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Why Revisit Challenges Regularly?

guide research directions NMT facts
have expiration date

signpost: Ian Harding (CC BY-NC-SA 2.0)
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Encoder–Decoder Has Information Bottleneck

[Cho et al., 2014]
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Attention Brings Improvement

[Bahdanau et al., 2015]
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Still, Poor Performance Reported for Long Sentences
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Figure 7: Quality of translations based on sen-
tence length. SMT outperforms NMT for sen-
tences longer than 60 subword tokens. For very
long sentences (80+) quality is much worse due to
too short output.

3.5 Word Alignment

The key contribution of the attention model in neu-
ral machine translation (Bahdanau et al., 2015)
was the imposition of an alignment of the output
words to the input words. This takes the shape
of a probability distribution over the input words
which is used to weigh them in a bag-of-words
representation of the input sentence.

Arguably, this attention model does not func-
tionally play the role of a word alignment between
the source in the target, at least not in the same
way as its analog in statistical machine translation.
While in both cases, alignment is a latent variable
that is used to obtain probability distributions over
words or phrases, arguably the attention model has
a broader role. For instance, when translating a
verb, attention may also be paid to its subject and
object since these may disambiguate it. To fur-
ther complicate matters, the word representations
are products of bidirectional gated recurrent neu-
ral networks that have the effect that each word
representation is informed by the entire sentence
context.

But there is a clear need for an alignment mech-
anism between source and target words. For in-
stance, prior work used the alignments provided
by the attention model to interpolate word transla-
tion decisions with traditional probabilistic dictio-
naries (Arthur et al., 2016), for the introduction of
coverage and fertility models (Tu et al., 2016), etc.

But is the attention model in fact the proper
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Figure 8: Word alignment for English–German:
comparing the attention model states (green boxes
with probability in percent if over 10) with align-
ments obtained from fast-align (blue outlines).

means? To examine this, we compare the soft
alignment matrix (the sequence of attention vec-
tors) with word alignments obtained by traditional
word alignment methods. We use incremental
fast-align (Dyer et al., 2013) to align the input and
output of the neural machine system.

See Figure 8 for an illustration. We compare
the word attention states (green boxes) with the
word alignments obtained with fast align (blue
outlines). For most words, these match up pretty
well. Both attention states and fast-align align-
ment points are a bit fuzzy around the function
words have-been/sind.

However, the attention model may settle on
alignments that do not correspond with our intu-
ition or alignment points obtained with fast-align.
See Figure 9 for the reverse language direction,
German–English. All the alignment points appear
to be off by one position. We are not aware of any
intuitive explanation for this divergent behavior —
the translation quality is high for both systems.

We measure how well the soft alignment (atten-
tion model) of the NMT system match the align-
ments of fast-align with two metrics:

• a match score that checks for each output
if the aligned input word according to fast-
align is indeed the input word that received
the highest attention probability, and

• a probability mass score that sums up the

34

[Koehn and Knowles, 2017]
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Adequacy vs. Fluency in WMT16 Evaluation

Adequacy Fluency
+1% +13%

CS→EN DE→EN RO→EN RU→EN

60

80

100
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75.4 75.8

71.2 71.1

ONLINE-B UEDIN-NMT

CS→EN DE→EN RO→EN RU→EN
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64.6
68.4 66.7 67.8

78.7 77.5
71.9 74.3

ONLINE-B UEDIN-NMT

Figure: WMT16 direct assessment results
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Human Evaluation in TraMOOC [Castilho et al., 2018]

comparison of NMT and PBSMT for EN→{DE,EL,PT,RU}
direct assessment:

NMT obtains higher fluency judgment than PBSMT: +10%
NMT only obtains small improvement in adequacy judgment: +1%

Error Annotation
category SMT NMT difference
inflectional morphology 2274 1799 -21%
word order 1098 691 -37%
omission 421 362 -14%
addition 314 265 -16%
mistranslation 1593 1552 -3%
"no issue" 449 788 +75%
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Low-Resource Translation
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Figure 3: BLEU scores for English-Spanish sys-
tems trained on 0.4 million to 385.7 million
words of parallel data. Quality for NMT starts
much lower, outperforms SMT at about 15 mil-
lion words, and even beats a SMT system with a
big 2 billion word in-domain language model un-
der high-resource conditions.

How do the data needs of SMT and NMT com-
pare? NMT promises both to generalize better (ex-
ploiting word similary in embeddings) and condi-
tion on larger context (entire input and all prior
output words).

We built English-Spanish systems on WMT
data,7 about 385.7 million English words paired
with Spanish. To obtain a learning curve, we used

1
1024 , 1

512 , ..., 1
2 , and all of the data. For SMT, the

language model was trained on the Spanish part of
each subset, respectively. In addition to a NMT
and SMT system trained on each subset, we also
used all additionally provided monolingual data
for a big language model in contrastive SMT sys-
tems.

