layers?

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

h(x) = θ0 + θ1x1 + θ2x2

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 24 / 115

Why multiple-layers?

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

h(x) = θ0 + θ1x1 + θ2x2 + θ3x
2
1 + θ4x1x2 + θ5x

2
2

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 24 / 115

Why multiple-layers?

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

h(x) = θ0 + θ1x1 + θ2x2 + θ3x3 + θ4x4 + θ5x5 where x3 = x2
2, . . .

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 24 / 115

Why multiple-layers?

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

h(x) = σ(Θ2σ(Θ1x)) where |Θ1| = 3× 3, |Θ2| = 3× 1

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 24 / 115

Feed forward networks language models

Source: Philipp Koehn, draft chapther on neural machine translation.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 25 / 115

Feed forward networks language models

Source: Philipp Koehn, draft chapther on neural machine translation.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 25 / 115

Backpropagation – forward step

x1

x2

· · ·

xn

a
(1)
1

a
(1)
2

a
(1)
3

1

a
(2)
1

a
(2)
2

a
(2)
3

1

a
(3)
1

1
β

(1)
1

Θ
(1)
1,1

Θ
(1)
1,2

Θ
(1)
1,n

Θ
(1)
3,n

β
(2)
1

Θ
(2)
1,1

Θ
(2)
1,2

Θ
(2)
1,3

Θ
(2)
3,3

β
(3)
1

Θ
(3)
1,1

Θ
(3)
1,2

Θ
(3)
1,3

a(0) = x

z(1) = Θ(1)a(0) + β(1)

g(1)(x) = tanh(x)
a(1) = g(1)(z(1))

z(2) = Θ(2)a(1) + β(2)

g(2)(x) = tanh(x)
a(2) = g(2)(z(2))

z(3) = Θ(3)a(2) + β(3)

g(3)(x) = tanh(x)
a(3) = g(3)(z(3))

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 26 / 115

The four fundamental equations of Backpropagation

δL = ∇aLJ(Θ)� (gL)
′
(zL) (BP1)

δl = ((Θl+1)T δl+1)� (gl)
′
(zl) (BP2)

∇βlJ(Θ) = δl (BP3)

∇ΘlJ(Θ) = al−1 � δl (BP4)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 27 / 115

The Backpropagation Algorithm

For one training example (x,y):

Input: Set the activations of the input layers a0 = x

Forward step: for l = 1, . . . , L calculate

zl = Θ(l)al−1 + βl and al = gl(zl)

Output error δL: calculate vector

δL = ∇aLJ(Θ)� (gL)′(zL)

Error backpropagation: for l = L− 1, L− 2, . . . , 1 calculate

δl = ((Θl+1)T δl+1)� (gl)
′
(zl)

Gradients:

∇ΘlJ(Θ) = al−1 � δl and ∇βlJ(Θ) = δl

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 28 / 115

Backpropagation – backward step

x1

x2

· · ·

xn

a
(1)
1

a
(1)
2

a
(1)
3

1

a
(2)
1

a
(2)
2

a
(2)
3

1

a
(3)
1

1

δ(3) = (a(3) − y)� (1− tanh2(z(3)))

δ(2) = (Θ(3))T δ(3) � (1− tanh2(z(2)))

δ(1) = (Θ(2))T δ(2) � (1− tanh2(z(1)))

β
(1)
1

Θ
(1)
1,1

Θ
(1)
1,2

Θ
(1)
1,n

Θ
(1)
3,n

β
(2)
1

Θ
(2)
1,1

Θ
(2)
1,2

Θ
(2)
1,3

Θ
(2)
3,3

β
(3)
1

Θ
(3)
1,1

Θ
(3)
1,2

Θ
(3)
1,3

a(0) = x

z(1) = Θ(1)a(0) + β(1)

g(1)(x) = tanh(x)
a(1) = g(1)(z(1))

z(2) = Θ(2)a(1) + β(2)

g(2)(x) = tanh(x)
a(2) = g(2)(z(2))

z(3) = Θ(3)a(2) + β(3)

g(3)(x) = tanh(x)
a(3) = g(3)(z(3))

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 29 / 115

Backpropagation and stochastic gradient descent

One iteration:

For all parameters Θ = (Θ1, . . . ,ΘL) create zero-valued helper
matrices ∆ = (∆1, . . . ,∆L) of the same size (β omitted for
simplicity).
For m examples in the batch, i = 1, . . . ,m:

Perform backpropagation for example (x(i), y(i)) and store the
gradients ∇ΘJ

(i)(Θ)

∆ := ∆ +
1

m
∇ΘJ

(i)(Θ)

Update the weights: Θ := Θ− α∆

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 30 / 115

More complicated network architectures

Textbook backprogagation is formulated in terms of layers, weights,
biases, activations, weighted inputs, ...

Actual architectures can contain concatenation of bidirectional RNN
states, ...

What’s the derivation of the "concatenation" operation?

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 31 / 115

Computing derivatives with reverse-mode autodiff

f(x1, x2) = sin(x1) + x1x2

∂f

∂x1
= ?

∂f

∂xx
= ?

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 32 / 115

Computing derivatives with reverse-mode autodiff

f(x1, x2) = sin(x1) + x1x2

∂f

∂x1
= ?

∂f

∂xx
= ?

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 32 / 115

Computation graphs to the rescue

f(x1, x2)

+

sin ∗

x1 x2

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 33 / 115

Computation graphs to the rescue

f(x1, x2)

+

sin ∗

x1 x2w1 = x1 w2 = x2

w3 = w1 · w2w4 = sin(w1)

w5 = w3 + w4

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 34 / 115

Computation graphs to the rescue

f(x1, x2)

+

sin ∗

x1 x2w1 = x1 w2 = x2

w3 = w1 · w2w4 = sin(w1)

w5 = w3 + w4

∂f
∂x1

= w̄a1 + w̄b1
= cos(x1) + x2

∂f
∂x2

= w̄2 = x1

f̄ = w̄5 = 1

w̄4 = w̄5
∂w5

∂w4
= w̄5 w̄3 = w̄5

∂w5

∂w3
= w̄5

w̄a1 = w̄4
∂w4

∂w1
= w̄4 · cos(w1)

w̄b1 = w̄3 · w2

w̄2 = w̄3
∂w3

∂w2
= w̄3 · w1

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 35 / 115

Computation graph for neural networks

a = softmax(x · w + b)
o = mean(sum(log(a)� y))

mean
"cost"

sum

×

log input
"y"

softmax

+

• param
"b"

input
"x"

param
"W"

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 36 / 115

Computation graph for neural networks

a0 = x
a1 = ReLU(a0 · w0 + b0)
a2 = ReLU(a1 · w1 + b1)
a3 = a2 · w2 + b2
o1 = softmax(a3)
o2 = mean(crossentropy(a3, y))

softmax
"scores"

+

x-ent

mean
"cost"

input
"y"

• param
"b2"

ReLU param
"W2"

+

• param
"b1"

ReLU param
"W1"

+

• param
"b0"

input
"x"

param
"W0"

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 37 / 115

Neural Machine Translation

1 Neural Networks — Basics

2 Recurrent Neural Networks and LSTMs

3 Attention-based NMT Model
4 Where are we now? Evaluation and chal-

lenges
Evaluation results
Comparing neural and phrase-based ma-
chine translation

5 Recent Research in Neural Machine Transla-
tion

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 38 / 115

Recurrent neural networks (RNNs)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 39 / 115

Recurrent neural networks (RNNs)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 39 / 115

Recurrent neural networks (RNNs)

ht = tanh(Wh · ht−1 +Wx · xt + b)

ht = tanh(W · [ht−1, xt] + b)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 40 / 115

Recurrent neural networks (RNNs)

ht = tanh(Wh · ht−1 +Wx · xt + b)

ht = tanh(W · [ht−1, xt] + b)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 40 / 115

Recurrent neural networks language models

Source: Philipp Koehn, draft chapther on neural machine translation.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 41 / 115

Fun with RNNs

Andrej Karpathy: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Character-level language models

Python code generation

Poetry generation

...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 42 / 115

RNNs and long distance dependencies

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 43 / 115

RNNs and long distance dependencies

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 43 / 115

Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 44 / 115

Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 44 / 115

Long Short-Term Memory (LSTM) – Step-by-step

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 45 / 115

Long Short-Term Memory (LSTM) – Step-by-step

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 45 / 115

Long Short-Term Memory (LSTM) – Step-by-step

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 45 / 115

Long Short-Term Memory (LSTM) – Step-by-step

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 45 / 115

Gated Recurrent Units (GRUs)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 46 / 115

RNNs in Encoder-Decoder architectures

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 47 / 115

Neural Machine Translation

1 Neural Networks — Basics

2 Recurrent Neural Networks and LSTMs

3 Attention-based NMT Model
4 Where are we now? Evaluation and chal-

lenges
Evaluation results
Comparing neural and phrase-based ma-
chine translation

5 Recent Research in Neural Machine Transla-
tion

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 48 / 115

Neural Machine Translation

Kyunghyun Cho
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 49 / 115

Translation modelling

decomposition of translation problem (for NMT)
a source sentence S of length m is a sequence x1, . . . , xm

a target sentence T of length n is a sequence y1, . . . , yn

T ∗ = argmax
t

p(T |S)

p(T |S) = p(y1, . . . , yn|x1, . . . , xm)

=

n∏
i=1

p(yi|y0, . . . , yi−1, x1, . . . , xm)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 50 / 115

Translation modelling

difference from language model
target-side language model:

p(T) =

n∏

i=1

p(yi|y0, . . . , yi−1)

translation model:

p(T |S) =

n∏

i=1

p(yi|y0, . . . , yi−1, x1, . . . , xm)

we could just treat sentence pair as one long sequence, but:
we do not care about p(S) (S is given)
we may want different vocabulary, network architecture for source text

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 51 / 115

Translation modelling

difference from language model
target-side language model:

p(T) =

n∏

i=1

p(yi|y0, . . . , yi−1)

translation model:

p(T |S) =

n∏

i=1

p(yi|y0, . . . , yi−1, x1, . . . , xm)

we could just treat sentence pair as one long sequence, but:
we do not care about p(S) (S is given)
we may want different vocabulary, network architecture for source text

