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Text Representation Problem

how do we represent text in NMT?

@ 1-hot encoding

o lookup of word embedding for input

e probability distribution over vocabulary for output
@ large vocabularies translation is open-vocabulary problem

o increase network size @ many training corpora contain millions of word types

d traini d decodi d . . . R
o decrease fraining and cecoding spee @ productive word formation processes (compounding; derivation) allow

@ typical network vocabulary size: 10 000—100 000 symbols formation and understanding of unseen words

@ names, numbers are morphologically simple, but open word classes

representation of "cat" )
vocabulary | 1-hot vector | embedding
0 |the 0 0.1
1 cat 1
2 is 0 b
0.7
1024 | mat 0 s
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Non-Solution: Ignore Rare Words

@ replace out-of-vocabulary words with UNK J
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Solution 1: Approximative Softmax

why 95% is not enough
rare outcomes have high self-information

source
reference

[Bahdanau et al., 2015]

The indoor temperature is very pleasant.

Das Raumklima ist sehr angenehm.

Die UNK ist sehr angenehm. X
Die Innenpool ist sehr angenehm. X
Die Innen+ temperatur ist sehr angenehm.

[Jean et al., 2015]

[Sennrich, Haddow, Birch, ACL 2016]
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approximative softmax [Jean et al., 2015]

compute softmax over "active" subset of vocabulary
— smaller weight matrix, faster softmax

@ at training time: vocabulary based on words occurring in training set
partition

@ at test time: determine likely target words based on source text
(using cheap method like translation dictionary)

4

@ allows larger vocabulary, but still not open

@ network may not learn good representation of rare words
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Solution 2: Back-off Models

back-off models [Jean et al., 2015, Luong et al., 2015]

@ replace rare words with UNK at training time

@ when system produces UNK, align UNK to source word, and translate
this with back-off method

source The indoor temperature is very pleasant.
reference Das Raumklima ist sehr angenehm.
Bandanauetal, 2015]  Die UNK ist sehr angenehm. X
[Jean et al., 2015] Die Innenpool ist sehr angenehm. X

@ compounds: hard to model 1-to-many relationships

@ morphology: hard to predict inflection with back-off dictionary
@ names: if alphabets differ, we need transliteration

@ alignment: attention model unreliable
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Subwords for NMT: Motivation

e Open-vocabulary models

@ Solution 3: Subword NMT
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Subword units

MT is an open-vocabulary problem

@ compounding and other productive morphological processes

o they charge a carry-on bag
@ sie erheben eine Hand|gepack]|

@ names
o Obama(English; German)
o Obava (Russian)
e 7 /\ ¥ (o-ba-ma) (Japanese)

@ technical terms, numbers, etc.
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Byte pair encoding for word segmentation

segmentation algorithms: wishlist

@ open-vocabulary NMT: encode all words through small vocabulary
@ encoding generalizes to unseen words

@ small text size

@ good translation quality

y

our experiments [Sennrich et al., 2016]

@ after preliminary experiments, we propose:

e character n-grams (with shortlist of unsegmented words)
e segmentation via byte pair encoding (BPE)
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bottom-up character merging

@ starting point: character-level representation
— computationally expensive

@ compress representation based on information theory
— byte pair encoding icage, 19941

@ repeatedly replace most frequent symbol pair ('A’;B’) with ’AB’

@ hyperparameter: when to stop
— controls vocabulary size

word freq
'l o w</w>’ 5
ow e r</w>’ 2
‘new e s t</w>’ 6
‘'wide s t</w>’ 3

vocabulary:
| o w</w>w e r</w>nst</w>id
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Byte pair encoding for word segmentation

bottom-up character merging

@ starting point: character-level representation
— computationally expensive

@ compress representation based on information theory
— byte pair encoding icage, 1994

@ repeatedly replace most frequent symbol pair ('A’;B’) with ’AB’

@ hyperparameter: when to stop
— controls vocabulary size

word freq word freq
o w</w>’ 5 vocabulary: T o w</w>’ 5 vocabulary:
Tow e r</w>’ 2 o w</w>w e r</w>nst</w>id Tow e r</w>’ 2 low</w>wer</w>nst</w>id
newest</w>" | 6 es newest</w>" | 6 es est</w>
‘wides t</w>’ 3 'widest</w>’ 3
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Byte pair encoding for word segmentation

bottom-up character merging

@ starting point: character-level representation
— computationally expensive

@ compress representation based on information theory
— byte pair encoding (cage, 1994

