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Machine Translation

Why we need MT

@ human translation industry: ~ 666 million words / day
[Pym et al., 2012]

@ MT indudstry: > 100 billion words / day [Turovsky, 2016]

demand for translation for outpaces what is humanly possible to produce
— we need fast, high-quality MT
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Neural Machine Translation
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Edinburgh’s®* WMT results over the years

30.0
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BLEU on newstest2013 (EN—DE)

2013 2014 2015 2016

liphrase-based SMT
II syntax-based SMT
Iineural MT

*NMT 2015 from U. Montréal: https://sites.google.com/site/acli6nmt/
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https://sites.google.com/site/acl16nmt/

neural MT has already moved from academia into

production

SYSTRAN announces the launch of its "Purely Neural MT" engine, a revolution for

the machine translation market

Google announces Neural Machine
Translation to improve Google Translate

WIPO goes Neural

Oct4,2016 | 590views ¢ 41Likes ) 3 Comments linll F Wv|
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Why neural MT?

@ single, end-to-end trained neural network replaces collection of weak
features

@ good generalization via continuous space representations
— modelling of dependencies over long distances

@ neural translation dates back to at least the 80s [Allen, 1987]
@ large-scale neural MT is now possible thanks to

e large amounts of training data
e exponential growth in computational power (GPUs!)
e algorithmic advances
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Neural Machine Translation

0 Neural Networks — Basics
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Linear Regression

to

Parameters: 60 = [
01

:| Model: hg(l‘) =0y + 01z
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Linear Regression
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Linear Regression

Parameters: 6 = [ ZO ] Model: hy(z) = 60y + 01z
1
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Linear Regression

Parameters: 6 = [ 0 ] Model: hy(z) = 60y + 01z
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Linear Regression

Parameters: 6 = [ ZO ] Model: hy(z) = 60y + 01z
1
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Linear Regression

Parameters: 6 = [ ZO ] Model: hy(z) = 60y + 01z
1

v L — y=—-3.90+1.192
10 15
Population @®@ Data
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The cost (or loss) function

@ We try to find parameters 0 € R? such that the cost function J(0) is
minimal:
J:R* 5 R

0 = arg min J(0)
HeR?
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The cost (or loss) function

@ We try to find parameters 0 € R? such that the cost function J(0) is
minimal:
J:R* 5 R

0 = arg min J(0)
0cR?
@ Mean Square Error:

= g2 () )’

i=1
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The cost (or loss) function

@ We try to find parameters 0 € R? such that the cost function J(0) is
minimal:
J:R* 5 R

0 = arg min J(0)
HeR?

@ Mean Square Error:

I0) = o3 (e )’
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The cost (or loss) function

@ We try to find parameters 0 € R? such that the cost function J(0) is

minimal:
J:R? >R
0 = arg min J(0)
0cR?
@ Mean Square Error:
Ly 0y _ 0\
J(0) = m;(hm ) —y?)

1

m 2
- (@) _ @)
o z; (90 + 012 —y )
where m is the number of data points in the training set.
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The cost (or loss) function
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The cost (or loss) function
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The cost (or loss) function

25

20

15

. .
10 15
Population

— y= —2.50+1.002

@®@ Data
—2.50
J([ 100 ]) = 4.7692

Sennrich, Birch, Junczys-Dowmunt

Neural Machine Translation

9/115



The cost (or loss) function
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The cost (or loss) function

So, how do we find § = arg min J(0) computationally?
HER?
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(Stochastic) gradient descent

0 :
0 :=0; — ozaT)jJ(H) for each j
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0 .
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(Stochastic) gradient descent

How do we calculate iJ(6?)'?
06,
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(Stochastic) gradient descent

How do we calculate iJ(6?)'?
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(Stochastic) gradient descent

How do we calculate ;J(G)?

0]
0 1 &
— = 775 @)y _ ,,(0))2
1 & , 0
— L @y _ ) (DY _ )
25 ;Zl(he(x ) —y) 89j(h9(96 ) —y)
1 — I,
— 721 (4) @)y . 2/ (@)
1 ¢ i D)
= m;_l(he(x()) y())%
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The update rule once again

For linear regression we have the following model:

h@(fL’) =0y + 01z
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The update rule once again

For linear regression we have the following model:

hg(:L’) =0y + 01z

and we repeat until convergence (6y and 6; should be updated
simultaneously):

1 A .
O = bo—a ;Zl(he(x(z)) —y")

1 X . N
b = 01— a— ;l(he(f(z)) —y)z®
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To summarize what we have learned

When approaching a machine learning problem, we need:
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To summarize what we have learned

When approaching a machine learning problem, we need:

@ a suitable model; (here: a linear model)
@ a suitable cost (or loss) function; (here: mean square error)
@ an optimization algorithm; (here: a variant of SGD)

@ the gradient(s) of the cost function (if required by the optimization
algorithm).
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To summarize what we have learned

When approaching a machine learning problem, we need:

@ a suitable model; (here: a linear model)
@ a suitable cost (or loss) function; (here: mean square error)
@ an optimization algorithm; (here: a variant of SGD)
@ the gradient(s) of the cost function (if required by the optimization
algorithm).
Side note: algorithms for finding the minimum without the gradient
@ for linear regession: the normal matrix (exact);
@ random search;
@ genetic algorithms;
° ..
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A neuron

Features

Neuron

Activation function

9(2)

Input layer
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Linear regression and neural networks

Features

777777

Neuron

Activation function

9(z) = 2 ——

Input layer
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The logistic function (remember this one!)
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A more typical neuron (binary logistic regression)

Features

Neuron

Input function

Activation function

9(z) = —

Input layer
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Binary logistic regression

@ Model:

ho(z) = (50 Oir) = ——

1 4 e~ 2izobimi
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Binary logistic regression

@ Model:
1

—_ n . . —
h‘e (33) - g(ZiZO 91'%1) 1 +e Z?:O 0;x;
@ Cost function (binary crossentropy):

J(0) = —%[Zﬁl y®log hy(z®) + (1 — y@)log(1 — hy(z))]
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Binary logistic regression

@ Model:
1

—_ n . . —
h‘e (33) - g(ZiZO 91'%1) 1 +e Z?:O 0;x;
@ Cost function (binary crossentropy):
1