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 51 / 115

Translating with RNNs

Encoder-decoder [Sutskever et al., 2014, Cho et al., 2014]
two RNNs (LSTM or GRU):

encoder reads input and produces hidden state representations
decoder produces output, based on last encoder hidden state

encoder and decoder are learned jointly
→ supervision signal from parallel text is backpropagated

Kyunghyun Cho http://devblogs.nvidia.com/parallelforall/

introduction-neural-machine-translation-gpus-part-2/

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 52 / 115

http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/

Summary vector

last encoder hidden-state “summarizes” source sentence

with multilingual training, we can potentially learn
language-independent meaning representation

[Sutskever et al., 2014]

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 53 / 115

Summary vector as information bottleneck

can fixed-size vector represent meaning of arbitrarily long sentence?

empirically, quality decreases for long sentences

reversing source sentence brings some improvement
[Sutskever et al., 2014]

[Sutskever et al., 2014]

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 54 / 115

Attentional encoder-decoder

encoder
goal: avoid bottleneck of summary vector

use bidirectional RNN, and concatenate forward and backward states
→ annotation vector hi
represent source sentence as vector of n annotations
→ variable-length representation

Kyunghyun Cho
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 55 / 115

Attentional encoder-decoder

attention
problem: how to incorporate variable-length context into hidden state?

attention model computes context vector as weighted average of
annotations

weights are computed by feedforward neural network with softmax
activation

Kyunghyun Cho
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 56 / 115

Attentional encoder-decoder: math

simplifications of model by [Bahdanau et al., 2015] (for illustration)
plain RNN instead of GRU

simpler output layer

we do not show bias terms

notation
W , U , E, C, V are weight matrices (of different dimensionality)

E one-hot to embedding (e.g. 50000 · 512)
W embedding to hidden (e.g. 512 · 1024)
U hidden to hidden (e.g. 1024 · 1024)
C context (2x hidden) to hidden (e.g. 2048 · 1024)
Vo hidden to one-hot (e.g. 1024 · 50000)

separate weight matrices for encoder and decoder (e.g. Ex and Ey)

input X of length Tx; output Y of length Ty

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 57 / 115

Attentional encoder-decoder: math

encoder

−→
h j =

{
0, , if j = 0

tanh(
−→
W xExxj +

−→
U xhj−1) , if j > 0

←−
h j =

{
0, , if j = Tx + 1

tanh(
←−
W xExxj +

←−
U xhj+1) , if j ≤ Tx

hj = (
−→
h j ,
←−
h j)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 58 / 115

Attentional encoder-decoder: math

decoder

si =

{
tanh(Ws

←−
h i), , if i = 0

tanh(WyEyyi + Uysi−1 + Cci) , if i > 0

ti = tanh(Uosi−1 +WoEyyi−1 + Coci)

yi = softmax(Voti)

attention model

eij = v>a tanh(Wasi−1 + Uahj)

αij = softmax(eij)

ci =

Tx∑

j=1

αijhj

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 59 / 115

Attention model

attention model
side effect: we obtain alignment between source and target sentence

information can also flow along recurrent connections, so there is no
guarantee that attention corresponds to alignment
applications:

visualisation
replace unknown words with back-off dictionary [Jean et al., 2015]
...

Kyunghyun Cho
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 60 / 115

Attention model

attention model also works with images:

[Cho et al., 2015]

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 61 / 115

Attention model

[Cho et al., 2015]

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 62 / 115

Applications

score a translation
p(La, croissance, économique, s’est, ralentie, ces, dernières, années, . |
Economic, growth, has, slowed, down, in, recent, year, .) = ?

generate the most probable translation of a source sentence
→ decoding
y∗ = argmaxy p(y|Economic, growth, has, slowed, down, in, recent, year, .)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 63 / 115

Decoding

exact search
generate every possible sentence T in target language

compute score p(T |S) for each

pick best one

intractable: |vocab|N translations for output length N
→ we need approximative search strategy

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 64 / 115

Decoding

approximative search/1
at each time step, compute probability distribution P (yi|X, y<i)
select yi according to some heuristic:

sampling: sample from P (yi|X, y<i)
greedy search: pick argmaxy p(yi|X, y<i)

continue until we generate <eos>

efficient, but suboptimal

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 65 / 115

Decoding

approximative search/2: beam search
maintain list of K hypotheses (beam)

at each time step, expand each hypothesis k: p(yki |X, yk<i)
select K hypotheses with highest total probability:

∏

i

p(yki |X, yk<i)

relatively efficient

currently default search strategy in neural machine translation

small beam (K ≈ 10) offers good speed-quality trade-off

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 66 / 115

Ensembles

at each timestep, combine the probability distribution of M different
ensemble components.

combine operator: typically average (log-)probability

logP (yi|X, y<i) =

∑M
m=1 logPm(yi|X, y<i)

M

requirements:
same output vocabulary
same factorization of Y

internal network architecture may be different

source representations may be different
(extreme example: ensemble-like model with different source
languages [Junczys-Dowmunt and Grundkiewicz, 2016])

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 67 / 115

Ensembles

recent ensemble strategies in NMT
ensemble of 8 independent training runs with different
hyperparameters/architectures [Luong et al., 2015a]

ensemble of 8 independent training runs with different random
initializations [Chung et al., 2016]

ensemble of 4 checkpoints of same training run
[Sennrich et al., 2016a]
→ probably less effective, but only requires one training run

EN→CS EN→DE EN→RO EN→RU CS→EN DE→EN RO→EN RU→EN

0.0
10.0
20.0
30.0
40.0

23.7

31.6
28.1

24.3

30.1

36.2
33.3

26.924.8

33.1
28.2

26.0
31.4

37.5
33.9

28.0

B
LE

U

single model ensemble

[Sennrich et al., 2016a]

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 68 / 115

Neural Machine Translation

1 Neural Networks — Basics

2 Recurrent Neural Networks and LSTMs

3 Attention-based NMT Model
4 Where are we now? Evaluation and chal-

lenges
Evaluation results
Comparing neural and phrase-based ma-
chine translation

5 Recent Research in Neural Machine Transla-
tion

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 69 / 115

State of Neural MT

attentional encoder-decoder networks have become state of the art
on various MT tasks
your mileage may vary depending on

language pair and text type
amount of training data
type of training resources (monolingual?)
hyperparameters

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 70 / 115

Attentional encoder-decoders (NMT) are SOTA

system BLEU official rank
uedin-nmt 34.2 1
metamind 32.3 2
uedin-syntax 30.6 3
NYU-UMontreal 30.8 4
online-B 29.4 5-10
KIT/LIMSI 29.1 5-10
cambridge 30.6 5-10
online-A 29.9 5-10
promt-rule 23.4 5-10
KIT 29.0 6-10
jhu-syntax 26.6 11-12
jhu-pbmt 28.3 11-12
uedin-pbmt 28.4 13-14
online-F 19.3 13-15
online-G 23.8 14-15

Table: WMT16 results for EN→DE

system BLEU official rank
uedin-nmt 38.6 1
online-B 35.0 2-5
online-A 32.8 2-5
uedin-syntax 34.4 2-5
KIT 33.9 2-6
uedin-pbmt 35.1 5-7
jhu-pbmt 34.5 6-7
online-G 30.1 8
jhu-syntax 31.0 9
online-F 20.2 10

Table: WMT16 results for DE→EN

pure NMT

NMT component

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 71 / 115

Attentional encoder-decoders (NMT) are SOTA

system BLEU official rank
uedin-nmt 34.2 1
metamind 32.3 2
uedin-syntax 30.6 3
NYU-UMontreal 30.8 4
online-B 29.4 5-10
KIT/LIMSI 29.1 5-10
cambridge 30.6 5-10
online-A 29.9 5-10
promt-rule 23.4 5-10
KIT 29.0 6-10
jhu-syntax 26.6 11-12
jhu-pbmt 28.3 11-12
uedin-pbmt 28.4 13-14
online-F 19.3 13-15
online-G 23.8 14-15

Table: WMT16 results for EN→DE

system BLEU official rank
uedin-nmt 38.6 1
online-B 35.0 2-5
online-A 32.8 2-5
uedin-syntax 34.4 2-5
KIT 33.9 2-6
uedin-pbmt 35.1 5-7
jhu-pbmt 34.5 6-7
online-G 30.1 8
jhu-syntax 31.0 9
online-F 20.2 10

Table: WMT16 results for DE→EN

pure NMT

NMT component

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 71 / 115

Attentional encoder-decoders (NMT) are SOTA

system BLEU official rank
uedin-nmt 34.2 1
metamind 32.3 2
uedin-syntax 30.6 3
NYU-UMontreal 30.8 4
online-B 29.4 5-10
KIT/LIMSI 29.1 5-10
cambridge 30.6 5-10
online-A 29.9 5-10
promt-rule 23.4 5-10
KIT 29.0 6-10
jhu-syntax 26.6 11-12
jhu-pbmt 28.3 11-12
uedin-pbmt 28.4 13-14
online-F 19.3 13-15
online-G 23.8 14-15

Table: WMT16 results for EN→DE

system BLEU official rank
uedin-nmt 38.6 1
online-B 35.0 2-5
online-A 32.8 2-5
uedin-syntax 34.4 2-5
KIT 33.9 2-6
uedin-pbmt 35.1 5-7
jhu-pbmt 34.5 6-7
online-G 30.1 8
jhu-syntax 31.0 9
online-F 20.2 10

Table: WMT16 results for DE→EN

pure NMT

NMT component

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 71 / 115

Attentional encoder-decoders (NMT) are SOTA

uedin-nmt 25.8 1
NYU-UMontreal 23.6 2
jhu-pbmt 23.6 3
cu-chimera 21.0 4-5
cu-tamchyna 20.8 4-5
uedin-cu-syntax 20.9 6-7
online-B 22.7 6-7
online-A 19.5 15
cu-TectoMT 14.7 16
cu-mergedtrees 8.2 18

Table: WMT16 results for EN→CS

online-B 39.2 1-2
uedin-nmt 33.9 1-2
uedin-pbmt 35.2 3
uedin-syntax 33.6 4-5
online-A 30.8 4-6
jhu-pbmt 32.2 5-7
LIMSI 31.0 6-7

Table: WMT16 results for RO→EN

uedin-nmt 31.4 1
jhu-pbmt 30.4 2
online-B 28.6 3
PJATK 28.3 8-10
online-A 25.7 11
cu-mergedtrees 13.3 12

