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Recent Developments in NLP Leaderboard Race
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Open Questions

how do neural architectures work?
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Open Questions

(why) does pre-training objective matter?

@ BERT-style masked language modeling better than causal language model
[Lample and Conneau, 2019]

@ “Language Modeling Teaches You More Syntax than Translation Does”
[Zhang and Bowman, 2018]

@ ...but multilingual NMT may allow better cross-lingual transfer than mBERT
[Siddhant et al., 2019]

Rico Sennrich What Do Transformers Learn? 3/18



What Do Transformers Learn?

0 how do neural architectures work?
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Analyzing Multi-Head Attention ‘A

[Voita, Talbot, Moiseev, Sennrich, Titov, ACL 2019] = N

@ multi-head self-attention is key Transformer

component
@ questions:
e how to identify important attention heads? Soed Dot ] \

@ can we prune unimportant ones?
e which functions do attention heads have?
@ spoiler (paper title): “Specialized Heads Do
the Heavy Lifting, the Rest Can Be Pruned”
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Determining Importance of Self-Attention Heads

@ method 1: assume that “confident” heads (low entropy weight
distribution) are important

@ method 2: layerwise relevance propagation (LRP)
[Bach et al., 2015, Ding et al., 2017]

@ method 3: pruning: add regularization term to training objective
which deactivates unimportant heads
(Lo norm on scalar gates drawn from Hard Concrete Distribution)
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Determining Function of Self-Attention Heads

function of attention head is determined via simple rules
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Determining Function of Self-Attention Heads

positional: maximum attention weight is given to specific relative position
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Determining Function of Self-Attention Heads

syntactic: maximum attention weight is given to token in specific
dependency relation
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Determining Function of Self-Attention Heads

rare tokens: maximum attention weight is given to least frequent token
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Important Self-Attention Heads Are Specialized

LRP

Heads relevance for top-1 logits
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important heads tend to be positional, syntactic, or focus on rare tokens.
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Pruning Self-Attention Heads

OpenSubtitles

most heads (in encoder) can
be pruned with little quality
loss

most heads that survive prun-
ing have one of the functions
we identified
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What Do Transformers Learn?

9 (why) does pre-training objective matter?
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The Evolution of Representations
in the Transformer
[Voita, Sennrich, Titov, EMNLP 2019]
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compare representations of models only differing in objective function:

@ same architecture (Transformer encoder)
@ same (source-side) training data (WMT EN—{DE,FR})

background: information bottleneck principle

[Tishby et al., 1999, Tishby and Zaslavsky, 2015]
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Same Architecture, Different Objective Functions
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language model masked language model machine translation

(causal, LM) (MLM, aka BERT) (MT)
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Is (Input) Token Identity Preserved?

MI(layer, src token)

Accuracy for top-50 neighbors
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how can this be non-monotonic?

@ we measure Ml/acc per position
@ in MLM, information about token is distributed across sentence
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Is Token Identity Preserved?

representations of is, are, , was
(t-sne projection)
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MT Preserves Token Position the Most

Position distance

Avg position distance
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distance between position of a repre- visualisation via t-sne projection
sentation and its k-nearest neighbors
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Causal LM: Past and Future

Same right token
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@ lower layers in (causal) LM represent input (left token)
@ higher layers form representations predictive of output (right token)
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Conclusions

@ analysis of pruning of self-attention heads could lead to:
e model interpretability
o efficiency
@ learning objective affects information flow in Transformer
@ analysis of representations complements probing experiments
— can be used to explain why:

e some pre-training objectives are more successful
e lower layers may perform better in some probing tasks than higher ones
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Thank you for your attention

more content in blog posts and papers!

@ https://lena-voita.github.io/posts/acl19_heads.html
@ https://lena-voita.github.io/posts/emnlpl9_evolution.html

MT

LM

MLM

t-sne clustering of CCG tags
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High Importance of Rare Tokens: Overfitting?
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[Voita et al. EMNLP 2019]:
rare tokens highly influential

but effect goes away after ran-
domly swapping 10% of to-
kens
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