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Attentional encoder-decoder: Maths

(one type of) attention model

eij = v>a tanh(Wasi−1 + Uahj)

αij = softmax(eij)

ci =

Tx∑

j=1

αijhj
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Attention model

[Xu et al., 2015]
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Attention model
Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st
from a multinouilli distribution defined by Equation 8.

s̃t ∼ MultinoulliL({αi})

∂Ls
∂W

≈ 1

N

N∑

n=1

[
∂ log p(y | s̃n,a)

∂W
+

log p(y | s̃n,a)∂ log p(s̃
n | a)

∂W

]
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
kth mini-batch, the moving average baseline is estimated
as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9× bk−1 + 0.1× log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value α. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

∂Ls
∂W

≈ 1

N

N∑

n=1

[
∂ log p(y | s̃n,a)

∂W
+

λr(log p(y | s̃n,a)− b)
∂ log p(s̃n | a)

∂W
+ λe

∂H[s̃n]

∂W

]

where, λr and λe are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, φ ({ai} , {αi})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by α.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =

L∑

i=1

αt,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
φ ({ai} , {αi}) =

∑L
i αiai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft α

[Xu et al., 2015]

R. Sennrich MT – 2018 – 06 5 / 22



Alignment

word-alignment between source and target words is used for various
applications

translate rare/unknown words with back-off dictionary:
source The indoor temperature is very pleasant.
reference Das Raumklima ist sehr angenehm.
[Bahdanau et al., 2015] Die UNK ist sehr angenehm
[Jean et al., 2015] Die Temperatur ist sehr angenehm.

(more on open-vocabulary MT in future lecture)

attention has been used to obtain alignments. However, ...
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Attention is not alignment
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Figure 7: Quality of translations based on sen-
tence length. SMT outperforms NMT for sen-
tences longer than 60 subword tokens. For very
long sentences (80+) quality is much worse due to
too short output.

3.5 Word Alignment

The key contribution of the attention model in neu-
ral machine translation (Bahdanau et al., 2015)
was the imposition of an alignment of the output
words to the input words. This takes the shape
of a probability distribution over the input words
which is used to weigh them in a bag-of-words
representation of the input sentence.

Arguably, this attention model does not func-
tionally play the role of a word alignment between
the source in the target, at least not in the same
way as its analog in statistical machine translation.
While in both cases, alignment is a latent variable
that is used to obtain probability distributions over
words or phrases, arguably the attention model has
a broader role. For instance, when translating a
verb, attention may also be paid to its subject and
object since these may disambiguate it. To fur-
ther complicate matters, the word representations
are products of bidirectional gated recurrent neu-
ral networks that have the effect that each word
representation is informed by the entire sentence
context.

But there is a clear need for an alignment mech-
anism between source and target words. For in-
stance, prior work used the alignments provided
by the attention model to interpolate word transla-
tion decisions with traditional probabilistic dictio-
naries (Arthur et al., 2016), for the introduction of
coverage and fertility models (Tu et al., 2016), etc.

But is the attention model in fact the proper

re
la

tio
ns

be
tw

ee
n

O
ba

m
a

an
d

N
et

an
ya

hu

ha
ve

be
en

st
ra

in
ed

fo
r

ye
ar

s
.

die
Beziehungen

zwischen

Obama

und
Netanjahu

sind

seit

Jahren
angespannt

.

56

89

72

16

26

96

79

98

42

11

11

14

38

22

84

23

54 10

98

49

Figure 8: Word alignment for English–German:
comparing the attention model states (green boxes
with probability in percent if over 10) with align-
ments obtained from fast-align (blue outlines).

means? To examine this, we compare the soft
alignment matrix (the sequence of attention vec-
tors) with word alignments obtained by traditional
word alignment methods. We use incremental
fast-align (Dyer et al., 2013) to align the input and
output of the neural machine system.

See Figure 8 for an illustration. We compare
the word attention states (green boxes) with the
word alignments obtained with fast align (blue
outlines). For most words, these match up pretty
well. Both attention states and fast-align align-
ment points are a bit fuzzy around the function
words have-been/sind.

However, the attention model may settle on
alignments that do not correspond with our intu-
ition or alignment points obtained with fast-align.
See Figure 9 for the reverse language direction,
German–English. All the alignment points appear
to be off by one position. We are not aware of any
intuitive explanation for this divergent behavior —
the translation quality is high for both systems.