Table: WMT16 results for CS→EN

uedin-nmt 28.1 1-2
QT21-HimL-SysComb 28.9 1-2
KIT 25.8 3-7
uedin-pbmt 26.8 3-7
online-B 25.4 3-7
uedin-lmu-hiero 25.9 3-7
RWTH-SYSCOMB 27.1 3-7
LIMSI 23.9 8-10
lmu-cuni 24.3 8-10
jhu-pbmt 23.5 8-11
usfd-rescoring 23.1 10-12
online-A 19.2 11-12

Table: WMT16 results for EN→RO

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 71 / 115

Attentional encoder-decoders (NMT) are SOTA
PROMT-rule 22.3 1
amu-uedin 25.3 2-4
online-B 23.8 2-5
uedin-nmt 26.0 2-5
online-G 26.2 3-5
NYU-UMontreal 23.1 6
jhu-pbmt 24.0 7-8
LIMSI 23.6 7-10
online-A 20.2 8-10
AFRL-MITLL-phr 23.5 9-10
AFRL-MITLL-verb 20.9 11
online-F 8.6 12

Table: WMT16 results for EN→RU

amu-uedin 29.1 1-2
online-G 28.7 1-3
NRC 29.1 2-4
online-B 28.1 3-5
uedin-nmt 28.0 4-5
online-A 25.7 6-7
AFRL-MITLL-phr 27.6 6-7
AFRL-MITLL-contrast 27.0 8-9
PROMT-rule 20.4 8-9
online-F 13.5 10

Table: WMT16 results for RU→EN

uedin-pbmt 23.4 1-4
online-G 20.6 1-4
online-B 23.6 1-4
UH-opus 23.1 1-4
PROMT-SMT 20.3 5
UH-factored 19.3 6-7
uedin-syntax 20.4 6-7
online-A 19.0 8
jhu-pbmt 19.1 9

Table: WMT16 results for FI→EN

online-G 15.4 1-3
abumatra-nmt 17.2 1-4

online-B 14.4 1-4
abumatran-combo 17.4 3-5

UH-opus 16.3 4-5
NYU-UMontreal 15.1 6-8

abumatran-pbsmt 14.6 6-8
online-A 13.0 6-8
jhu-pbmt 13.8 9-10

UH-factored 12.8 9-12
aalto 11.6 10-13

jhu-hltcoe 11.9 10-13
UUT 11.6 11-13

Table: WMT16 results for EN→FI

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 71 / 115

Neural Machine Translation

1 Neural Networks — Basics

2 Recurrent Neural Networks and LSTMs

3 Attention-based NMT Model
4 Where are we now? Evaluation and chal-

lenges
Evaluation results
Comparing neural and phrase-based ma-
chine translation

5 Recent Research in Neural Machine Transla-
tion

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 72 / 115

Interlude: why is (machine) translation hard?

ambiguity
words are often polysemous, with different translations for different
meanings

system sentence
source Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference There he was attacked again by his original attacker and another male.
uedin-nmt There he was attacked again by the racket and another male person.
uedin-pbsmt There, he was at the club and another male person attacked again.

Schläger

attackerracket club

racket https://www.flickr.com/photos/128067141@N07/15157111178 / CC BY 2.0
attacker https://commons.wikimedia.org/wiki/File:Wikibully.jpg

golf club https://commons.wikimedia.org/wiki/File:Golf_club,_Callawax_X-20_8_iron_-_III.jpg / CC-BY-SA-3.0

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 73 / 115

Interlude: why is (machine) translation hard?

ambiguity
words are often polysemous, with different translations for different
meanings

system sentence
source Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference There he was attacked again by his original attacker and another male.
uedin-nmt There he was attacked again by the racket and another male person.
uedin-pbsmt There, he was at the club and another male person attacked again.

Schläger

attacker

racket

club

racket https://www.flickr.com/photos/128067141@N07/15157111178 / CC BY 2.0
attacker https://commons.wikimedia.org/wiki/File:Wikibully.jpg

golf club https://commons.wikimedia.org/wiki/File:Golf_club,_Callawax_X-20_8_iron_-_III.jpg / CC-BY-SA-3.0

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 73 / 115

Interlude: why is (machine) translation hard?

ambiguity
words are often polysemous, with different translations for different
meanings

system sentence
source Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference There he was attacked again by his original attacker and another male.
uedin-nmt There he was attacked again by the racket and another male person.
uedin-pbsmt There, he was at the club and another male person attacked again.

Schläger

attackerracket

club

racket https://www.flickr.com/photos/128067141@N07/15157111178 / CC BY 2.0
attacker https://commons.wikimedia.org/wiki/File:Wikibully.jpg

golf club https://commons.wikimedia.org/wiki/File:Golf_club,_Callawax_X-20_8_iron_-_III.jpg / CC-BY-SA-3.0

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 73 / 115

Interlude: why is (machine) translation hard?

ambiguity
words are often polysemous, with different translations for different
meanings

system sentence
source Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference There he was attacked again by his original attacker and another male.
uedin-nmt There he was attacked again by the racket and another male person.
uedin-pbsmt There, he was at the club and another male person attacked again.

Schläger

attackerracket club

racket https://www.flickr.com/photos/128067141@N07/15157111178 / CC BY 2.0
attacker https://commons.wikimedia.org/wiki/File:Wikibully.jpg

golf club https://commons.wikimedia.org/wiki/File:Golf_club,_Callawax_X-20_8_iron_-_III.jpg / CC-BY-SA-3.0

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 73 / 115

Interlude: why is (machine) translation hard?

word order
there are systematic word order differences between languages. We need
to generate words in the correct order.

system sentence
source Unsere digitalen Leben haben die Notwendigkeit, stark, lebenslustig und erfolgreich zu erscheinen, verdoppelt [...]
reference Our digital lives have doubled the need to appear strong, fun-loving and successful [...]
uedin-nmt Our digital lives have doubled the need to appear strong, lifelike and successful [...]
uedin-pbsmt Our digital lives are lively, strong, and to be successful, doubled [...]

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 74 / 115

Interlude: why is (machine) translation hard?

grammatical marking system
grammatical distinctions can be marked in different ways, for instance
through word order (English), or inflection (German). The translator needs
to produce the appropriate marking.

English ... because the dog chased the man.
German ... weil der Hund den Mann jagte.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 75 / 115

Interlude: why is (machine) translation hard?

multiword expressions
the meaning of non-compositional expressions is lost in a word-to-word
translation

system sentence
source He bends over backwards for the team, ignoring any pain.
reference Er zerreißt sich für die Mannschaft, geht über Schmerzen drüber.

(lit: he tears himself apart for the team)
uedin-nmt Er beugt sich rückwärts für die Mannschaft, ignoriert jeden Schmerz.

(lit: he bends backwards for the team)
uedin-pbsmt Er macht alles für das Team, den Schmerz zu ignorieren.

(lit: he does everything for the team)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 76 / 115

Interlude: why is (machine) translation hard?

subcategorization
Words only allow for specific categories of syntactic arguments, that often
differ between languages.

English he remembers his medical appointment.
German er erinnert sich an seinen Arzttermin.
English *he remembers himself to his medical appointment.
German *er erinnert seinen Arzttermin.

agreement
inflected forms may need to agree over long distances to satisfy
grammaticality.

English they can not be found
French elles ne peuvent pas être trouvées

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 77 / 115

Interlude: why is (machine) translation hard?

morphological complexity
translator may need to analyze/generate morphologically complex words
that were not seen before.

German Abwasserbehandlungsanlage
English waste water treatment plant
French station d’épuration des eaux résiduaires

system sentence
source Titelverteidiger ist Drittligaabsteiger SpVgg Unterhaching.
reference The defending champions are SpVgg Unterhaching, who have been relegated to the third league.
uedin-nmt Defending champion is third-round pick SpVgg Underhaching.
uedin-pbsmt Title defender Drittligaabsteiger Week 2.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 78 / 115

Interlude: why is (machine) translation hard?

open vocabulary
languages have an open vocabulary, and we need to learn translations for
words that we have only seen rarely (or never)

system sentence
source Titelverteidiger ist Drittligaabsteiger SpVgg Unterhaching.
reference The defending champions are SpVgg Unterhaching, who have been relegated to the third league.
uedin-nmt Defending champion is third-round pick SpVgg Underhaching.
uedin-pbsmt Title defender Drittligaabsteiger Week 2.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 79 / 115

Interlude: why is (machine) translation hard?

discontinuous structures
a word (sequence) can map to a discontinuous structure in another
language.

English I do not know
French Je ne sais pas

system sentence
source Ein Jahr später machten die Fed-Repräsentanten diese Kürzungen rückgängig.
reference A year later, Fed officials reversed those cuts.
uedin-nmt A year later, FedEx officials reversed those cuts.
uedin-pbsmt A year later, the Fed representatives made these cuts.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 80 / 115

Interlude: why is (machine) translation hard?

discourse
the translation of referential expressions depends on discourse context,
which sentence-level translators have no access to.

English I made a decision. Please respect it.
French J’ai pris une décision. Respectez-la s’il vous plaît.
French J’ai fait un choix. Respectez-le s’il vous plaît.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 81 / 115

Interlude: why is (machine) translation hard?

assorted other difficulties
underspecification

ellipsis

lexical gaps

language change

language variation (dialects, genres, domains)

ill-formed input

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 82 / 115

Comparison between phrase-based and neural MT

human analysis of NMT (reranking) [Neubig et al., 2015]
NMT is more grammatical

word order
insertion/deletion of function words
morphological agreement

minor degradation in lexical choice?

