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Training Objectives

traditionally, NMT models are trained to minimize cross-entropy
(equivalent to minimizing perplexity, and maximizing the likelihood of
the training data)

we (to often) measure model performance via BLEU

can we directly optimize towards BLEU, or some other reward?

minimum risk training [Shen et al., 2016]
minimize the risk (expected loss) of the model
key ingredients:

a loss function ∆ (e.g. negative sentence-level BLEU)
a set of translations S obtained via

sampling [Shen et al., 2016]
beam search [Edunov et al., 2017]

(using the full set of translations Y is intractable)
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Minimum risk
maximum 
likelihood
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Domain Adaptation

Different text collections can be different in:

topic

genre

style

level of formality

...

all these factors may affect translation of ambiguous source words

we can optimize performance on a specific text collection
→ domain adaptation
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Popular Domain Adaptation Techniques

for phrase-based SMT:
weighting (or selection) of training data
weighted combination of in-domain and out-of-domain model(s)

for neural MT:
fine-tune model with SGD on in-domain data
(very effective)
domain indicator word (less effective)
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Fine-Tuning for Domain Adaptation
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Open Challenges

there are lots of open challenges...
...some of which we’ve already discussed

today: a small selection of challenges not discussed so far
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Long Sentences

common claim: NMT performs poorly on long sentences
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Long Sentences

attention helps
Published as a conference paper at ICLR 2015
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Figure 2: The BLEU scores
of the generated translations
on the test set with respect
to the lengths of the sen-
tences. The results are on
the full test set which in-
cludes sentences having un-
known words to the models.

2012 and news-test-2013 to make a development (validation) set, and evaluate the models on the test
set (news-test-2014) from WMT ’14, which consists of 3003 sentences not present in the training
data.

After a usual tokenization6, we use a shortlist of 30,000 most frequent words in each language to
train our models. Any word not included in the shortlist is mapped to a special token ([UNK]). We
do not apply any other special preprocessing, such as lowercasing or stemming, to the data.

4.2 MODELS

We train two types of models. The first one is an RNN Encoder–Decoder (RNNencdec, Cho et al.,
2014a), and the other is the proposed model, to which we refer as RNNsearch. We train each model
twice: first with the sentences of length up to 30 words (RNNencdec-30, RNNsearch-30) and then
with the sentences of length up to 50 word (RNNencdec-50, RNNsearch-50).

The encoder and decoder of the RNNencdec have 1000 hidden units each.7 The encoder of the
RNNsearch consists of forward and backward recurrent neural networks (RNN) each having 1000
hidden units. Its decoder has 1000 hidden units. In both cases, we use a multilayer network with a
single maxout (Goodfellow et al., 2013) hidden layer to compute the conditional probability of each
target word (Pascanu et al., 2014).

We use a minibatch stochastic gradient descent (SGD) algorithm together with Adadelta (Zeiler,
2012) to train each model. Each SGD update direction is computed using a minibatch of 80 sen-
tences. We trained each model for approximately 5 days.

Once a model is trained, we use a beam search to find a translation that approximately maximizes the
conditional probability (see, e.g., Graves, 2012; Boulanger-Lewandowski et al., 2013). Sutskever
et al. (2014) used this approach to generate translations from their neural machine translation model.

For more details on the architectures of the models and training procedure used in the experiments,
see Appendices A and B.

5 RESULTS

5.1 QUANTITATIVE RESULTS

In Table 1, we list the translation performances measured in BLEU score. It is clear from the table
that in all the cases, the proposed RNNsearch outperforms the conventional RNNencdec. More
importantly, the performance of the RNNsearch is as high as that of the conventional phrase-based
translation system (Moses), when only the sentences consisting of known words are considered.
This is a significant achievement, considering that Moses uses a separate monolingual corpus (418M
words) in addition to the parallel corpora we used to train the RNNsearch and RNNencdec.

6 We used the tokenization script from the open-source machine translation package, Moses.
7 In this paper, by a ’hidden unit’, we always mean the gated hidden unit (see Appendix A.1.1).

