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Example

… fanden sie sie auf den Stufen unseres Hauses sitzend …

… they found her sitting on the steps of our house …
different 

inflections 
(sometimes 

called 
declensions for 

nouns)
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Example

… fanden sie sie auf den Stufen unseres Hauses sitzend …
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Example

… fanden sie sie auf den Stufen unseres Hauses sitzend …

… they found her sitting on the steps of our house …

agreement
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Morphology is productive

das Schloss translates as the castle.
Can you translate the previously unseen die Schlösser?
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Inflection interacts with phonology
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Inflection interacts with phonology

Turkish vowel harmony
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simple morphology: English

• Case (e.g. nom., dat.) 

• Number (sg., pl.) 

• Person (1st, 2nd, 3rd) 

• Tense (past, present)
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more complex: German

• Inflections of the English definite determiner: 
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Noun classes in Luganda
• Class I contains mainly people, although some inanimate nouns can be found in this class: 

musajja 'man', kaawa 'coffee' 
• Class II contains all sorts of nouns but most of the concrete nouns in Class II are long or 

cylindrical. Most trees fall into this class: muti 'tree' 
• Class III also contains many different types of concepts but most animals fall into this class: 

embwa 'dog' 
• Class IV contains inanimate objects and is the class used for the impersonal 'it': ekitabo 'book' 
• Class V contains mainly (but not exclusively) large things and liquids, and can also be used to 

create augmentatives: ebbeere 'breast', lintu 'giant' (from muntu 'person') 
• Class VI contains mainly small things and can be used to create diminutives, adjectival abstract 

nouns and (in the plural) negative verbal nouns and countries: kabwa 'puppy' (from embwa 'dog'), 
kanafu 'laziness' (from munafu 'lazy'), bukola 'inaction, not to do' (from kukola 'to do, act'), 
Bungereza 'Britain, England' (from Mungereza 'British, English person') 

• Class VII contains many different things including the names of most languages: Oluganda 
'Ganda language', Oluzungu 'English language' (from muzungu 'European, white person') 

• Class VIII is rarely used but can be used to create pejorative forms: gubwa 'mutt' (from embwa 
'dog') 

• Class IX is mainly used for infinitives or affirmative verbal nouns: kukola 'action, to do' (from the 
verb kola 'do, act') 

• Class X, which has no singular–plural distinction, is used for mass nouns, usually in the sense of 'a 
drop' or 'precious little': tuzzi 'drop of water' (from mazzi 'water'), tubaka 'sleep'
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more complex inflection: Arabic

forms of kataba (yaktubu) 'to write'
Root ktb
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forms of kataba (yaktubu) 'to write'

more complex inflection: Arabic
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Semitic morphology is nonconcatenative
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Inflection by reduplication

in Indonesian.

in Pingelapese. 
This process is also productive!
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Agreement & inflection in Kayardild
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Morphological negation
Kolyma Yukaghir 

English
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Morphological negation
Kolyma Yukaghir 

English

Negation matters, as 
the publishers of the 

“Wicked Bible” 
discovered
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Derivational morphology
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Compounding and Inflection

ostoskeskuksessa

ostos#keskus+N+Sg+Loc:in

shopping#center+N+Sg+Loc:in

‘in the shopping center’
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Compounding and Inflection

ostoskeskuksessa

ostos#keskus+N+Sg+Loc:in

shopping#center+N+Sg+Loc:in

‘in the shopping center’

compounding
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Morphological analysis

прочий +Adj +Sg +Neut +Instr
прочий +Adj +Sg +Masc +Instr
прочий +Adj +Pl +Dat
прочить +Verb +Pl +1P
прочее +Pro +Sg +Ins

прочим

… is ambiguous

word

possible 
analyses

Generation is (mostly) unambiguous
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Writing Systems

morphemes
smallest meaning-bearing unit in a language

free morphemes: can function independently: dog, house

bound morpheme: appear only as parts of words: un- , -ed, -ing

are morphemes always character sequences?
radicals in Chinese characters can be semantically meaningful