Results are shown in Figure 3. NMT ex-
hibits a much steeper learning curve, starting with
abysmal results (BLEU score of 1.6 vs. 16.4 for

1
1024 of the data), outperforming SMT 25.7 vs.
24.7 with 1

16 of the data (24.1 million words), and
even beating the SMT system with a big language
model with the full data set (31.1 for NMT, 28.4
for SMT, 30.4 for SMT+BigLM).

7Spanish was last represented in 2013, we used data from
http://statmt.org/wmt13/translation-task.html

Src: A Republican strategy to counter the re-election
of Obama

1
1024

Un órgano de coordinación para el anuncio de
libre determinación

1
512

Lista de una estrategia para luchar contra la
elección de hojas de Ohio

1
256

Explosión realiza una estrategia divisiva de
luchar contra las elecciones de autor

1
128

Una estrategia republicana para la eliminación
de la reelección de Obama

1
64

Estrategia siria para contrarrestar la reelección
del Obama .

1
32

+ Una estrategia republicana para contrarrestar la
reelección de Obama

Figure 4: Translations of the first sentence of
the test set using NMT system trained on varying
amounts of training data. Under low resource con-
ditions, NMT produces fluent output unrelated to
the input.

The contrast between the NMT and SMT learn-
ing curves is quite striking. While NMT is able to
exploit increasing amounts of training data more
effectively, it is unable to get off the ground with
training corpus sizes of a few million words or
less.

To illustrate this, see Figure 4. With 1
1024 of the

training data, the output is completely unrelated to
the input, some key words are properly translated
with 1

512 and 1
256 of the data (estrategia for strat-

egy, elección or elecciones for election), and start-
ing with 1

64 the translations become respectable.

3.3 Rare Words

Conventional wisdom states that neural machine
translation models perform particularly poorly on
rare words, (Luong et al., 2015; Sennrich et al.,
2016b; Arthur et al., 2016) due in part to the
smaller vocabularies used by NMT systems. We
examine this claim by comparing performance on
rare word translation between NMT and SMT
systems of similar quality for German–English
and find that NMT systems actually outperform
SMT systems on translation of very infrequent
words. However, both NMT and SMT systems
do continue to have difficulty translating some
infrequent words, particularly those belonging to
highly-inflected categories.

For the neural machine translation model, we
use a publicly available model8 with the training
settings of Edinburgh’s WMT submission (Sen-
nrich et al., 2016a). This was trained using Ne-

8https://github.com/rsennrich/wmt16-scripts/

31

[Koehn and Knowles, 2017]

Rico Sennrich Revisiting Challenges in NMT 10 / 49



Revisiting Challenges in NMT

1 Some Challenges in Neural MT
Long Sentences
Adequacy
Low-Resource Translation

2 Challenges Revisited
Long Sentences
Adequacy
Low-Resource Translation

3 Future Challenges

Rico Sennrich Revisiting Challenges in NMT 11 / 49



Why Are Long Sentences Hard?

different answers
training on long sentences efficiently is challenging
→ training–test mismatch

locally normalized models have bias towards low-entropy states
→ outputs too short (</s>)

long-distance interactions may be challenging due to network path
length (vanishing gradient)

...?
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Long Sentences: Training–Test Mismatch

0 10 20 30 40 50 60 70 80
25

30

35

27.1

28.5

29.6

31

33

34.7

34.1

31.3

27.7
26.9

27.6

28.7

30.3

32.3

33.8

34.7

31.5

33.9

Sentence Length (source, subword count)

B
L

E
U

BLEU Scores with Varying Sentence Length

Neural
Phrase-Based

Figure 7: Quality of translations based on sen-
tence length. SMT outperforms NMT for sen-
tences longer than 60 subword tokens. For very
long sentences (80+) quality is much worse due to
too short output.

3.5 Word Alignment

The key contribution of the attention model in neu-
ral machine translation (Bahdanau et al., 2015)
was the imposition of an alignment of the output
words to the input words. This takes the shape
of a probability distribution over the input words
which is used to weigh them in a bag-of-words
representation of the input sentence.

Arguably, this attention model does not func-
tionally play the role of a word alignment between
the source in the target, at least not in the same
way as its analog in statistical machine translation.
While in both cases, alignment is a latent variable
that is used to obtain probability distributions over
words or phrases, arguably the attention model has
a broader role. For instance, when translating a
verb, attention may also be paid to its subject and
object since these may disambiguate it. To fur-
ther complicate matters, the word representations
are products of bidirectional gated recurrent neu-
ral networks that have the effect that each word
representation is informed by the entire sentence
context.