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 83 / 115

Comparison between phrase-based and neural MT

analysis of IWSLT 2015 results [Bentivogli et al., 2016]
human-targeted translation error rate (HTER) based on automatic
translation and human post-edit

4 error types: substitution, insertion, deletion, shift

system
HTER (no shift) HTER

word lemma %∆ (shift only)
PBSMT [Ha et al., 2015] 28.3 23.2 -18.0 3.5
NMT [Luong and Manning, 2015] 21.7 18.7 -13.7 1.5

word-level is closer to lemma-level performance: better at
inflection/agreement

improvement on lemma-level: better lexical choice

fewer shift errors: better word order

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 84 / 115

Comparison between phrase-based and neural MT

analysis of IWSLT 2015 results [Bentivogli et al., 2016]
human-targeted translation error rate (HTER) based on automatic
translation and human post-edit

4 error types: substitution, insertion, deletion, shift

system
HTER (no shift) HTER

word lemma %∆ (shift only)
PBSMT [Ha et al., 2015] 28.3 23.2 -18.0 3.5
NMT [Luong and Manning, 2015] 21.7 18.7 -13.7 1.5

word-level is closer to lemma-level performance: better at
inflection/agreement

improvement on lemma-level: better lexical choice

fewer shift errors: better word order

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 84 / 115

Comparison between phrase-based and neural MT

analysis of IWSLT 2015 results [Bentivogli et al., 2016]
human-targeted translation error rate (HTER) based on automatic
translation and human post-edit

4 error types: substitution, insertion, deletion, shift

system
HTER (no shift) HTER

word lemma %∆ (shift only)
PBSMT [Ha et al., 2015] 28.3 23.2 -18.0 3.5
NMT [Luong and Manning, 2015] 21.7 18.7 -13.7 1.5

word-level is closer to lemma-level performance: better at
inflection/agreement

improvement on lemma-level: better lexical choice

fewer shift errors: better word order

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 84 / 115

Comparison between phrase-based and neural MT

analysis of IWSLT 2015 results [Bentivogli et al., 2016]
human-targeted translation error rate (HTER) based on automatic
translation and human post-edit

4 error types: substitution, insertion, deletion, shift

system
HTER (no shift) HTER

word lemma %∆ (shift only)
PBSMT [Ha et al., 2015] 28.3 23.2 -18.0 3.5
NMT [Luong and Manning, 2015] 21.7 18.7 -13.7 1.5

word-level is closer to lemma-level performance: better at
inflection/agreement

improvement on lemma-level: better lexical choice

fewer shift errors: better word order

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 84 / 115

Fluency

+1% +13%

CS→EN DE→EN RO→EN RU→EN

60

80

100

70.8 72.2 73.9 72.8
75.4 75.8

71.2 71.1

A
de

qu
ac

y

ONLINE-B UEDIN-NMT

CS→EN DE→EN RO→EN RU→EN

60

80

100

64.6
68.4 66.7 67.8

78.7 77.5
71.9 74.3

Fl
ue

nc
y

ONLINE-B UEDIN-NMT

Figure: WMT16 direct assessment results

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 85 / 115

Fluency

+1%

+13%

CS→EN DE→EN RO→EN RU→EN

60

80

100

70.8 72.2 73.9 72.8
75.4 75.8

71.2 71.1

A
de

qu
ac

y

ONLINE-B UEDIN-NMT

CS→EN DE→EN RO→EN RU→EN

60

80

100

64.6
68.4 66.7 67.8

78.7 77.5
71.9 74.3

Fl
ue

nc
y

ONLINE-B UEDIN-NMT

Figure: WMT16 direct assessment results

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 85 / 115

Fluency

+1%

+13%

CS→EN DE→EN RO→EN RU→EN

60

80

100

70.8 72.2 73.9 72.8
75.4 75.8

71.2 71.1

A
de

qu
ac

y

ONLINE-B UEDIN-NMT

CS→EN DE→EN RO→EN RU→EN

60

80

100

64.6
68.4 66.7 67.8

78.7 77.5
71.9 74.3

Fl
ue

nc
y

ONLINE-B UEDIN-NMT

Figure: WMT16 direct assessment results

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 85 / 115

Fluency

+1% +13%

CS→EN DE→EN RO→EN RU→EN

60

80

100

70.8 72.2 73.9 72.8
75.4 75.8

71.2 71.1

A
de

qu
ac

y

ONLINE-B UEDIN-NMT

CS→EN DE→EN RO→EN RU→EN

60

80

100

64.6
68.4 66.7 67.8

78.7 77.5
71.9 74.3

Fl
ue

nc
y

ONLINE-B UEDIN-NMT

Figure: WMT16 direct assessment results

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 85 / 115

Why is neural MT output more grammatical?

phrase-based SMT
log-linear combination of many “weak” features

data sparsenesss triggers back-off to smaller units

strong independence assumptions

neural MT
end-to-end trained model

generalization via continuous space representation

output conditioned on full source text and target history

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 86 / 115

Neural Machine Translation

1 Neural Networks — Basics

2 Recurrent Neural Networks and LSTMs

3 Attention-based NMT Model
4 Where are we now? Evaluation and chal-

lenges
Evaluation results
Comparing neural and phrase-based ma-
chine translation

5 Recent Research in Neural Machine Transla-
tion

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 87 / 115

Efficiency

speed bottlenecks
matrix multiplication
→ use of highly parallel hardware (GPUs)
size of output layer scales with vocabulary size. Solutions:

LMs: hierarchical softmax; noise-contrastive estimation;
self-normalization
NMT: approximate softmax through subset of vocabulary
[Jean et al., 2015, Mi et al., 2016, L’Hostis et al., 2016]

NMT training vs. decoding (on fast GPU)
training: slow (1-3 weeks)

decoding: fast (100 000–500 000 sentences / day)a

awith NVIDIA Titan X and amuNMT (https://github.com/emjotde/amunmt)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 88 / 115

https://github.com/emjotde/amunmt

Efficiency

aggressive batching during decoding
compute all prefixes in beam in single batch
compute multiple sentences in single batch

8-bit inference [Wu et al., 2016]

knowledge distillation: student network mimics teacher
[Kim and Rush, 2016]

Figure 1: Overview of the different knowledge distillation approaches. In word-level knowledge distillation (left) cross-entropy

is minimized between the student/teacher distributions (yellow) for each word in the actual target sequence (ECD), as well as

between the student distribution and the degenerate data distribution, which has all of its probabilitiy mass on one word (black). In

sequence-level knowledge distillation (center) the student network is trained on the output from beam search of the teacher network

that had the highest score (ACF). In sequence-level interpolation (right) the student is trained on the output from beam search of

the teacher network that had the highest sim with the target sequence (ECE).

This objective can be seen as minimizing the cross-
entropy between the degenerate data distribution
(which has all of its probability mass on one class)
and the model distribution p(y |x; θ).

In knowledge distillation, we assume access to
a learned teacher distribution q(y |x; θT), possibly
trained over the same data set. Instead of minimiz-
ing cross-entropy with the observed data, we instead
minimize the cross-entropy with the teacher’s prob-
ability distribution,

LKD(θ; θT) =−
|V|∑

k=1

q(y = k |x; θT)×

log p(y = k |x; θ)

where θT parameterizes the teacher distribution and
remains fixed. Note the cross-entropy setup is iden-
tical, but the target distribution is no longer a sparse
distribution.4 Training on q(y |x; θT) is attractive
since it gives more information about other classes
for a given data point (e.g. similarity between
classes) and has less variance in gradients (Hinton
et al., 2015).

4 In some cases the entropy of the teacher/student distribu-
tion is increased by annealing it with a temperature term τ > 1

p̃(y |x) ∝ p(y |x)
1
τ

After testing τ ∈ {1, 1.5, 2} we found that τ = 1 worked best.

Since this new objective has no direct term for the
training data, it is common practice to interpolate
between the two losses,

L(θ; θT) = (1− α)LNLL(θ) + αLKD(θ; θT)

where α is mixture parameter combining the one-hot
distribution and the teacher distribution.

3 Knowledge Distillation for NMT

The large sizes of neural machine translation sys-
tems make them an ideal candidate for knowledge
distillation approaches. In this section we explore
three different ways this technique can be applied to
NMT.

3.1 Word-Level Knowledge Distillation
NMT systems are trained directly to minimize word
NLL, LWORD-NLL, at each position. Therefore if
we have a teacher model, standard knowledge distil-
lation for multi-class cross-entropy can be applied.
We define this distillation for a sentence as,

LWORD-KD = −
J∑

j=1

|V|∑

k=1

q(tj = k | s, t<j)×

log p(tj = k | s, t<j)

where V is the target vocabulary set. The student
can further be trained to optimize the mixture of

[Kim and Rush, 2016]

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 89 / 115

Open-vocabulary translation

Why is vocabulary size a problem?
size of one-hot input/output vector is linear to vocabulary size

large vocabularies are space inefficient

large output vocabularies are time inefficient

typical network vocabulary size: 30 000–100 000

What about out-of-vocabulary words?
training set vocabulary typically larger than network vocabulary
(1 million words or more)
at translation time, we regularly encounter novel words:

names: Barack Obama
morph. complex words: Hand|gepäck|gebühr (’carry-on bag fee’)
numbers, URLs etc.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 90 / 115

Open-vocabulary translation

Solutions
copy unknown words, or translate with back-off dictionary
[Jean et al., 2015, Luong et al., 2015b, Gulcehre et al., 2016]
→ works for names (if alphabet is shared), and 1-to-1 aligned words

use subword units (characters or others) for input/output vocabulary
→ model can learn translation of seen words on subword level
→ model can translate unseen words if translation is transparent

active research area [Sennrich et al., 2016c,
Luong and Manning, 2016, Chung et al., 2016, Ling et al., 2015,
Costa-jussà and Fonollosa, 2016, Zhao and Zhang, 2016,
Lee et al., 2016]

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 91 / 115

Core idea: transparent translations

transparent translations
some translations are semantically/phonologically transparent
morphologically complex words (e.g. compounds):

solar system (English)
Sonnen|system (German)
Nap|rendszer (Hungarian)

named entities:
Obama(English; German)
Îáàìà (Russian)
オバマ (o-ba-ma) (Japanese)

cognates and loanwords:
claustrophobia(English)
Klaustrophobie(German)
Êëàóñòðîôîáèÿ (Russian)

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 92 / 115

Subword neural machine translation

Flat representation [Sennrich et al., 2016c, Chung et al., 2016]
sentence is a sequence of subword units

Hierarchical representation
[Ling et al., 2015, Luong and Manning, 2016]

sentence is a sequence of words

words are a sequence of subword units

Under review as a conference paper at ICLR 2016

variables, the source attention a and the target context lfp−1, the probability of a given word type tp

being the next translated word tp is given by:

P (tp|a, lfp−1) =
exp(eS

tp

a a+Stp

l lfp−1)
∑

j∈[0,T] exp(e
Sj

aa+Sj
l l

f
p−1)

,

where Sa and Sl are the parameters that map the conditioned vectors into a score for each word type
in the target language vocabulary T . The parameters for a specific word type j are obtained as Sj

a

and Sj
l , respectively. Then, scores are normalized into a probability.