氵 (water)
河 river
湖 lake
海 sea
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Consequences for Machine Translation

are open-vocabulary models enough?
in principle, subword and character-level models can learn
morphological generalizations
in practice, learning morphology from text is hard

subword segmentation may not be morphologically sound
there may be little surface similarity between related forms

(er) steht (he) stands
(er) stand (he) stood

languages may differ in what information they express
morphologically
there are many good resources for morphological processing:

dictionaries with inflection tables
lists of stems and affixes
rule-based morphological analyzers (finite-state machines)
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Morphological Segmentation

unsupervised segmentation (BPE) crosses morpheme boundaries

idea: split by morpheme boundary first (prefix, suffixes), then apply
BPE [Huck et al., 2017, Pinnis et al., 2017]

BPE sie alle versch## icken vorsätzlich irreführende Dokumente an Kleinunternehmen in ganz Europa .
suffix + BPE sie all $$e verschick $$en vorsätz $$lich irreführ $$end $$e Dokument $$e an Kleinunternehm $$en in ganz Europa .
English they all mail deliberately deceptive documents to small businesses across Europe .

Preprocessing #types #tokens
tokenized 303 K 39 M
compound 139 K 45 M
suffix 217 K 54 M
suffix + compound 98 K 60 M
suffix + prefix + compound 88 K 63 M
BPE 46 K 42 M
compound + BPE 46 K 46 M
suffix + BPE 45 K 56 M
suffix + compound + BPE 43 K 60 M
suffix + prefix + compound + BPE 43 K 64 M

Table 5: Target-side training corpus statistics.

System test2007 test2008
BLEU TER BLEU TER

top 50K voc. (source & target) 25.5 60.9 25.2 60.9
BPE 25.8 60.7 25.6 60.9
compound + BPE 25.9 60.3 25.5 60.6
suffix + BPE 26.3 60.0 26.0 60.1
suffix + compound + BPE 26.2 59.8 25.8 60.2
suffix + prefix + compound + BPE 26.1 59.8 25.9 60.6
suffix + prefix + compound, 50K 25.9 59.9 25.5 60.3

phrase-based (Huck et al., 2015) 22.6 – 22.1 –

Table 6: English→German experimental results
on Europarl (case-sensitive BLEU and TER).

3 Machine Translation Experiments

3.1 Experimental Setup

We conduct an empirical evaluation using
encoder-decoder NMT with attention and gated
recurrent units as implemented in Nematus
(Sennrich et al., 2017). We train and test on
English–German Europarl data (Koehn, 2005).
The data is tokenized and frequent-cased using
scripts from the Moses toolkit (Koehn et al.,
2007). Sentences with length >50 after tokeniza-
tion are excluded from the training corpus, all
other sentences (1.7 M) are considered in training
under every word segmentation scheme. We
set the amount of merge operations for BPE to
50K. Corpus statistics of the German data after
different preprocessings are given in Table 5. On
the English source side, we apply BPE separately,
also with 50K merge operations.

For comparison, we build a setup denoted as top
50K voc. (source & target) where we train on the
tokenized corpus without any segmentation, limit-
ing the vocabulary to the 50K most frequent words
on each side and replacing rare words by “UNK”.
In a setup denoted as suffix + prefix + compound,
50K, we furthermore examine whether BPE can be

omitted in a cascaded application of target word
segmenters. Here, we use the top 50K target sym-
bols after suffix, prefix, and compound splitting,
but still apply BPE to the English source.

It is important to note that the amount of dis-
tinct target symbols in the setups ranges between
43K-46K; 50K for top-50K-voc systems. There
are no massive vocabulary size differences. We
always apply 50K BPE operations. Minor di-
vergences in the number of types naturally occur
amongst the various cascaded segmentations. The
linguistically-informed splitters segment more, re-
sulting in more tokens. We chose BPE-50K be-
cause the vocabulary is reasonably large while
training fits onto GPUs with 8 GB of RAM. Larger
vocabularies come at the cost of either more RAM
or adjustment of other parameters (e.g., batch size
or sentence length limit). From hyperparameter
search over reduced vocabulary sizes we would
not expect important insights, so we do not do this.