J(0) = = — [y log ho(z®) + (1 — y@) log(1 — he(z™))]
@ Gradient:
8aJe(f) =— z;(hg($( )y =y ))1‘5-)
1=
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Multi-class logistic regression and neural networks

Features

: T g(z) = softmax(z)

E y . P(c=10]0,X)
5 = :‘. L Ple=1]0,X)
e e I P(c=2]0,X)
Py e Layer

Input layer
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Multi-class logistic regression

@ Model: hg(z) = [P(k|z,©)];_; .= softmax(©x) where
0=(0W,.. ., 00)
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Multi-class logistic regression

@ Model: hg(z) = [P(k|z,©)];_; .= softmax(©x) where
0=(0W,.. ., 00)
e Cost function: J(©) = —L ™" S~ 5(yD, k) log P(k|z(¥), ©)
1 ifx=y
where 6(z, y) = { 0 otherwise
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Multi-class logistic regression

@ Model: hg(z) = [P(k|z,©)];_; .= softmax(©x) where
0= (0W,...,00)

e Cost function: J(©) = —L ™" S~ 5(yD, k) log P(k|z(¥), ©)
where §(z,y) = {

1 ifz=y
0 otherwise
a@j’k — T m Lui=1

@ Gradient:

(6(yD, k) — P(k|2, ©)) 2
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Multi-class logistic regression

@ Model: hg(z) = [P(k|z,©)];_; .= softmax(©x) where
0= (0W,...,00)

e Cost function: J(©) = —L ™" S~ 5(yD, k) log P(k|z(¥), ©)
where §(z,y) = {

1 ifz=y
0 otherwise
a@j’k — T m Lui=1

@ May look complicated, but can be looked up!

@ Gradient:

(6(yD, k) — P(k|2, ©)) 2
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Multi-class logistic regression and neural networks

Features

: T g(z) = softmax(z)

E y . P(c=10]0,X)
5 = :‘. L Ple=1]0,X)
e e I P(c=2]0,X)
Py e Layer

Input layer

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 22/115



)
X
.
o
2
)
c
'©
S
>
@
c
S
[}
>
«©
=
>
S
i
=
c
S
S
<o
Q
o}
o}
()]

\\\\\\\

= - = faniics
N NP ) AR

23/115

Neural Machine Translation

Sennrich, Birch, Junczys-Dowmunt



Why multiple-layers?

0.0

-1.0 =05 0.0 0.5 1.0

Can a linear model separate these dots?
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Why multiple-layers?

h(l‘) =0y + 0121 + O
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Why multiple-layers?

0.0

—0.5]

-1.0
-10 -0.5 0.0 0.5 1.0

h(z) = 0y + 0121 + Oozo + 0323 + 042120 + 0523
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Why multiple-layers?

0.0

—0.5]

“10
-0 -05 0.0 05 10

h(x) = 90 + elxl + 92.%2 + 63.%'3 —+ 943:'4 -+ 05[1;5 Where T3 = :U%, L

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 24/115



Why multiple-layers?

0.0

h(z) = 0(©20(012)) where |©1] =3 x 3,|02] =3 x 1
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Feed forward networks language models

Word i-4
)
>
Word i-3 o
< Word i
Word i-2 3
2
Word i-1

Source: Philipp Koehn, draft chapther on neural machine translation.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 25/115



Feed forward networks language models

sR-X-X-R-X-X- 2.7 | ocee
CoCQOOQO0 C LR X1 cecse
000000000 oocee ceese
o800
scoe
Cooooe ss0e ceee
oooOoOCOD C ecee ceeo
000000 CO0O0 ese0 ecce 000800000
*909Q 000000000
oeoce 000000000
[*X-X-X-X-2:} o oceocwe cees
000000 0 C sesoe *Cee
coeO0O o ecee cece
o080
LE-X-X
0CoQOOODOO soce ceeo
SR X-R-R - RN X] C e000 cces
0000000 ®O e00®
Context Words Embeddings Hidden Layer Predicted Word

Source: Philipp Koehn, draft chapther on neural machine translation.
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Backpropagation — forward step

A Z0Mg® 4 50 @) — 9@ 4 4@ L6 — e®@) 4 36)
a©® =g ¢ (x) = tanh(z) g@ () = tanh(z) g® (z) = tanh(z)
o) = g(1>(z(1)) a® = ¢®@ (2) a® = 9(3)(z(3>)
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The four fundamental equations of Backpropagation

ok = Vad©) o)) (BPY)
5 = (T @ (¢) (<)) (BP2)
ValJ(©) = o (BP3)
Ve J(©) = d1od (BP4)
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The Backpropagation Algorithm

For one training example (x,y):
@ Input: Set the activations of the input layers a° = x
@ Forward step: forl =1, ..., L calculate

2l =0Wa ! 4 gl and o' = ¢'(2))
@ Output error 6: calculate vector
0t =V,J(0)© (g")' (")
@ Error backpropagation: forl =L —1,L — 2,...,1 calculate

()

!/

5l _ ((®l+1)T51+1> ® (gl)
@ Gradients:

Ve J(©) =a ' © 4 and V. J(O) = &
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Backpropagation — backward step

) ® (1 — tanh?(23)))

,,,,,, 6@ = (OBNHT5G) © (1 — tanh?(2(?))

s = (@152 & (1 — tanh?(2(1))

2 = Mg 4 30) 2@ = @qM 4 32 23 = 0B)g@ 4 33)
a©® =z — ¢W(x) = tanh(z) — ¢@(z) = tanh(z) — ¢®)(z) = tanh(z)
a® = g (z() a® = @ () a® = g® (™)
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Backpropagation and stochastic gradient descent

One iteration:

@ For all parameters © = (01, ..., ©) create zero-valued helper
matrices A = (Al, ..., AL) of the same size (3 omitted for
simplicity).

@ For m examples in the batch, i =1,...,m:

e Perform backpropagation for example (z(%), (") and store the
gradients Ve .J()(0)

o A=A+ %V@J(i)(@)
@ Update the weights: © := 0 — aA
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More complicated network architectures

= (La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

EINNIA

|

|
L e Dl D A=) ] I
= (Economic, growth, has, slowed, down, in, recent, years, .)