But there is a clear need for an alignment mech-
anism between source and target words. For in-
stance, prior work used the alignments provided
by the attention model to interpolate word transla-
tion decisions with traditional probabilistic dictio-
naries (Arthur et al., 2016), for the introduction of
coverage and fertility models (Tu et al., 2016), etc.

But is the attention model in fact the proper
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Figure 8: Word alignment for English–German:
comparing the attention model states (green boxes
with probability in percent if over 10) with align-
ments obtained from fast-align (blue outlines).

means? To examine this, we compare the soft
alignment matrix (the sequence of attention vec-
tors) with word alignments obtained by traditional
word alignment methods. We use incremental
fast-align (Dyer et al., 2013) to align the input and
output of the neural machine system.

See Figure 8 for an illustration. We compare
the word attention states (green boxes) with the
word alignments obtained with fast align (blue
outlines). For most words, these match up pretty
well. Both attention states and fast-align align-
ment points are a bit fuzzy around the function
words have-been/sind.

However, the attention model may settle on
alignments that do not correspond with our intu-
ition or alignment points obtained with fast-align.
See Figure 9 for the reverse language direction,
German–English. All the alignment points appear
to be off by one position. We are not aware of any
intuitive explanation for this divergent behavior —
the translation quality is high for both systems.

We measure how well the soft alignment (atten-
tion model) of the NMT system match the align-
ments of fast-align with two metrics:

• a match score that checks for each output
if the aligned input word according to fast-
align is indeed the input word that received
the highest attention probability, and

• a probability mass score that sums up the

34

[Koehn and Knowles, 2017]

this is uedin-2016 system, trained with a maximum length of 50 subwords!
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How to Train on Long Sentences

Problem: time and memory increases with longest sentence in batch

Solutions
sort sentences of same length together [Sutskever et al., 2014]

adjust batch size depending on length [Johansen et al., 2016]

layer no. units
input alphabet size (X) 300
embedding sizes 256
char RNN (forward) 400
char RNN (backward) 400
attention 300
char decoder 400
target alphabet size (T ) 300

Table 1. Hyperparameter values used for training the
char-to-char model. Where Σsrc and Σtrg represent the
number of classes in the source and target languages, respec-
tively.

layer no. units
input alphabet size (X) 300
embedding sizes 256
char RNN (forward) 400
spaces RNN (forward) 400
spaces RNN (backward) 400
attention 300
char decoder 400
target alphabet size (T ) 300

Table 2. Hyperparameter values used for training the
char2word-to-charmodel. Where Σsrc and Σtrg repre-
sent the number of classes in the source and target languages,
respectively.

timesteps, which can result in a lot of wasted resources [Han-
nun et al., 2014] (see figure 4). Training translation models
is further complicated by the fact that source and target sen-
tences, while correlated, may have different lengths, and it is
necessary to consider both when constructing batches in order
to utilize computation power and RAM optimally.

To circumvent this issue, we start each epoch by shuffling
all samples in the dataset and sorting them with a stable sort-
ing algorithm according to both the source and target sentence
lengths. This ensures that any two samples in the dataset that
have almost the same source and target sentence lengths are
located close to each other in the sorted list while the exact
order of samples varies between epochs. To pack a batch we
simply started adding samples from the sorted sample list to
the batch, until we reached the maximal total allowed charac-
ter threshold (which we set to 50,000) for the full batch with
padding after which we would start on a new batch. Finally
all the batches are fed in random order to the model for train-
ing until all samples have been trained on, and a new epoch
begins. Figure 5 illustrates what such dynamic batches might
look like.

Fig. 4. A regular batch with random samples.

Fig. 5. Our dynamic batches of variable batch size and se-
quence length.

5.3. Results

5.3.1. Quantitative

The quantitative results of our models are illustrated in ta-
ble 3. Notice that the char2word-to-char model out-
performs the char-to-charmodel on all datasets (average
1.28 BLEU performance increase). This could be an indica-
tion that either having hierarchical, word-like, representations
on the encoder or simply the fact that the encoder was signifi-
cantly smaller, helps in NMT when using a character decoder
with attention.

[Johansen et al., 2016]
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Training on Long Sentences Matters
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Long Sentences: Label Bias

locally normalized models have label bias [Murray and Chiang, 2018]
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Figure 2: A locally normalized model must determine,
at each time step, a “budget” for the total remaining
log-probability. In this example sentence, “The British
women won Olymp ic gold in p airs row ing,” the empty
translation has initial position 622 in the beam. Already
by the third step of decoding, the correct translation
has a lower score than the empty translation. However,
using greedy search, a nonempty translation would be
returned.