In all setups the training samples are always
the same. We removed long sentences after to-
kenization but before segmentation, which affects
all setups equally. No sentences are discarded after
that stage (Nematus’ maxlen > longest sequence in
data).

We configure dimensions of 500 for the embed-
dings and 1024 for the hidden layer. We train
with the Adam optimizer (Kingma and Ba, 2015),
a learning rate of 0.0001, batch size of 50, and
dropout with probability 0.2 applied to the hidden
layer.3 We validate on the test2006 set after ev-
ery 10 000 updates and do early stopping when the
validation cost has not decreased for ten epochs.

We evaluate case-sensitive with BLEU (Pa-
pineni et al., 2002) and TER (Snover et al.,
2006), computed over postprocessed hypotheses
against the raw references with mteval-v13a
and tercom.7.25, respectively.

3.2 Experimental Results

The translation results are reported in Table 6.
Cascading compound splitting and BPE slightly
improves translation quality as measured in TER.
Cascading suffix splitting with BPE or with
compound splitting plus BPE considerably im-
proves translation quality by up to +0.5 BLEU or
−0.9 TER over pure BPE. Adding in prefix split-
ting is less effective. We conjecture that prefix

3In preliminary experiments, we found dropout for
source, target, and embeddings did not yield additional gains.
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Morphology on Source Side

lemmatized input [Goldwater and McClosky, 2005]

Words: Pro někoho by jejı́ provedenı́ mělo smysl .

Lemmas: pro někdo být jeho provedenı́ mı́t smysl .

Lemmas+Pseudowords: pro někdo být PER 3 jeho provedenı́ mı́t PER X smysl .

Modified Lemmas: pro někdo být+PER 3 jeho provedenı́ mı́t+PER X smysl .

Figure 2: Various transformations of the Czech sentence from Figure 1. The pseudowords and modified
lemmas encode the verb person feature, with the values 3 (third person) and X (“any” person).

ing on nouns and tense marking on verbs would be
the tags best treated in this way.

3.4 Morphemes

Our final set of experiments used the same input for-
mat as the Modified Lemma experiments. However,
in this set of experiments, we changed the model used
to calculate the word-to-word alignment probabili-
ties. In the standard system, the alignment model
parameters P (fj |ei) are found using maximum like-
lihood estimation based on the expected number of
times fj aligns to ei in the parallel corpus. Our new
model assumes a compositional structure for fj , so
that fj = fj0 . . . fjK , where fj0 is the lemma of
fj , and fj1 . . . fjK are morphemes generated from
the tags associated with fj . We assume that every
word contains exactly K morphemes, and that the
kth morpheme in each word is used to encode the
value for the kth class of morphological tag, where
the classes (e.g. person or tense) are assigned an or-
dering beforehand. fjk is assigned a null value if the
value of the kth tag class is unspecified for fj .

Given this decomposition of words into mor-
phemes, and a generative model in which each mor-
pheme in fj is generated independently conditioned
on ei, we have

P(fj |ei) =

K∏

k=0

P(fjk|ei) (2)

We can now estimate P(fj |ei) using a slightly
modified version of the standard EM algorithm for
learning alignment probabilities. During the E step,
we calculate the expected alignment counts between
Czech morphemes and English words based on the
current word alignments, and revise our estimate of
P(fj |ei) using Equation 2. The M step of the algo-
rithm remains the same.

The morpheme-based model in Equation 2 is sim-
ilar to the modified lemma model in that it removes
much of the differentiation between Czech word-
forms, but leaves the differences that are most likely
to appear as inflection on English words. However,
it also performs an additional smoothing function.
The model assumes that, in the absence of other in-
formation, an English word that has aligned mostly

to Czech words with a particular morphological tag
is more likely to align to another word with this tag
than to a Czech word with a different tag. For ex-
ample, an English word aligned to mostly past tense
forms is more likely to align to another past tense
form than to a present or future tense form.

