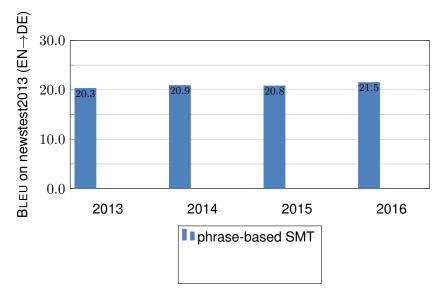


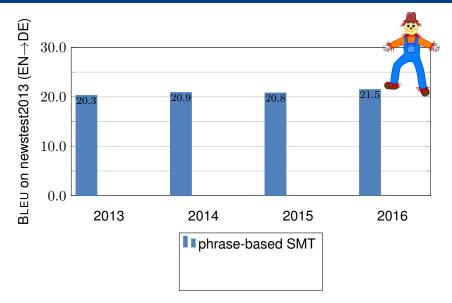
Neural Machine Translation: Breaking the Performance Plateau

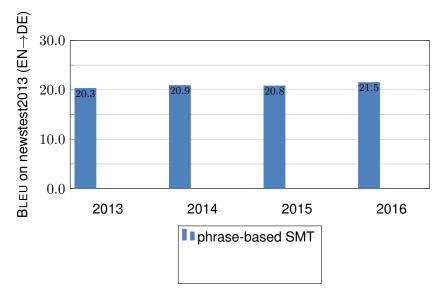
Rico Sennrich

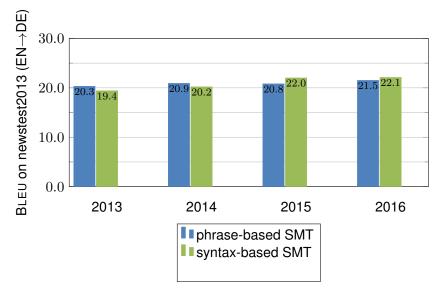
Institute for Language, Cognition and Computation University of Edinburgh

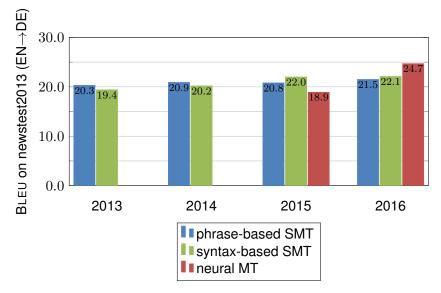
October 29 2016









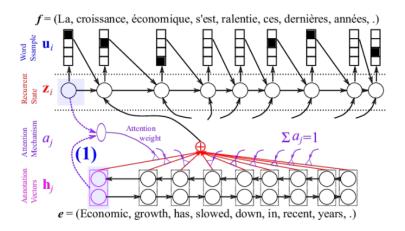


2

Towards using neural MT in production

- things that are suddenly easy(er)
- things that are suddenly hard(er)
- things that are still hard

Neural Machine Translation [Bahdanau et al., 2015]



Kyunghyun Cho http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

Some problems

- networks have fixed vocabulary
 - \rightarrow poor translation of rare/unknown words
- models are trained on parallel data; how do we use monolingual data?

they charge a **carry-on bag fee**. sie erheben eine **Handgepäckgebühr**.

Neural MT architectures have small and fixed vocabulary

- translation is an open-vocabulary problem
 - productive word formation (example: compounding)
 - names (may require transliteration)
 - numbers, URLs etc.

Why subword units?

transparent translations

- some translations are semantically/phonologically transparent
- morphologically complex words (e.g. compounds):
 - solar system (English)
 - Sonnen|system (German)
 - Nap|rendszer (Hungarian)
- named entities:
 - Obama(English; German)
 - Обама (Russian)
 - オバマ (o-ba-ma) (Japanese)
- cognates and loanwords:
 - claustrophobia(English)
 - Klaustrophobie(German)
 - Клаустрофобия (Russian)

- o characters?
 - \rightarrow works, but inefficient
 - (recent work on increasing efficiency [Lee et al., 2016])
- algorithms employed in SMT? (finite-state morphology; Morfessor)
 → no control over symbol vocabulary

byte pair encoding (BPE)

- compression algorithm adapted to word segmentation
- frequency-based
- single hyperparameter which controls symbol vocabulary size