@ Textbook backprogagation is formulated in terms of layers, weights,
biases, activations, weighted inputs, ...

@ Actual architectures can contain concatenation of bidirectional RNN
states, ...

@ What's the derivation of the "concatenation" operation?
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Computing derivatives with reverse-mode autodiff

f(x1,x0) = sin(z1) + z122
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Computing derivatives with reverse-mode autodiff

f(x1,x0) = sin(z1) + z122

of _,
8951 ’
or _,
O0ry
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Computation graphs to the rescue

[, 22)

T o)
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Computation graphs to the rescue

[z, 22)
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Computation graphs to the rescue

f(@1,29)

wy = sin(wy)

i~

w4
w1

—a

= 10y = wy - cos(wy)

Q

IZ'[I) = W3 * Wy

Wy =T | T1 T2 | W2 = T2
of  _  sa b of _ -
Ber — Wi twy oy = W2 =13

cos(xq) + a9
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Computation graph for neural networks

a = softmax(z-w + b)
o = mean(sum(log(a) ®y))
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Computation graph for neural networks

apy = T

a1 = RGLU(GO - wo + bo)

as = ReLU(a1 - w1+ bl)

a3 = ag-ws + bQ

o1 = softmax(as)

o9 = mean(crossentropy(as,y))
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Neural Machine Translation

© Recurrent Neural Networks and LSTMs
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Recurrent neural networks (RNNs)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recurrent neural networks (RNNs)

P11
AP - [A-lA{Al—{A]
& & . &

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recurrent neural networks (RNNs)

® ® ®
t t

ht = tanh(Wh . htfl + Wx ~ T+ b)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Recurrent neural networks (RNNs)

® ® ®
t t

ht = tanh(Wh . htfl + Wx ~ T+ b)

ht = tanh(W . [ht—17 It] + b)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Recurrent neural networks language models

‘Avalues
S =  Words3 |

copy values

(word3 [ € | fFS]  Word 4 |

Source: Philipp Koehn, draft chapther on neural machine translation.
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Fun with RNNs

Andrej Karpathy: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
@ Character-level language models
@ Python code generation
@ Poetry generation
o ...
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RNNs and long distance dependencies

> >

®) ®)
1 {
= A

® 6 & o ©

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

®
{
A

>—2)
@

>
»
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RNNs and long distance dependencies

v

»
»

v
v

AU S S
0 S b A

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

&> —®
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Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Long Short-Term Memory (LSTM)

t | t

N N
»—x >
Gan>
A | hemsTl]] A
J o

I
© ® &)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Long Short-Term Memory (LSTM) — Step-by-step

f fe=0Wg-[hi—1,2¢] + by)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Long Short-Term Memory (LSTM) — Step-by-step

ir =0 (Wi-[hi—1,2¢] + b;)
Cy = tanh(We-[hy—1, 2] + bo)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Long Short-Term Memory (LSTM) — Step-by-step

Cia %

& )
ftT itr-%§ Ct = ft * Ct—l + it * ét

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 45/115



Long Short-Term Memory (LSTM) — Step-by-step

he A\
? 0t = U(Wo [ht—lawt] + bo)
) o . ht = o4 * tanh (C})
t—1 »

A

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Gated Recurrent Units (GRUSs)

Zt =0 (Wz : [ht—bxt])
e =0 (Wr . [ht—la‘rt])
hy = tanh (W - [ry * hy_1, 24])

ht:(l—Zt)*ht,1 +Zt*ilt

A |

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs
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RNNSs in Encoder-Decoder architectures

Jf=(La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

Word

Recumrent

= a,
g .2 A Altentio
g5, (e sa-1
= e
22 O— OO0 OO0
in, recent, years, .)

e= {Eéﬁﬁbmic, g}o_wth._ha;s, slowed, down,
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Neural Machine Translation

© Attention-based NMT Model
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Neural Machine Translation

f=(La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

. ] ] N O O | ]
=Eu, [ ] N O n ]
g n ] AN O\ O n ]
Ba u ] O\ O\ O n ]

M Attention

__,-—;v : weight Za;_]

Q_' TN o

e = (Economic, gmwth has, slowed, down in, recent, yea S,

Kyunghyun Cho
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Translation modelling

decomposition of translation problem (for NMT)
@ a source sentence S of length m is a sequence x1,...,zm
@ atarget sentence T of length n is a sequence y1, ..., y,

T" = arg mtaxp(T|S)

p(T|S) = o0 oWl g o 0 0 i)

p(y1,
= Hp(yl|y07 ey Yi—1,T1, .. .,Jl'm)
d=il
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Translation modelling

difference from language model

@ target-side language model:

n

p(T) = [[pwilvo, .- yi1)
=1
@ translation model:

n

p(T|S) = Hp(yl’yov sy Yi—1,21, - - 'axm)

=1

@ we could just treat sentence pair as one long sequence, but:

e we do not care about p(S) (S is given)
e we may want different vocabulary, network architecture for source text

v
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Translation modelling

difference from language model

@ target-side language model:
p(T) = [[pwilvo, - yi1)

@ translation model:

n

p(T|S) = Hp(?/i’?/m e Y1, Ty - o5 Tm)
i=1

@ we could just treat sentence pair as one long sequence, but:

e we do not care about p(S) (S is given)
e we may want different vocabulary, network architecture for source text

v
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Translating with RNNs

Encoder-decoder [Sutskever et al., 2014, Cho et al., 2014]

@ two RNNs (LSTM or GRU):
e encoder reads input and produces hidden state representations

e decoder produces output, based on last encoder hidden state

@ encoder and decoder are learned jointly
— supervision signal from parallel text is backpropagated

I0p0oda(

Kyunghyun Cho http://devblogs . nvidia, con/parallelforall/
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http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/

Summary vector

@ last encoder hidden-state “summarizes” source sentence

@ with multilingual training, we can potentially learn
language-independent meaning representation

