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Neural Machine Translation

0 Recent advances in neural MT
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Neural Machine Translation [Bahdanau et al., 2015]
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Recent advances in neural MT

Some problems

@ networks have fixed vocabulary
— poor translation of rare/unknown words

@ models are trained on parallel data; how do we use monolingual data?
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Problem with word-level models

they charge a carry-on bag
sie erheben eine Handgepack

@ Neural MT architectures have small and fixed vocabulary
@ translation is an open-vocabulary problem

e productive word formation (example: compounding)
@ names (may require transliteration)
e numbers, URLs etc.
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Why subword units?

transparent translations

@ some translations are semantically/phonologically transparent
@ morphologically complex words (e.g. compounds):

e solar system (English)
e Sonnen|system (German)
e Nap|rendszer (Hungarian)

@ named entities:

e Obama(English; German)

e Obauva (Russian)

e 7 /N~ (o-ba-ma) (Japanese)
@ cognates and loanwords:

e claustrophobia(English)

e Klaustrophobie(German)

e Kmaycrpodoons (Russian)
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Choice of subword unit

@ characters?
— works, but inefficient
(recent work on increasing efficiency [Lee et al., 2016])

@ algorithms employed in SMT? (finite-state morphology; Morfessor)
— no control over symbol vocabulary

byte pair encoding (BPE)

@ compression algorithm adapted to word segmentation
@ frequency-based

@ single hyperparameter which controls symbol vocabulary size
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Byte pair encoding for word segmentation

bottom-up character merging
@ iteratively replace most frequent pair of symbols (A’;B’) with ’AB’
@ apply on dictionary, not on full text (for efficiency)

@ output vocabulary: character vocabulary + one symbol per merge

word freq freq symbol pair new symbol
ow </w>’ 5
Tower</w>’ 2
‘newest</w>’ 6
‘'widest</w> 3
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Byte pair encoding for word segmentation

bottom-up character merging
@ iteratively replace most frequent pair of symbols (A’;B’) with ’AB’
@ apply on dictionary, not on full text (for efficiency)

@ output vocabulary: character vocabulary + one symbol per merge

word freq freq S,anPC’” pair ’ne\fv symbol
’ ’ 9 (e,’s) = ’es

low </w> 5 &S] es

’ , 9 (es,’t) — est
lower</w> 2

'n e w est </w>’ 6

'wid est </w>’ 3

Rico Sennrich Neural Machine Translation 8/38



Byte pair encoding for word segmentation

@ iteratively replace most frequent pair of symbols ('A’,B’) with ’AB’
@ apply on dictionary, not on full text (for efficiency)
@ output vocabulary: character vocabulary + one symbol per merge

fr mbol pair
word freq eq s’y, bo pa ,ne\fv symbol
- : 9 (e€,’s) — ’es
low </w> 5 sy s .
, , 9 (es,’t) — ’est
lower</w> 2 . , , ,
, , 9 (est,’</w>) — ’est</w>
n e w est</w> 6
'w i d est</w>’ 3
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Byte pair encoding for word segmentation

bottom-up character merging
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Byte pair encoding for word segmentation

why BPE?

@ open-vocabulary:
learned operations can be applied to unknown words

@ don’t waste time on frequent character sequences
— trade-off between text length and vocabulary size

@ alternative view: character-level model on compressed text

(e’,’s’) — ’es
(es’,’t) —  est’
lowest</w>’ (est, ’'</w>") — ’est</w>’
(r,’o’) — ’lo’
(lo’,'w’) - low’
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system sentence

source health research

reference Gesundheitsforschungs

word-level (with back-off) | Forschungs

BPE Gesundheits|forsch|ungsin|
source rakfisk

reference pakducka (rakfiska)

word-level (with back-off) | rakfisk — UNK — rakfisk

BPE rak|flisk — paxk|d|ucka (rak|fliska)
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Monolingual training data

Why Monolingual Data for Phrase-based SMT?