4 Experiments

In order to evaluate the effectiveness of the tech-
niques described in the previous section, we ran a
number of experiments using data from the PCEDT
corpus. The English portion of this corpus (used to
train the language model) contains the same material
as the Penn WSJ corpus, but with a different divi-
sion into training, development, and test sets. About
250 sentences each for development and test were
translated once into Czech and then back into En-
glish by five different translators. These translations
are used to calculate BLEU scores. The remainder
of the corpus (about 50,000 sentences) is used for
training. About 21,000 of the training sentences have
been translated into Czech and morphologically an-
notated for use as a parallel corpus.

Some statistics on the parallel corpus are shown
in the graph in Figure 3. This graph illustrates the
sparse data problem in Czech that our morpholog-
ical analysis is intended to address. Although the
number of infrequently occurring lemmas is about
the same in both English and Czech, the number of
infrequently occurring inflected wordforms is approx-
imately twice as high in Czech.1

For all of our experiments, we used the same lan-
guage model, trained with the CMU Statistical Lan-
guage Modelling Toolkit (Clarkson and Rosenfeld,
1997). Our translation models were trained using
GIZA++ (Och and Ney, 2003), which we modi-

1Although we did not use it for the experiments in
this paper, the PCEDT corpus does contain lemma in-
formation for the English data. There is a slight discrep-
ancy between the English and Czech data in the lemma
information for pronouns, in that English pronouns (in-
cluding accusitive, possessive, and other forms) are as-
signed themselves as lemmas, whereas Czech pronouns
are reduced to uninflected forms. Given that pronouns
generally have many tokens, this discrepancy should not
affect the data in Figure 3.
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Morphology on Source Side

we can easily combine multiple features in NMT [Sennrich and Haddow, 2016]

→ use word+lemma as input

baseline: only word feature

E(stood) =


0.5
0.2
0.3
0.1


|F | input features

E1(stood) =

[
0.4
0.1

]
E2(stand) =

[
0.1
0.3

]

E1(stood) ‖ E2(stand) =


0.4
0.1
0.1
0.3


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Morphology on Target Side

2-step translation [Toutanova et al., 2008]
predict lemmas in main system

separate, statistical inflection prediction step

2-step translation in NMT
[Tamchyna et al., 2017, García-Martínez et al., 2017]

predict interleaved lemmas and morph. categories

inflection generation with finite state transducer

input: there are a million different kinds of pizza .
baseline: existujı́ miliony druhů piz@@ zy .

morphgen: VB-P—3P-AA— existovat NNIP1—–A—- milión NNIP2—–A—- druh NNFS2—–A—- pizza Z:————- .

Figure 1: Examples of input and output training sequences for the baseline and the proposed system.
BPE splits are denoted by “@@”.

Category Value Description
POS A adjective

sub-POS A adjective, general
gender I masculine inanimate

number P plural
case 7 instrumental

possgender – (possessor’s gender)
possnumber – (possessor’s number)

person – (person, verbs)
tense – (tense, verbs)
grade 2 comparative degree

negation A affirmative (not negated)
voice – (voice, verbs)

reserve1 – (unused)
reserve2 – (unused)

var – (style, variant)

Figure 2: Czech positional tagset. Fea-
ture values for the word kulatějšı́mi, tag
AAIP7----2A----.

each inflected surface form is analyzed, and then
replaced by its stem and respective morphological
features, as illustrated for the verb trifft below:

surface trifft
stem treffen<+V><3><Sg><Pres><Ind>

For the inflection process after translation, SMOR
is used in the reverse direction to output an in-
flected form when given a stem+feature sequence.

4.2 German Inflectional Features

German has a rich nominal and verbal morphol-
ogy, and even though it exhibits a relatively high
degree of syncretism, it has a high lemma–to–
inflected forms ratio. For example, adjectives can
have up to 6 different inflected forms, such as blau,
blaue, blaues, blauer, blauen, blauem (’blue’).

