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Why Revisit Challenges Regularly?

guide research directions NMT facts
have expiration date

signpost: lan Harding (CC BY-NC-SA 2.0)
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Revisiting Challenges in NMT

o Some Challenges in Neural MT
@ Long Sentences
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Encoder—Decoder Has Information Bottleneck
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Attention Brings Improvement

BLEU score
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Still, Poor Performance Reported for Long Sentences

BLEU Scores with Varying Sentence Length
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[Koehn and Knowles, 2017)
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Revisiting Challenges in NMT

o Some Challenges in Neural MT

@ Adequacy
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Adequacy vs. Fluency in WMT16 Evaluation
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Figure: WMT16 direct assessment results
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Human Evaluation in TraMOQOC [Castilho et al., 2018]

@ comparison of NMT and PBSMT for EN—{DE,EL,PT,RU}
@ direct assessment:

o NMT obtains higher fluency judgment than PBSMT: +10%
e NMT only obtains small improvement in adequacy judgment: +1%

Error Annotation

category SMT NMT | difference
inflectional morphology | 2274 1799 -21%
word order 1098 691 -37%
omission 421 362 -14%
addition 314 265 -16%
mistranslation 1593 1552 -3%
"no issue" 449 788 +75%
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Revisiting Challenges in NMT

o Some Challenges in Neural MT

@ Low-Resource Translation
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Low-Resource Translation

BLEU Scores with Varying Amounts of Training Data
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[Koehn and Knowles, 2017)
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Revisiting Challenges in NMT

9 Challenges Revisited
@ Long Sentences
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Why Are Long Sentences Hard?

different answers

@ training on long sentences efficiently is challenging
— training—test mismatch

@ locally normalized models have bias towards low-entropy states
— outputs too short (</s>)

@ long-distance interactions may be challenging due to network path
length (vanishing gradient)

e ..?
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Long Sentences: Training—Test Mismatch

BLEU Scores with Varying Sentence Length
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[Koehn and Knowles, 2017

this is uedin-2016 system, trained with a maximum length of 50 subwords!
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How to Train on Long Sentences

Problem: time and memory increases with longest sentence in batch

@ sort sentences of same length together [Sutskever et al., 2014]

@ adjust batch size depending on length [Johansen et al., 2016]

uuuuuuuuuuu

c
= 50,000 character:
[

250

8
2
g
5
g

x50

” e
x

125

[Johansen etal, 2016]

Rico Sennrich Revisiting Challenges in NMT 14/49



Training on Long Sentences Matters

BLEU

—+— max len 50
—— max len 200
T T

S o 9
8 & &
I
> o 2

source sentence length

BLEU score by source sentence length (number of subwords)

Rico Sennrich Revisiting Challenges in NMT 15/49



Long Sentences: Label Bias

locally normalized models have label bias [Murray and Chiang, 2018]
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— (tunable) length penalty and variants result in simple globally

normalized model
— other methods to escape local normalization include reconstruction

[Tuetal., 2017]
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Long-Distance Interactions

does network architecture affect learning of long-distance dependencies?

architectures

Output
Probabiities

@13 ® 6? Positonal Postional
3 A L E"Kvmdk'\g E;vo«ltl\'ia
RNN/GRU/LSTM convolution self-attention
[Gehring et al., 2017] [Vaswani et al., 2017]
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Long-Distance Interactions: Targeted Evaluation

evaluation with contrastive pairs: LingEval97 [Sennrich, EACL 2017]

| sentence | prob.
English [...] that the plan will be approved
German (correct) [...], dass der Plan verabschiedet wird 0.1

German (contrastive) | *[...], dass der Plan verabschiedet werden | 0.01

subject-verb agreement
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Long-Distance Interactions: RNN vs. GRU vs. LSTM

@ EN—DE WMT systems trained with Nematus
@ targeted evaluation of subject-verb agreement with Lingeval97
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Long-Distance Interactions: RNN vs. GRU vs. LSTM

@ EN—DE WMT systems trained with Nematus
@ targeted evaluation of subject-verb agreement with Lingeval97
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GRU/LSTM much more stable than RNN for long distances
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Evaluating NMT Architectures

[Tang, Mller, Rios, Sennrich, EMNLP 2018]

@ EN—DE WMT systems trained with Sockeye

@ targeted evaluation of subject-verb agreement with Lingeval97
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Evaluating NMT Architectures

[Tang, Mller, Rios, Sennrich, EMNLP 2018]

@ EN—DE WMT systems trained with Sockeye
@ targeted evaluation of subject-verb agreement with Lingeval97
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no evidence that Transformer or ConvS2S outperform LSTM for
long-distance interactions
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Long Sentences: Conclusions

@ strongest evidence for weakness of NMT on long sentences comes
from old systems
@ discarding long sentences no longer necessary in NMT training
@ BLEU does not tell us why a system performs poorly on long
sentences
e are translations too short?
— train on long sentences; use global scores
e is grammaticality poor?