OMeary admires John

OMeary is in love with John

OMary respects John
Odohn admires Mary

OJohn s in love with Mary

OdJohn respects Mary

Sennrich, Birch, Junczys-Dowmunt

»r © I was given a card by her in the garden

10 O Inthe garden , she gave me a card
© She gave me a card in the garden

st

ol

st © She was given a card by me in the garden

O Inthe garden , | gave her a card
to-
-1 .
O I gave her a card in the garden
5 -0 s o s 0 15 2

[Sutskever etal., 2014
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Summary vector as information bottleneck

@ can fixed-size vector represent meaning of arbitrarily long sentence?
@ empirically, quality decreases for long sentences

@ reversing source sentence brings some improvement
[Sutskever et al., 2014]

20 . : .
.\'\_ — Source text
15+ ‘\ + Reference text ||
- = Both

BLEU score
S

o
T

R T S S S
10 20 30 40 50 60 70 80
Sentence length

S}

[Sutskever et al., 2014]
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Attentional encoder-decoder

encoder

@ goal: avoid bottleneck of summary vector

@ use bidirectional RNN, and concatenate forward and backward states
— annotation vector h;

@ represent source sentence as vector of n annotations
— variable-length representation

Kyunghyun Cho
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Attentional encoder-decoder

@ problem: how to incorporate variable-length context into hidden state?
@ attention model computes context vector as weighted average of
annotations

@ weights are computed by feedforward neural network with softmax
activation

= (La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

ADIAANRM

IS B AN IS S S
= (Economic, growth, has, slowed, down, in, recent,

Kyunghyun Cho
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Attentional encoder-decoder: math

simplifications of model by [Bahdanau et al., 2015] (for illustration)
@ plain RNN instead of GRU
@ simpler output layer

@ we do not show bias terms

notation

e W,U, E, C,V are weight matrices (of different dimensionality)
e F one-hot to embedding (e.g. 50000 - 512)

W embedding to hidden (e.g. 512 - 1024)

U hidden to hidden (e.g. 1024 - 1024)

C context (2x hidden) to hidden (e.g. 2048 - 1024)

V, hidden to one-hot (e.g. 1024 - 50000)

@ separate weight matrices for encoder and decoder (e.g. £, and E,)
@ input X of length 7;; output Y of length 7,

| A\

v
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Attentional encoder-decoder: math

encoder

07 ,|f]:0

" \tarh(Wo Bz + Uahy_y) Lif5 >0
o, Jifj=Tp+1

tanhWEgc]Jrﬁh]+1 it < T
:( Js
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Attentional encoder-decoder: math

 [franh(w, 7)), Jifi =0
5= {tanh(WyEyyi +Uysi1+Cc;) ,ifi>0
t; = tanh(Ussi—1 + WoEyyi—1 + Coc;i)
y; = softmax(V,t;)

v

attention model

eij = vItanh(Wasi_1 + Ughj)
a;j = softmax(e;;)

Ty
C; = E aijhj
Jj=1
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Attention model

attention model

@ side effect: we obtain alignment between source and target sentence

@ information can also flow along recurrent connections, so there is no
guarantee that attention corresponds to alignment
@ applications:

@ visualisation
e replace unknown words with back-off dictionary [Jean et al., 2015]
O oaa

Economic growth has slowed down in recent years
/ p
/ R
[ o
Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent years .
|

|

A | | pa

— \ [ |

e ‘ “ /7 |

f | I |
La croissance économique s' est ralentie ces dernigres années .

Kyunghyun Cho
di pus P
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Attention model

attention model also works with images:

Sf=(a, man, is, jumping, into, a, lake, .)

NG

Word
Ssample

Attention
Mechanism
!

Arinotation
Vectors

)

Convolutional Neural Network

[Cho etal., 2015]
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Attention model

A stop sign is on a road with a

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor.
i mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Fig. 5.
word)

Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding

[Cho etal., 2015]
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Applications

score a translation

p(La, croissance, économique, s’est, ralentie, ces, derniéres, années, . |
Economic, growth, has, slowed, down, in, recent, year, .) = ?

generate the most probable translation of a source sentence

— decoding
y" = argmax, p(y|Economic, growth, has, slowed, down, in, recent, year, .)
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Decoding

exact search

@ generate every possible sentence 7' in target language
@ compute score p(T'|S) for each
@ pick best one

e intractable: |vocab|” translations for output length N
— we need approximative search strategy
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Decoding

approximative search/1

@ at each time step, compute probability distribution P(y;| X, y<;)
@ select y; according to some heuristic:

e sampling: sample from P(y;| X, y<;)
o greedy search: pick argmax, p(y;| X, y<;)

@ continue until we generate <eos>

@ efficient, but suboptimal J
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Decoding

approximative search/2: beam search

@ maintain list of K hypotheses (beam)
e at each time step, expand each hypothesis k: p(y¥| X, y%,)
@ select K hypotheses with highest total probability:

7

relatively efficient

currently default search strategy in neural machine translation

small beam (K ~ 10) offers good speed-quality trade-off
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Ensembles

@ at each timestep, combine the probability distribution of M different
ensemble components.

@ combine operator: typically average (log-)probability

2%21 log P, (yi| X, y<i)

log P(y;| X, y<i) = i

@ requirements:
@ same output vocabulary
e same factorization of Y’
@ internal network architecture may be different
@ source representations may be different
(extreme example: ensemble-like model with different source
languages [Junczys-Dowmunt and Grundkiewicz, 2016])
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Ensembles

recent ensemble strategies in NMT

@ ensemble of 8 independent training runs with different
hyperparameters/architectures [Luong et al., 2015a]

@ ensemble of 8 independent training runs with different random
initializations [Chung et al., 2016]

@ ensemble of 4 checkpoints of same training run
[Sennrich et al., 2016a]
— probably less effective, but only requires one training run

40.0

300 E i 37.5 -
. : e Sl : 28.0
10.0

0.0

EN—CS EN—DE EN—RO EN—RU CS—EN DE—EN RO—EN RU—EN
‘Ilsingle model [ f ensemble ‘

BLEU

[Sennrich et al., 2016a]
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Neural Machine Translation

0 Where are we now? Evaluation and chal-
lenges
@ Evaluation results

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 69/115



State of Neural MT

@ attentional encoder-decoder networks have become state of the art
on various MT tasks

