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Training Objectives

@ traditionally, NMT models are trained to minimize cross-entropy
(equivalent to minimizing perplexity, and maximizing the likelihood of
the training data)

@ we (to often) measure model performance via BLEU
@ can we directly optimize towards BLEU, or some other reward?

minimum risk training [Shen et al., 2016]

@ minimize the risk (expected loss) of the model
@ key ingredients:

e aloss function A (e.g. negative sentence-level BLEU)
e a set of translations S obtained via

@ sampling [Shen et al., 2016]

@ beam search [Edunov et al., 2017]

e (using the full set of translations ) is intractable)
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Minimum risk
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Minimum risk
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Minimum risk

minimum R .
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Domain Adaptation

Different text collections can be different in:
@ topic
@ genre
@ style
@ level of formality
o ...

all these factors may affect translation of ambiguous source words

we can optimize performance on a specific text collection
— domain adaptation
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Popular Domain Adaptation Techniques

@ for phrase-based SMT:

e weighting (or selection) of training data

e weighted combination of in-domain and out-of-domain model(s)
@ for neural MT:

e fine-tune model with SGD on in-domain data
(very effective)
e domain indicator word (less effective)
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Fine-Tuning for Domain Adaptation

Bleu on development set
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Open Challenges

there are lots of open challenges...
...some of which we’ve already discussed

today: a small selection of challenges not discussed so far
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Long Sentences

common claim: NMT performs poorly on long sentences

R. Sennrich MT - 2018 - 15 10/17



Long Sentences

attention helps

Figure 2: The BLEU scores
of the generated translations
on the test set with respect
to the lengths of the sen-
1 tences. The results are on
the full test set which in-
e 1 cludes sentences having un-
0 : P known words to the models.
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[Bahdanau et al., 2015]
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Long Sentences

[Koehn and Knowles, 2017] find degradation on long sentences
(system is not trained on long sentences)

BLEU Scores with Varying Sentence Length
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Figure 7: Quality of translations based on sen-
tence length. SMT outperforms NMT for sen-
tences longer than 60 subword tokens. For very
long sentences (80+) quality is much worse due to
too short output.
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Long Sentences

we can avoid poor translations with reconstruction objective
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Figure 5: Performance of the generated translations with re-
spect to the lengths of the input sentences on the test sets.

[Tu etal., 2016]
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Low-Resource Neural MT

BLEU Scores with Varying Amounts of Training Data
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@ learning curve is approximatively logarithmic

@ phrase-based SMT performs better in low-data conditions

@ even at 10”7 words (= 500 000 sentences), simple phrase-based
system performs better than neural MT
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Low-Resource Neural MT

which research that we discussed in previous lectures helps in
low-resource settings?
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Noisy Data

Ratioshuffled | 0% |  10% | 20% | 50%
SMT (BLEU) | 32.7 | 327 (-0.0) | 32.6 (-0.1) | 32.0 (-0.7)
NMT (BLEU) | 35.4 | 34.8(-0.6) | 32.1(-33) | 30.1 (-5.3)

Table 13.4: Impact of noise in the training data, with parts of the training corpus shuffled to contain

mis-aligned sentence pairs. Neural machine translation degrades severely, while statistical machine
translation holds up fairly well.

@ effect of noise on phrase-based SMT:
add some low-probability entries to translation model
@ effect of noise on neural MT:
change direction of parameter updates
— model learns to rely more on target history than source text (?)
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A Challenge Set for MT Evaluation [Isabelle et al., 2017]

Category Subcategory # PBMT-1 NMT Google NMT

Morpho-syntactic ~ Agreement across distractors 3 0% 100% 100%
through control verbs 4 25%  25% 25%

with coordinated target 3 0% 100% 100%

with coordinated source 12 17%  92% 75%

of past participles 4 25%  15% 75%

Subjunctive mood 3 33%  33% 67%

Lexico-syntactic ~ Argument switch 3 0% 0% 0%
Double-object verbs 3 33%  67% 100%

Fail-to 3 67% 100% 67%
Manner-of-movement verbs 4 0% 0% 0%

Overlapping subcat frames 5 60%  100% 100%

NP-to-VP 3 33%  67% 67%

Factitives 3 0%  33% 67%

Noun compounds 9 67%  67% 78%

Common idioms 6 50% 0% 33%

Syntactically flexible idioms 2 0% 0% 0%

Syntactic Yes-no question syntax 3 33% 100% 100%
Tag questions 3 0% 0% 100%

Stranded preps 6 0% 0% 100%

Adv-triggered inversion 3 0% 0% 33%

Middle voice 3 0% 0% 0%

Fronted should 3 67%  33% 33%

Clitic pronouns 5 40%  80% 60%

Ordinal placement 3 100%  100% 100%

Inalienable possession 6 50%  17% 83%

Zero REL PRO 3 0%  33% 100%

Table 3: Summary of scores by fine-grained categories. “#” reports number of questions in each cat-
egory, while the reported score is the percentage of questions for which the divergence was correctly
bridged. For each question, the three human judgments were transformed into a single judgment by
taking system outputs with two positive judgments as positive, and all others as negative.
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Idioms

from challenge set [Isabelle et al., 2017]

Source | His argument really hit the nail on the head.

Ref Son argument a vraiment fait mouche.
PBMT-1 | Son argument a vraiment mis le doigt dessus.
NMT Son argument a vraiment frappé le clou sur la téte. | X

Google | Son argument a vraiment frappé le clou sur la téte. | X
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Discourse Phenomena

most MT systems operate on sentence level, but some translations require
wider context.

example: most Romance languages mark gender in anaphoric pronouns

English | made a decision. Please respect it.
French  J’ai pris une décision. Respectez-la s’il vous plait.
French  Jai fait un choix. Respectez-le s'il vous plait.
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Further Reading

required reading
@ Koehn, 13.8
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