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Recent Developments in NLP Leaderboard Race

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

√
dk, and apply a softmax function to obtain the weights on the

values.
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new neural architectures pre-training becomes mainstream
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Open Questions

how do neural architectures work?
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Open Questions

(why) does pre-training objective matter?
BERT-style masked language modeling better than causal language model
[Lample and Conneau, 2019]

“Language Modeling Teaches You More Syntax than Translation Does”
[Zhang and Bowman, 2018]

...but multilingual NMT may allow better cross-lingual transfer than mBERT
[Siddhant et al., 2019]
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What Do Transformers Learn?

1 how do neural architectures work?

2 (why) does pre-training objective matter?
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Analyzing Multi-Head Attention
[Voita, Talbot, Moiseev, Sennrich, Titov, ACL 2019]

multi-head self-attention is key Transformer
component
questions:

how to identify important attention heads?
can we prune unimportant ones?
which functions do attention heads have?

spoiler (paper title): “Specialized Heads Do
the Heavy Lifting, the Rest Can Be Pruned”
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Determining Importance of Self-Attention Heads

method 1: assume that “confident” heads (low entropy weight
distribution) are important

method 2: layerwise relevance propagation (LRP)
[Bach et al., 2015, Ding et al., 2017]

method 3: pruning: add regularization term to training objective
which deactivates unimportant heads
(L0 norm on scalar gates drawn from Hard Concrete Distribution)
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Determining Function of Self-Attention Heads

function of attention head is determined via simple rules
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Determining Function of Self-Attention Heads

positional: maximum attention weight is given to specific relative position
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Determining Function of Self-Attention Heads

syntactic: maximum attention weight is given to token in specific
dependency relation
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Determining Function of Self-Attention Heads

rare tokens: maximum attention weight is given to least frequent token
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Important Self-Attention Heads Are Specialized

LRP confidence function

5799

(a) LRP (b) confidence (c) head functions

Figure 1: Importance (according to LRP), confidence, and function of self-attention heads. In each layer, heads
are sorted by their relevance according to LRP. Model trained on 6m OpenSubtitles EN-RU data.

(a) LRP (EN-DE) (b) head functions

(c) LRP (EN-FR) (d) head functions

Figure 2: Importance (according to LRP) and function
of self-attention heads. In each layer, heads are sorted
by their relevance according to LRP. Models trained on
2.5m WMT EN-DE (a, b) and EN-FR (c, d).

We define the “confidence” of a head as the
average of its maximum attention weight exclud-
ing the end of sentence symbol,2 where average
is taken over tokens in a set of sentences used for
evaluation (development set). A confident head is
one that usually assigns a high proportion of its at-
tention to a single token. Intuitively, we might ex-
pect confident heads to be important to the trans-
lation task.

Layer-wise relevance propagation (LRP) (Ding
et al., 2017) is a method for computing the rela-
tive contribution of neurons at one point in a net-
work to neurons at another.3 Here we propose to
use LRP to evaluate the degree to which different
heads at each layer contribute to the top-1 logit
predicted by the model. Heads whose outputs have
a higher relevance value may be judged to be more
important to the model’s predictions.

2We exclude EOS on the grounds that it is not a real token.
3A detailed description of LRP is provided in appendix A.

The results of LRP are shown in Figures 1a, 2a,
2c. In each layer, LRP ranks a small number of
heads as much more important than all others.

The confidence for each head is shown in Fig-
ure 1b. We can observe that the relevance of a
head as computed by LRP agrees to a reasonable
extent with its confidence. The only clear excep-
tion to this pattern is the head judged by LRP to
be the most important in the first layer. It is the
most relevant head in the first layer but its average
maximum attention weight is low. We will discuss
this head further in Section 5.3.

5 Characterizing heads

We now turn to investigating whether heads
play consistent and interpretable roles within the
model.

We examined some attention matrices paying
particular attention to heads ranked highly by LRP
and identified three functions which heads might
be playing:

1. positional: the head points to an adjacent to-
ken,

2. syntactic: the head points to tokens in a spe-
cific syntactic relation,

3. rare words: the head points to the least fre-
quent tokens in a sentence.

Now we discuss the criteria used to determine
if a head is performing one of these functions and
examine properties of the corresponding heads.

5.1 Positional heads
We refer to a head as “positional” if at least 90%
of the time its maximum attention weight is as-
signed to a specific relative position (in practice
either -1 or +1, i.e. attention to adjacent tokens).
Such heads are shown in purple in Figures 1c for

important heads tend to be positional, syntactic, or focus on rare tokens.
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Pruning Self-Attention Heads

most heads (in encoder) can
be pruned with little quality
loss

most heads that survive prun-
ing have one of the functions
we identified
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What Do Transformers Learn?

1 how do neural architectures work?

2 (why) does pre-training objective matter?
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The Evolution of Representations
in the Transformer
[Voita, Sennrich, Titov, EMNLP 2019]

compare representations of models only differing in objective function:

same architecture (Transformer encoder)
same (source-side) training data (WMT EN→{DE,FR})

background: information bottleneck principle
[Tishby et al., 1999, Tishby and Zaslavsky, 2015]

hypothesis: deep neural model learns to com-
press input representation, retaining information
necessary to:

predict the output label

build representations of other tokens
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Same Architecture, Different Objective Functions

language model masked language model machine translation
(causal, LM) (MLM, aka BERT) (MT)
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Is (Input) Token Identity Preserved?

mutual information estimator clustering k-nearest neighbor accuracy

how can this be non-monotonic?

we measure MI/acc per position

in MLM, information about token is distributed across sentence
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Is Token Identity Preserved?

representations of is, are, were, was
(t-sne projection)

→
layers
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MT Preserves Token Position the Most

→
layers

distance between position of a repre-
sentation and its k-nearest neighbors

visualisation via t-sne projection
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Causal LM: Past and Future

lower layers in (causal) LM represent input (left token)

higher layers form representations predictive of output (right token)
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Conclusions

analysis of pruning of self-attention heads could lead to:
model interpretability
efficiency

learning objective affects information flow in Transformer

analysis of representations complements probing experiments
→ can be used to explain why:

some pre-training objectives are more successful
lower layers may perform better in some probing tasks than higher ones
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Thank you for your attention

more content in blog posts and papers!
https://lena-voita.github.io/posts/acl19_heads.html

https://lena-voita.github.io/posts/emnlp19_evolution.html

t-sne clustering of CCG tags
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High Importance of Rare Tokens: Overfitting?

[Voita et al. ACL 2019]: some
heads specialize on rare to-
kens

[Voita et al. EMNLP 2019]:
rare tokens highly influential

but effect goes away after ran-
domly swapping 10% of to-
kens
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