We measure how well the soft alignment (atten-
tion model) of the NMT system match the align-
ments of fast-align with two metrics:

• a match score that checks for each output
if the aligned input word according to fast-
align is indeed the input word that received
the highest attention probability, and

• a probability mass score that sums up the

34

[Koehn and Knowles, 2017]
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Attention is not alignment
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Figure 9: Mismatch between attention states and
desired word alignments (German–English).

probability mass given to each alignment
point obtained from fast-align.

In these scores, we have to handle byte pair encod-
ing and many-to-many alignments11

In out experiment, we use the neural machine
translation models provided by Edinburgh12 (Sen-
nrich et al., 2016a). We run fast-align on the same
parallel data sets to obtain alignment models and
used them to align the input and output of the
NMT system. Table 3 shows alignment scores for
the systems. The results suggest that, while dras-
tic, the divergence for German–English is an out-
lier. We note, however, that we have seen such
large a divergence also under different data condi-
tions.

Note that the attention model may produce bet-
ter word alignments by guided alignment training
(Chen et al., 2016; Liu et al., 2016) where super-
vised word alignments (such as the ones produced
by fast-align) are provided to model training.

11(1) NMT operates on subwords, but fast-align is run on
full words. (2) If an input word is split into subwords by
byte pair encoding, then we add their attention scores. (3)
If an output word is split into subwords, then we take the
average of their attention vectors. (4) The match scores and
probability mass scores are computed as average over output
word-level scores. (5) If an output word has no fast-align
alignment point, it is ignored in this computation. (6) If an
output word is fast-aligned to multiple input words, then (6a)
for the match score: count it as correct if the n aligned words
among the top n highest scoring words according to attention
and (6b) for the probability mass score: add up their attention
scores.

12https://github.com/rsennrich/wmt16-scripts

Language Pair Match Prob.
German–English 14.9% 16.0%
English–German 77.2% 63.2%
Czech–English 78.0% 63.3%
English–Czech 76.1% 59.7%
Russian–English 72.5% 65.0%
English–Russian 73.4% 64.1%

Table 3: Scores indicating overlap between at-
tention probabilities and alignments obtained with
fast-align.

3.6 Beam Search

The task of decoding is to find the full sentence
translation with the highest probability. In statis-
tical machine translation, this problem has been
addressed with heuristic search techniques that ex-
plore a subset of the space of possible translation.
A common feature of these search techniques is a
beam size parameter that limits the number of par-
tial translations maintained per input word.

There is typically a straightforward relationship
between this beam size parameter and the model
score of resulting translations and also their qual-
ity score (e.g., BLEU). While there are dimin-
ishing returns for increasing the beam parameter,
typically improvements in these scores can be ex-
pected with larger beams.

Decoding in neural translation models can be
set up in similar fashion. When predicting the next
output word, we may not only commit to the high-
est scoring word prediction but also maintain the
next best scoring words in a list of partial trans-
lations. We record with each partial translation
the word translation probabilities (obtained from
the softmax), extend each partial translation with
subsequent word predictions and accumulate these
scores. Since the number of partial translation ex-
plodes exponentially with each new output word,
we prune them down to a beam of highest scoring
partial translations.

As in traditional statistical machine translation
decoding, increasing the beam size allows us to
explore a larger set of the space of possible transla-
tion and hence find translations with better model
scores.

However, as Figure 10 illustrates, increasing the
beam size does not consistently improve transla-
tion quality. In fact, in almost all cases, worse
translations are found beyond an optimal beam
size setting (we are using again Edinburgh’s WMT

35

[Koehn and Knowles, 2017]
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Attention is not alignment

discuss in pairs
how can NMT model translate text, even if attention is off?
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Obtaining Attention Scores

with D being our parallel training corpus.

3 Attention-based Models

Our various attention-based models are classifed
into two broad categories, global and local. These
classes differ in terms of whether the “attention”
is placed on all source positions or on only a few
source positions. We illustrate these two model
types in Figure 2 and 3 respectively.

Common to these two types of models is the fact
that at each time step t in the decoding phase, both
approaches first take as input the hidden state ht

at the top layer of a stacking LSTM. The goal is
then to derive a context vector ct that captures rel-
evant source-side information to help predict the
current target word yt. While these models differ
in how the context vector ct is derived, they share
the same subsequent steps.

Specifically, given the target hidden state ht and
the source-side context vector ct, we employ a
simple concatenation layer to combine the infor-
mation from both vectors to produce an attentional
hidden state as follows:

h̃t = tanh(Wc[ct;ht]) (5)

The attentional vector h̃t is then fed through the
softmax layer to produce the predictive distribu-
tion formulated as:

p(yt|y<t, x) = softmax(Wsh̃t) (6)

We now detail how each model type computes
the source-side context vector ct.