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	freq	freq	symbol pair	new symbol
'l o w '	5			
'l o w e r '	2			
'n e w e s t '	6			
'widest'	3			
	1			

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	freq	freq	symbol pair		new symbol
'l o w '	5	9	('e', 's')	\rightarrow	'es'
'l o w e r '	2				
'n e w es t <∕w>'	6				
'widest'	3				
					J

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	freq	freq	symbol pair		new symbol
word 'I o w ' 'I o w e r ' 'n e w est '	freq 5 2 6	9 9	('e', 's') ('es', 't')	\rightarrow \rightarrow	'es' 'est'
'w i d est '	3				

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	freq	freq	symbol pair		new symbol
word 'I o w ' 'I o w e r ' 'n e w est'	freq 5 2 6	9 9 9 9	('es', 's') ('es', 't') ('est', '')	\rightarrow \rightarrow \rightarrow	'es' 'est'
'w i d est'	3				

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	freq	freq	symbol pair		new symbol
	<u> </u>	9	('e', 's')	\rightarrow	'es'
'lo w '	5	9	('es', 't')	\rightarrow	'est'
'lo w e r '	2	9	('est', '')	\rightarrow	'est'
'n e w est'	6	7	('l', 'o')	\rightarrow	'lo'
'w i d est'	3	,	(1, 0)		
	1				J

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	freq	freq	symbol pair		new symbol
	<u> </u>	9	('e', 's')	\rightarrow	'es'
'low '	5	9	('es', 't')	\rightarrow	'est'
'low e r ' 'n e w est<∕w>'	2	9	('est', '')	\rightarrow	'est'
'w i d est	3	7	('l', 'o')	\rightarrow	'lo'
wiuesi	3	7	('lo', 'w')	\rightarrow	'low'
					J

- open-vocabulary: learned operations can be applied to unknown words
- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary size
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'l o w e s t '	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- open-vocabulary: learned operations can be applied to unknown words
- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary size
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'l o w es t '	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- open-vocabulary: learned operations can be applied to unknown words
- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary size
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'l o w est '	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- open-vocabulary: learned operations can be applied to unknown words
- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary size
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'l o w est'	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

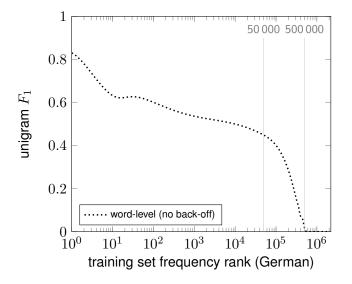
- open-vocabulary: learned operations can be applied to unknown words
- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary size
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'lo w est'	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

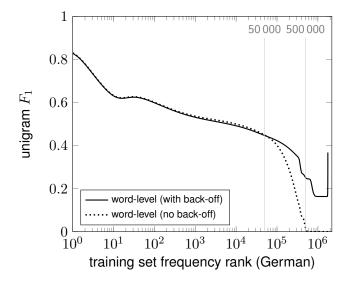
- open-vocabulary: learned operations can be applied to unknown words
- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary size
- alternative view: character-level model on compressed text

	('e', 's')		'es'
'low est'	('es', 't') ('est', '')		'est' 'est'
	('l', 'O')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

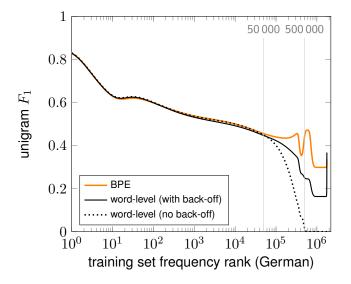
Unigram $F_1 \in N \rightarrow DE$



Unigram $F_1 \in N \rightarrow DE$



Unigram $F_1 \in N \rightarrow DE$



system	sentence	
source	health research institutes	
reference	Gesundheitsforschungsinstitute	
word-level (with back-off)	Forschungsinstitute	
BPE	Gesundheits forsch ungsin stitute	
source	rakfisk	
reference	ракфиска (rakfiska)	
word-level (with back-off)	rakfisk \rightarrow UNK \rightarrow rakfisk	
BPE	rak f isk $ ightarrow \mathrm{pak} \phi $ иска (rak f iska)	

Why Monolingual Data for Phrase-based SMT?

- more training data

Why Monolingual Data for NMT?