5

[Bahdanau et al., 2015]
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Long Sentences

[Koehn and Knowles, 2017] find degradation on long sentences
(system is not trained on long sentences)
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Figure 7: Quality of translations based on sen-
tence length. SMT outperforms NMT for sen-
tences longer than 60 subword tokens. For very
long sentences (80+) quality is much worse due to
too short output.

3.5 Word Alignment

The key contribution of the attention model in neu-
ral machine translation (Bahdanau et al., 2015)
was the imposition of an alignment of the output
words to the input words. This takes the shape
of a probability distribution over the input words
which is used to weigh them in a bag-of-words
representation of the input sentence.

Arguably, this attention model does not func-
tionally play the role of a word alignment between
the source in the target, at least not in the same
way as its analog in statistical machine translation.
While in both cases, alignment is a latent variable
that is used to obtain probability distributions over
words or phrases, arguably the attention model has
a broader role. For instance, when translating a
verb, attention may also be paid to its subject and
object since these may disambiguate it. To fur-
ther complicate matters, the word representations
are products of bidirectional gated recurrent neu-
ral networks that have the effect that each word
representation is informed by the entire sentence
context.

But there is a clear need for an alignment mech-
anism between source and target words. For in-
stance, prior work used the alignments provided
by the attention model to interpolate word transla-
tion decisions with traditional probabilistic dictio-
naries (Arthur et al., 2016), for the introduction of
coverage and fertility models (Tu et al., 2016), etc.

But is the attention model in fact the proper
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Figure 8: Word alignment for English–German:
comparing the attention model states (green boxes
with probability in percent if over 10) with align-
ments obtained from fast-align (blue outlines).

means? To examine this, we compare the soft
alignment matrix (the sequence of attention vec-
tors) with word alignments obtained by traditional
word alignment methods. We use incremental
fast-align (Dyer et al., 2013) to align the input and
output of the neural machine system.

See Figure 8 for an illustration. We compare
the word attention states (green boxes) with the
word alignments obtained with fast align (blue
outlines). For most words, these match up pretty
well. Both attention states and fast-align align-
ment points are a bit fuzzy around the function
words have-been/sind.

However, the attention model may settle on
alignments that do not correspond with our intu-
ition or alignment points obtained with fast-align.
See Figure 9 for the reverse language direction,
German–English. All the alignment points appear
to be off by one position. We are not aware of any
intuitive explanation for this divergent behavior —
the translation quality is high for both systems.

We measure how well the soft alignment (atten-
tion model) of the NMT system match the align-
ments of fast-align with two metrics:

• a match score that checks for each output
if the aligned input word according to fast-
align is indeed the input word that received
the highest attention probability, and

• a probability mass score that sums up the

34

[Koehn and Knowles, 2017]
R. Sennrich MT – 2018 – 15 10 / 17



Long Sentences

we can avoid poor translations with reconstruction objective

over-translation problems, which is consistent with the find-
ing in other work (Tu et al. 2016b). Incorporating recon-
struction significantly alleviates these problems, and reduces
11.0% and 38.5% of under-translation and over-translation
errors respectively. The main reason is that both under-
translation and over-translation lead to lower reconstruction
scores, and thus are penalized by the reconstruction objec-
tive. As a result, the corresponding candidate is less likely to
be selected as the final translation.

Figure 5: Performance of the generated translations with re-
spect to the lengths of the input sentences on the test sets.

Length Analysis Following Bahdanau et al. (2015), we
group sentences of similar lengths together and compute the
BLEU score for each group, as shown in Figure 5. Clearly
the proposed approach outperforms all the other systems
in all length segments. Specifically, RNNSEARCH outper-
forms Moses on all sentence segments, while its perfor-
mance degrades faster than its competitors, which is con-
sistent with the finding in (Bentivogli et al. 2016). This is
mainly due to that RNNSEARCH seriously suffers from in-
adequate translations on long sentences (Tu et al. 2016b).
Our model explicitly encourages the decoder to incorporate
source information as much as possible, and thus the im-
provements are more significant on long sentences.