2.2 CHARACTER-BASED MACHINE TRANSLATION

We now present our adaptation of the word-based neural network model to operate over character
sequences rather than word sequences. However, unlike previous approaches that attempt to discard
the notion of words completely (Vilar et al., 2007; Neubig et al., 2013), we propose an hierarhical
architecture, which replaces the word lookup tables (steps 1 and 3) and the word softmax (step 6)
with character-based alternatives, which compose the notion of words from individual characters.
The advantage of this approach is that we benefit from properties of character-based approaches (e.g.
compactness and orthographic sensitivity), but can also easily be incorporated into any word-based
neural approaches.

Character-based Word Representation The work in (Ling et al., 2015; Ballesteros et al., 2015)
proposes a compositional model for learning word vectors from characters. Similar to word lookup
tables, a word string sj is mapped into a ds,w-dimensional vector, but rather than allocating param-
eters for each individual word type, the word vector sj is composed by a series of transformation
using its character sequence sj,0, . . . , sj,x.

* C2W Compositional Model

BLSTM

W h e r e

Word Vector for "Where"

Figure 2: Illustration of the C2W model. Square boxes represent vectors of neuron activations.

The illustration of the model is shown in 2. Essentially, the model builds a representation of the word
using characters, by reading characters from left to right and vice-versa. More formally, given an in-
put word sj = sj,0, . . . , sj,x, the model projects each character into a continuous ds,c-dimensional
vectors sj,0, . . . , sj,x using a character lookup table. Then, it builds a forward LSTM state se-
quence hf

0 , . . . ,h
f
k by reading the character vectors sj,0, . . . , sj,x. Another, backward LSTM reads

the character vectors in the reverse order generating the backward states hb
k, . . . ,h

b
0. Finally, the

4

open question: should attention be on level of words or subwords?

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 93 / 115

Subword neural machine translation

Choice of subword unit
characters: small vocabulary, long sequences

morphemes (?): hard to control vocabulary size

hybrid choice: shortlist of words, subwords for rare words

variable-length character n-grams: byte-pair encoding (BPE)

open research question which subword segmentation is best choice in
terms of efficiency and effectiveness.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 94 / 115

Byte pair encoding [Gage, 1994]

algorithm
iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac

ZabdZabac
ZYdZYac
XdXac

Z=aa
Y=ab
X=ZY

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 95 / 115

Byte pair encoding [Gage, 1994]

algorithm
iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac
ZabdZabac

ZYdZYac
XdXac

Z=aa

Y=ab
X=ZY

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 95 / 115

Byte pair encoding [Gage, 1994]

algorithm
iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac
ZabdZabac
ZYdZYac

XdXac

Z=aa
Y=ab

X=ZY

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 95 / 115

Byte pair encoding [Gage, 1994]

algorithm
iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac
ZabdZabac
ZYdZYac
XdXac

Z=aa
Y=ab
X=ZY

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 95 / 115

Byte pair encoding for word segmentation

bottom-up character merging
iteratively replace most frequent pair of symbols (’A’,’B’) with ’AB’

apply on dictionary, not on full text (for efficiency)

output vocabulary: character vocabulary + one symbol per merge

word freq
’l o w </w>’ 5
’l o w e r </w>’ 2
’n e w e s t </w>’ 6
’w i d e s t </w>’ 3

freq symbol pair new symbol

9 (’e’, ’s’) → ’es’
9 (’es’, ’t’) → ’est’
9 (’est’, ’</w>’) → ’est</w>’
7 (’l’, ’o’) → ’lo’
7 (’lo’, ’w’) → ’low’
...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 96 / 115

Byte pair encoding for word segmentation

bottom-up character merging
iteratively replace most frequent pair of symbols (’A’,’B’) with ’AB’

apply on dictionary, not on full text (for efficiency)

output vocabulary: character vocabulary + one symbol per merge

word freq
’l o w </w>’ 5
’l o w e r </w>’ 2
’n e w es t </w>’ 6
’w i d es t </w>’ 3

freq symbol pair new symbol
9 (’e’, ’s’) → ’es’

9 (’es’, ’t’) → ’est’
9 (’est’, ’</w>’) → ’est</w>’
7 (’l’, ’o’) → ’lo’
7 (’lo’, ’w’) → ’low’
...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 96 / 115

Byte pair encoding for word segmentation

bottom-up character merging
iteratively replace most frequent pair of symbols (’A’,’B’) with ’AB’

apply on dictionary, not on full text (for efficiency)

output vocabulary: character vocabulary + one symbol per merge

word freq
’l o w </w>’ 5
’l o w e r </w>’ 2
’n e w est </w>’ 6
’w i d est </w>’ 3

freq symbol pair new symbol
9 (’e’, ’s’) → ’es’
9 (’es’, ’t’) → ’est’

9 (’est’, ’</w>’) → ’est</w>’
7 (’l’, ’o’) → ’lo’
7 (’lo’, ’w’) → ’low’
...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 96 / 115

Byte pair encoding for word segmentation

bottom-up character merging
iteratively replace most frequent pair of symbols (’A’,’B’) with ’AB’

apply on dictionary, not on full text (for efficiency)

output vocabulary: character vocabulary + one symbol per merge

word freq
’l o w </w>’ 5
’l o w e r </w>’ 2
’n e w est</w>’ 6
’w i d est</w>’ 3

freq symbol pair new symbol
9 (’e’, ’s’) → ’es’
9 (’es’, ’t’) → ’est’
9 (’est’, ’</w>’) → ’est</w>’

7 (’l’, ’o’) → ’lo’
7 (’lo’, ’w’) → ’low’
...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 96 / 115

Byte pair encoding for word segmentation

bottom-up character merging
iteratively replace most frequent pair of symbols (’A’,’B’) with ’AB’

apply on dictionary, not on full text (for efficiency)

output vocabulary: character vocabulary + one symbol per merge

word freq
’lo w </w>’ 5
’lo w e r </w>’ 2
’n e w est</w>’ 6
’w i d est</w>’ 3

freq symbol pair new symbol
9 (’e’, ’s’) → ’es’
9 (’es’, ’t’) → ’est’
9 (’est’, ’</w>’) → ’est</w>’
7 (’l’, ’o’) → ’lo’

7 (’lo’, ’w’) → ’low’
...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 96 / 115

Byte pair encoding for word segmentation

bottom-up character merging
iteratively replace most frequent pair of symbols (’A’,’B’) with ’AB’

apply on dictionary, not on full text (for efficiency)

output vocabulary: character vocabulary + one symbol per merge

word freq
’low </w>’ 5
’low e r </w>’ 2
’n e w est</w>’ 6
’w i d est</w>’ 3

freq symbol pair new symbol
9 (’e’, ’s’) → ’es’
9 (’es’, ’t’) → ’est’
9 (’est’, ’</w>’) → ’est</w>’
7 (’l’, ’o’) → ’lo’
7 (’lo’, ’w’) → ’low’
...

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 96 / 115

Byte pair encoding for word segmentation

why BPE?
don’t waste time on frequent character sequences
→ trade-off between text length and vocabulary sizes

open-vocabulary:
learned operations can be applied to unknown words

alternative view: character-level model on compressed text

’l o w e s t </w>’

(’e’, ’s’) → ’es’
(’es’, ’t’) → ’est’
(’est’, ’</w>’) → ’est</w>’
(’l’, ’o’) → ’lo’
(’lo’, ’w’) → ’low’

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 97 / 115

Byte pair encoding for word segmentation

why BPE?
don’t waste time on frequent character sequences
→ trade-off between text length and vocabulary sizes

open-vocabulary:
learned operations can be applied to unknown words

alternative view: character-level model on compressed text

’l o w es t </w>’

(’e’, ’s’) → ’es’
(’es’, ’t’) → ’est’
(’est’, ’</w>’) → ’est</w>’
(’l’, ’o’) → ’lo’
(’lo’, ’w’) → ’low’

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 97 / 115

Byte pair encoding for word segmentation

why BPE?
don’t waste time on frequent character sequences
→ trade-off between text length and vocabulary sizes

open-vocabulary:
learned operations can be applied to unknown words

alternative view: character-level model on compressed text

’l o w est </w>’

(’e’, ’s’) → ’es’
(’es’, ’t’) → ’est’
(’est’, ’</w>’) → ’est</w>’
(’l’, ’o’) → ’lo’
(’lo’, ’w’) → ’low’

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 97 / 115

Byte pair encoding for word segmentation

why BPE?
don’t waste time on frequent character sequences
→ trade-off between text length and vocabulary sizes

open-vocabulary:
learned operations can be applied to unknown words

alternative view: character-level model on compressed text

’l o w est</w>’

(’e’, ’s’) → ’es’
(’es’, ’t’) → ’est’
(’est’, ’</w>’) → ’est</w>’
(’l’, ’o’) → ’lo’
(’lo’, ’w’) → ’low’

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 97 / 115

Byte pair encoding for word segmentation

why BPE?
don’t waste time on frequent character sequences
→ trade-off between text length and vocabulary sizes

open-vocabulary:
learned operations can be applied to unknown words

alternative view: character-level model on compressed text

’lo w est</w>’

(’e’, ’s’) → ’es’
(’es’, ’t’) → ’est’
(’est’, ’</w>’) → ’est</w>’
(’l’, ’o’) → ’lo’
(’lo’, ’w’) → ’low’

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 97 / 115

Byte pair encoding for word segmentation

why BPE?
don’t waste time on frequent character sequences
→ trade-off between text length and vocabulary sizes

open-vocabulary:
learned operations can be applied to unknown words

alternative view: character-level model on compressed text

’low est</w>’

(’e’, ’s’) → ’es’
(’es’, ’t’) → ’est’
(’est’, ’</w>’) → ’est</w>’
(’l’, ’o’) → ’lo’
(’lo’, ’w’) → ’low’

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 97 / 115

Fully Character-level NMT [Lee et al., 2016]

character-to-character model requires no language-specific
segmentation

drawback: RNN over characters is slow (especially attention!)