— architectures matter, but long-distance interactions modelled well by
GRU/LSTM and Transformer
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Revisiting Challenges in NMT

9 Challenges Revisited

@ Adequacy
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Targeted Analysis: Word Sense Disambiguation

system sentence

source Dort wurde er von dem Schlager und einer weiteren mannl. Person erneut angegriffen.
reference | There he was attacked again by his original attacker and another male.

our NMT There he was attacked again by the racket and another male person.

Google There he was again attacked by the bat and another male person.

[ Schlager j

racket
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Word Sense Disambiguation
[Rios, Mascarell, Sennrich, WMT 2017]

test set (ContraWSD)
@ 35 ambiguous German nouns

@ 2-4 senses per source noun
@ contrastive translation sets (1 or more contrastive translations)

@ =~ 100 test instances per sense
— = 7000 test instances

source: Also nahm ich meinen amerikanischen Reisepass
und stellte mich in die Schlange fiir Extranjeros.
reference: So I took my U.S. passport and got in the line for Extranjeros.

contrastive:  So I took my U.S. passport and got in the snake for Extranjeros.
contrastive:  So I took my U.S. passport and got in the serpent for Extranjeros.
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Word Sense Accuracy
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Word Sense Accuracy
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WSD is challenging, especially for rare word senses
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Word Sense Disambiguation:

Measuring Progress
[Rios, Muller, Sennrich, WMT 2018]

@ based on ContraWSD, but semi-automatic evaluation of 1-best output

@ evaluating all WMT 2018 submissions, plus systems from previous
years
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Results: Word Sense Disambiguation (uedin systems)

100
° | 86.3
S g0 81.1
>
(&)
©
g 60
©

40

syntax-2016 nmt-2016 nmt-2017 nmt-2018

improvements to NMT system

@ 2016: shallow RNN

@ 2017: deep RNN; layer normalization; better ensembles; slightly more
training data

@ 2018: Transformer; more (noisy) training data
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Results: Word Sense Disambiguation (selected systems)
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@ WSD is big challenge for unsupervised NMT and rule-based system
@ all neural systems at WMT18 > 81%
@ big reduction in WSD errors in last 2 years
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Evaluating NMT Architectures l \
¢

[Tang, Mller, Rios, Sennrich, EMNLP 2018] 5

@ comparing different architectures on same dataset
@ Transformer no better than RNN at long-distance agreement
@ interesting differences for word sense disambiguation:
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Evaluating NMT Architectures ‘ ,

[Tang, Mller, Rios, Sennrich, EMNLP 2018]

post-publication experiments:

models can be made more similar to Transformer with:
@ multihead attention
@ feedforward block
@ layer normalization

o ..
Transformer still ahead in WSD accuracy
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Revisiting Challenges in NMT

9 Challenges Revisited

@ Low-Resource Translation
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Low-Resource Translation

BLEU Scores with Varying Amounts of Training Data
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Low-Resource Translation

aspects worth revisiting:
@ phrase-based benefit from large LM
but NMT can also improve with monolingual data

@ there were general improvements in NMT
do they move the point where NMT outperforms SMT?

@ the NMT system was not optimized for low-resource NMT
does tuning model to low-resource NMT help?
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Low-Resource Translation: Monolingual Data

There is a large pool of methods to exploit monolingual data for NMT:

@ ensembling with LM (ciicenre etal., 2015]

@ training objective: language modelling isennrich et al., 2016, Ramachandran et al., 2016]
@ training objective: autoencoders iLuongetal., 2016, Currey et al., 2017)

@ training objective: round-trip translation

[Sennrich et al., 2016, He et al., 2016, Cheng et al., 2016]

o unsupervised NMT [Artetxe et al., 2017, Lample et al., 2017]

similarly, parallel data from other language pairs can help

[Zoph et al., 2016, Chen et al., 2017, Nguyen and Chiang, 2017]
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Low-Resource Translation: Monolingual Data