@ more training data
@ more appropriate training data (domain adaptation)
@ relax independence assumptions

| A\

Why Monolingual Data for NMT?
@ more training data
@ more appropriate training data (domain adaptation)
@ relax independence assumptions X
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Monolingual training data

Related work [Gllcehre et al., 2015]

shallow fusion: rescore beam with language model
deep fusion: extra, LM-specific hidden layer

(w)
7//

.
"Language Model *
L Pescoring

"Candidate Sentences”

+
Translation Model Scores

(a) Shallow Fusion (Sec. 4.1) (b) Deep Fusion (Sec. 4.2)

[Gilgehre et al., 2015]
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Training data: monolingual

train NMT with monolingual data [Sennrich et al., 2016b]

@ decoder is already a language model. Train encoder-decoder with
added monolingual data
@ how do we get approximation of context vector ¢;?

e dummy source context (moderately effective)
e automatically back-translate monolingual data into source language
— synthetic training instances with approximate c;
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Other techniqgues @WMT16

@ ensembling of checkpoints

@ bidirectional decoding (R2L reranking)

BLEU

BLEU

40.0
30.0
20.0
10.0

0.0

37.5

28.0

CS—EN DE—EN RO—EN RU—EN
40.0

30.0
20.0
10.0

0.0

26.0

EN—CS EN—DE EN—RO EN—RU
Inparallel datal 1 +back-translations | 1 +ensemble 11 +R2L reranking

Rico Sennrich Neural Machine Translation

15/38



Phrase-based/neural MT hybridization

[Junczys-Dowmunt et al., 2016]

@ use NMT as a feature function in phrase-based SMT
— approximations and batching for efficiency

@ effectiveness depends on quality of phrase-based and NMT system

English—Russian Russian—English

liphrase-based SMT [ # neural MT IR hybrid
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WMT16 results

system BLEU official rank system BLEU official rank
uedin-nmt 34.2 1 uedin-nmt 38.6 1
metamind 32.3 2 online-B 35.0 2-5
uedin-syntax 30.6 3 online-A 32.8 2-5
NYU-UMontreal 30.8 4 uedin-syntax 34.4 2-5
online-B 29.4 5-10 KIT 33.9 2-6
KIT/LIMSI 291 5-10 uedin-pbmt 35.1 5-7
cambridge 30.6 5-10 jhu-pbmt 34.5 6-7
online-A 29.9 5-10 online-G 30.1 8
promt-rule 23.4 5-10 jhu-syntax 31.0 9
KIT 29.0 6-10 online-F 20.2 10
jhu-syntax 26.6 11-12
jhu-pbmt 28.3 11-12
uedin-pbmt 28.4 13-14 DE—EN
online-F 19.3 13-15
online-G 23.8 14-15

EN—DE
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WMT16 results

system BLEU official rank system BLEU official rank
online-B 35.0 2-5
online-A 32.8 2-5
uedin-syntax 34.4 2-5

online-B KIT 33.9 2-6
uedin-pbmt 35.1 5-7
jhu-pbmt 34.5 6-7

online-A online-G 30.1 8

promt-rule 23.4 5-10 jhu-syntax 31.0 9
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jhu-pbmt 28.3 11-12
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online-F 19.3 13-15

online-G 23.8 14-15

EN—DE @ pure NMT

® NMT component
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WMT16 results

jhu-pbmt 23.6 3
cu-chimera 21.0 4-5
cu-tamchyna 20.8 4-5
uedin-cu-syntax 20.9 6-7
online-B 22.7 6-7
online-A 19.5 15
cu-TectoMT 14.7 16
cu-mergedtrees 8.2 18
EN—CS
online-B 39.2 1-2
uedin-pbmt 35.2 3
uedin-syntax 33.6 4-5
online-A 30.8 4-6
jhu-pbmt 32.2 5-7
LIMSI 31.0 6-7
RO—EN

Rico Sennrich

jhu-pbmt 30.4 2
online-B 28.6 3
PJATK 28.3 8-10
online-A 25.7 11
cu-mergedtrees 13.3 12
CS—EN

KIT 25.8 3-7
uedin-pbmt 26.8 3-7
online-B 25.4 3-7
uedin-Imu-hiero 25.9 3-7
__RWTHSYSCOMB 274 37
LIMSI 23.9 8-10
Imu-cuni 24.3 8-10
jhu-pbmt 235 8-11
usfd-rescoring 23.1 10-12
online-A 19.2 11-12
EN—RO
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WMT16 results