@ your mileage may vary depending on

language pair and text type

amount of training data

type of training resources (monolingual?)

hyperparameters
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Attentional encoder-decoders (NMT) are SOTA

system BLEU official rank system BLEU official rank
uedin-nmt 34.2 1 uedin-nmt 38.6 1
metamind 32.3 2 online-B 35.0 2-5
uedin-syntax 30.6 3 online-A 32.8 2-5
NYU-UMontreal 30.8 4 uedin-syntax  34.4 25
online-B 294 510 KIT 339 2:6
KIT/LIMSI 29.1 5-10 uedin-pbmt 35.1 5-7
cambridge 30.6 5-10 jhu-pbmt 34.5 6-7
online-A 29.9 5-10 online-G 30.1 8
promt-rule 23.4 5-10 jhu-syntax 31.0 9

KIT 29.0 6-10 online-F 20.2 10
jhu-syntax 26.6 11-12

jhu-pbmt 28.3 11-12 Table: WMT16 results for DE—EN
uedin-pbmt 28.4 13-14

online-F 19.3 13-15

online-G 23.8 14-15

Table: WMT16 results for EN—DE
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Attentional encoder-decoders (NMT) are SOTA

system BLEU official rank system BLEU official rank
~onlineB 3.0 25

uedin-syntax 30.6 3 online-A 32.8 2-5
uedin-syntax 34.4 2-5

online-B 29.4 5-10 KIT_ 33.9 2-6

KIT/LIMSI 29.1 5-10 uedin-pbmt 35.1 57

cambridge 30.6 5-10 jhu-pbmt 34.5 6-7

online-A 29.9 5-10 online-G 30.1 8

promt-rule 23.4 5-10 jhu-syntax 31.0 9

KIT 29.0 6-10 online-F 20.2 10

jhu-syntax 26.6 11-12

jhu-pbmt 28.3 11-12 Table: WMT16 results for DE—EN

uedin-pbmt 28.4 13-14

online-F 19.3 13-15

online-G 23.8 14-15

Table: WMT16 results for EN—DE @ pure NMT

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 71/115



Attentional encoder-decoders (NMT) are SOTA

system BLEU official rank system BLEU official rank
online-B 35.0 2-5
uedin-syntax online-A 32.8 2-5
uedin-syntax 34.4 2-5
online-B KIT 33.9 2-6
uedin-pbmt 35.1 5-7
jhu-pbmt 34.5 6-7
online-A 29.9 5-10 online-G 30.1 8
promt-rule 23.4 5-10 jhu-syntax 31.0 9
KT 20 eto e
jhu-syntax 26.6 11-12
jhu-pbmt 28.3 1-12 Table: WMT16 results for DE—EN
uedin-pbmt 28.4 13-14
online-F 19.3 13-15
online-G 23.8 14-15
Table: WMT16 results for EN—DE @ pure NMT

@ NMT component
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Attentional encoder-decoders (NMT) are SOTA

. online-B 28.6 3
jhu-pbmt 23.6 3
cu-chimera 21.0 45 PJ‘ATKA 223 81'110
cu-tamchyna 20.8 4-5 onfine- .
Uedin-cu-syntax 0.9 57 cu-mergedtrees 13.3 12
online-B 22.7 6-7
onfine A 95 15 Table: WMT16 results for CS—EN
cu-TectoMT 14.7 16
cu-mergedtrees 8.2 18
Table: WMT16 results for EN—CS
KIT 25.8 3-7
uedin-pbmt 26.8 3-7
online-B 25.4 3-7
online 8 S uedin-Imu-hiero 259 37
uedinpbmt 352 3 VS| 239 810
uedin-syntax 33.6 4-5 .
Imu-cuni 24.3 8-10
online-A 30.8 4-6 .
. jhu-pbmt 235 8-11
jhu-pbmt 32.2 5-7 P .
LIMSI 31.0 67 usfd-rescoring 231 10-12
’ online-A 19.2 11-12

Table: WMT16 results for RO—EN Table: WMT16 results for EN—RO
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Attentional encoder-decoders (NMT) are SOTA

PROMT-rule 22.3 1 uedin-pbmt 23.4 1-4
online-G 20.6 1-4
online-B 23.8 2-5 online-B 23.6 1-4
UH-opus 23.1 1-4
online-G 26.2 3-5 PROMT-SMT 20.3 5
UH-factored 19.3 6-7
jhu-pbmt 24.0 7-8 uedin-syntax 20.4 6-7
LIMSI 23.6 7-10 online-A 19.0 8
online-A 20.2 8-10 jhu-pbmt 19.1 9
AFRL-MITLL-phr 23.5 9-10
AFRLWITLLverb 209 11 Table: WMT16 results for FI—EN
online-F 8.6 12

Table: WMT16 results for EN—RU

online-G 15.4 1-3

online-B 14.4 1-4
online-G 28.7 1-3 UH-opus 16.3 4-5
NRC 29.1 2-4
online-B 28.1 3-5 abumatran-pbsmt 14.6 6-8

online-A 13.0 6-8
online-A 25.7 6-7 jhu-pbmt 13.8 9-10
AFRL-MITLL-phr 27.6 6-7 UH-factored 12.8 9-12
AFRL-MITLL-contrast 27.0 8-9 aalto 1.6 10-13
PROMT-rule 20.4 8-9 jhu-hltcoe 11.9 10-13
online-F 13.5 10 uuT 11.6 11-13

Table: WMT16 results for RU—EN Table: WMT16 results for EN—FI
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Neural Machine Translation

0 Where are we now? Evaluation and chal-
lenges

@ Comparing neural and phrase-based ma-
chine translation
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Interlude: why is (machine) translation hard?

words are often polysemous, with different translations for different
meanings

system | sentence

source Dort wurde er von dem Schlager und einer weiteren mannlichen Person erneut angegriffen.
reference There he was attacked again by his original attacker and another male.

uedin-nmt There he was attacked again by the racket and another male person.

uedin-pbsmt There, he was at the club and another male person attacked again.