3 Correcting Length

To address the brevity problem, many designers of
NMT systems add corrections to the model. These
corrections are often presented as modifications to
the search procedure. But, in our view, the brevity
problem is essentially a modeling problem, and
these corrections should be seen as modifications
to the model (Section 3.1). Furthermore, since
the root of the problem is local normalization, our
view is that these modifications should be trained
as globally-normalized models (Section 3.2).

3.1 Models
Without any length correction, the standard model
score (higher is better) is:

s(e) =

m∑

i=1

log P(ei | e1:i).

To our knowledge, there are three methods in
common use for adjusting the model to favor
longer sentences.

Length normalization divides the score by m
(Koehn and Knowles, 2017; Jean et al., 2015;
Boulanger-Lewandowski et al., 2013):

s′(e) = s(e) / m.

Google’s NMT system (Wu et al., 2016) relies
on a more complicated correction:

s′(e) = s(e)
/ (5 + m)α

(5 + 1)α
.

Finally, some systems add a constant word re-
ward (He et al., 2016):

s′(e) = s(e) + γm.

If γ = 0, this reduces to the baseline model. The
advantage of this simple reward is that it can be
computed on partial translations, making it easier
to integrate into beam search.

3.2 Training
All of the above modifications can be viewed as
modifications to the base model so that it is no
longer a locally-normalized probability model.

To train this model, in principle, we should use
something like the globally-normalized negative
log-likelihood:

L = − log
exp s′(e∗)∑
e exp s′(e)

where e∗ is the reference translation. However, op-
timizing this is expensive, as it requires perform-
ing inference on every training example or heuris-
tic approximations (Andor et al., 2016; Shen et al.,
2016).

Alternatively, we can adopt a two-tiered model,
familiar from phrase-based translation (Och and
Ney, 2002), first training s and then training s′

while keeping the parameters of s fixed, possibly
on a smaller dataset. A variety of methods, like
minimum error rate training (Och, 2003; He et al.,
2016), are possible, but keeping with the globally-
normalized negative log-likelihood, we obtain, for
the constant word reward, the gradient:

∂L
∂γ

= −|e∗| + E[|e|].

If we approximate the expectation using the mode
of the distribution, we get

∂L
∂γ
≈ −|e∗| + |ê|

where ê is the 1-best translation. Then the stochas-
tic gradient descent update is just the familiar per-
ceptron rule:

γ ← γ + η (|e∗| − |ê|),

214

→ (tunable) length penalty and variants result in simple globally
normalized model
→ other methods to escape local normalization include reconstruction
[Tu et al., 2017]
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Long-Distance Interactions

does network architecture affect learning of long-distance dependencies?

architectures

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

√
dk, and apply a softmax function to obtain the weights on the

values.

3

RNN/GRU/LSTM convolution self-attention
[Gehring et al., 2017] [Vaswani et al., 2017]
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Long-Distance Interactions: Targeted Evaluation

evaluation with contrastive pairs: LingEval97 [Sennrich, EACL 2017]

sentence prob.
English [...] that the plan will be approved
German (correct) [...], dass der Plan verabschiedet wird 0.1 3
German (contrastive) * [...], dass der Plan verabschiedet werden 0.01

subject-verb agreement

Rico Sennrich Revisiting Challenges in NMT 18 / 49



Long-Distance Interactions: RNN vs. GRU vs. LSTM

EN→DE WMT systems trained with Nematus

targeted evaluation of subject-verb agreement with Lingeval97
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Evaluating NMT Architectures
[Tang, Müller, Rios, Sennrich, EMNLP 2018]

EN→DE WMT systems trained with Sockeye
targeted evaluation of subject-verb agreement with Lingeval97
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Long Sentences: Conclusions

strongest evidence for weakness of NMT on long sentences comes
from old systems

discarding long sentences no longer necessary in NMT training
BLEU does not tell us why a system performs poorly on long
sentences

are translations too short?
→ train on long sentences; use global scores
is grammaticality poor?
→ architectures matter, but long-distance interactions modelled well by
GRU/LSTM and Transformer
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Targeted Analysis: Word Sense Disambiguation

system sentence
source Dort wurde er von dem Schläger und einer weiteren männl. Person erneut angegriffen.
reference There he was attacked again by his original attacker and another male.
our NMT There he was attacked again by the racket and another male person.
Google There he was again attacked by the bat and another male person.