(shorter) segment sequences are obtained from characters via
convolution and max-pooling layers

_ _ T h e s e c o n d p e r s o n _ _

Convolution	+	ReLU

Max	Pooling	
with	Stride	5

Highway	Network

Bidirectional	GRU

Character
Embeddingsℝ#×%&	

ℝ()×(%&+,-#)	

ℝ/×%&	

ℝ/×(%& 0⁄)	

ℝ/×(%& 0⁄)	

Segment	
Embeddings

Figure 1: Encoder architecture schematics. Underscore denotes padding. A dotted vertical line delimits each segment.

3.3 Challenges

Sentences are on average 6 (DE, CS and RU) to 8
(FI) times longer when represented in characters.
This poses three major challenges to achieving fully
character-level translation.

(1) Training/decoding latency For the decoder, al-
though the sequence to be generated is much longer,
each character-level softmax operation costs consid-
erably less compared to a word- or subword-level
softmax. Chung et al. (2016) report that character-
level decoding is only 14% slower than subword-
level decoding.

On the other hand, computational complexity of
the attention mechanism grows quadratically with
respect to the sentence length, as it needs to attend
to every source token for every target token. This
makes a naive character-level approach, such as
in (Luong and Manning, 2016), computationally
prohibitive. Consequently, reducing the length of
the source sequence is key to ensuring reasonable
speed in both training and decoding.

(2) Mapping character sequence to continuous
representation The arbitrary relationship between
the orthography of a word and its meaning is a well-
known problem in linguistics (de Saussure, 1916).
Building a character-level encoder is arguably a
more difficult problem, as the encoder needs to learn
a highly non-linear function from a long sequence

of character symbols to a meaning representation.

(3) Long range dependencies in characters A
character-level encoder needs to model dependen-
cies over longer timespans than a word-level en-
coder does.

4 Fully Character-Level NMT

4.1 Encoder

We design an encoder that addresses all the chal-
lenges discussed above by using convolutional and
pooling layers aggressively to both (1) drastically
shorten the input sentence and (2) efficiently capture
local regularities. Inspired by the character-level
language model from (Kim et al., 2015), our
encoder first reduces the source sentence length
with a series of convolutional, pooling and highway
layers. The shorter representation, instead of the full
character sequence, is passed through a bidirectional
GRU to (3) help it resolve long term dependencies.
We illustrate the proposed encoder in Figure 1 and
discuss each layer in detail below.

Embedding We map the source sentence
(x1, . . . , xTx) ∈ R1×Tx to a sequence of character
embeddings X = (C(x1), . . . ,C(xTx)) ∈ Rdc×Tx

where C is the character embedding lookup table:
C ∈ Rdc×|C|.

Convolution One-dimensional convolution opera-

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 98 / 115

Architecture variants

an incomplete selection
different encoder architectures:

convolution network
[Kalchbrenner and Blunsom, 2013, Kalchbrenner et al., 2016]
TreeLSTM [Eriguchi et al., 2016]

modifications to attention mechanism
[Luong et al., 2015a, Feng et al., 2016, Zhang et al., 2016]

deeper networks [Zhou et al., 2016, Wu et al., 2016]

coverage model [Mi et al., 2016, Tu et al., 2016b, Tu et al., 2016a]

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 99 / 115

Sequence-level training

problem: at training time, target-side history is reliable;
at test time, it is not.

solution: instead of using gold context, sample from the model to
obtain target context [Shen et al., 2016, Ranzato et al., 2016,
Bengio et al., 2015, Wiseman and Rush, 2016]

more efficient cross entropy training remains in use to initialize
weights

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 100 / 115

Trading-off target and source context

system sentence
source Ein Jahr später machten die Fed-Repräsentanten diese Kürzungen rückgängig.
reference A year later, Fed officials reversed those cuts.
uedin-nmt A year later, FedEx officials reversed those cuts.
uedin-pbsmt A year later, the Fed representatives made these cuts.

problem
RNN is locally normalized at each time step

given Fed: as previous word, Ex is very likely in training data: p(Ex|Fed:) = 0.55

label bias problem: locally-normalized models may ignore input in low-entropy state

potential solutions (speculative)
sampling at training time

bidirectional decoder [Liu et al., 2016, Sennrich et al., 2016a]

context gates to trade-off source and target context [Tu et al., 2016]

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 101 / 115

Monolingual Training Data

why monolingual data for phrase-based SMT?
more training data 3

more appropriate training data (domain adaptation) 3

relax independence assumptions 3

why monolingual data for neural MT?
more training data 3

more appropriate training data (domain adaptation) 3

relax independence assumptions 7

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 102 / 115

Training data: monolingual

Solutions/1
shallow fusion: rescore beam with language model
[Gülçehre et al., 2015]

deep fusion: extra, LM-specific hidden layer [Gülçehre et al., 2015]

(a) Shallow Fusion (Sec. 4.1) (b) Deep Fusion (Sec. 4.2)

Figure 1: Graphical illustrations of the proposed fusion methods.

learned by the LM from monolingual corpora is
not overwritten. It is possible to use monolingual
corpora as well while finetuning all the parame-
ters, but in this paper, we alter only the output pa-
rameters in the stage of finetuning.

4.2.1 Balancing the LM and TM
In order for the decoder to flexibly balance the in-
put from the LM and TM, we augment the decoder
with a “controller” mechanism. The need to flex-
ibly balance the signals arises depending on the
work being translated. For instance, in the case
of Zh-En, there are no Chinese words that corre-
spond to articles in English, in which case the LM
may be more informative. On the other hand, if
a noun is to be translated, it may be better to ig-
nore any signal from the LM, as it may prevent the
decoder from choosing the correct translation. In-
tuitively, this mechanism helps the model dynami-
cally weight the different models depending on the
word being translated.

The controller mechanism is implemented as a
function taking the hidden state of the LM as input
and computing

gt = σ
(
v>g s

LM
t + bg

)
, (7)

where σ is a logistic sigmoid function. vg and bg
are learned parameters.

The output of the controller is then multiplied
with the hidden state of the LM. This lets the de-

coder use the signal from the TM fully, while the
controller controls the magnitude of the LM sig-
nal.

In our experiments, we empirically found that it
was better to initialize the bias bg to a small, neg-
ative number. This allows the decoder to decide
the importance of the LM only when it is deemed
necessary.

5 Datasets

We evaluate the proposed approaches on four di-
verse tasks: Chinese to English (Zh-En), Turkish
to English (Tr-En), German to English (De-En)
and Czech to English (Cs-En). We describe each
of these datasets in more detail below.

5.1 Parallel Corpora

5.1.1 Zh-En: OpenMT’15
We use the parallel corpora made available
as a part of the NIST OpenMT’15 Challenge.
Sentence-aligned pairs from three domains are
combined to form a training set: (1) SMS/CHAT
and (2) conversational telephone speech (CTS)
from DARPA BOLT Project, and (3) newsgroup-
s/weblogs from DARPA GALE Project. In total,
the training set consists of 430K sentence pairs
(see Table 1 for the detailed statistics). We train

In all our experiments, we set bg = −1 to ensure that
gt is initially 0.26 on average.

[Gülçehre et al., 2015]

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 103 / 115

Training data: monolingual

Solutions/2
decoder is already a language model. Train encoder-decoder with
added monolingual data [Sennrich et al., 2016b]

ti = tanh(Uosi−1 + VoEyyi−1 + Coci)

yi = softmax(Woti)

how do we get approximation of context vector ci?
dummy source context (moderately effective)
automatically back-translate monolingual data into source language

name 2014 2015
PBSMT [Haddow et al., 2015] 28.8 29.3
NMT [Gülçehre et al., 2015] 23.6 -
shallow fusion [Gülçehre et al., 2015] 23.7 -
deep fusion [Gülçehre et al., 2015] 24.0 -
NMT baseline 25.9 26.7
+back-translated monolingual data 29.5 30.4

Table: DE→EN translation performance (BLEU) on WMT training/test sets.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 104 / 115

Training data: multilingual

Multi-source translation [Zoph and Knight, 2016]
we can condition on multiple input sentences

A B C <EOS> W X Y Z

<EOS> Z Y X W

A B C

<EOS> W X Y Z

<EOS> Z Y X W

I J K

Figure 2: Multi-source encoder-decoder model for MT. We have two source sentences (C B A and K J I)
in different languages. Each language has its own encoder; it passes its final hidden and cell state to a set
of combiners (in black). The output of a combiner is a hidden state and cell state of the same dimension.

the input gate of a typical LSTM cell. In equa-
tion 4, there are two forget gates indexed by the
subscript i that serve as the forget gates for each
of the incoming cells for each of the encoders. In
equation 5, o represents the output gate of a nor-
mal LSTM. i, f , o, and u are all size-1000 vectors.

2.3 Multi-Source Attention
Our single-source attention model is modeled off
the local-p attention model with feed input from
Luong et al. (2015b), where hidden states from the
top decoder layer can look back at the top hidden
states from the encoder. The top decoder hidden
state is combined with a weighted sum of the en-
coder hidden states, to make a better hidden state
vector (h̃t), which is passed to the softmax output
layer. With input-feeding, the hidden state from
the attention model is sent down to the bottom de-
coder layer at the next time step.

The local-p attention model from Luong et al.
(2015b) works as follows. First, a position to look
at in the source encoder is predicted by equation 9:

pt = S · sigmoid(vTp tanh(Wpht)) (9)

S is the source sentence length, and vp and Wp

are learned parameters, with vp being a vector of
dimension 1000, and Wp being a matrix of dimen-
sion 1000 x 1000.

After pt is computed, a window of size 2D + 1
is looked at in the top layer of the source encoder
centered around pt (D = 10). For each hidden
state in this window, we compute an alignment

score at(s), between 0 and 1. This alignment score
is computed by equations 10, 11 and 12:

at(s) = align(ht, hs)exp
(−(s− pt)2

2σ2

)
(10)

align(ht, hs) =
exp(score(ht, hs))∑
s′ exp(score(ht, hs′))

(11)

score(ht, hs) = hTt Wahs (12)

In equation 10, σ is set to be D/2 and s is the
source index for that hidden state. Wa is a learn-
able parameter of dimension 1000 x 1000.

Once all of the alignments are calculated, ct is
created by taking a weighted sum of all source hid-
den states multiplied by their alignment weight.