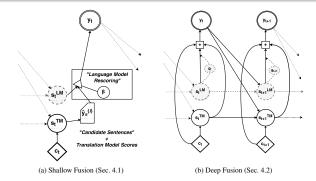
- more training data
- more appropriate training data (domain adaptation)
- relax independence assumptions X

Monolingual training data

Related work [Gülçehre et al., 2015]

shallow fusion: rescore beam with language model

deep fusion: extra, LM-specific hidden layer



[Gülçehre et al., 2015]

Training data: monolingual

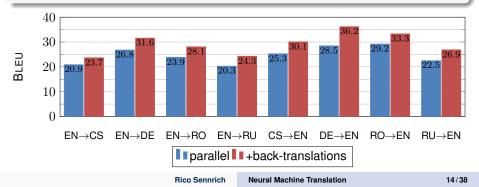
train NMT with monolingual data [Sennrich et al., 2016b]

- decoder is already a language model. Train encoder-decoder with added monolingual data
- how do we get approximation of context vector c_i?
 - dummy source context (moderately effective)
 - automatically back-translate monolingual data into source language \rightarrow synthetic training instances with approximate c_i

Training data: monolingual

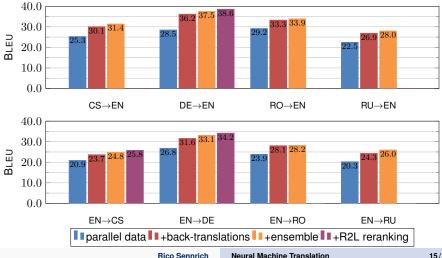
train NMT with monolingual data [Sennrich et al., 2016b]

- decoder is already a language model. Train encoder-decoder with added monolingual data
- how do we get approximation of context vector c_i ?
 - dummy source context (moderately effective)
 - automatically back-translate monolingual data into source language \rightarrow synthetic training instances with approximate c_i



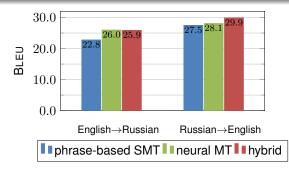
Other techniques @WMT16

- ensembling of checkpoints
- bidirectional decoding (R2L reranking)



[Junczys-Dowmunt et al., 2016]

- use NMT as a feature function in phrase-based SMT
 - \rightarrow approximations and batching for efficiency
- effectiveness depends on quality of phrase-based and NMT system



system	BLEU	official rank
uedin-nmt	34.2	1
metamind	32.3	2
uedin-syntax	30.6	3
NYU-UMontreal	30.8	4
online-B	29.4	5-10
KIT/LIMSI	29.1	5-10
cambridge	30.6	5-10
online-A	29.9	5-10
promt-rule	23.4	5-10
KIT	29.0	6-10
jhu-syntax	26.6	11-12
jhu-pbmt	28.3	11-12
uedin-pbmt	28.4	13-14
online-F	19.3	13-15
online-G	23.8	14-15

system	BLEU	official rank
uedin-nmt	38.6	1
online-B	35.0	2-5
online-A	32.8	2-5
uedin-syntax	34.4	2-5
KIT	33.9	2-6
uedin-pbmt	35.1	5-7
jhu-pbmt	34.5	6-7
online-G	30.1	8
jhu-syntax	31.0	9
online-F	20.2	10

 $\mathsf{DE}{\rightarrow}\mathsf{EN}$

 $\mathsf{EN}{\rightarrow}\mathsf{DE}$

system	BLEU	official rank
uedin-nmt	34.2	1
metamind	32.3	2
uedin-syntax	30.6	3
NYU-UMontreal	30.8	4
online-B	29.4	5-10
KIT/LIMSI	29.1	5-10
cambridge	30.6	5-10
online-A	29.9	5-10
promt-rule	23.4	5-10
KIT	29.0	6-10
jhu-syntax	26.6	11-12
jhu-pbmt	28.3	11-12
uedin-pbmt	28.4	13-14
online-F	19.3	13-15
online-G	23.8	14-15

system	BLEU	official rank
uedin-nmt	38.6	1
online-B	35.0	2-5
online-A	32.8	2-5
uedin-syntax	34.4	2-5
KIT	33.9	2-6
uedin-pbmt	35.1	5-7
jhu-pbmt	34.5	6-7
online-G	30.1	8
jhu-syntax	31.0	9
online-F	20.2	10