Schläger

attackerracket bat

racket https://www.flickr.com/photos/128067141@N07/15157111178 / CC BY 2.0
attacker https://commons.wikimedia.org/wiki/File:Wikibully.jpg

bat1 www.personalcreations.com / CC-BY-2.0
bat2 Hasitha Tudugalle https://commons.wikimedia.org/wiki/File:Flying-Fox-Bat.jpg /
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Word Sense Disambiguation
[Rios, Mascarell, Sennrich, WMT 2017]

test set (ContraWSD)
35 ambiguous German nouns

2–4 senses per source noun

contrastive translation sets (1 or more contrastive translations)

≈ 100 test instances per sense
→≈ 7000 test instances

source: Also nahm ich meinen amerikanischen Reisepass
und stellte mich in die Schlange für Extranjeros.

reference: So I took my U.S. passport and got in the line for Extranjeros.

contrastive: So I took my U.S. passport and got in the snake for Extranjeros.
contrastive: So I took my U.S. passport and got in the serpent for Extranjeros.
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Word Sense Accuracy
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WSD is challenging, especially for rare word senses
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Word Sense Disambiguation:
Measuring Progress
[Rios, Müller, Sennrich, WMT 2018]

based on ContraWSD, but semi-automatic evaluation of 1-best output

evaluating all WMT 2018 submissions, plus systems from previous
years
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Results: Word Sense Disambiguation (uedin systems)

syntax-2016 nmt-2016 nmt-2017 nmt-2018
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improvements to NMT system
2016: shallow RNN

2017: deep RNN; layer normalization; better ensembles; slightly more
training data

2018: Transformer; more (noisy) training data
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Results: Word Sense Disambiguation (selected systems)
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WSD is big challenge for unsupervised NMT and rule-based system

all neural systems at WMT18 > 81%

big reduction in WSD errors in last 2 years
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Evaluating NMT Architectures
[Tang, Müller, Rios, Sennrich, EMNLP 2018]

comparing different architectures on same dataset

Transformer no better than RNN at long-distance agreement

interesting differences for word sense disambiguation:
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Evaluating NMT Architectures
[Tang, Müller, Rios, Sennrich, EMNLP 2018]

post-publication experiments:
models can be made more similar to Transformer with:

multihead attention
feedforward block
layer normalization
...

Transformer still ahead in WSD accuracy
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Revisiting Challenges in NMT

1 Some Challenges in Neural MT
Long Sentences
Adequacy
Low-Resource Translation

2 Challenges Revisited
Long Sentences
Adequacy
Low-Resource Translation

3 Future Challenges
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Low-Resource Translation
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Figure 3: BLEU scores for English-Spanish sys-
tems trained on 0.4 million to 385.7 million
words of parallel data. Quality for NMT starts
much lower, outperforms SMT at about 15 mil-
lion words, and even beats a SMT system with a
big 2 billion word in-domain language model un-
der high-resource conditions.

How do the data needs of SMT and NMT com-
pare? NMT promises both to generalize better (ex-
ploiting word similary in embeddings) and condi-
tion on larger context (entire input and all prior
output words).

We built English-Spanish systems on WMT
data,7 about 385.7 million English words paired
with Spanish. To obtain a learning curve, we used

1
1024 , 1

512 , ..., 1
2 , and all of the data. For SMT, the

language model was trained on the Spanish part of
each subset, respectively. In addition to a NMT
and SMT system trained on each subset, we also
used all additionally provided monolingual data
for a big language model in contrastive SMT sys-
tems.

Results are shown in Figure 3. NMT ex-
hibits a much steeper learning curve, starting with
abysmal results (BLEU score of 1.6 vs. 16.4 for

1
1024 of the data), outperforming SMT 25.7 vs.
24.7 with 1

16 of the data (24.1 million words), and
even beating the SMT system with a big language
model with the full data set (31.1 for NMT, 28.4
for SMT, 30.4 for SMT+BigLM).

7Spanish was last represented in 2013, we used data from
http://statmt.org/wmt13/translation-task.html

Src: A Republican strategy to counter the re-election
of Obama

1
1024

Un órgano de coordinación para el anuncio de
libre determinación

1
512

Lista de una estrategia para luchar contra la
elección de hojas de Ohio

1
256

Explosión realiza una estrategia divisiva de
luchar contra las elecciones de autor

1
128

Una estrategia republicana para la eliminación
de la reelección de Obama

1
64

Estrategia siria para contrarrestar la reelección
del Obama .

1
32

+ Una estrategia republicana para contrarrestar la
reelección de Obama

Figure 4: Translations of the first sentence of
the test set using NMT system trained on varying
amounts of training data. Under low resource con-
ditions, NMT produces fluent output unrelated to
the input.

The contrast between the NMT and SMT learn-
ing curves is quite striking. While NMT is able to
exploit increasing amounts of training data more
effectively, it is unable to get off the ground with
training corpus sizes of a few million words or
less.

To illustrate this, see Figure 4. With 1
1024 of the

training data, the output is completely unrelated to
the input, some key words are properly translated
with 1

512 and 1
256 of the data (estrategia for strat-

egy, elección or elecciones for election), and start-
ing with 1

64 the translations become respectable.