PROMT-rule 22.3 1 uedin-pbmt 23.4 1-4
online-G 20.6 1-4
online-B 23.8 2-5 online-B 23.6 1-4
UH-opus 23.1 1-4
online-G 26.2 3-5 PROMT-SMT 20.3 5
UH-factored 19.3 6-7
jhu-pbmt 24.0 7-8 uedin-syntax 20.4 6-7
LIMSI 23.6 7-10 online-A 19.0 8
online-A 20.2 8-10 jhu-pbmt 19.1 9
AFRL-MITLL-phr 23.5 9-10
AFRL-MITLL-verb 20.9 11
online-F 8.6 12 FI—EN
EN—RU
online-G 15.4 1-3
online-B 14.4 1-4
online-G 28.7 1-3 UH-opus 16.3 4-5
NRC 29.1 2-4
online-B 28.1 3-5 abumatran-pbsmt 14.6 6-8
online-A 13.0 6-8
online-A 25.7 6-7 jhu-pbmt 13.8 9-10
AFRL-MITLL-phr 27.6 6-7 UH-factored 12.8 9-12
AFRL-MITLL-contrast 27.0 8-9 aalto 1.6 10-13
PROMT-rule 20.4 8-9 jhu-hltcoe 1.9 10-13
online-F 13.5 10 uuT 1.6 11-13
RU—EN EN—FI
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Neural Machine Translation

Q Towards using neural MT in production
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Production use of neural MT

use of neural MT in production is only a matter of time

Rico Sennrich Neural Machine Translation 19/38



Production use of neural MT

use of neural MT in production is-enly-a-matter-oftime has begun
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Production use of neural MT

use of neural MT in production is-enly-a-matter-oftime has begun

SYSTRAN announces the launch of its "Purely Neural MT" engine, a revolution for
the machine translation market
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SYSTRAN announces the launch of its "Purely Neural MT" engine, a revolution for

the machine translation market

Google announces Neural Machine
Translation to improve Google Translate
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Neural Machine Translation

9 Towards using neural MT in production
@ things that are suddenly easy(er)
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main Strength Of neural MT [Neubig et al., 2015, Bojar et al., 2016, Bentivogli et al., 2016] J
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main Strength Of neural MT [Neubig et al., 2015, Bojar et al., 2016, Bentivogli et al., 2016]
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Why is neural MT so much more fluent?

phrase-based SMT

@ strong independence @ output conditioned on full
assumptions source text and target

@ log-linear combination of history
many “weak” features @ end-to-end trained model

Rico Sennrich Neural Machine Translation 22/38



Fluency: example (WMT16; UEDIN submissions)

system sentence
SRC Unsere digitalen Leben haben die Notwendigkeit, stark, lebenslustig
und erfolgreich zu erscheinen, verdoppelt [...]
REF Our digital lives have doubled the need to appear strong, fun-loving and successful [...]
PBSMT | Our digital lives are lively, strong, and to be successful, doubled [...]
NMT Our digital lives have doubled the need to appear strong, lifelike and successful [...]

Rico Sennrich

Neural Machine Translation
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Controlling neural MT

T-V distinction

language informal (T) formal (V)
Latin tu VoS
Chinese 7R (n) 7 (nin)
French tu vous
German du Sie

Italian tu Lei

Polish ty pan
Spanish ta usted
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Controlling neural MT

T-V distinction

language informal (T) formal (V)
Latin tu VoS
Chinese 7R (n) 7 (nin)
French tu vous
German du Sie
Italian tu Lei

Polish ty pan
Spanish ta usted
Early Modern English | thou ye
Modern English you

v

@ inconsistency in T-V choice is a “limitation of MT technology” that is
“often frustrat[ing]” to post-editors [Etchegoyhen et al., 2014] J
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Controlling neural MT

T-V distinction

language informal (T) formal (V)
Latin tu VoS
Chinese PR (n) 7 (nin)
French tu vous
German du Sie
Italian tu Lei

Polish ty pan
Spanish ta usted
Early Modern English | thou ye
Modern English you

What users want

@ inconsistency in T-V choice is a “limitation of MT technology” that is
“often frustrat[ing]” to post-editors [Etchegoyhen et al., 2014] J
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Side constraints [Sennrich et al., 20163]

Core idea

@ additional input feature that is based on target-side information
— extra word at end of source sentence

@ mark in English text if German translation is polite or not (+noise)

@ Are you ok? @ are you ok?
@ Sind Sie in Ordnung? J ’

@ we can control level of politeness by adding side constraints to input
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Side constraints [Sennrich et al., 20163]

Core idea

@ additional input feature that is based on target-side information
— extra word at end of source sentence

@ mark in English text if German translation is polite or not (+noise)