Comparison with Previous Work
We re-implement the methods of Tu et al. (2016b; 2016a)
on top of RNNSEARCH. For the coverage mechanism (Tu et
al. 2016b), we use the neural network based coverage, and
the coverage dimension is 100. For the context gates (Tu et
al. 2016a), we apply them on both source and target sides.
Table 7 lists the comparison results. Coverage mechanism
and context gates significantly improve translation perfor-
mance individually, and combining them achieves a further
improvement. This is consistent with the results in (Tu et al.
2016b; 2016a). Our model consistently improves the trans-
lation performance when further combined with the models.

Related Work
Our work is inspired by research on improving NMT by:

Model Test 4
RNNSEARCH 30.65
RNNSEARCH+Cov. 31.89
RNNSEARCH+Cov.+Rec. 33.44 +1.6
RNNSEARCH+Ctx. 32.05
RNNSEARCH+Ctx.+Rec. 33.51 +1.5
RNNSEARCH+Cov.+Ctx. 33.12
RNNSEARCH+Cov.+Ctx.+Rec. 34.09 +1.0

Table 7: Comparison with previous work on enhancing ade-
quacy of NMT. “Cov.” denotes coverage mechanism to keep
track of the attention history (Tu et al. 2016b), and “Ctx.” de-
notes context gate to dynamically control the ratios at which
source and target contexts contribute to the generation of tar-
get words (Tu et al. 2016a).

Enhancing Translation Adequacy Recently, several
work shows that NMT favors fluent but inadequate trans-
lations (Tu et al. 2016b; 2016a). While all the work is to-
wards enhancing adequacy of NMT, our approach is compli-
mentary: the above work is still under the standard encoder-
decoder framework, while we propose a novel encoder-
decoder-reconstructor framework. Experiments show that
combining those models together can further improve the
translation performance.

Improving Beam Search Standard NMT models exploit
a simple beam search algorithm to generate the translation
word by word. Several researchers rescore word candidates
with additional features, such as language model probabil-
ity (Gulcehre et al. 2015) and SMT features (He et al. 2016;
Stahlberg et al. 2016). In contrast, Li and Jurafsky (2016)
rescore translation candidates on sentence-level with the
mutual information between source and target sides. In the
above work, NMT is treated as a black-box and its weighted
outputs are combined with other features only in testing. In
this work, we move forward further by incorporating recon-
struction score into the objective of training, which leads to
creation of better translation candidates.

Capturing Bidirectional Dependency Standard NMT
models only capture the unidirectional dependency from
source to target with the likelihood objective. It has been
shown that combination of two directional models out-
performs each model alone (Liang et al. 2006; Cheng et
al. 2016a; Cheng et al. 2016b). Among them, Cheng et
al. (2016b) reconstruct the monolingual corpora with two
separate source-to-target and target-to-source NMT models.
Closely related to Cheng et al. (2016b), our approach aims at
enhancing adequacy of unidirectional (i.e., source-to-target)
NMT via an auxiliary target-to-source objective on parallel
corpora, while theirs focuses on learning bidirectional NMT
models via auto-encoders on monolingual corpora. There-
fore, we use the decoder states as the input of the recon-
structor, to encourage the target representation to contain
the complete source information to reconstruct back to the
source sentence.

[Tu et al., 2016]
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Low-Resource Neural MT

94 CHAPTER 13. NEURAL MACHINE TRANSLATION
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Figure 13.48: BLEU scores for English-Spanish systems trained on 0.4 million to 385.7 million words of
parallel data. Quality for neural machine translation starts much lower, outperforms statistical machine
translation at about 15 million words, and even beats a statistical machine translation system with a big
2 billion word in-domain language model under high-resource conditions.

learning curve is approximatively logarithmic

phrase-based SMT performs better in low-data conditions

even at 107 words (≈ 500 000 sentences), simple phrase-based
system performs better than neural MT
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Low-Resource Neural MT

discuss in pairs
which research that we discussed in previous lectures helps in
low-resource settings?
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Noisy Data