3.3 Rare Words

Conventional wisdom states that neural machine
translation models perform particularly poorly on
rare words, (Luong et al., 2015; Sennrich et al.,
2016b; Arthur et al., 2016) due in part to the
smaller vocabularies used by NMT systems. We
examine this claim by comparing performance on
rare word translation between NMT and SMT
systems of similar quality for German–English
and find that NMT systems actually outperform
SMT systems on translation of very infrequent
words. However, both NMT and SMT systems
do continue to have difficulty translating some
infrequent words, particularly those belonging to
highly-inflected categories.

For the neural machine translation model, we
use a publicly available model8 with the training
settings of Edinburgh’s WMT submission (Sen-
nrich et al., 2016a). This was trained using Ne-

8https://github.com/rsennrich/wmt16-scripts/

31

[Koehn and Knowles, 2017]
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Low-Resource Translation

aspects worth revisiting:

phrase-based benefit from large LM
but NMT can also improve with monolingual data

there were general improvements in NMT
do they move the point where NMT outperforms SMT?

the NMT system was not optimized for low-resource NMT
does tuning model to low-resource NMT help?
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Low-Resource Translation: Monolingual Data

There is a large pool of methods to exploit monolingual data for NMT:

ensembling with LM [Gülçehre et al., 2015]

training objective: language modelling [Sennrich et al., 2016, Ramachandran et al., 2016]

training objective: autoencoders [Luong et al., 2016, Currey et al., 2017]

training objective: round-trip translation
[Sennrich et al., 2016, He et al., 2016, Cheng et al., 2016]

unsupervised NMT [Artetxe et al., 2017, Lample et al., 2017]

similarly, parallel data from other language pairs can help
[Zoph et al., 2016, Chen et al., 2017, Nguyen and Chiang, 2017]

..but how far can we get with just parallel data?
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Low-Resource Translation: Experiments

setup
IWSLT14 German→English:

full set: 160 000 sentences (3.2M words)
smallest subset: 5000 sentences (100 000 words)

phrase-based SMT with Moses

neural MT with Nematus and BPE

baseline: hyperparameters similar to uedin@WMT16
shallow RNN, no dropout

comparison to [Koehn and Knowles, 2017]
[Koehn and Knowles, 2017]:
0.4 million to 385 million words of data (EN→ES WMT)

our experiments:
0.1 million to 3.2 million words of data (DE→EN IWSLT)
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Low-Resource Translation: Experiments

general architecture improvements:
bideep RNN [Miceli Barone et al., 2017]

layer normalization [Ba et al., 2016]

label smoothing [Szegedy et al., 2016]

choices optimized for low-resource scenario:
dropout [Srivastava et al., 2014]

tied embeddings [Press and Wolf, 2017]

smaller BPE vocabulary size for smaller data sets
smaller batch size for smaller data sets
lexical model [Nguyen and Chiang, 2018]
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Low-Resource Translation: Results

[Koehn and Knowles, 2017] our experiments
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Figure 3: BLEU scores for English-Spanish sys-
tems trained on 0.4 million to 385.7 million
words of parallel data. Quality for NMT starts
much lower, outperforms SMT at about 15 mil-
lion words, and even beats a SMT system with a
big 2 billion word in-domain language model un-
der high-resource conditions.

How do the data needs of SMT and NMT com-
pare? NMT promises both to generalize better (ex-
ploiting word similary in embeddings) and condi-
tion on larger context (entire input and all prior
output words).

We built English-Spanish systems on WMT
data,7 about 385.7 million English words paired
with Spanish. To obtain a learning curve, we used
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1024 , 1

512 , ..., 1
2 , and all of the data. For SMT, the

language model was trained on the Spanish part of
each subset, respectively. In addition to a NMT
and SMT system trained on each subset, we also
used all additionally provided monolingual data
for a big language model in contrastive SMT sys-
tems.

Results are shown in Figure 3. NMT ex-
hibits a much steeper learning curve, starting with
abysmal results (BLEU score of 1.6 vs. 16.4 for

1
1024 of the data), outperforming SMT 25.7 vs.
24.7 with 1

16 of the data (24.1 million words), and
even beating the SMT system with a big language
model with the full data set (31.1 for NMT, 28.4
for SMT, 30.4 for SMT+BigLM).

7Spanish was last represented in 2013, we used data from
http://statmt.org/wmt13/translation-task.html
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Figure 4: Translations of the first sentence of
the test set using NMT system trained on varying
amounts of training data. Under low resource con-
ditions, NMT produces fluent output unrelated to
the input.

The contrast between the NMT and SMT learn-
ing curves is quite striking. While NMT is able to
exploit increasing amounts of training data more
effectively, it is unable to get off the ground with
training corpus sizes of a few million words or
less.