 $\mathsf{DE}{\rightarrow}\mathsf{EN}$

 $\mathsf{EN}{\rightarrow}\mathsf{DE}$

• pure NMT

system	BLEU	official rank
uedin-nmt	34.2	1
metamind	32.3	2
uedin-syntax	30.6	3
NYU-UMontreal	30.8	4
online-B	29.4	5-10
KIT/LIMSI	29.1	5-10
cambridge	30.6	5-10
online-A	29.9	5-10
promt-rule	23.4	5-10
KIT	29.0	6-10
jhu-syntax	26.6	11-12
jhu-pbmt	28.3	11-12
uedin-pbmt	28.4	13-14
online-F	19.3	13-15
online-G	23.8	14-15

system	BLEU	official rank
uedin-nmt	38.6	1
online-B	35.0	2-5
online-A	32.8	2-5
uedin-syntax	34.4	2-5
KIT	33.9	2-6
uedin-pbmt	35.1	5-7
jhu-pbmt	34.5	6-7
online-G	30.1	8
jhu-syntax	31.0	9
online-F	20.2	10

 $\mathsf{DE}{\rightarrow}\mathsf{EN}$

 $\mathsf{EN}{\rightarrow}\mathsf{DE}$

pure NMTNMT component

WMT16 results

uedin-nmt	25.8	1
NYU-UMontreal	23.6	2
jhu-pbmt	23.6	3
cu-chimera	21.0	4-5
cu-tamchyna	20.8	4-5
uedin-cu-syntax	20.9	6-7
online-B	22.7	6-7
Offinite-D	22.1	0-7
online-A	19.5	15

uedin-nmt	31.4	1
jhu-pbmt	30.4	2
online-B	28.6	3
PJATK	28.3	8-10
online-A	28.3	11

 $\mathsf{CS}{\rightarrow}\mathsf{EN}$

uedin-nmt	28.1	1-2
QT21-HimL-SysComb	28.9	1-2
KIT	25.8	3-7
uedin-pbmt	26.8	3-7
online-B	25.4	3-7
uedin-Imu-hiero	25.9	3-7
RWTH-SYSCOMB	27.1	3-7
LIMSI	23.9	8-10
Imu-cuni	24.3	8-10
jhu-pbmt	23.5	8-11
usfd-rescoring	23.1	10-12
online-A	19.2	11-12

 $\mathsf{EN}{\rightarrow}\mathsf{RO}$

$EN \rightarrow CS$

online-B	39.2	1-2
uedin-nmt	33.9	1-2
uedin-pbmt	35.2	3
uedin-syntax	33.6	4-5
online-A	30.8	4-6
jhu-pbmt	32.2	5-7
LIMSI	31.0	6-7

 $\mathsf{RO}{\rightarrow}\mathsf{EN}$

WMT16 results

PROMT-rule	22.3	1
amu-uedin	25.3	2-4
online-B	23.8	2-5
uedin-nmt	26.0	2-5
online-G	26.2	3-5
NYU-UMontreal	23.1	6
jhu-pbmt	24.0	7-8
LIMSI	23.6	7-10
online-A	20.2	8-10
AFRL-MITLL-phr	23.5	9-10
AFRL-MITLL-verb	20.9	11

uedin-pbmt	23.4	1-4
online-G	20.6	1-4
online-B	23.6	1-4
UH-opus	23.1	1-4
PROMT-SMT	20.3	5
UH-factored	19.3	6-7
uedin-syntax	20.4	6-7
online-A	19.0	8
jhu-pbmt	19.1	9

 $\mathsf{FI}{\rightarrow}\mathsf{EN}$

online-G	15.4	1-3
abumatra-nmt	17.2	1-4
online-B	14.4	1-4
abumatran-combo	17.4	3-5
UH-opus	16.3	4-5
NYU-UMontreal	15.1	6-8
abumatran-pbsmt	14.6	6-8
online-A	13.0	6-8
jhu-pbmt	13.8	9-10
UH-factored	12.8	9-12
aalto	11.6	10-13
jhu-hltcoe	11.9	10-13
UUT	11.6	11-13