Nominal Inflection Unlike in English, where
only the feature number is expressed for nouns,
German nominal inflection is applied to determin-
ers, adjectives and nouns. The following four fea-
tures are relevant for nominal inflection:

case nominative, accusative, dative, genitive
gender feminine, masculine, neuter
number singular, plural
str/wk strong, weak

To efficiently handle syncretism, SMOR has the
artificial value NoGend, that is used when a sur-
face form is the same for all three values of gen-
der; this is typical for plural forms. Similarly, the
feature strong/weak1 does not need to be specified
if the surface forms are the same; we thus add the
dummy-value <NA> to always have a sequence of
four values. Words that are subject to nominal in-
flection are replaced by their SMOR analysis that
is split into stem and the tag-feature sequence:

STEM <+Tag><Gend><Case><Num><St/Wk>

Verbal Morphology German verbal morphol-
ogy requires the modeling of these features:

person 1,2,3
number singular, plural
tense present, past
mood indicative, subjunctive

These features refer to morphologically expressed
properties in a single word; further instances of the
feature tense, in particular future tense, are real-
ized as compound tenses. Our modeling of verbal
inflection, is restricted to the word-level, and the
decision how to combine auxiliaries and full verbs
is left to the translation model. Verb forms are rep-
resented as follows in the stemmed format:

finite STEM <+V><Pers><Num><Tense><Mood>

participle STEM <+V><PPast>

infinitive STEM <+V><Inf>

4.3 Building the stemmed representation

Table 1 illustrates the process of deriving the fully
specified stemmed representation by combining
morphological analyses and rich parse tags; the
column infl indicates whether a word is inflected.
As a German surface form can have many possible
analyses (cf. below), the parse tags are needed to

1Strong/weak inflection is determined by the setting of
definite/indefinite articles in combination with the other fea-
ture: for example, the NP das blaue Auto (’the blue car’) is
inflected differently when occurring with an indefinite article
(ein blaues Auto) in the function of subject or direct object.

34

system BLEU (dev) BLEU (test)
baseline 12.60 12.89

morphgen 14.05 14.57
serialization 11.49 12.07

Table 5: English-Czech: BLEU scores of NMT
system variants.

forms. We refer to this contrastive experiment as
serialization – our aim is to tease apart the possible
benefit of explicitly predicting target-side morpho-
logical tags from the improvements due to mor-
phological generalization.

Note that BPE is applied in all system variants.
However, due to a reduced vocabulary size in the
morphgen setting, the splits are uncommon and
morphological tags are never split (this is an effect
of BPE, not a hard constraint).

Because NMT system results can vary signif-
icantly due to randomness in initialization and
training, we run system training end-to-end for
each variant three times. We then select the best
run based on BLEU as measured on the develop-
ment set (test2012) and then evaluate it on the final
test set (test2013).

Importantly, the network was able to learn the
correct structure for both morphgen and serial-
ization systems. The outputs are well-formed se-
quences of interleaving tags and lemmas/forms.

Table 5 shows the obtained results. In our main
experiment, our two-step system achieves a sub-
stantial improvement of roughly 1.7 BLEU points,
showing that two-step in the neural context works
for English to Czech translation for this data size.

In the serialization experiment, we see that, sur-
prisingly, the serialization system does not out-
perform the baseline setup. This stands in con-
trast to the use of CCG supertags by Nadejde et al.
(2017), which was effective in this framework.
The result there showed that using CCG supertags
which handle syntactic generalization helps pro-
duce a better sequence of surface forms. We at-
tribute our result to the trade-off between provid-
ing the system with explicit morpho-syntactic in-
formation (which is weaker information than CCG
supertags) and increasing the sequence length
(which complicates training). It is possible that
with larger training data, serialization might still
outperform the baseline, but our main result has
shown that morphological generalization on this
data size is beneficial.

baseline morphgen ∆

IWSLT 12.89 14.57 1.68
250k 14.87 17.51 2.64
500k 16.96 20.05 3.09

1M 18.07 20.95 2.88
2M 20.04 22.31 2.27

Table 6: English-Czech: BLEU scores of systems
with larger parallel training data.

Scaling to Larger Data The observed im-
provements are certainly at least partially due to
reduced data sparsity: because Czech is a morpho-
logically rich language, there is a high number of
distinct surface forms. We help the system gener-
alize by essentially dividing the information that
surface forms carry into two different “streams”:
one for morpho-syntax (tags) and the other for se-
mantics (lemmas).