96 CHAPTER 13. NEURAL MACHINE TRANSLATION

Ratio shuffled 0% 10% 20% 50%
SMT (BLEU) 32.7 32.7 (–0.0) 32.6 (–0.1) 32.0 (–0.7)
NMT (BLEU) 35.4 34.8 (–0.6) 32.1 (–3.3) 30.1 (–5.3)

Table 13.4: Impact of noise in the training data, with parts of the training corpus shuffled to contain
mis-aligned sentence pairs. Neural machine translation degrades severely, while statistical machine
translation holds up fairly well.

Is this still the case for neural machine translation? Chen et al. (2016a) considered one kind
of noise: misaligned sentence pairs in an experiments with a large English–French parallel
corpus. They shuffle the target side of part of the training corpus, so that these sentence pairs
are mis-aligned.

Table 13.4 shows the result. Statistical machine translation systems hold up fairly well.
Even with 50% of the data perturbed, the quality only drops from 32.7 to 32.0 BLEU points,
about what is to be expected with half the valid training data. However, the neural machine
translation system degrades severely, from 35.4 to 30.1 BLEU points, a drop of 5.3 points, com-
pared to the 0.7 point drop for statistical systems.

A possible explanation for this poor behavior of neural machine translation models is that
its prediction has to find a good balance between language model and input context as the main
driver. When training observes increasing ratios of training example, for which the input sen-
tence is a meaningless distraction, it may generally learn to rely more on the output language
model aspect, hence hallucinating fluent by inadequate output.

13.8.4 Word Alignment

The key contribution of the attention model in neural machine translation (Bahdanau et al.,
2015) was the imposition of an alignment of the output words to the input words. This takes
the shape of a probability distribution over the input words which is used to weigh them in a
bag-of-words representation of the input sentence.

Arguably, this attention model does not functionally play the role of a word alignment
between the source in the target, at least not in the same way as its analog in statistical machine
translation. While in both cases, alignment is a latent variable that is used to obtain probability
distributions over words or phrases, arguably the attention model has a broader role. For
instance, when translating a verb, attention may also be paid to its subject and object since these
may disambiguate it. To further complicate matters, the word representations are products of
bidirectional gated recurrent neural networks that have the effect that each word representation
is informed by the entire sentence context.

But there is a clear need for an alignment mechanism between source and target words.
For instance, prior work used the alignments provided by the attention model to interpolate
word translation decisions with traditional probabilistic dictionaries (Arthur et al., 2016), for
the introduction of coverage and fertility models (Tu et al., 2016b), etc.

effect of noise on phrase-based SMT:
add some low-probability entries to translation model

effect of noise on neural MT:
change direction of parameter updates
→ model learns to rely more on target history than source text (?)
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A Challenge Set for MT Evaluation [Isabelle et al., 2017]
Category Subcategory # PBMT-1 NMT Google NMT
Morpho-syntactic Agreement across distractors 3 0% 100% 100%

through control verbs 4 25% 25% 25%
with coordinated target 3 0% 100% 100%
with coordinated source 12 17% 92% 75%
of past participles 4 25% 75% 75%

Subjunctive mood 3 33% 33% 67%
Lexico-syntactic Argument switch 3 0% 0% 0%

Double-object verbs 3 33% 67% 100%
Fail-to 3 67% 100% 67%
Manner-of-movement verbs 4 0% 0% 0%
Overlapping subcat frames 5 60% 100% 100%
NP-to-VP 3 33% 67% 67%
Factitives 3 0% 33% 67%
Noun compounds 9 67% 67% 78%
Common idioms 6 50% 0% 33%
Syntactically flexible idioms 2 0% 0% 0%

Syntactic Yes-no question syntax 3 33% 100% 100%
Tag questions 3 0% 0% 100%
Stranded preps 6 0% 0% 100%
Adv-triggered inversion 3 0% 0% 33%
Middle voice 3 0% 0% 0%
Fronted should 3 67% 33% 33%
Clitic pronouns 5 40% 80% 60%
Ordinal placement 3 100% 100% 100%
Inalienable possession 6 50% 17% 83%
Zero REL PRO 3 0% 33% 100%

Table 3: Summary of scores by fine-grained categories. “#” reports number of questions in each cat-
egory, while the reported score is the percentage of questions for which the divergence was correctly
bridged. For each question, the three human judgments were transformed into a single judgment by
taking system outputs with two positive judgments as positive, and all others as negative.