 $EN \rightarrow FI$

 $EN \rightarrow RU$

amu-uedin	29.1	1-2
online-G	28.7	1-3
NRC	29.1	2-4
online-B	28.1	3-5
uedin-nmt	28.0	4-5
online-A	25.7	6-7
AFRL-MITLL-phr	27.6	6-7
AFRL-MITLL-contrast	27.0	8-9
PROMT-rule	20.4	8-9
online-F	13.5	10

Neural Machine Translation

Recent advances in neural MT

Towards using neural MT in production

- things that are suddenly easy(er)
- things that are suddenly hard(er)
- things that are still hard

Production use of neural MT

use of neural MT in production is only a matter of time

SYSTRAN announces the launch of its "Purely Neural MT" engine, a revolution for the machine translation market

SYSTRAN announces the launch of its "Purely Neural MT" engine, a revolution for the machine translation market

Google announces Neural Machine Translation to improve Google Translate

SYSTRAN announces the launch of its "Purely Neural MT" engine, a revolution for the machine translation market

Google announces Neural Machine Translation to improve Google Translate

WIPO goes Neural

Oct 4, 2016 590 views 🖞 41 Likes 🖵 3 Comments ท 🖬 🛃 💆

SYSTRAN announces the launch of its "Purely Neural MT" engine, a revolution for the machine translation market

Google announces Neural Machine Translation to improve Google Translate

WIPO goes Neural

Oct 4, 2016 590 views 🗳 41 Likes 🖵 3 Comments 🛅 🖬 🛃

SYSTRAN announces the launch of its "Purely Neural MT" engine, a revolution for the machine translation market

Google announces Neural Machine Translation to improve Google Translate

WIPO goes Neural

Oct 4, 2016 590 views 🖞 41 Likes 🖵 3 Comments 🛅 🖬 🗾

SYSTRAN announces the launch of its "Purely Neural MT" engine, a revolution for the machine translation market

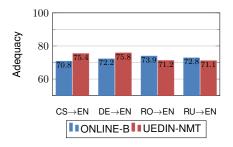
Google announces Neural Machine Translation to improve Google Translate

WIPO goes Neural

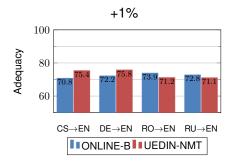
Oct 4, 2016 590 views 🖧 41 Likes 🖵 3 Comments 🛅 🖬 🔽

Towards using neural MT in production
things that are suddenly easy(er)
things that are suddenly hard(er)
things that are still hard

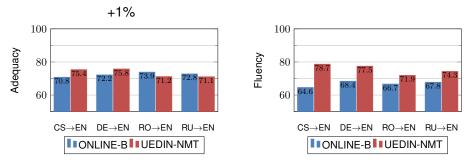
main strength of neural MT [Neubig et al., 2015, Bojar et al., 2016, Bentivogli et al., 2016]



main strength of neural MT [Neubig et al., 2015, Bojar et al., 2016, Bentivogli et al., 2016]

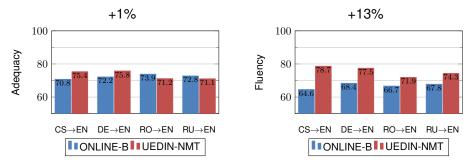


main strength of neural MT [Neubig et al., 2015, Bojar et al., 2016, Bentivogli et al., 2016]



Fluency

main strength of neural MT [Neubig et al., 2015, Bojar et al., 2016, Bentivogli et al., 2016]



phrase-based SMT	neural MT
 strong independence	 output conditioned on full
assumptions log-linear combination of	source text and target
many "weak" features	history end-to-end trained model

Fluency: example (WMT16; UEDIN submissions)

system	sentence
SRC	Unsere digitalen Leben haben die Notwendigkeit, stark, lebenslustig
	und erfolgreich zu erscheinen, verdoppelt []
REF	Our digital lives have doubled the need to appear strong, fun-loving and successful []
PBSMT	Our digital lives are lively, strong, and to be successful, doubled []
NMT	Our digital lives have doubled the need to appear strong, lifelike and successful []

T-V distinction		
language	informal (T)	formal (V)
Latin	tu	VOS
Chinese	你(nǐ)	您 (nín)
French	tu	vous
German	du	Sie
Italian	tu	Lei
Polish	ty	pan
Spanish	tú	usted
-		
	1	