3.1 Global Attention
The idea of a global attentional model is to con-
sider all the hidden states of the encoder when de-
riving the context vector ct. In this model type,
a variable-length alignment vector at, whose size
equals the number of time steps on the source side,
is derived by comparing the current target hidden
state ht with each source hidden state h̄s:

at(s) = align(ht, h̄s) (7)

=
exp

(
score(ht, h̄s)

)
∑

s′ exp
(
score(ht, h̄s′)

)

Here, score is referred as a content-based function
for which we consider three different alternatives:

score(ht, h̄s)=





h⊤
t h̄s dot

h⊤
t Wah̄s general

v⊤
a tanh

(
Wa[ht; h̄s]

)
concat

yt

h̃t

ct

at

ht

h̄s

Global align weights

Attention Layer

Context vector

Figure 2: Global attentional model – at each time
step t, the model infers a variable-length align-
ment weight vector at based on the current target
state ht and all source states h̄s. A global context
vector ct is then computed as the weighted aver-
age, according to at, over all the source states.

Besides, in our early attempts to build attention-
based models, we use a location-based function
in which the alignment scores are computed from
solely the target hidden state ht as follows:

at = softmax(Waht) location (8)

Given the alignment vector as weights, the context
vector ct is computed as the weighted average over
all the source hidden states.6

Comparison to (Bahdanau et al., 2015) – While
our global attention approach is similar in spirit
to the model proposed by Bahdanau et al. (2015),
there are several key differences which reflect how
we have both simplified and generalized from the
original model. First, we simply use hidden states
at the top LSTM layers in both the encoder and
decoder as illustrated in Figure 2. Bahdanau et
al. (2015), on the other hand, use the concatena-
tion of the forward and backward source hidden
states in the bi-directional encoder and target hid-
den states in their non-stacking uni-directional de-
coder. Second, our computation path is simpler;
we go from ht → at → ct → h̃t then make
a prediction as detailed in Eq. (5), Eq. (6), and
Figure 2. On the other hand, at any time t, Bah-
danau et al. (2015) build from the previous hidden
state ht−1 → at → ct → ht, which, in turn,

6Eq. (8) implies that all alignment vectors at are of the
same length. For short sentences, we only use the top part of
at and for long sentences, we ignore words near the end.

attention variants from [Luong et al., 2015]
many ways to score encoder states:

concat : attention as introduced by [Bahdanau et al., 2015]

dot : more attention on similar vectors
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Conditioning Attention on Past Decisions

attention in dl4mt-tutorial (and Nematus):

s′i = GRU1(si−1, yi−1)

ci = ATT (C, s′i)

si = GRU2(ci, s
′
i)

motivation
(simple) attention model from lecture 4 is only conditioned on si−1...
...but it also matters which word we predicted last (yi−1)

more transitions per timestep→ more depth
[Miceli Barone et al., 2017])
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Guided Alignment Training [Chen et al., 2016]

core idea
1 compute alignment with external tool

(IBM models; discussed in later lecture)
2 if multiple source words align to same target words,

normalize so that
∑

j Aij = 1

3 modify objective function of NMT training:
minimize target sentence cross-entropy (as before)
minimize divergence between model attention α and external
alignment A:

H(A,α) = − 1

Ty

Ty∑

i=1

Tx∑

j=1

Aij logαij
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Incorporating Structural Alignment Biases

core idea [Cohn et al., 2016]
we know that alignment has some biases, which are exploited in statistical
word alignment algorithms [Brown et al., 1990, Koehn et al., 2003]:

position bias: relative position is highly informative for alignment

fertility/coverage: some words produce multiple words in target
language
all source words should be covered (respecting fertility)

bilingual symmetry: αs←t and αs→t are symmetrical
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Incorporating Structural Alignment Biases

position bias
provide attention model with positional information

found to be especially helpful with non-recurrent architectures
different choices for positional encoding:

[Cohn et al., 2016]: log(1 + i)
[Gehring et al., 2017]: positional embedding: E(i)
[Vaswani et al., 2017]: sine/cosine function
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Incorporating Structural Alignment Biases

coverage without fertility
reminder:

Tx∑
j

αij = 1 (softmax)

idea: model should attend to each source word exactly once:

Ty∑
i

αij ≈ 1 (our goal)

we can bias model towards this goal with regularisation term:

Tx∑
j

(1−
Ty∑
i

αij)
2 (to be minimized)

discuss in pairs
is this the right goal? why / why not?
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Incorporating Structural Alignment Biases

coverage with fertility [Cohn et al., 2016, Tu et al., 2016]
idea: learn fertility of words with neural network:

fj = Nσ(Wjhj)

coverage objective that takes fertility into account:

Tx∑
j

(fj −
Ty∑
i

αij)
2 (to be minimized)
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Incorporating Structural Alignment Biases

bilingual symmetry
joint training objective with trace bonus B, which rewards symmetric
attention:

B(αs←t, αs→t) =
Ty∑

i=1

Tx∑

j=1

αs→tij αs←tji

Figure 2: Symmetric training with trace bonus, computed as

matrix multiplication, − tr(αs←tαs→t >). Dark shading indi-

cates higher values.

also modelled and the inferences of both directional
models are combined – evidenced by the symmetri-
sation heuristics used in most decoders (Koehn et al.,
2005), and also by explicit joint agreement training
objectives (Liang et al., 2006; Ganchev et al., 2008).
The rationale is that both models make somewhat
independent errors, so an ensemble stands to gain
from variance reduction.

We propose a method for joint training of
two directional models as pictured in Figure 2.
Training twinned models involves optimising
L = − log p(t|s)− log p(s|t) + γB where, as
before, we consider only a single sentence pair,
for simplicity of notation. This corresponds to a
pseudo-likelihood objective, with the B linking
the two models.5 The B component considers the
alignment (attention) matrices, αs→t ∈ RJ×I and
αt←s ∈ RI×J , and attempts to make these close
to one another for both translation directions (see
Fig. 2). To achieve this, we use a ‘trace bonus’,
inspired by (Levinboim et al., 2015), formulated as

B = − tr(αs←t >αs→t) =
∑

j

∑
i

αs←t
i,j αs→t

j,i .

As the alignment cells are normalised using the
softmax and thus take values in [0,1], the trace term
is bounded above by min(I, J) which occurs when
the two alignment matrices are transposes of each
other, representing perfect one-to-one alignments in
both directions

lang-pair # tokens (K) # types (K)
Zh-En 422 454 3.44 3.12
Ru-En 1639 1809 145 65
Et-En 1411 1857 90 25
Ro-En 1782 1806 39 24

Table 1: Statistics of the training sets, showing in each cell the

count for the source language (left) and target language (right).

4 Experiments

Datasets. We conducted our experiments with
four language pairs, translating between English↔
Romanian, Estonian, Russian and Chinese. These
languages were chosen to represent a range of trans-
lation difficulties, including languages with signifi-
cant morphological complexity (Estonian, Russian).
We focus on a (simulated) low resource setting,
where only a limited amount of training data is avail-
able. This serves to demonstrate the robustness and
generalisation of our model on sparse data – some-
thing that has not yet been established for neural
models with millions of parameters with vast poten-
tial for over-fitting.

Table 1 shows the statistics of the training sets.6

For Chinese-English, the data comes from the BTEC
corpus, where the number of training sentence pairs
is 44,016. We used ‘devset1 2’ and ‘devset 3’ as
the development and test sets, respectively, and in
both cases used only the first reference for evalu-
ation. For Romanian and Estonian, the data come
from the Europarl corpus (Koehn, 2005), where we
used 100K sentence pairs for training, and 3K for
development and 2K for testing.7 The Russian-
English data was taken from a web derived corpus
(Antonova and Misyurev, 2011). The dataset is split
into three parts using the same technique as for the
Europarl sets. During the preprocessing stage we
lower-cased and tokenized the data, and excluded
sentences longer than 30 words. For the Europarl

5We could share some parameters, e.g., the word embedding
matrices, however we found this didn’t make much difference
versus using disjoint parameter sets. We set γ = 1 herein.

6For all datasets words were thresholded for training fre-
quency≥ 5, with uncommon training and unseen testing words
replaced by an 〈unk〉 symbol.

7The first 100K sentence pairs were used for training, while
the development and test were drawn from the last 100K sen-
tence pairs, taking the first 2K for testing and the last 3K for
development.

880
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Further Reading

Philipp Koehn and Rebecca Knowles (2017). Six Challenges for
Neural Machine Translation.
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Coursework

Coursework
available at the end of this week

deadline: March 15, 3pm

you are encouraged to work in pairs. More details to follow

training models takes hours or days, so start early

I will have no sympathy if you don’t realize you can’t do this
coursework last minute

Lab Sessions
two lab sessions will provide support getting started
(installation of tools and virtual environment)

Tuesday, February 6, 15.10-16.00
Room 4.12, Appleton Tower
Wednesday, February 7, 15.10-16.00
Room 5.08, North Lab, Appleton Tower

attendance not mandatory
→ try to start coursework yourself before those datesR. Sennrich MT – 2018 – 06 22 / 22
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