One possible concern with the proposed ap-
proach is the ability to scale to larger training data.
Data sparsity could be such a major issue only
when training data are small and once we scale up,
the observed benefits might disappear as the sys-
tem gets more robust statistical estimates for the
individual surface forms.

We run a targeted experiment with larger sizes
of parallel training data to determine whether the
improvements hold. We always use the main train-
ing set described above but additionally, we add a
random sample from the CzEng 1.0 parallel cor-
pus (Bojar et al., 2012) to achieve training data
sizes of 250 thousand up to 2 million parallel sen-
tences (total).

Table 6 shows the results. We observe the high-
est difference in the 500k setting (over 3 BLEU
points absolute) and while the improvement de-
creases slightly as we add more data, the differ-
ence is still around 2.3 BLEU points even in the
largest evaluated setting, which is an encouraging
result.

Note that due to the increased computational
cost, scores for larger system variants are only
based on a single training run.

Analysis and Discussion We now further
analyze our two-step system, morphgen, in the
IWSLT data setting. We first look at cases where
the generator failed to produce the surface form.
We found only a handful of cases; these mostly in-
volved unknown proper names (Braper, Hvanda).

37
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Inflection Generation with Finite State Transducer

FSTs can be used to compactly represent morphological grammar

same transducer can be used for analysis and generation

cycles allow for elegant modelling of compounding and derivation

grammars typically hand-designed

Dr. Christina Alexandris http://slideplayer.gr/slide/10895628/

R. Sennrich MT – 2018 – 08 23 / 37



Neural Inflection Generation

sequence-to-sequence inflection generation [Faruqui et al., 2016]

inflection 
generation

kalb
kälbercase=nominative 

number=plural

Figure 1: A general inflection generation model.

(e.g. affixation) or require careful feature engineer-
ing.

In this paper, we present a model of inflection
generation based on a neural network sequence to
sequence transducer. The root form is represented
as sequence of characters, and this is the input to
an encoder-decoder architecture (Cho et al., 2014;
Sutskever et al., 2014). The model transforms its in-
put to a sequence of output characters representing
the inflected form (§4). Our model makes no as-
sumptions about morphological processes, and our
features are simply the individual characters. The
model is trained on pairs of root form and inflected
forms obtained from inflection tables extracted from
Wiktionary.1 We improve the supervised model with
unlabeled data, by integrating a character language
model trained on the vocabulary of the language.

Our experiments show that the model achieves
better or comparable results to state-of-the-art meth-
ods on the benchmark inflection generation tasks
(§5). For example, our model is able to learn long-
range relations between character sequences in the
string aiding the inflection generation process re-
quired by Finnish vowel harmony (§6), which helps
it obtain the current best results in that language.

2 Inflection Generation: Background

Durrett and DeNero (2013) formulate the task of su-
pervised inflection generation for a given root form,
based on a large number of training inflection ta-
bles extracted from Wiktionary. Every inflection ta-
ble contains the inflected form of a given root word
corresponding to different linguistic transformations
(cf. Table 1). Figure 1 shows the inflection genera-
tion framework. Since the release of the Wiktionary
dataset, several different models have reported per-
formance on this dataset. As we are also using this
dataset, we will now review these models.

We denote the models of Durrett and DeNero
1www.wiktionary.org

k a l b<w> </w>

k ä l b e r<w> </w>

k a l b<w> </w>e s

(a)

x1 a x2<w> </w>

ä er<w> </w>

a<w> </w>es
x2x1

x1 x2

(b) </w>

er </w>

</w>es

a
ä
a

(c)

(d) a
ä

a
a

</w>

er </w>

</w>

es </w>

k
k

l
l

b
b

Figure 2: Rule extraction: (a) Character aligned-table; (b)

Table-level rule of AFH14, AFH15 (c) Vertical rules of DDN13

and (d) Atomic rules of NCK15.

(2013), Ahlberg et al. (2014), Ahlberg et al. (2015),
and Nicolai et al. (2015), by DDN13, AFH14,
AFH15, and NCK15 respectively. These models
perform inflection generation as string transduction
and largely consist of three major components: (1)
Character alignment of word forms in a table; (2)
Extraction of string transformation rules; (3) Appli-
cation of rules to new root forms.