@ repeatedly replace most frequent symbol pair ('A’;B’) with ’AB’

@ hyperparameter: when to stop
— controls vocabulary size

word freq
‘lo w</w>’ 5
‘low e r</w>’ 2
'n e w est</w>’ 6
‘'wid est</w>’ 3

vocabulary:
| o w</W>w e r</w>nst</w>id
es est</w> lo
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Byte pair encoding for word segmentation

why BPE?
@ open-vocabulary:
operations learned on training set can be applied to unknown words

@ compression of frequent character sequences improves efficiency
— trade-off between text length and vocabulary size

es — es
low e s t</w>’ est</w> — est</w>
lo — lo
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why BPE?

@ open-vocabulary:
operations learned on training set can be applied to unknown words

@ compression of frequent character sequences improves efficiency
— trade-off between text length and vocabulary size

es — es
| o w es t</w>’ est</w> — est</w>
lo — lo

es — es
‘| o w est</w>’ es t</w> — est</w>
lo — lo
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Evaluation: data and methods

Byte pair encoding for word segmentation

why BPE?

@ open-vocabulary:
operations learned on training set can be applied to unknown words

@ compression of frequent character sequences improves efficiency
— trade-off between text length and vocabulary size

es — es
lo w est</w>’ est</w> — esi</w>
lo — lo
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@ WMT 15 English—German and English—Russian

@ attentional encoder—decoder neural network

@ parameters and settings as in [Bahdanau et al, 2014]
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Subword NMT: Translation Quality Subword NMT: Translation Quality

NMT Results EN-RU
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Examples MT — 2018 — 07

system sentence

source health research

reference Gesundheitsforschungs

word-level (with back-off) | Forschungs

character bigrams Folrs|ch|un|gs|in|st|it|ut|io|ne|

BPE Gesundheits|forschjungsin|

Source rakfisk o Open-vocabulary models
reference pakducka (rakfiska)

word-level (with back-off) | rakfisk — UNK — rakfisk
character bigrams ralkflis|k — pa|kd|uc|k (ralkf|is|k)
BPE raklflisk — pax|d|ucka (rak|fliska)

@ Solution 4: Character-level NMT
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Character-level Models Character-level Models

@ advantages: : _
o (mostly) open-vocabulary hierarchical model: back-off revisited [Luong and Manning, 2016]

@ no heuristic or language-specific segmentation @ word-level model produces UNKs
e neural network can conceivably learn from raw character sequences

. @ for each UNK, character-level model predicts word based on word
@ drawbacks: hidden state

@ increasing sequence length slows training/decoding
(reported x2—x4 increase in training time)

@ naive char-level encoder-decoders are currently resource-limited
[Luong and Manning, 2016]

@ pros:
e prediction is more flexible than dictionary look-up
e more efficient than pure character-level translation

@ open questions @ cons: _ _
o on which level should we represent meaning? e independence assumptions between main model and backoff model )
e on which level should attention operate?
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Character-level Models Character-level Models

character-level output [Chung et al., 2016]

character-level input [Ling et al., 2015]

@ no word segmentation on target side : : : :
hierarchical representation: RNN states represent words, but their

2 CHETED (S ERSGE representation is computed from character-level LSTM

@ good results for EN—{DE,CS,RU,FI}
@ long training time (= x2 compared to BPE-level model)

* C2W Compositional Model

£222%

Word Vector for "Where"

L i ch t e
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Fully Character-level NMT [Lee et al., 2016]

Conclusion

@ goal: get rid of word boundaries
@ character-level RNN on target side
@ source side: convolution and max-pooling layers

| | |
| 1 1
| 4 J JEE—
RN*(Tx/s) | | | Bidirectional GRU
i — R R—
! il N [ T
(| | | | Highway Network
RN*(Tx/5) D m Segment
- i Embeddings
AN \ Max Pooling
NXT,
R X } } ‘ with Stride 5
RAeX(Ttw=1) Convolution + ReLU
Character
R _ _IThe slecondl per sioni_ _  gopeddngs
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Bibliography |

@ BPE-level subword segmentation is currently the most widely used
technique for open-vocabulary NMT

@ character-level models are theoretically attractive, but currently
require specialized architectures and more computational resources

@ the presented methods allow open vocabulary; how well we
generalize is other question
— next lecture: morphology
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