The final hidden state sent to the softmax layer
is given by:

h̃t = tanh
(
Wc[ht; ct]

)
(13)

We modify this attention model to look at both
source encoders simultaneously. We create a con-
text vector from each source encoder named c1t
and c2t instead of the just ct in the single-source
attention model:

h̃t = tanh
(
Wc[ht; c

1
t ; c

2
t]
)

(14)

In our multi-source attention model we now
have two pt variables, one for each source encoder.

benefits:
one source text may contain information that is undespecified in other
→ possible quality gains

drawbacks:
we need multiple source sentences at training and decoding time

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 105 / 115

Training data: multilingual

Multilingual models [Dong et al., 2015, Firat et al., 2016a]
we can share layers (encoder/decoder/attention) of the model across
language pairs Figure 2: Multi-task learning framework for multiple-target language translation

Figure 3: Optimization for end to multi-end model

3.4 Translation with Beam Search
Although parallel corpora are available for the
encoder and the decoder modeling in the training
phrase, the ground truth is not available during test
time. During test time, translation is produced by
finding the most likely sequence via beam search.

Ŷ = argmax
Y

p(YTp |STp) (15)

Given the target direction we want to translate to,
beam search is performed with the shared encoder
and a specific target decoder where search space
belongs to the decoder Tp. We adopt beam search
algorithm similar as it is used in SMT system
(Koehn, 2004) except that we only utilize scores
produced by each decoder as features. The size
of beam is 10 in our experiments for speedup
consideration. Beam search is ended until the end-
of-sentence eos symbol is generated.

4 Experiments

We conducted two groups of experiments to
show the effectiveness of our framework. The
goal of the first experiment is to show that
multi-task learning helps to improve translation
performance given enough training corpora for all
language pairs. In the second experiment, we
show that for some resource-poor language pairs
with a few parallel training data, their translation
performance could be improved as well.

4.1 Dataset
The Europarl corpus is a multi-lingual corpus
including 21 European languages. Here we only
choose four language pairs for our experiments.
The source language is English for all language
pairs. And the target languages are Spanish
(Es), French (Fr), Portuguese (Pt) and Dutch
(Nl). To demonstrate the validity of our
learning framework, we do some preprocessing
on the training set. For the source language,
we use 30k of the most frequent words for
source language vocabulary which is shared
across different language pairs and 30k most
frequent words for each target language. Out-
of-vocabulary words are denoted as unknown
words, and we maintain different unknown word
labels for different languages. For test sets,
we also restrict all words in the test set to
be from our training vocabulary and mark the
OOV words as the corresponding labels as in
the training data. The size of training corpus in
experiment 1 and 2 is listed in Table 1 where

1727

benefits:
transfer learning from one language pair to the other
scalability: no need for N2 −N independent models for N languages

drawbacks:
no successful generalization to language pairs with no training data
(but: synthetic training data works: [Firat et al., 2016b])

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 106 / 115

Training data: multilingual

Multilingual models [Lee et al., 2016]
single, character level encoder trained on
multiple languages

more compact model
occasional quality improvements over single
language pairs
robust towards (synthetic) code-switched input

18/50

Fully Character-Level Multilingual NMT
Jason Lee and Kyunghyun Cho, 2016 (in preparation)

Model details,

▸ RNNSearch model

▸ Source-Target character level

▸ CNN+RNN encoder

▸ Bi-scale decoder

▸ {Fi ,De,Cs,Ru} → En

Training,

▸ Mix mini-batches

▸ Use bi-text only

Firat and Cho: https://ufal.mff.cuni.cz/mtm16/files/
12-recent-advances-and-future-of-neural-mt-orhat-firat.pdf

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 107 / 115

https://ufal.mff.cuni.cz/mtm16/files/12-recent-advances-and-future-of-neural-mt-orhat-firat.pdf
https://ufal.mff.cuni.cz/mtm16/files/12-recent-advances-and-future-of-neural-mt-orhat-firat.pdf

Training data: other tasks

Multi-task models [Luong et al., 2016]
other tasks can be modelled with sequence-to-sequence models

we can share layers between translation and other tasks

Published as a conference paper at ICLR 2016

Figure 1:Sequence to sequence learning examples – (left) machine translation (Sutskever et al.,
2014) and (right) constituent parsing (Vinyals et al., 2015a).

and German by up to +1.5 BLEU points over strong single-task baselines on the WMT benchmarks.
Furthermore, we have established a newstate-of-the-artresult in constituent parsing with 93.0 F1.
We also explore two unsupervised learning objectives, sequence autoencoders (Dai & Le, 2015) and
skip-thought vectors (Kiros et al., 2015), and reveal theirinteresting properties in the MTL setting:
autoencoder helps less in terms of perplexities but more on BLEU scores compared to skip-thought.

2 SEQUENCE TOSEQUENCE LEARNING

Sequence to sequence learning (seq2seq) aims to directly model the conditional probabilityp(y|x) of
mapping an input sequence,x1, . . . , xn, into an output sequence,y1, . . . , ym. It accomplishes such
goal through theencoder-decoderframework proposed by Sutskever et al. (2014) and Cho et al.
(2014). As illustrated in Figure 1, theencodercomputes a representations for each input sequence.
Based on that input representation, thedecodergenerates an output sequence, one unit at a time, and
hence, decomposes the conditional probability as:

log p(y|x) =
∑m

j=1
log p (yj|y<j , x, s) (1)

A natural model for sequential data is the recurrent neural network (RNN), which is used by most of
the recentseq2seqwork. These work, however, differ in terms of: (a)architecture– from unidirec-
tional, to bidirectional, and deep multi-layer RNNs; and (b) RNN type– which are long-short term
memory (LSTM) (Hochreiter & Schmidhuber, 1997) and the gated recurrent unit (Cho et al., 2014).

Another important difference betweenseq2seqwork lies in what constitutes the input represen-
tation s. The earlyseq2seqwork (Sutskever et al., 2014; Cho et al., 2014; Luong et al., 2015b;
Vinyals et al., 2015b) uses only the last encoder state to initialize the decoder and setss = []
in Eq. (1). Recently, Bahdanau et al. (2015) proposes anattention mechanism, a way to provide
seq2seqmodels with a random access memory, to handle long input sequences. This is accomplished
by settings in Eq. (1) to be the set of encoder hidden states already computed. On the decoder side,
at each time step, the attention mechanism will decide how much information to retrieve from that
memory by learning where to focus, i.e., computing the alignment weights for all input positions.
Recent work such as (Xu et al., 2015; Jean et al., 2015a; Luonget al., 2015a; Vinyals et al., 2015a)
has found that it is crucial to empowerseq2seqmodels with the attention mechanism.

3 MULTI -TASK SEQUENCE-TO-SEQUENCE LEARNING

We generalize the work of Dong et al. (2015) to the multi-tasksequence-to-sequence learning set-
ting that includes the tasks of machine translation (MT), constituency parsing, and image caption
generation. Depending which tasks involved, we propose to categorize multi-taskseq2seqlearning
into three general settings. In addition, we will discuss the unsupervised learning tasks considered
as well as the learning process.

3.1 ONE-TO-MANY SETTING

This scheme involvesone encoderand multiple decodersfor tasks in which the encoder can be
shared, as illustrated in Figure 2. The input to each task is asequence of English words. A separate
decoder is used to generate each sequence of output units which can be either (a) a sequence of tags

2

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 108 / 115

NMT as a component in log-linear models

Log-linear models
model ensembling is well-established

reranking output of phrase-based/syntax-based with NMT
[Neubig et al., 2015]

incorporating NMT as a feature function into PBSMT
[Junczys-Dowmunt et al., 2016]
→ results depend on relative performance of PBSMT and NMT

English→Russian Russian→English

0.0

10.0

20.0

30.0

22.8

27.526.0
28.1

25.9

29.9

B
LE

U

phrase-based SMT neural MT hybrid

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 109 / 115

Linguistic Features [Sennrich and Haddow, 2016]
a.k.a. Factored Neural Machine Translation

motivation: disambiguate words by POS

English German
closeverb schließen
closeadj nah
closenoun Ende

source We thought a win like this might be closeadj.
reference Wir dachten, dass ein solcher Sieg nah sein könnte.
baseline NMT *Wir dachten, ein Sieg wie dieser könnte schließen.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 110 / 115

Linguistic Features: Architecture

use separate embeddings for each feature, then concatenate

baseline: only word feature

E(close) =




0.5
0.2
0.3
0.1




|F | input features

E1(close) =




0.4
0.1
0.2


 E2(adj) =

[
0.1
]

E1(close) ‖ E2(adj) =




0.4
0.1
0.2
0.1




Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 111 / 115

Linguistic Features: Results

English→German German→English English→Romanian

0.0

10.0

20.0

30.0

40.0

27.8

31.4

23.8

28.4

32.9

24.8

B
LE

U

baseline +linguistic features

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 112 / 115

Further Reading

secondary literature
lecture notes by Kyunghyun Cho: [Cho, 2015]

chapter on Neural Network Models in “Statistical Machine Translation”
by Philipp Koehn http://mt-class.org/jhu/assets/papers/neural-network-models.pdf

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 113 / 115

http://mt-class.org/jhu/assets/papers/neural-network-models.pdf

(A small selection of) Resources

NMT tools
dl4mt-tutorial (theano) https://github.com/nyu-dl/dl4mt-tutorial

(our branch: nematus https://github.com/rsennrich/nematus)

nmt.matlab https://github.com/lmthang/nmt.matlab

seq2seq (tensorflow) https://www.tensorflow.org/versions/r0.8/tutorials/seq2seq/index.html

neural monkey (tensorflow) https://github.com/ufal/neuralmonkey

seq2seq-attn (torch) https://github.com/harvardnlp/seq2seq-attn

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 114 / 115

https://github.com/nyu-dl/dl4mt-tutorial
https://github.com/rsennrich/nematus
https://github.com/lmthang/nmt.matlab
https://www.tensorflow.org/versions/r0.8/tutorials/seq2seq/index.html
https://github.com/ufal/neuralmonkey
https://github.com/harvardnlp/seq2seq-attn

Do it yourself

sample files and instructions for training NMT model
https://github.com/rsennrich/wmt16-scripts

pre-trained models to test decoding (and for further experiments)
http://statmt.org/rsennrich/wmt16_systems/

lab on installing/using Nematus:
http://ufal.mff.cuni.cz/mtm16/files/

13-nematus-lab-rico-sennrich.pdf

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 115 / 115

https://github.com/rsennrich/wmt16-scripts
http://statmt.org/rsennrich/wmt16_systems/
http://ufal.mff.cuni.cz/mtm16/files/13-nematus-lab-rico-sennrich.pdf
http://ufal.mff.cuni.cz/mtm16/files/13-nematus-lab-rico-sennrich.pdf

Bibliography I

Allen, R. B. (1987).
Several studies on natural language and back-propagation.
In In Proceedings of the IEEE First International Conference on Neural Networks, pages 335–341, San Diego, CA. IEEE.