The first step is learning character alignments
across inflected forms in a table. Figure 2 (a) shows
alignment between three word forms of Kalb. Dif-
ferent models use different heuristic algorithms for
alignments such as edit distance, dynamic edit dis-
tance (Eisner, 2002; Oncina and Sebban, 2006),
and longest subsequence alignment (Bergroth et al.,
2000). Aligning characters across word forms pro-
vide spans of characters that have changed and spans
that remain unchanged. These spans are used to ex-
tract rules for inflection generation for different in-
flection types as shown in Figure 2 (b)–(d).

By applying the extracted rules to new root forms,
inflected words can be generated. DDN13 use a
semi-Markov model (Sarawagi and Cohen, 2004) to
predict what rules should be applied, using charac-
ter n-grams (n = 1 to 4) as features. AFH14 and
AFH15 use substring features extracted from words
to match an input word to a rule table. NCK15 use
a semi-Markov model inspired by DDN13, but ad-
ditionally use target n-grams and joint n-grams as
features sequences while selecting the rules.

Motivation for our model. Morphology often
makes references to segmental features, like place
or manner of articulation, or voicing status (Chom-
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Figure 3: The modified encoder-decoder architecture for inflection generation. Input characters are shown in black and predicted

characters are shown in red. · indicates the append operation.

sequences are mostly similar except for the inflec-
tions; (2) the input and output character sequences
have different semantics. Regarding the first differ-
ence, taking the word play as an example, the in-
flected forms corresponding to past tense and con-
tinuous forms are played and playing. To better use
this correspondence between the input and output
sequence, we also feed the input sequence directly
into the decoder:

st = g(st−1, {e,yt−1,xt}) (4)

where, g is the decoder LSTM, and xt and yt are the
input and output character vectors respectively. Be-
cause the lengths of the input and output sequences
are not equal, we feed an ε character in the decoder,
indicating null input, once the input sequence runs
out of characters. These ε character vectors are pa-
rameters that are learned by our model, exactly as
other character vectors.

Regarding the second difference, to provide the
model the ability to learn the transformation of se-
mantics from input to output, we apply an affine
transformation on the encoded vector e:

e←Wtranse + btrans (5)

where, Wtrans,btrans are the transformation pa-
rameters. Also, in the encoder we use a bi-
directional LSTM (Graves et al., 2005) instead of
a uni-directional LSTM, as it has been shown to
capture the sequence information more effectively
(Ling et al., 2015; Ballesteros et al., 2015; Bah-
danau et al., 2015). Our resultant inflection gener-
ation model is shown in Figure 3.

4.1 Supervised Learning
The parameters of our model are the set of
character vectors, the transformation parameters
(Wtrans,btrans), and the parameters of the encoder
and decoder LSTMs (§3.2). We use negative log-
likelihood of the output character sequence as the
loss function:

−log p(~y|~x) = −
∑T ′

t=1
log p(yt|e, ~y<t) (6)

We minimize the loss using stochastic updates with
AdaDelta (Zeiler, 2012). This is our purely super-
vised model for inflection generation and we evalu-
ate it in two different settings as established by pre-
vious work:

Factored Model. In the first setting, we learn a
separate model for each type of inflection indepen-
dent of the other possible inflections. For example,
in case of German nouns, we learn 8, and for Ger-
man verbs, we learn 27 individual encoder-decoder
inflection models (cf. Table 3). There is no param-
eter sharing across these models. We call these fac-
tored models of inflection generation.

Joint Model. In the second setting, while learn-
ing a model for an inflection type, we also use the
information of how the lemma inflects across all
other inflection types i.e., the inflection table of a
root form is used to learn different inflection mod-
els. We model this, by having the same encoder
in the encoder-decoder model across all inflection
models.2 The encoder in our model is learning a

2We also tried having the same encoder and decoder across
inflection types, with just the transformation matrix being dif-
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Grammatically Marking Information Missing from Source
Case Study: Controlling Politeness/Formality

T-V distinction
language informal (T) formal (V)
Latin tu vos
Chinese 你(nı̌) 您 (nín)
French tu vous
German du Sie
Italian tu Lei
Polish ty pan
Spanish tú usted

Early Modern English thou ye
Modern English you

What users want

inconsistency in T-V choice is a “limitation of MT technology” that is
“often frustrat[ing]” to post-editors [Etchegoyhen et al., 2014]
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Side constraints [Sennrich et al., 2016]

Core idea
additional input feature that is based on target-side information
→ extra word at end of source sentence

mark in English text if German translation is polite or not (+noise)

Are you ok?