• The so-called French “inalienable posses-
sion” construction arises when an agent per-
forms an action on one of her body parts, e.g.
I brushed my teeth. The French translation
will normally replace the possessive article
with a definite one and introduce a reflexive
pronoun, e.g. Je me suis brossé les dents (’I
brushed myself the teeth’). In our dataset, the
Google system gets this right for examples in
the first and third persons (sentences S25a,b)
but fails to do the same with the example in
the second person (sentence S25c).

Then there are also phenomena that current
NMT systems, even with massive amounts of data,
appear to be completely missing:

• Common and syntactically flexible idioms.
While PBMT-1 produces an acceptable trans-
lation for half of the idiomatic expressions of

S15 and S16, the local NMT system misses
them all and the Google system does barely
better. NMT systems appear to be short on
raw memorization capabilities.

• Control verbs. Two different classes of verbs
can govern a subject NP, an object NP plus
an infinitival complement. With verbs of the
“object-control” class (e.g. “persuade”), the
object of the verb is understood as the seman-
tic subject of the infinitive. But with those of
the “subject-control” class (e.g. “promise”),
it is rather the subject of the verb which
plays that semantic role. None of the sys-
tems tested here appear to get a grip on sub-
ject control cases, as evidenced by the lack
of correct feminine agreement on the French
adjectives in sentences S2b–d.

• Argument switching verbs. All systems tested

2493
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Idioms

from challenge set [Isabelle et al., 2017]

Source His argument really hit the nail on the head.
Ref Son argument a vraiment fait mouche.
PBMT-1 Son argument a vraiment mis le doigt dessus. 3

NMT Son argument a vraiment frappé le clou sur la tête. 7

Google Son argument a vraiment frappé le clou sur la tête. 7
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Discourse Phenomena

most MT systems operate on sentence level, but some translations require
wider context.

example: most Romance languages mark gender in anaphoric pronouns

English I made a decision. Please respect it.
French J’ai pris une décision. Respectez-la s’il vous plaît.
French J’ai fait un choix. Respectez-le s’il vous plaît.
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Further Reading

required reading
Koehn, 13.8

R. Sennrich MT – 2018 – 15 17 / 17



Bibliography I

Bahdanau, D., Cho, K., and Bengio, Y. (2015).
Neural Machine Translation by Jointly Learning to Align and Translate.
In Proceedings of the International Conference on Learning Representations (ICLR).

Edunov, S., Ott, M., Auli, M., Grangier, D., and Ranzato, M. (2017).
Classical Structured Prediction Losses for Sequence to Sequence Learning.
CoRR, abs/1711.04956.

Isabelle, P., Cherry, C., and Foster, G. (2017).
A Challenge Set Approach to Evaluating Machine Translation.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2486–2496,
Copenhagen, Denmark. Association for Computational Linguistics.

Koehn, P. and Knowles, R. (2017).
Six Challenges for Neural Machine Translation.
In Proceedings of the First Workshop on Neural Machine Translation, pages 28–39, Vancouver. Association for Computational
Linguistics.

Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2016).
Minimum Risk Training for Neural Machine Translation.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin,
Germany.

Tu, Z., Liu, Y., Shang, L., Liu, X., and Li, H. (2016).
Neural Machine Translation with Reconstruction.
CoRR, abs/1611.01874.

R. Sennrich MT – 2018 – 15 18 / 17


	Tidbits
	Training Objectives
	Domain Adaptation

	Open Challenges
	Long Sentences
	Low-Resource MT
	Noisy Data
	Challenging Linguistic Phenomena