Schlager
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Interlude: why is (machine) translation hard?

word order

there are systematic word order differences between languages. We need
to generate words in the correct order.

system sentence

source Unsere digitalen Leben haben die Notwendigkeit, stark, lebenslustig und erfolgreich zu erscheinen, verdoppelt [...]
reference Our digital lives have doubled the need to appear strong, fun-loving and successful [...]

uedin-nmt Our digital lives have doubled the need to appear strong, lifelike and successful [...]

uedin-pbsmt Our digital lives are lively, strong, and to be successful, doubled [...]
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Interlude: why is (machine) translation hard?

grammatical marking system
grammatical distinctions can be marked in different ways, for instance
through word order (English), or inflection (German). The translator needs
to produce the appropriate marking.

English ... because the dog chased the man.
German ... weil der Hund den Mann jagte.

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 75/115



Interlude: why is (machine) translation hard?

multiword expressions
the meaning of non-compositional expressions is lost in a word-to-word

translation

system sentence

source He bends over backwards for the team, ignoring any pain.

reference Er zerreiB3t sich fir die Mannschaft, geht iber Schmerzen driber.
(lit: he tears himself apart for the team)

uedin-nmt Er beugt sich riickwarts fir die Mannschaft, ignoriert jeden Schmerz.
(lit: he bends backwards for the team)

uedin-pbsmt Er macht alles fur das Team, den Schmerz zu ignorieren.

(lit: he does everything for the team)
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Interlude: why is (machine) translation hard?

subcategorization

Words only allow for specific categories of syntactic arguments, that often
differ between languages.

English  he remembers his medical appointment.

German er erinnert sich an seinen Arzttermin.

English  *he remembers himself to his medical appointment.
German “er erinnert seinen Arzttermin.

agreement

inflected forms may need to agree over long distances to satisfy
grammaticality.

English they can not be found
French elles ne peuvent pas étre trouvées

A
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Interlude: why is (machine) translation hard?

morphological complexity

translator may need to analyze/generate morphologically complex words
that were not seen before.

German Abwasserbehandlungs
English  waste water treatment

y 2 . o] q
French d’épuration des eaux résiduaires
v
system | sentence
source Titelverteidiger ist Drittligaabsteiger SpVgg Unterhaching.
reference The defending champions are SpVgg Unterhaching, who have been relegated to the third league.
uedin-nmt Defending champion is third-round pick SpVgg Underhaching.

uedin-pbsmt Title defender Drittligaabsteiger Week 2.
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Interlude: why is (machine) translation hard?

open vocabulary

languages have an open vocabulary, and we need to learn translations for
words that we have only seen rarely (or never)

system | sentence

source Titelverteidiger ist Drittligaabsteiger SpVgg Unterhaching.

reference The defending champions are SpVgg Unterhaching, who have been relegated to the third league.
uedin-nmt Defending champion is third-round pick SpVgg Underhaching.

uedin-pbsmt Title defender Drittligaabsteiger Week 2.
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Interlude: why is (machine) translation hard?

discontinuous structures

a word (sequence) can map to a discontinuous structure in another
language.

English | do not know
French Je ne sais pas

system | sentence

source Ein Jahr spater machten die Fed-Reprasentanten diese Kirzungen riickgangig.
reference A year later, Fed officials reversed those cuts.

uedin-nmt A year later, FedEx officials reversed those cuts.

uedin-pbsmt | A year later, the Fed representatives made these cuts.
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Interlude: why is (machine) translation hard?

discourse

the translation of referential expressions depends on discourse context,
which sentence-level translators have no access to.

English | made a decision. Please respect it.
French  J’ai pris une décision. Respectez-la s'il vous plait.
French  Jai fait un choix. Respectez-le s’il vous plait.
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Interlude: why is (machine) translation hard?

assorted other difficulties

@ underspecification

@ ellipsis

lexical gaps

language change

language variation (dialects, genres, domains)

ill-formed input
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Comparison between phrase-based and neural MT

human analysis of NMT (reranking) [Neubig et al., 2015]

@ NMT is more grammatical

e word order
e insertion/deletion of function words
e morphological agreement

@ minor degradation in lexical choice?
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Comparison between phrase-based and neural MT

analysis of IWSLT 2015 results [Bentivogli et al., 2016]

@ human-targeted translation error rate (HTER) based on automatic
translation and human post-edit

@ 4 error types: substitution, insertion, deletion, shift

system HTER (no shift) HTER
word lemma | %A | (shift only)

PBSMT [Ha et al., 2015] 28.3 232 |-18.0 35

NMT [Luong and Manning, 2015] | 21.7 18.7 | -13.7 1.5

@ word-level is closer to lemma-level performance: better at
inflection/agreement

@ improvement on lemma-level: better lexical choice
o fewer shift errors: better word order
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Why is neural MT output more grammatical?

phrase-based SMT

@ log-linear combination of many “weak” features
@ data sparsenesss triggers back-off to smaller units
@ strong independence assumptions

v

@ end-to-end trained model
@ generalization via continuous space representation
@ output conditioned on full source text and target history

A
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Neural Machine Translation

9 Recent Research in Neural Machine Transla-
tion
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Efficiency

speed bottlenecks

@ matrix multiplication
— use of highly parallel hardware (GPUs)
@ size of output layer scales with vocabulary size. Solutions:

e LMs: hierarchical softmax; noise-contrastive estimation;
self-normalization

o NMT: approximate softmax through subset of vocabulary
[Jean et al., 2015, Mi et al., 2016, LHostis et al., 2016]

\

NMT training vs. decoding (on fast GPU)
@ training: slow (1-3 weeks)
@ decoding: fast (100 000—500 000 sentences / day)?

“with NVIDIA Titan X and amuNMT (https://github.com/emjotde/amunmt)
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Efficiency

@ aggressive batching during decoding
e compute all prefixes in beam in single batch
e compute multiple sentences in single batch
@ 8-bit inference [Wu et al., 2016]

@ knowledge distillation: student network mimics teacher
[Kim and Rush, 2016]

Ground Truth Beam
£ c o ACE
A C
=] i
I g
— £ce
i 440
EFEC
Teacher Network I O
| Student Network
Teacher Network Student Network [ ‘
Word-Level Knowledge Distillation Sequence-Level Knowledge Distillation
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Open-vocabulary translation

Why is vocabulary size a problem?