<polite>

Sind Sie in Ordnung?

are you ok?

<informal>

Bist du in Ordnung?

At test time
we can control level of politeness by adding side constraints to input

R. Sennrich MT – 2018 – 08 26 / 37



Side constraints [Sennrich et al., 2016]

Core idea
additional input feature that is based on target-side information
→ extra word at end of source sentence

mark in English text if German translation is polite or not (+noise)

Are you ok?

<polite>

Sind Sie in Ordnung?

are you ok?

<informal>

Bist du in Ordnung?

At test time
we can control level of politeness by adding side constraints to input

R. Sennrich MT – 2018 – 08 26 / 37



Side constraints [Sennrich et al., 2016]

Core idea
additional input feature that is based on target-side information
→ extra word at end of source sentence

mark in English text if German translation is polite or not (+noise)

Are you ok? <polite>

Sind Sie in Ordnung?

are you ok? <informal>

Bist du in Ordnung?

At test time
we can control level of politeness by adding side constraints to input

R. Sennrich MT – 2018 – 08 26 / 37



Results: politeness as a function of side constraint
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Controlling Politeness

we can effectively control NMT output by providing extra information
in input

here: control politeness
other applications:

control production of other information missing from source text
tense
evidentiality
...

domain adaptation
control output language
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Evaluating Agreement in Neural MT: Motivation

text representation
word-level but as the example of Mobilking in Poland shows

|————– 5 steps —————|

subword-level but as the example of Mobil+ king in Poland shows
(byte-pair encoding) |————— 6 steps —————-|

character-level b u t _ a s _ t h e _ e x a m p l e _ o f _ M o b i l k i n g _ i n _ P o l a n d _ s h o w s
| ————————— 29 steps —————————-|
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Evaluating Agreement in Neural MT: Motivation

text representation
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How to Assess Specific Aspects in MT?

human evaluation
× costly; hard to compare to previous work

automatic metrics (BLEU)
× too coarse; blind towards specific aspects

contrastive translation pairs
NMT models assign probability to any translation

binary classification task: which translation is better?

choice between reference translation and contrastive variant
→ corrupted with single error of specific type

≈ minimal pairs in linguistics
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Assessment with Contrastive Translation Pairs

workflow
researcher wants to analyse difficult
translation problem

researcher predicts what errors
NMT system might make

researcher creates test set with
correct translations and corrupted
variants

test set allows automatic,
quantitative, and reproducible
analysis of NMT model

example

subject–verb agreement

change grammatical
number of verb to
introduce agreement
error

35000 contrastive pairs
created with simple
linguistic rules
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Contrastive Translation Pairs

sentence prob.
English [...] that the plan will be approved
German (correct) [...], dass der Plan verabschiedet wird 0.1 3

German (contrastive) * [...], dass der Plan verabschiedet werden 0.01

subject-verb agreement
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LingEval97: A Test Set of Contrastive Translation Pairs

LingEval97
97 000 contrastive translation pairs

based on English→German WMT test sets

rule-based, automatic creation of errors

7 error types
metadata for in-depth analysis:

error type
distance between words
word frequency in WMT15 training set
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Results: Text Representation
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What Did We Learn?

word-level model is poor for rare words

character-level model is poor for long distances

BPE subword segmentation is good compromise
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Conclusions

morphology in NMT (and NLP) still very much open research area
be aware of morphological properties of languages that you work with

best word segmentation strategy may be language-dependent
(word segmentation for non-concatenative morphology?)
morphological simplification may help translation
languages differ in what information is expressed grammatically

agreement, a traditionally hard problem for MT, is solved relatively
well by NMT
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Further Reading

Bender, chapters 2–4
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