To illustrate this, see Figure 4. With 1
1024 of the

training data, the output is completely unrelated to
the input, some key words are properly translated
with 1

512 and 1
256 of the data (estrategia for strat-

egy, elección or elecciones for election), and start-
ing with 1

64 the translations become respectable.

3.3 Rare Words

Conventional wisdom states that neural machine
translation models perform particularly poorly on
rare words, (Luong et al., 2015; Sennrich et al.,
2016b; Arthur et al., 2016) due in part to the
smaller vocabularies used by NMT systems. We
examine this claim by comparing performance on
rare word translation between NMT and SMT
systems of similar quality for German–English
and find that NMT systems actually outperform
SMT systems on translation of very infrequent
words. However, both NMT and SMT systems
do continue to have difficulty translating some
infrequent words, particularly those belonging to
highly-inflected categories.

For the neural machine translation model, we
use a publicly available model8 with the training
settings of Edinburgh’s WMT submission (Sen-
nrich et al., 2016a). This was trained using Ne-

8https://github.com/rsennrich/wmt16-scripts/
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Low-Resource Translation: Results

BLEU by
corpus size (words)

system 100k 3.2M

phrase-based SMT 14.1 24.3
NMT baseline 0.0 23.0
+dropout, tied embeddings, layer normalization,

6.0 30.0
bideep RNN, label smoothing

+reduce BPE vocabulary (14k→ 2k symbols) 9.3 -
+reduce batch size (4k→ 1k tokens) 9.7 29.9
+lexical model 11.0 29.5

Rico Sennrich Revisiting Challenges in NMT 39 / 49



Low-Resource Translation: Conclusions

the balance between PBSMT and NMT for low-resource settings is
shifting with

general improvements in NMT
careful choice of hyperparameters and architectures for low-resource
setting

it is no longer true that we cannot train NMT on less than 1M words...

...but low-resource machine translation remains a challenge

Rico Sennrich Revisiting Challenges in NMT 40 / 49



Revisiting Challenges in NMT

1 Some Challenges in Neural MT
Long Sentences
Adequacy
Low-Resource Translation

2 Challenges Revisited
Long Sentences
Adequacy
Low-Resource Translation

3 Future Challenges
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Are There Any Challenges Left?

Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser,

Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,

Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Abstract
Neural Machine Translation (NMT) is an end-to-end learning approach for automated translation,

with the potential to overcome many of the weaknesses of conventional phrase-based translation systems.
Unfortunately, NMT systems are known to be computationally expensive both in training and in translation
inference – sometimes prohibitively so in the case of very large data sets and large models. Several authors
have also charged that NMT systems lack robustness, particularly when input sentences contain rare words.
These issues have hindered NMT’s use in practical deployments and services, where both accuracy and
speed are essential. In this work, we present GNMT, Google’s Neural Machine Translation system, which
attempts to address many of these issues. Our model consists of a deep LSTM network with 8 encoder
and 8 decoder layers using residual connections as well as attention connections from the decoder network
to the encoder. To improve parallelism and therefore decrease training time, our attention mechanism
connects the bottom layer of the decoder to the top layer of the encoder. To accelerate the final translation
speed, we employ low-precision arithmetic during inference computations. To improve handling of rare
words, we divide words into a limited set of common sub-word units (“wordpieces”) for both input and
output. This method provides a good balance between the flexibility of “character”-delimited models and
the efficiency of “word”-delimited models, naturally handles translation of rare words, and ultimately
improves the overall accuracy of the system. Our beam search technique employs a length-normalization
procedure and uses a coverage penalty, which encourages generation of an output sentence that is most
likely to cover all the words in the source sentence. To directly optimize the translation BLEU scores,
we consider refining the models by using reinforcement learning, but we found that the improvement
in the BLEU scores did not reflect in the human evaluation. On the WMT’14 English-to-French and
English-to-German benchmarks, GNMT achieves competitive results to state-of-the-art. Using a human
side-by-side evaluation on a set of isolated simple sentences, it reduces translation errors by an average of
60% compared to Google’s phrase-based production system.

1 Introduction
Neural Machine Translation (NMT) [41, 2] has recently been introduced as a promising approach with the
potential of addressing many shortcomings of traditional machine translation systems. The strength of NMT
lies in its ability to learn directly, in an end-to-end fashion, the mapping from input text to associated
output text. Its architecture typically consists of two recurrent neural networks (RNNs), one to consume the
input text sequence and one to generate translated output text. NMT is often accompanied by an attention
mechanism [2] which helps it cope effectively with long input sequences.