@ size of one-hot input/output vector is linear to vocabulary size
@ large vocabularies are space inefficient

@ large output vocabularies are time inefficient

@ typical network vocabulary size: 30 000—-100 000

What about out-of-vocabulary words?

@ training set vocabulary typically larger than network vocabulary
(1 million words or more)
@ at translation time, we regularly encounter novel words:
e names: Barack Obama

e morph. complex words: Hand|gepéck/gebihr ('carry-on bag fee’)
e numbers, URLs etc.
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Open-vocabulary translation

@ copy unknown words, or translate with back-off dictionary
[Jean et al., 2015, Luong et al., 2015b, Gulcehre et al., 2016]
— works for names (if alphabet is shared), and 1-to-1 aligned words

@ use subword units (characters or others) for input/output vocabulary
— model can learn translation of seen words on subword level
— model can translate unseen words if translation is transparent

@ active research area [Sennrich et al., 2016c,
Luong and Manning, 2016, Chung et al., 2016, Ling et al., 2015,
Costa-jussa and Fonollosa, 2016, Zhao and Zhang, 2016,
Lee et al., 2016]
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Core idea: transparent translations

transparent translations

@ some translations are semantically/phonologically transparent
@ morphologically complex words (e.g. compounds):

e solar system (English)
e Sonnen|system (German)
e Nap|rendszer (Hungarian)

@ named entities:

e Obama(English; German)

e Obauva (Russian)

e 7 /N~ (o-ba-ma) (Japanese)
@ cognates and loanwords:

e claustrophobia(English)

e Klaustrophobie(German)

e Kmaycrpodoons (Russian)
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Subword neural machine translation

Flat representation [Sennrich et al., 2016¢, Chung et al., 2016]

@ sentence is a sequence of subword units

Hierarchical representation

[Ling et al., 2015, Luong and Manning, 2016]
@ sentence is a sequence of words
@ words are a sequence of subword units

*C2W Compositional Model

open question: should attention be on level of words or subwords?
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Subword neural machine translation

Choice of subword unit

@ characters: small vocabulary, long sequences

@ morphemes (?): hard to control vocabulary size

@ hybrid choice: shortlist of words, subwords for rare words

@ variable-length character n-grams: byte-pair encoding (BPE)

open research question which subword segmentation is best choice in
terms of efficiency and effectiveness.
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Byte pair encoding [Gage, 1994]
iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac
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Byte pair encoding [Gage, 1994]
iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac
ZabdZabac

Z=aa
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Byte pair encoding [Gage, 1994]
iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac 7_aa
ZabdZabac Yab
ZYdZYac B
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Byte pair encoding [Gage, 1994]
iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac 7_aa
ZabdZabac Y—ab
ZYdZYac X7y
XdXac
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Byte pair encoding for word segmentation

bottom-up character merging

@ iteratively replace most frequent pair of symbols (A’;B’) with ’AB’
@ apply on dictionary, not on full text (for efficiency)

@ output vocabulary: character vocabulary + one symbol per merge

word freq freq symbol pair new symbol
ow </w>’ 5

Tower</w>’ 2

‘newest</w>’ 6

‘'widest</w> 3
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Byte pair encoding for word segmentation
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Byte pair encoding for word segmentation

@ iteratively replace most frequent pair of symbols ('A’,B’) with ’AB’
@ apply on dictionary, not on full text (for efficiency)
@ output vocabulary: character vocabulary + one symbol per merge
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Byte pair encoding for word segmentation

bottom-up character merging

@ iteratively replace most frequent pair of symbols ('A’,B’) with ’AB’
@ apply on dictionary, not on full text (for efficiency)
@ output vocabulary: character vocabulary + one symbol per merge
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Byte pair encoding for word segmentation

why BPE?

@ don’t waste time on frequent character sequences
— trade-off between text length and vocabulary sizes

@ open-vocabulary:
learned operations can be applied to unknown words

@ alternative view: character-level model on compressed text

(e’ ’s ’) — ’es’

(es’,'t) —  ’est’
lowest</w>’ (’est </w>’)  —  est</w>’

(r,’o) — o’

(lo’, ’w’) —  low’
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Byte pair encoding for word segmentation

why BPE?

@ don’t waste time on frequent character sequences

— trade-off between text length and vocabulary sizes

@ open-vocabulary:
learned operations can be applied to unknown words

@ alternative view: character-level model on compressed text

(e, ’s ’)
(es’, 1)
‘low est</w>’ (’est ‘</w>’)
(1,0
(lo’, 'w’)

Lo ddd

‘est</w>’

1|O!

‘low’
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Fully Character-level NMT [Lee et al., 2016]

@ character-to-character model requires no language-specific
segmentation

@ drawback: RNN over characters is slow (especially attention!)

@ (shorter) segment sequences are obtained from characters via
convolution and max-pooling layers

|
T — |

RN*(Tx/s) ! Bidirectional GRU
—_— — |

] Highway Network
NX(T/s Segment
RNX(Tx/s) 5\ /E § Embeddings
j 1 i

[

RV¥Te \ Max Pooling
\ with Stride 5
R (Tetw=1) Convolution + ReLU
Character
R _ T he sie cond per sion

— —  Embeddings
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Architecture variants

an incomplete selection

@ different encoder architectures:

@ convolution network
[Kalchbrenner and Blunsom, 2013, Kalchbrenner et al., 2016]
e TreeLSTM [Eriguchi et al., 2016]

@ modifications to attention mechanism
[Luong et al., 2015a, Feng et al., 2016, Zhang et al., 2016]

@ deeper networks [Zhou et al., 2016, Wu et al., 2016]
@ coverage model [Mi et al., 2016, Tu et al., 2016b, Tu et al., 20163a]
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Sequence-level training

@ problem: at training time, target-side history is reliable;
at test time, it is not.