T-V distinction		
language	informal (T)	formal (V)
Latin	tu	VOS
Chinese	你(nǐ)	您 (nín)
French	tu	vous
German	du	Sie
Italian	tu	Lei
Polish	ty	pan
Spanish	tú	usted
Early Modern English	thou	уе
Modern English	yo	u

 inconsistency in T-V choice is a "limitation of MT technology" that is "often frustrat[ing]" to post-editors [Etchegoyhen et al., 2014]

T-V distinction			
language	informal (T)	formal (V)	
Latin	tu	VOS	
Chinese	你(nǐ)	您 (nín)	W
French	tu	vous	
German	du	Sie	
Italian	tu	Lei	
Polish	ty	pan	
Spanish	tú	usted	-
Early Modern English	thou	уе	
Modern English	you	u	

 inconsistency in T-V choice is a "limitation of MT technology" that is "often frustrat[ing]" to post-editors [Etchegoyhen et al., 2014]

Core idea

- additional input feature that is based on target-side information
 → extra word at end of source sentence
- mark in English text if German translation is polite or not (+noise)
 - Are you ok?
 - Sind Sie in Ordnung?

- are you ok?
- Bist du in Ordnung?

At test time

we can control level of politeness by adding side constraints to input

Core idea

- additional input feature that is based on target-side information
 → extra word at end of source sentence
- mark in English text if German translation is polite or not (+noise)
 - Are you ok?
 - Sind Sie in Ordnung?

• are you ok?

Bist du in Ordnung?

At test time

we can control level of politeness by adding side constraints to input

Core idea

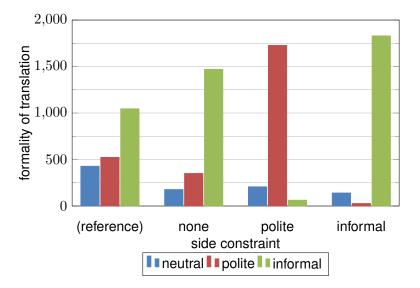
- additional input feature that is based on target-side information
 → extra word at end of source sentence
- mark in English text if German translation is polite or not (+noise)
 - Are you ok? <polite>
 - Sind Sie in Ordnung?

- are you ok? <informal>
- Bist du in Ordnung?

At test time

we can control level of politeness by adding side constraints to input

Results: politeness as a function of side constraint



[Wuebker et al., 2016]

- prefix-constrained decoding of high interest for interactive MT
- phrase-based MT has problems with reachability; requires new algorithms
- prefix-constrained decoding with neural MT is very natural

2	Contributors: (this should be a list of wo
	Mitarbeiter:
	Mitarbeiter: (das sollte eine Liste von v
3	Donate link: http://example.com/
	Spenden Link:
	Spenden Link- http://example.com/

Incremental/online training

- Neural MT uses iterative training (SGD or Reinforcement Learning)
 → stopping/continuing training trivial
- problematic: expanding vocabulary
 - \rightarrow unnecessary with subword models
- multi-BLEU improvements reported with minutes of training time [Sennrich et al., 2016b, Luong and Manning, 2015, Crego et al., 2016]

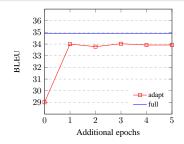


Figure 3: Adaptation with In-Domain data.

[Crego et al., 2016]

Towards using neural MT in production
things that are suddenly easy(er)
things that are suddenly hard(er)
things that are still hard

- limited interpretability of neural network
- limited ability to manipulate neural network

• more research on terminology integration needed

- limited interpretability of neural network
- limited ability to manipulate neural network

Lifestyle > Tech

Thousands sign petition asking to remove homophobic slurs from translation service

Company later obliged and slurs were taken down

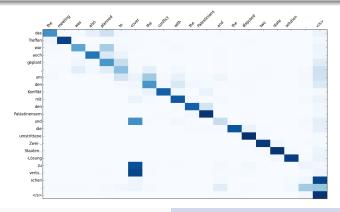
more research on terminology integration needed

Alignment

attention model

- attends to states that are relevant for next translation decision
- ...bearing in mind that information can travel along RNN

ightarrow no 'traditional' word alignment



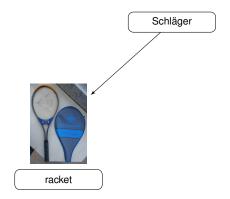
Towards using neural MT in production

- things that are suddenly easy(er)
- things that are suddenly hard(er)
- things that are still hard

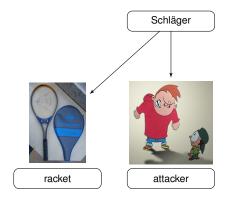
system	sentence
SRC	Dort wurde er von dem Schläger und einer weiteren männl. Person erneut angegriffen.
REF	There he was attacked again by his original attacker and another male.
PBSMT	There, he was at the club and another male person attacked again.
NMT	There he was attacked again by the racket and another male person.