Bahdanau, D., Cho, K., and Bengio, Y. (2015).
Neural Machine Translation by Jointly Learning to Align and Translate.
In Proceedings of the International Conference on Learning Representations (ICLR).

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015).
Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks.
CoRR, abs/1506.03099.

Bentivogli, L., Bisazza, A., Cettolo, M., and Federico, M. (2016).
Neural versus Phrase-Based Machine Translation Quality: a Case Study.
In EMNLP 2016.

Cho, K. (2015).
Natural Language Understanding with Distributed Representation.
CoRR, abs/1511.07916.

Cho, K., Courville, A., and Bengio, Y. (2015).
Describing Multimedia Content using Attention-based Encoder-Decoder Networks.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014).
Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734,
Doha, Qatar. Association for Computational Linguistics.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 116 / 115

Bibliography II

Chung, J., Cho, K., and Bengio, Y. (2016).
A Character-level Decoder without Explicit Segmentation for Neural Machine Translation.
CoRR, abs/1603.06147.

Costa-jussà, R. M. and Fonollosa, R. J. A. (2016).
Character-based Neural Machine Translation.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
357–361. Association for Computational Linguistics.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015).
Multi-Task Learning for Multiple Language Translation.
In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 1723–1732, Beijing, China. Association for Computational Linguistics.

Eriguchi, A., Hashimoto, K., and Tsuruoka, Y. (2016).
Tree-to-Sequence Attentional Neural Machine Translation.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
823–833. Association for Computational Linguistics.

Feng, S., Liu, S., Li, M., and Zhou, M. (2016).
Implicit Distortion and Fertility Models for Attention-based Encoder-Decoder NMT Model.
CoRR, abs/1601.03317.

Firat, O., Cho, K., and Bengio, Y. (2016a).
Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism.
In
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 866–875. Association for Computational Linguistics.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 117 / 115

Bibliography III

Firat, O., Sankaran, B., Al-Onaizan, Y., Yarman-Vural, F. T., and Cho, K. (2016b).
Zero-Resource Translation with Multi-Lingual Neural Machine Translation.
CoRR, abs/1606.04164.

Gage, P. (1994).
A New Algorithm for Data Compression.
C Users J., 12(2):23–38.

Gülçehre, c., Firat, O., Xu, K., Cho, K., Barrault, L., Lin, H., Bougares, F., Schwenk, H., and Bengio, Y. (2015).
On Using Monolingual Corpora in Neural Machine Translation.
CoRR, abs/1503.03535.

Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., and Bengio, Y. (2016).
Pointing the Unknown Words.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
140–149. Association for Computational Linguistics.

Ha, T.-L., Niehues, J., Cho, E., Mediani, M., and Waibel, A. (2015).
The KIT translation systems for IWSLT 2015.
In Proceedings of the International Workshop on Spoken Language Translation (IWSLT), pages 62–69.

Haddow, B., Huck, M., Birch, A., Bogoychev, N., and Koehn, P. (2015).
The Edinburgh/JHU Phrase-based Machine Translation Systems for WMT 2015.
In Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 126–133, Lisbon, Portugal. Association for
Computational Linguistics.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 118 / 115

Bibliography IV

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015).
On Using Very Large Target Vocabulary for Neural Machine Translation.
In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 1–10, Beijing, China. Association for Computational Linguistics.

Junczys-Dowmunt, M., Dwojak, T., and Sennrich, R. (2016).
The AMU-UEDIN Submission to the WMT16 News Translation Task: Attention-based NMT Models as Feature Functions in
Phrase-based SMT.
In Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 316–322, Berlin,
Germany. Association for Computational Linguistics.

Junczys-Dowmunt, M. and Grundkiewicz, R. (2016).
Log-linear Combinations of Monolingual and Bilingual Neural Machine Translation Models for Automatic Post-Editing.
In Proceedings of the First Conference on Machine Translation, pages 751–758, Berlin, Germany. Association for Computational
Linguistics.

Kalchbrenner, N. and Blunsom, P. (2013).
Recurrent Continuous Translation Models.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle. Association for
Computational Linguistics.

Kalchbrenner, N., Espeholt, L., Simonyan, K., van den Oord, A., Graves, A., and Kavukcuoglu, K. (2016).
Neural Machine Translation in Linear Time.
ArXiv e-prints.

Kim, Y. and Rush, A. M. (2016).
Sequence-Level Knowledge Distillation.
CoRR, abs/1606.07947.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 119 / 115

Bibliography V

Lee, J., Cho, K., and Hofmann, T. (2016).
Fully Character-Level Neural Machine Translation without Explicit Segmentation.
ArXiv e-prints.

L’Hostis, G., Grangier, D., and Auli, M. (2016).
Vocabulary Selection Strategies for Neural Machine Translation.
ArXiv e-prints.

Ling, W., Trancoso, I., Dyer, C., and Black, A. W. (2015).
Character-based Neural Machine Translation.
ArXiv e-prints.

Liu, L., Utiyama, M., Finch, A., and Sumita, E. (2016).
Agreement on Target-bidirectional Neural Machine Translation .
In NAACL HLT 16, San Diego, CA.

Luong, M., Le, Q. V., Sutskever, I., Vinyals, O., and Kaiser, L. (2016).
Multi-task Sequence to Sequence Learning.
In ICLR 2016.

Luong, M.-T. and Manning, C. D. (2015).
Stanford Neural Machine Translation Systems for Spoken Language Domains.
In Proceedings of the International Workshop on Spoken Language Translation 2015, Da Nang, Vietnam.

Luong, M.-T. and Manning, D. C. (2016).
Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1054–1063. Association for Computational Linguistics.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 120 / 115

Bibliography VI

Luong, T., Pham, H., and Manning, C. D. (2015a).
Effective Approaches to Attention-based Neural Machine Translation.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1412–1421, Lisbon,
Portugal. Association for Computational Linguistics.

Luong, T., Sutskever, I., Le, Q., Vinyals, O., and Zaremba, W. (2015b).
Addressing the Rare Word Problem in Neural Machine Translation.
In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 11–19, Beijing, China. Association for Computational Linguistics.

Mi, H., Sankaran, B., Wang, Z., and Ittycheriah, A. (2016).
A Coverage Embedding Model for Neural Machine Translation.
ArXiv e-prints.

Mi, H., Wang, Z., and Ittycheriah, A. (2016).
Vocabulary Manipulation for Neural Machine Translation.
CoRR, abs/1605.03209.

Neubig, G., Morishita, M., and Nakamura, S. (2015).
Neural Reranking Improves Subjective Quality of Machine Translation: NAIST at WAT2015.
In Proceedings of the 2nd Workshop on Asian Translation (WAT2015), pages 35–41, Kyoto, Japan.

Pym, A., Grin, F., and Sfreddo, C. (2012).
The status of the translation profession in the European Union, volume 7.
European Commission, Luxemburg.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 121 / 115

Bibliography VII

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016).
Sequence Level Training with Recurrent Neural Networks.
In ICLR 2016.

Sennrich, R. and Haddow, B. (2016).
Linguistic Input Features Improve Neural Machine Translation.
In Proceedings of the First Conference on Machine Translation, Volume 1: Research Papers, pages 83–91, Berlin, Germany.
Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016a).
Edinburgh Neural Machine Translation Systems for WMT 16.
In Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 368–373, Berlin,
Germany. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016b).
Improving Neural Machine Translation Models with Monolingual Data.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016c).
Neural Machine Translation of Rare Words with Subword Units.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1715–1725, Berlin, Germany. Association for Computational Linguistics.

Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2016).
Minimum Risk Training for Neural Machine Translation.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin,
Germany.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 122 / 115

Bibliography VIII

Sutskever, I., Vinyals, O., and Le, Q. V. (2014).
Sequence to Sequence Learning with Neural Networks.
In
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014,
pages 3104–3112, Montreal, Quebec, Canada.

Tu, Z., Liu, Y., Lu, Z., Liu, X., and Li, H. (2016).
Context Gates for Neural Machine Translation.
ArXiv e-prints.

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016a).
Coverage-based Neural Machine Translation.
CoRR, abs/1601.04811.

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016b).
Modeling Coverage for Neural Machine Translation.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
76–85. Association for Computational Linguistics.

Turovsky, B. (2016).
Ten years of Google Translate.
https://googleblog.blogspot.co.uk/2016/04/ten-years-of-google-translate.html.

Wiseman, S. and Rush, A. M. (2016).
Sequence-to-Sequence Learning as Beam-Search Optimization.
CoRR, abs/1606.02960.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 123 / 115

https://googleblog.blogspot.co.uk/2016/04/ten-years-of-google-translate.html

Bibliography IX

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J.,
Shah, A., Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W.,
Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., and Dean, J. (2016).
Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation.
ArXiv e-prints.

Zhang, B., Xiong, D., and Su, J. (2016).
Recurrent Neural Machine Translation.
CoRR, abs/1607.08725.

Zhao, S. and Zhang, Z. (2016).
An Efficient Character-Level Neural Machine Translation.
ArXiv e-prints.

Zhou, J., Cao, Y., Wang, X., Li, P., and Xu, W. (2016).
Deep Recurrent Models with Fast-Forward Connections for Neural Machine Translation.
Transactions of the Association of Computational Linguistics – Volume 4, Issue 1, pages 371–383.

Zoph, B. and Knight, K. (2016).
Multi-Source Neural Translation.
In NAACL HLT 2016.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 124 / 115

	Neural Networks — Basics
	Recurrent Neural Networks and LSTMs
	Attention-based NMT Model
	Where are we now? Evaluation and challenges
	Evaluation results
	Comparing neural and phrase-based machine translation

	Recent Research in Neural Machine Translation