@ Are you ok? <polite> @ are you ok? <informal>
@ Sind Sie in Ordnung? J ’

@ we can control level of politeness by adding side constraints to input
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Results: politeness as a function of side constraint
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Interactive MT: constrained decoding

2 Contributors: (this should be a list of wol

[Wuebker et al., 2016] Mitarbeiter:

@ prefix-constrained decoding of high
interest for interactive MT

@ phrase-based MT has problems with

3 Donate link: http://fexample.com/
reachability; requires new algorithms ————
penden Link:
@ prefix-constrained decoding with neural
MT is very natural
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Incremental/online training

@ Neural MT uses iterative training (SGD or Reinforcement Learning)
— stopping/continuing training trivial

@ problematic: expanding vocabulary
— unnecessary with subword models

@ multi-BLEU improvements reported with minutes of training time
[Sennrich et al., 2016b, Luong and Manning, 2015, Crego et al., 2016]

36 - g
35 1 -
34+ g5
33 - // .
32+ / R
311/ 8
01/
29t —ful

BLEU

0 1 2 3 4 5
Additional epochs

 Fiaure 3: Adaptation with In-Domain data.

[Crego et al., 2016]
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Neural Machine Translation

9 Towards using neural MT in production

@ things that are suddenly hard(er)
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Model interpretation/manipulation

@ limited interpretability of neural network
@ limited ability to manipulate neural network

@ more research on terminology integration needed
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Model interpretation/manipulation

@ limited interpretability of neural network
@ limited ability to manipulate neural network

Lifestyle » Tech

Thousands sign petition asking I
to remove homophobic slurs from
translation service

Company later obliged and slurs were taken down

@ more research on terminology integration needed
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Alignment

attention model
@ attends to states that are relevant for next translation decision

@ ...bearing in mind that information can travel along RNN

— no ‘traditional’ word alignment

auch
geplant

um
den
Konflikt
mit

o &
das
Treffen
war

© & & 5§ & s
& & & & S o & "
¢ & L e s & e e © W
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Neural Machine Translation

9 Towards using neural MT in production

@ things that are still hard
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Ambiguity

system sentence

SRC Dort wurde er von dem Schlager und einer weiteren mannl. Person erneut angegriffen.
REF There he was attacked again by his original attacker and another male.

PBSMT | There, he was at the club and another male person attacked again.

NMT There he was attacked again by the racket and another male person.

Schlager

/8/CCBY20
o Wikbuly
o0 Il pg | COBYSAS0
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Rare words

system sentence

SRC Titelverteidiger ist Drittligaabsteiger SpVgg Unterhaching.
REF The defending champions are SpVgg Unterhaching,

who have been relegated to the third league.

PBSMT | Title defender Drittligaabsteiger Week 2.

NMT Defending champion is third-round pick SpVgg Underhaching.

fully character-level models [Lee et al., 2016]

(a) Spelling mistakes
DE ori ‘Warum sollten wir nicht Freunde sei ?
DE src Warum solltne wir nich Freunde sei ?

EN ref Why should not we be friends ?
bpe2char | Why are we to be friends ?
char2char | Why should we not be friends ?

(b) Rare words
DE src Siebentausendzweihundertvierundfiinfzig .
EN ref Seven thousand two hundred fifty four .

bpe2char | Fifty-five Decline of the Seventy .
char2char | Seven thousand hundred thousand fifties .
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Discourse

English | made a decision. Please respect it.
French  J’ai pris une décision. Respectez-la s'il vous plait.
French  Jai fait un choix. Respectez-le s’il vous plait.

@ most MT systems do not take discourse context into account...

@ ... but neural MT is a promising architecture to solve this problem
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Low-resourced language pairs

@ most language pairs have few parallel resources
@ is NMT more data efficient than phrase-based SMT?

@ new potential: sharing of model parameters between language pairs

[Zoph et al., 2016, Dong et al., 2015, Firat et al., 2016, Lee et al., 2016]

En-Es Decoder

En-NL Decoder
En-Fr Decoder

En-NL | En-Fr |

Shared Encoder

En-Es

En-NL | En-Fr | En-Es
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Conclusions

@ neural MT has achieved state of the art on many tasks...
... and is still improving quickly
@ industry adoption is happening, but beware:
e some things are suddenly easy(er)
e some things are suddenly hard(er)

@ machine translation still has hard problems to tackle...

@ ...and neural MT offers exciting new ways to address them
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