Schläger

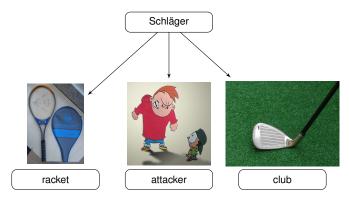
system	sentence
SRC	Dort wurde er von dem Schläger und einer weiteren männl. Person erneut angegriffen.
REF	There he was attacked again by his original attacker and another male.
PBSMT	There, he was at the club and another male person attacked again.
NMT	There he was attacked again by the racket and another male person.



system	sentence
SRC	Dort wurde er von dem Schläger und einer weiteren männl. Person erneut angegriffen.
REF	There he was attacked again by his original attacker and another male.
PBSMT	There, he was at the club and another male person attacked again.
NMT	There he was attacked again by the racket and another male person.



system	sentence
SRC	Dort wurde er von dem Schläger und einer weiteren männl. Person erneut angegriffen.
REF	There he was attacked again by his original attacker and another male.
PBSMT	There, he was at the club and another male person attacked again.
NMT	There he was attacked again by the racket and another male person.



Rare words

system	sentence	
SRC	Titelverteidiger ist Drittligaabsteiger SpVgg Unterhaching.	
REF	The defending champions are SpVgg Unterhaching,	
	who have been relegated to the third league.	
PBSMT	Title defender Drittligaabsteiger Week 2.	
NMT	Defending champion is third-round pick SpVgg Underhaching.	

fully character-level models [Lee et al., 2016]

(a) Spelling mistakes

DE ori	Warum sollten wir nicht Freunde sei ?
DE src	Warum solltne wir nich Freunde sei ?
EN ref	Why should not we be friends ?
bpe2char	Why are we to be friends ?
char2char	Why should we not be friends ?

(b) Rare words

DE src	Siebentausendzweihundertvierundfünfzig.
EN ref	Seven thousand two hundred fifty four .
bpe2char	Fifty-five Decline of the Seventy .
char2char	Seven thousand hundred thousand fifties .

English	I made a decision.	Please respect it.
French	J'ai pris une décision.	Respectez-la s'il vous plaît.
French	J'ai fait <mark>un choix</mark> .	Respectez-le s'il vous plaît.

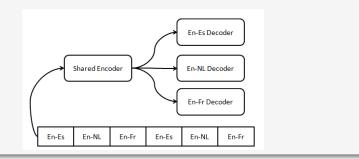
most MT systems do not take discourse context into account...

... but neural MT is a promising architecture to solve this problem

Low-resourced language pairs

- most language pairs have few parallel resources
- is NMT more data efficient than phrase-based SMT?
- new potential: sharing of model parameters between language pairs

[Zoph et al., 2016, Dong et al., 2015, Firat et al., 2016, Lee et al., 2016]



- neural MT has achieved state of the art on many tasks...
 ... and is still improving quickly
- industry adoption is happening, but beware:
 - some things are suddenly easy(er)
 - some things are suddenly hard(er)
- machine translation still has hard problems to tackle...
- ...and neural MT offers exciting new ways to address them

Thanks

Collaborators

Alexandra Birch

Kenneth Heafield

Barry Haddow

Antonio Valerio Miceli Barone

Marcin Junczys-Dowmunt

Tomasz Dwojak

Acknowledgments

Some of the research presented was conducted in cooperation with Samsung Electronics Polska.

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 645452 (QT21), TraMOOC (644333), HimL (644402), and SUMMA (688139).

Thanks

Collaborators

Alexandra Birch

Kenneth Heafield

Barry Haddow

Antonio Valerio Miceli Barone

Marcin Junczys-Dowmunt

Tomasz Dwojak

Acknowledgments

Some of the research presented was conducted in cooperation with Samsung Electronics Polska.