An advantage of Neural Machine Translation is that it sidesteps many brittle design choices in traditional
phrase-based machine translation [26]. In practice, however, NMT systems used to be worse in accuracy than
phrase-based translation systems, especially when training on very large-scale datasets as used for the very
best publicly available translation systems. Three inherent weaknesses of Neural Machine Translation are
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we consider refining the models by using reinforcement learning, but we found that the improvement
in the BLEU scores did not reflect in the human evaluation. On the WMT’14 English-to-French and
English-to-German benchmarks, GNMT achieves competitive results to state-of-the-art. Using a human
side-by-side evaluation on a set of isolated simple sentences, it reduces translation errors by an average of
60% compared to Google’s phrase-based production system.

1 Introduction
Neural Machine Translation (NMT) [41, 2] has recently been introduced as a promising approach with the
potential of addressing many shortcomings of traditional machine translation systems. The strength of NMT
lies in its ability to learn directly, in an end-to-end fashion, the mapping from input text to associated
output text. Its architecture typically consists of two recurrent neural networks (RNNs), one to consume the
input text sequence and one to generate translated output text. NMT is often accompanied by an attention
mechanism [2] which helps it cope effectively with long input sequences.

An advantage of Neural Machine Translation is that it sidesteps many brittle design choices in traditional
phrase-based machine translation [26]. In practice, however, NMT systems used to be worse in accuracy than
phrase-based translation systems, especially when training on very large-scale datasets as used for the very
best publicly available translation systems. Three inherent weaknesses of Neural Machine Translation are
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Achieving Human Parity

laudable...
follows best practices with WMT-style evaluation

data released for scientific scrutiny (outputs, references, rankings)
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Achieving Human Parity

...but warrants further scrutiny
failure to reject null hypothesis is not evidence of parity

alternative hypothesis:
human raters prefer human translations on a document-level
rationale:

context helps raters understand text and spot semantic errors
discourse errors are invisible in sentence-level evaluation
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A Case for Document-level Evaluation
[Läubli, Sennrich, Volk, EMNLP 2018]

can we reproduce Microsoft’s finding with different evaluation protocol?

original evaluation our evaluation
test set WMT17 WMT17 (native Chinese part)
system Microsoft COMBO-6 Microsoft COMBO-6
raters crowd-workers professional translators
experimental unit sentence sentence / document
measurement direct assessment pairwise ranking
raters see reference no no
raters see source yes yes / no
ratings ≥ 2,520 per system ≈ 200 per setting
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Which Text is Better?

市民在日常出行中,发现爱车被陌生车辆阻碍了,在联系不上陌生车辆司机的情况下,可以使用“微信
挪车”功能解决这一困扰。

8月11日起,西安交警微信服务号“西安交警”推出“微信挪车”服务。

这项服务推出后,日常生活中,市民如遇陌生车辆在驾驶人不在现场的情况下阻碍自己车辆行驶时,就
可通过使用“微信挪车”功能解决此类问题。[...]

Members of the public who find their cars
obstructed by unfamiliar vehicles during their
daily journeys can use the "Twitter Move Car"
feature to address this distress when the driver
of the unfamiliar vehicle cannot be reached.

On August 11, Xi’an traffic police WeChat
service number "Xi’an traffic police" launched
"WeChat mobile" service.

With the launch of the service, members of
the public can tackle such problems in their
daily lives by using the "WeChat Move" fea-
ture when an unfamiliar vehicle obstructs the
movement of their vehicle while the driver is
not at the scene. [...]

A citizen whose car is obstructed by vehicle
and is unable to contact the owner of the ob-
structing vehicle can use the "WeChat Move
the Car" function to address the issue.

The Xi’an Traffic Police WeChat official ac-
count "Xi’an Jiaojing" released the "WeChat
Move the Car" service since August 11.

Once the service was released, a fellow citi-
zen whose car was obstructed by another ve-
hicle and where the driver of the vehicle was
not present, the citizen could use the "WeChat
Move the Car" function to address the issue.
[...]
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Evaluation Results: Bilingual Assessment
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Evaluation Results: Monolingual Assessment
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A Case for Document-level Evaluation

document-level ratings show significant preference for HUMAN

preference for HUMAN is even stronger in monolingual evaluation

Conclusions
distinguishing MT from human translations becomes harder with
increasing quality

document-level evaluation shows some limitations of current NMT
systems
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Conclusions

NMT has made tremendous progress in past years
→ to make progress, we need to regularly re-evaluate its weaknesses

word sense disambiguation, long sentences, low-resource settings
are still challenging, but no longer embarassingly bad

plenty of challenges remain, such as document-level translation

Rico Sennrich Revisiting Challenges in NMT 49 / 49



Thank you for your attention

Resources
WSD Test Suite:
https://github.com/a-rios/ContraWSD

Evaluation data on human parity:
https://github.com/laeubli/parity
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