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decoding strategies covered so far
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@ beam search
@ ensemble decoding
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beam search
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Vocabulary Selection Strategies

Vocabulary Selection Strategies

goal: reduce |V| )

[Jean et al., 2015]

at decoding time, select a subset of the target vocabulary for softmax and
search:

@ fixed set of most common target words
@ top translations of each source word according to IBM model
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Better Greedy Decoding

[CHostis et al., 2016]
@ empirical comparison of different vocabulary selection strategies
@ using IBM model (word alignment) performs best

20 | v

18 L/, -}/./"_
=
w16
® /
1a ’m‘k —
Word alignment ——
Phrase pairs —#%—
SVM —&—
Co-occurrences —#—
12 PCA 7
/ M‘ost frequen‘t ——
0 1000 2000 3000 4000 5000

Average vocabulary size (per sent.)

Figure 2: BLEU vs. vocabulary size for different
selection strategies.
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Better Greedy Decoding

sequence-level knowledge distillation [Kim and Rush, 2016]

goal: reduce k (improve quality of greedy decoding) J

sequence-level knowledge distillation [Kim and Rush, 2016]

@ train teacher network on original training data

@ train student network to mimic teacher
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@ word-level KD: minimize cross-entropy to teacher distribution
@ sequence-level: teacher translates training set (with beam search)

o KD: use 1-best translation as new reference
o interpolation: use translation that is closest to reference (BLEU) as
new reference
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Better Greedy Decoding

Reranking

sequence-level knowledge distillation [Kim and Rush, 2016]

@ experimental settings:
e English—German WMT 2014 data
e large teacher network (4 layers; hidden layer size 1000)
e small student network (2 layers; hidden layer size 500)

model BLEU (K=1) BLEU (K=5)
teacher baseline (4x1000) 17.7 19.5
sequence-level interpolation 19.6 19.8
student baseline (2x500) 14.7 17.6
word-level KD 15.4 17.7
sequence-level KD 18.9 19.0
sequence-level interpolation 18.5 18.7
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Reconstruction

phrase-based SMT
@ common in phrase-based SMT with linear framework

@ compute expensive features only for k-best translations

| A\

neural MT
@ if previous predictions are incorrect, predictions may be less reliable
— rerank with model trained to decode right-to-left
[Liu et al., 2016, Sennrich et al., 2016]

@ without coverage model, we may delete or repeat parts of source text
— rerank with reconstruction cost (p(S|T'))
[Li and Jurafsky, 2016, Tu et al., 2016]
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Reconstruction

Example 1 (under-

translation)

Dieser Zustand erhoéht vier bis fiinf Mal das Risiko, dass
eine transitorische ischamische Attacke (TIA) oder
Schlaganfall vorkommt.

This condition increases your risk by about four to five
times of having a transient ischaemic attack (TIA) or
stroke.

Reference

This condition increases the risk of transient ischaemic
attack (TIA) or stroke.
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Reranking Example 1

Icost rcost Translation Rank’

this condition increases the risk of transient

485 220 ischaemic attack ( TIA ) or stroke . /
this condition increases the risk of transient

a8 22 ischaemic attacks ( TIA ) or stroke . ©
this condition increases the risk of a transient

536 2.28 ischaemic attack ( TIA ) or stroke . °
this condition increases four to five times the

6.67 044 ik that transient ischaemic attack (TIA) or
this condition increases the risk of transient

513 222 ischemic attack ( TIA ) or stroke . 10

6.95 044 this situation increases four to five times the risk >

that transient ischaemic attack ( TIA ) or stroke

slide credit: Phil Williams

R. Sennrich MT - 2018 - 14 10/19




Constrained Decoding

2 Contributors: {this should be a list of wo
Mitarbeiter:
@ force translation of terminology
@ interactive machine translation
3 Donate link: http://example.com/
Spenden Link: ‘
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Constrained Decoding

Prefix-Constrained Decoding

cumbersome in phrase-based MT

very natural in neural MT

standard decoding:

n

p(T1S) =[] p(wilu. - ..

=1

yYi—1, L1y -

prefix-constrained decoding:

PRE:yl,...,yj

n
p(T|S7 PRE) = H p(yi‘yla"'7yi—1am17"'7mm)
i=j+1

simple change to decoding algorithm; no changes to model/training

v
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Constrained Decoding

arbitrary constraints

@ how can we decode with more general constraints?

@ keep track of how many constraints hypothesis fulfills
@ finished hypothesis is only valid if all constraints are fulfilled
@ challenge: hypotheses that fulfill constraints must survive pruning
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Grid Beam Search [Hokamp and Liu, 2017]
@ core idea: eliminate competition between hypotheses that fulfill
different number of constraints
@ 2d grid (each box is one beam):

@ X axis: number of time steps
@ y axis: number of constraint tokens matched

......

Input: Rights protection should begin before their departure .
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Constrained Decoding

Simultaneous Translation

Grid Beam Search [Hokamp and Liu, 2017]

@ very general:
@ agnostic to model architecture
@ requires no source-side information
@ requires no retraining

@ constraints must be in-vocabulary: use subword-level model

@ problem: high computational complexity: O(|V|ktc)
(k: beam size; t: length; c: # constraint tokens)
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Don’t Until the Final Verb Wait: Reinforcement Learning
for Simultaneous Machine Translation wisometa, 2014

objectives in simultaneous translation:

@ maximize translation quality

© minimize latency
to minimize latency, system may start translating before full input has been
seen
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Don’t Until the Final Verb Wait: Reinforcement Learning
for Simultaneous Machine Translation rssomietar. 2014

@ actions:
e commit partial translation
e wait for more words
o predict the next or final source word
@ goal: learn a policy that maximizes latency-bleu:

1
Qr.y) = & zt: BLEU(y;,7) + T - BLEU(yr, 7)
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2. Mit dem Zug bin
ich ich nach

Observation (prediction)
3. Mit dem Zug bin 4. Mit dem Zug bin

ich nach ... gefahren ...

1. Mit dem Zug
o0 o000
b Output: | traveled
g @ by train
L=

Output: | traveled

6. Mit dem Zug bin ich
nach Ulm gefahren.

by train
Output: | traveled to Uim
\, Fixed o
o output
til e

Figure 2: A simultaneous translation from source (German) to target (English). The agent
chooses to wait until after (3). At this point, it is sufficiently confident to predict the final verb
of the sentence (4). Given this additional information, it can now begin translating the sentence
into English, constraining future translations (5). As the rest of the sentence is revealed, the
system can translate the remainder of the sentence.
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