There is a large pool of methods to exploit monolingual data for NMT:

@ ensembling with LM (ciicenre etal., 2015]

@ training objective: language modelling isennrich et al., 2016, Ramachandran et al., 2016]
@ training objective: autoencoders iLuongetal., 2016, Currey et al., 2017)

@ training objective: round-trip translation

[Sennrich et al., 2016, He et al., 2016, Cheng et al., 2016]

o unsupervised NMT [Artetxe et al., 2017, Lample et al., 2017]

similarly, parallel data from other language pairs can help

[Zoph et al., 2016, Chen et al., 2017, Nguyen and Chiang, 2017]

..but how far can we get with just parallel data?
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Low-Resource Translation: Experiments

@ IWSLT14 German—English:

o full set: 160000 sentences (3.2M words)
e smallest subset: 5000 sentences (100 000 words)

@ phrase-based SMT with Moses
@ neural MT with Nematus and BPE

@ baseline: hyperparameters similar to uedin@WMT16
shallow RNN, no dropout

comparison to [Koehn and Knowles, 2017]

[Koehn and Knowles, 2017]:
0.4 million to 385 million words of data (EN—ES WMT)

our experiments:
0.1 million to 3.2 million words of data (DE—EN IWSLT)
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Low-Resource Translation: Experiments

@ general architecture improvements:
o bideep RNN miceii Barone et al., 2017]
o layer normalization (gaetal. 2016]
o label SmOOthing [Szegedy et al., 2016]
@ choices optimized for low-resource scenario:
dropout [Srivastava et al., 2014]
tied embeddings [press and wolt, 2017]
smaller BPE vocabulary size for smaller data sets
smaller batch size for smaller data sets
lexical model (Nguyen and Ghiang, 2018]
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Low-Resource Translation:

Results

[Koehn and Knowles, 2017]

BLEU Scores with Varying Amounts of Training Data
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Low-Resource Translation: Results

[Koehn and Knowles, 2017]

BLEU Scores with Varying Amounts of Training Data
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Low-Resource Translation: Results
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Low-Resource Translation: Results

BLEU by
corpus size (words)
system 100k 3.2M
phrase-based SMT 141 24.3
NMT baseline 0.0 23.0
+dropout, tied embeddings, layer normalization, 6.0 300
bideep RNN, label smoothing ’ '
+reduce BPE vocabulary (14k — 2k symbols) 9.3 -
+reduce batch size (4k — 1k tokens) 9.7 29.9
+lexical model 11.0 29.5

Rico Sennrich Revisiting Challenges in NMT 39/49



Low-Resource Translation: Conclusions

@ the balance between PBSMT and NMT for low-resource settings is
shifting with
e general improvements in NMT
e careful choice of hyperparameters and architectures for low-resource
setting

@ itis no longer true that we cannot train NMT on less than 1M words...
@ ...but low-resource machine translation remains a challenge
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Revisiting Challenges in NMT

9 Future Challenges
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Are There Any Challenges Left?

Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

Microsoft reaches a historic milestone, using Al to match human
performance in translating news from Chinese to English

March 14, 2018 | Allison Linn

SDL Cracks Russian to English Neural Machine Translation

Global Enterprises to Capitalize on Near Perfect Russian to English Machine Translation as SDL Sets New Industry
Standard

June 19, 2018, Maidenhead, UK
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Are There Any Challenges Left?

Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

Microsoft reaches a historic milestone, using Al to match human
performance in translating news from Chinese to English

March 14, 2018 | Allison Linn

SDL Cracks Russian to English Neural Machine Translation

Global Enterprises to Capitalize on Near Perfect Russian to English Machine Translation as SDL Sets New Industry
Standard

June 19, 2018, Maidenhead, UK

...extraordinary claims require extraordinary evidence

Rico Sennrich Revisiting Challenges in NMT 42/49



Achieving Human Parity

Microsoft reaches a historic milestone, using Al to match human
performance in translating news from Chinese to English

March 14, 2018 | Allison Linn

laudable...

