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Refresher

why monolingual data?

language models are an important component in statistical machine
translation

@ monolingual data is far more abundant than parallel data

@ phrase-based SMT models suffer from independence assumption;
LMs can mitigate this

@ monolingual data may better match target domain

R. Sennrich MT - 2018 - 09 1/20



MT —-2018 — 09

@ Language Models in NMT
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Language Models in NMT

[Gllgehre et al., 2015]

shallow fusion: rescore beam with language model (~ ensembling)

deep fusion: extra, LM-specific hidden layer
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(a) Shallow Fusion (Sec. 4.1)

(b) Deep Fusion (Sec. 4.2)

De-En Cs-En
Dev.  Test | Dev  Test
NMT Baseline | 25.51 23.61 | 21.47 21.89
Shallow Fusion | 25.53 23.69 | 21.95 22.18
Deep Fusion 25.88 24.00 | 22.49 22.36
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9 Training End-to-End NMT Model with Monolin-
gual Data
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Monolingual Data in NMT

NMT is a conditional language model
p(ui) = f(2i,ui-1,¢)

for monolingual training instances, source context ¢; is missing
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Monolingual Training Instances

solutions: missing data imputation for ¢;

@ missing data indicator: ﬁ
— works, but danger of catastrophic forgetting
@ impute ¢; with neural network
— we do this indirectly by back-translating the target sentence

J=(La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)
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Evaluation: English—German
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Back-Translation: Comparison to Phrase-based SMT

back-translated parallel data

@ back-translation has been proposed for phrase-based SMT
[Schwenk, 2008, Bertoldi and Federico, 2009, Lambert et al., 2011]

@ PBSMT already has LM
— main rationale: phrase-table domain adaptation

@ rationale in NMT: train end-to-end model on monolingual data

BLEU
system WMT IWSLT
(in-domain) (out-of-domain)
PBSMT gain +0.7 +0.1
NMT gain +2.9 +1.2

Table: Gains on English—German from adding back-translated News Crawl| data.
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Autoencoders

general principle: train network that encodes input, and learns to
reconstruct input from encoded representation
— unsupervised representation learning

john likes his
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Autoencoders in Neural Machine Translation

@ autoencoders are used via multi-task learning:
shared models, multiple task-specific objectives

English (unsupervised) _

[Luong et al, 2016]

@ does idea still work if we use attention mechanism?
(far less of a representation bottleneck)

@ apparently, yes (for low-resource language pairs):
[Currey et al., 2017]

@ analysis: BPE-based system gets better at copying unknown names:

source Les Dissonances a aparut pe scena muzicala in 2004 ...
reference Les Dissonances appeared on the music scene in 2004 ...
baseline Les Dissonville appeared on the music scene in 2004 ...
+ copied Les Dissonances appeared on the music scene in 2004 ...
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Dual Learning [He et al., 2016]

dual-learning game

@ closed loop of two translation systems

@ translate sentence from language A into language B and back
@ loss functions:

e is sentence in language B natural?
— loss is negative log-probability under (static) LM
e is second translation similar to original?
— loss is standard cross-entropy, with original as reference

@ use reinforcement learning to update weights

@ we can also start with sentence in language B
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Parameter Pre-Training

[Ramachandran et al., 2017]
@ core idea: pre-train encoder and decoder on language modelling task

@ models are fine-tuned with translation objective,
along with continued use of LM objective (with shared parameters)
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Figure 1: Pretrained sequence to sequence model. The red parameters are the encoder and the blue
parameters are the decoder. All parameters in a shaded box are pretrained, either from the source side
(light red) or target side (light blue) language model. Otherwise, they are randomly initialized.
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e "Unsupervised" MT from Monolingual Data
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Bilingual Lexicon Induction

learn lexical correspondences from monolingual data

correspondences are based on various types of similarity:
@ contextual similarity
@ temporal similarity
@ orthographic similarity
@ frequency similarity

today we look at distributional word representations
(contextual similarity)
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Embedding Space Similarities Across Languages
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[Mikolov et al., 2013]
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Learning to Map Between Vector Spaces

supervised mapping [Mikolov et al., 2013]

@ we can learn linear transformation between embedding spaces with
small dictionary.

@ given linear transformation matrix W, and two vector representations
x;, y; in source and target language

@ training objective (optimized with SGD):

n
argminz Wi — ys| |2
Lg—

@ training requires small seed lexicon of (x,y) pairs
@ after mapping, induce bilingual lexicon via nearest neighbor search

v
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Learning to Map Between Vector Spaces

unsupervised mapping [Miceli Barone, 2016, Conneau et al., 2017]

@ adversarial training:
e co-train classifier (adversary) that predicts whether embedding
represents source or target language word
e objective of linear, orthogonal transformation:
fool classifier by making embeddings as similar as possible

[Conneau et al., 2017]
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Learning to Map Between Vector Spaces

these are recent research results — open questions remain
@ under what conditions will this method succeed / fail?
@ method was tested with typologically relatively similar languages

@ method was tested with similar monolingual data (same domains and
genres)
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Improving Word Order

[Lample et al., 2017]

@ joint training of both translation directions
@ use translation model to back-translate monolingual data

@ learn encoder-decoder to reconstruct original sentence from noisy
translation
@ iterate several times

@ use various other tricks and objectives to improve learning
e pre-trained embeddings

e denoising autencoder as additional objective

e shared encoder / decoder parameters in both directions

e adversarial objective

BLEU

system en-fr en-de
supervised 28.0 213
word-by-word [Conneau et al., 2017] 6.3 7.1
[Lample et al., 2017] 15.1 9.6
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Conclusion

@ there are various ways to learn from monolingual data
e combination with language model
@ pre-training and parameter sharing
e creating synthetic training data

@ methods are especially useful when:

e parallel data is sparse
e monolingual data is highly relevant (in-domain)

@ hot research topic: learning to translate without parallel data
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