@ solution: instead of using gold context, sample from the model to
obtain target context [Shen et al., 2016, Ranzato et al., 2016,
Bengio et al., 2015, Wiseman and Rush, 2016]

@ more efficient cross entropy training remains in use to initialize
weights
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Trading-off target and source context

system | sentence

source Ein Jahr spater machten die Fed-Représentanten diese Kirzungen riickgéngig.
reference A year later, Fed officials reversed those cuts.

uedin-nmt A year later, FedEx officials reversed those cuts.

uedin-pbsmt | A year later, the Fed representatives made these cuts.

problem
@ RNN is locally normalized at each time step
@ given Fed: as previous word, Ex is very likely in training data: p(Ex|Fed:) = 0.55
@ /abel bias problem: locally-normalized models may ignore input in low-entropy state

potential solutions (speculative)
@ sampling at training time
@ bidirectional decoder [Liu et al., 2016, Sennrich et al., 2016a]
@ context gates to trade-off source and target context [Tu et al., 2016]
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Monolingual Training Data

why monolingual data for phrase-based SMT?
@ more training data
@ more appropriate training data (domain adaptation)
@ relax independence assumptions

v

why monolingual data for neural MT?

@ more training data
@ more appropriate training data (domain adaptation)
@ relax independence assumptions X
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Training data: monolingual

@ shallow fusion: rescore beam with language model
[GUlgehre et al., 2015]

@ deep fusion: extra, LM-specific hidden layer [Gilcehre et al., 2015]

;
“Language Model
Rescoring”
s

"Candidate Sentences”

+
Translation Model Scores

(a) Shallow Fusion (Sec. 4.1) (b) Deep Fusion (Sec. 4.2)

[Gilgehre et al., 2015]
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Training data: monolingual

Solutions/2

@ decoder is already a language model. Train encoder-decoder with
added monolingual data [Sennrich et al., 2016b]
t;, = tanh(Uosi_l -+ VOEyyi_l + Coci)
y; = softmax(W,t;)
@ how do we get approximation of context vector ¢;?

e dummy source context (moderately effective)
e automatically back-translate monolingual data into source language

name 2014 2015
PBSMT [Haddow et al., 2015] 28.8 293
NMT [Gulgehre et al., 2015] 23.6 -

shallow fusion [Gllcehre et al., 2015] | 23.7

deep fusion [Gllgehre et al., 2015] 24.0 -
NMT baseline 259 26.7
+back-translated monolingual data 295 304

Table: DE—EN translation performance (BLEU) on WMT training/test sets.
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Training data: multilingual

Multi-source translation [Zoph and Knight, 2016]
we can condition on multiple input sentences

@ benefits:
@ one source text may contain information that is undespecified in other
— possible quality gains
@ drawbacks:
e we need multiple source sentences at training and decoding time
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Training data: multilingual

Multilingual models [Dong et al., 2015, Firat et al., 2016a]

we can share layers (encoder/decoder/attention) of the model across
language pairs

Shared Encoder

En-Es | En-NL | En-Fr | En-Es | En-NL | En-Fr |

@ benefits:

e transfer learning from one language pair to the other
e scalability: no need for N2 — N independent models for N languages

@ drawbacks:

@ no successful generalization to language pairs with no training data
(but: synthetic training data works: [Firat et al., 2016b])

o’
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Training data: multilingual

Multilingual models [Lee et al., 2016]

@ single, character level encoder trained on
multiple languages

@ more gompact r_no<I:|eI . (G ]
e occasional quality improvements over single

language pairs
e robust towards (synthetic) code-switched input

Firat and Cho: https://ufal uff . cuni .cz/mtn16/files/
paf
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Training data: other tasks

Multi-task models [Luong et al., 2016]

@ other tasks can be modelled with sequence-to-sequence models
@ we can share layers between translation and other tasks

|~H+HLH H~H~“~ JH
)S

T

am a student _ Je suis étudiant am astudent (S (NP
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NMT as a component in log-linear models

Log-linear models
@ model ensembling is well-established
@ reranking output of phrase-based/syntax-based with NMT
[Neubig et al., 2015]
@ incorporating NMT as a feature function into PBSMT

[Junczys-Dowmunt et al., 2016]
— results depend on relative performance of PBSMT and NMT

30.0 -
) 26.0

28.1

English—Russian Russian—English

liphrase-based SMT I neural MT I8 hybrid

v
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Linguistic Features [Sennrich and Haddow, 2016]
a.k.a. Factored Neural Machine Translation

motivation: disambiguate words by POS

English German
closeverr, Schlief3en
closeqg; nah
closenoun Ende

source We thought a win like this might be closeg.
reference Wir dachten, dass ein solcher Sieg nah sein kénnte.
baseline NMT  *Wir dachten, ein Sieg wie dieser kénnte schliel3en.
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Linguistic Features: Architecture

use separate embeddings for each feature, then concatenate

baseline: only word feature

E(close) =

|F'| input features

Ei(close) = |0.1|  Ea(adj) = [0.1]  Ex(close) || Ex(adj) = |
0.2 0.1

Sennrich, Birch, Junczys-Dowmunt Neural Machine Translation 111/115



Linguistic Features: Results

40.0 |- ]

30.0

20.0

BLEU

10.0

0.0

English—German German—English English—Romanian

Iibaseline I +linguistic features
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Further Reading

secondary literature

@ lecture notes by Kyunghyun Cho: [Cho, 2015]

@ chapter on Neural Network Models in “Statistical Machine Translation”
by Phl“pp Koehn http://mt-class.org/jhu/assets/papers/neural-network-models.pdf
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(A small selection of) Resources

NMT tools

(] d|4mt-tut0rla| (theano) https://github.com/nyu-dl/d1l4mt-tutorial
(OU|’ branCh: nematus https://github.com/rsennrich/nematus)

(] nmtmatlab https://github.com/lmthang/nmt .matlab
o Seq236q (tenSOfﬂOW) https://www.tensorflow.org/versions/r0.8/tutorials/seq2seq/index.html
@ neural monkey (tensorflow) nssps: //github. con/utal/neurainonkey

o Seqzseq-attn (tOfCh) https://github.com/harvardnlp/seq2seq-attn
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Do it yourself

@ sample files and instructions for training NMT model
https://github.com/rsennrich/wmt16-scripts

@ pre-trained models to test decoding (and for further experiments)
http://statmt.org/rsennrich/wmt16_systems/

@ lab on installing/using Nematus:
http://ufal.mff.cuni.cz/mtmi16/files/
13-nematus-lab-rico-sennrich.pdf
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