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 645452 (QT21), TraMOOC (644333), HimL (644402), and SUMMA (688139).

Thank you for your attention

Rico Sennrich

Neural Machine Translation

Bibliography I

Bahdanau, D., Cho, K., and Bengio, Y. (2015).

Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the International Conference on Learning Representations (ICLR).

Bentivogli, L., Bisazza, A., Cettolo, M., and Federico, M. (2016).

Neural versus Phrase-Based Machine Translation Quality: a Case Study. In $\underline{\mathsf{EMNLP}}$ 2016.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., Jimeno Yepes, A., Koehn, P., Logacheva, V., Monz, C., Negri, M., Neveol, A., Neves, M., Popel, M., Post, M., Rubino, R., Scarton, C., Specia, L., Turchi, M., Verspoor, K., and Zampieri, M. (2016).

Findings of the 2016 Conference on Machine Translation (WMT16).

In Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 131–198, Berlin, Germany. Association for Computational Linguistics.

Crego, J., Kim, J., Klein, G., Rebollo, A., Yang, K., Senellart, J., Akhanov, E., Brunelle, P., Coquard, A., Deng, Y., Enoue, S., Geiss, C., Johanson, J., Khalsa, A., Khiari, R., Ko, B., Kobus, C., Lorieux, J., Martins, L., Nguyen, D.-C., Priori, A., Riccardi, T., Segal, N., Servan, C., Tiquet, C., Wang, B., Yang, J., Zhang, D., Zhou, J., and Zoldan, P. (2016). SYSTRAN's Pure Neural Machine Translation Systems.

ArXiv e-prints.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015).

Multi-Task Learning for Multiple Language Translation.

In

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference of pages 1723–1732, Beijing, China. Association for Computational Linguistics.

Bibliography II

Etchegoyhen, T., Bywood, L., Fishel, M., Georgakopoulou, P., Jiang, J., Loenhout, G. V., Pozo, A. D., Maucec, M. S., Turner, A., and Volk, M. (2014).

Machine Translation for Subtitling: A Large-Scale Evaluation.

In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), Reykjavik, Iceland. European Language Resources Association (ELRA).

Firat, O., Cho, K., and Bengio, Y. (2016).

Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism.

In

Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Langua pages 866–875. Association for Computational Linguistics.

Gülçehre, c., Firat, O., Xu, K., Cho, K., Barrault, L., Lin, H., Bougares, F., Schwenk, H., and Bengio, Y. (2015).

On Using Monolingual Corpora in Neural Machine Translation. CoRR, abs/1503.03535.

Junczys-Dowmunt, M., Dwojak, T., and Sennrich, R. (2016).

The AMU-UEDIN Submission to the WMT16 News Translation Task: Attention-based NMT Models as Feature Functions in Phrase-based SMT.

In <u>Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers</u>, pages 316–322, Berlin, Germany. Association for Computational Linguistics.

Lee, J., Cho, K., and Hofmann, T. (2016).

Fully Character-Level Neural Machine Translation without Explicit Segmentation. ArXiv e-prints.

Luong, M.-T. and Manning, C. D. (2015).

Stanford Neural Machine Translation Systems for Spoken Language Domains. In Proceedings of the International Workshop on Spoken Language Translation 2015, Da Nang, Vietnam.

Bibliography III

Neubig, G., Morishita, M., and Nakamura, S. (2015).

Neural Reranking Improves Subjective Quality of Machine Translation: NAIST at WAT2015. In Proceedings of the 2nd Workshop on Asian Translation (WAT2015), pages 35–41, Kyoto, Japan.

Sennrich, R., Haddow, B., and Birch, A. (2016a).

Controlling Politeness in Neural Machine Translation via Side Constraints.

In

Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Languages 35–40, San Diego, California. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016b).

Improving Neural Machine Translation Models with Monolingual Data.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 86–96, Berlin, Germany. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016c).

Neural Machine Translation of Rare Words with Subword Units.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for Computational Linguistics.

Wuebker, J., Green, S., DeNero, J., Hasan, S., and Luong, M.-T. (2016).

Models and Inference for Prefix-Constrained Machine Translation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 66–75. Association for Computational Linguistics.

Zoph, B., Yuret, D., May, J., and Knight, K. (2016).

Transfer Learning for Low-Resource Neural Machine Translation. CoRR, abs/1604.02201.