@ follows best practices with WMT-style evaluation
@ data released for scientific scrutiny (outputs, references, rankings)
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Achieving Human Parity

Microsoft reaches a historic milestone, using Al to match human
performance in translating news from Chinese to English

March 14, 2018 | Allison Linn

...but warrants further scrutiny
@ failure to reject null hypothesis is not evidence of parity
@ alternative hypothesis:

human raters prefer human translations on a document-level
@ rationale:

e context helps raters understand text and spot semantic errors
e discourse errors are invisible in sentence-level evaluation
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A Case for Document-level Evaluation

[Laubli, Sennrich, Volk, EMNLP 2018]

can we reproduce Microsoft’s finding with different evaluation protocol?

original evaluation

our evaluation

test set

system

raters

experimental unit
measurement
raters see reference
raters see source
ratings

WMT17

Microsoft COMBO-6
crowd-workers
sentence

direct assessment
no

yes

> 2,520 per system

Rico Sennrich

Revisiting Challenges in NMT

WMT17 (native Chinese part)
Microsoft COMBO-6
professional translators
sentence / document
pairwise ranking

no

yes / no

~ 200 per setting
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Which Text is Better?

Members of the public who find their cars A citizen whose car is obstructed by vehicle
obstructed by unfamiliar vehicles during their  and is unable to contact the owner of the ob-
daily journeys can use the "Twitter Move Car"  structing vehicle can use the "WeChat Move
feature to address this distress when the driver  the Car" function to address the issue.

of the unfamiliar vehicle cannot be reached.
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Which Text is Better?

Members of the public who find their cars
obstructed by unfamiliar vehicles during their
daily journeys can use the "Twitter Move Car"
feature to address this distress when the driver
of the unfamiliar vehicle cannot be reached.

On August 11, Xi'an traffic police WeChat
service number "Xi'an traffic police" launched
"WeChat mobile" service.

With the launch of the service, members of
the public can tackle such problems in their
daily lives by using the "WeChat Move" fea-
ture when an unfamiliar vehicle obstructs the
movement of their vehicle while the driver is
not at the scene. [...]

Rico Sennrich

A citizen whose car is obstructed by vehicle
and is unable to contact the owner of the ob-
structing vehicle can use the "WeChat Move
the Car" function to address the issue.

The Xi'an Traffic Police WeChat official ac-
count "Xi'an Jiaojing" released the "WeChat
Move the Car" service since August 11.

Once the service was released, a fellow citi-
zen whose car was obstructed by another ve-
hicle and where the driver of the vehicle was
not present, the citizen could use the "WeChat
Move the Car" function to address the issue.

L.
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Which Text is Better?
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Members of the public who find their cars
obstructed by unfamiliar vehicles during their
daily journeys can use the "Twitter Move Car"
feature to address this distress when the driver
of the unfamiliar vehicle cannot be reached.

On August 11, Xi'an traffic police WeChat
service number "Xi'an traffic police" launched
"WeChat mobile" service.

With the launch of the service, members of
the public can tackle such problems in their
daily lives by using the "WeChat Move" fea-
ture when an unfamiliar vehicle obstructs the
movement of their vehicle while the driver is
not at the scene. [...]

Rico Sennrich

A citizen whose car is obstructed by vehicle
and is unable to contact the owner of the ob-
structing vehicle can use the "WeChat Move
the Car" function to address the issue.

The Xi'an Traffic Police WeChat official ac-
count "Xi'an Jiaojing" released the "WeChat
Move the Car" service since August 11.

Once the service was released, a fellow citi-
zen whose car was obstructed by another ve-
hicle and where the driver of the vehicle was
not present, the citizen could use the "WeChat
Move the Car" function to address the issue.
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Evaluation Results: Bilingual Assessment
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Evaluation Results: Bilingual Assessment
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Evaluation Results: Monolingual Assessment
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Evaluation Results: Monolingual Assessment
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A Case for Document-level Evaluation

@ document-level ratings show significant preference for HUMAN

@ preference for HUMAN is even stronger in monolingual evaluation

@ distinguishing MT from human translations becomes harder with
increasing quality

@ document-level evaluation shows some limitations of current NMT
systems
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Conclusions

@ NMT has made tremendous progress in past years
— to make progress, we need to regularly re-evaluate its weaknesses

@ word sense disambiguation, long sentences, low-resource settings
are still challenging, but no longer embarassingly bad

@ plenty of challenges remain, such as document-level translation
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Thank you for your attention

Resources

@ WSD Test Suite:
https://github.com/a-rios/ContraWSD

@ Evaluation data on human parity:
https://github.com/laeubli/parity
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