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Fig. 6. The first experiment with the iCub. The robot does a semi-spiral
motion toward its right-side, and at the bottom of the spiral it stretches its
hand forward completely.

Figure 6 illustrates the results from the first task, where the
iCub starts the motion in front of its face. It then does a semi-
spiral motion toward its right-side, and finally at the bottom
of the spiral it stretches its hand forward completely. In the
second task, the iCub starts the motion close to its left fore-
hand. Then it does a semi-circle motion upward and finally
brings down its arm completely (see Figure 7). In the third
motion, the iCub performs a loop motion with its right hand,
where the motion lies in a vertical plane and thus contains a
self intersection point (see Figure 8). Critical to such kinds
of motion is the ambiguity in the correct direction of velocity
at the intersection point if the model’s variable ξ considered
to be only the cartesian position (i.e. ξ = x ⇒ ξ̇ = ẋ). This
ambiguity usually results in reproductions skipping the loop
part of the motion. However in this example, defining ξ such
that it includes both the cartesian position and velocity (i.e.
ξ = [x; ẋ] ⇒ ξ̇ = [ẋ; ẍ]) can solve this ambiguity. The three
experiments were learnt using 5, 4 and 7 Gaussian functions,
respectively. In all three experiments the robot is able to
successfully follow the demonstrations and to generalize the
motion for several trajectories with different starting points.

We also further examine SEDS in a library of 20 different
human handwriting motions recorded using a Tablet PC,
and compare it against our previous method Binary Merging
(BM) [9] and those of four alternative methods GMR, LWPR,
GPR, and DMP6. Figure 9 shows the results for 5 out of
20 motions. Quantitative performance comparison of all the
six methods is given in Table I. In this paper, we only
focus on the comparison between SEDS and our previous
approach BM. The detailed comparison between alternative
approaches and BM is provided by [9]. Here, we use the
same accuracy measurement proposed by [9], with which

6Because GMR requires a fixed set of Gaussians, we used the same
number of Gaussians as the one selected for the proposed approach.
Similarly, the number of Gaussians used in DMP was initialized with that
found by LWPR for the same task.
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Fig. 7. The second experiment with the iCub. The robot does a semi-circle
motion upward and then brings down its arm completely.
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Fig. 8. The third experiment with the iCub. The robot performs a self-
intersecting motion.

a method’s accuracy in estimating the overall dynamics
of the underlying model f̂ is quantified by measuring the
discrepancy between the direction and magnitude of the
estimated and observed velocity vectors for all training data
points.

ē = 1
N

∑N
n=1

(
1

Tn+1

∑Tn

t=0 r(
1−ξ̇t,n.

ˆ̇
ξt,n

∥ξ̇t,n∥∥ ˆ̇ξt,n∥+ϵ
)2 +

q (ξ̇t,n− ˆ̇
ξt,n)T (ξ̇t,n− ˆ̇

ξt,n)

∥ξ̇t,n∥∥ξ̇t,n∥+ϵ

) 1
2

(15)

where r and q are positive scalars that weigh the relative
influence of each factor, and ϵ is a very small positive scalar.

Regarding Table I, while both BM and SEDS are able
to learn the demonstrated dynamics with relatively similar
accuracy, each method has its own advantages and disadvan-
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Fig. 9. Performance comparison of the new approach against BM through
a library of 20 different handwriting motions. Only 5 of 20 examples are
shown here.

tages. The new method outperforms the previous approach
in that it can better generalize the motion for trajectories far
from demonstrations, while in BM trajectories go directly
toward the target if they started outside of the region enclosed
by demonstrations (see Figure 9-b,c, and d). On the other
hand, BM offers more flexibility in learning complex motions
since it unfolds a motion into a set of discrete joint-wise
partitions and ensures the stability conditions locally in each
partition. In contrast, SEDS is more constraining by the fact
that it tries to fit a motion with a single globally stable
dynamics. Moreover, BM is able to determine the (locally)
optimum number of Gaussian functions automatically while
the proposed method needs a user to predefine it beforehand.

In the last experiment, we show how the proposed method
can be used to integrate different motions into one single
dynamics (see Figure 10). In this experiment, the task is
learnt using K = 7 Gaussian functions, and demonstrations
data are recorded using a Tablet-PC. Regarding Figure 10,
the robot is able to approach to the target following an
arc, a sine, or a straight line path starting from the left,
right, or top-side of the task space, respectively. While
reproductions locally follow the desired motion around each
set of demonstrations, they smoothly switch from one motion
to another in areas between demonstrations. The proposed
method offers a simple but reliable procedure to teach a robot
different ways of performing a task.

TABLE I
PERFORMANCE COMPARISON OF SEDS AGAINST ALTERNATIVE

APPROACHES IN LEARNING 20 HUMAN HANDWRITING MOTIONS

Is stability Average / Range Average / Range ofMethod
ensured? of error ē No. of Parameters

SEDS Yes 0.23 / [0.14-0.38] 65 / [26 - 91]
BM Yes 0.21 / [0.14-0.53] 98 / [56 - 196]

DMP Yes 0.88 / [0.37 - 2.02] 92 / [29 - 182]
GMR No 0.16 / [0.10 - 0.37] 75 / [30 - 105]
LWPR No 0.22 / [0.08 - 0.49] 609 / [168 - 1239]
GPR No 0.05 / [0.03 - 0.09] 2190 / [1806 - 3006]†

† GPR’s learning parameter is of order of d(d+1); however, it also requires keeping
all training datapoints to estimate the output ξ̇. Hence the total number of required
parameters is d(d + 1) + 2n ∗ d, where n is the total number of datapoints.
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Fig. 10. Embedding different ways of performing a task in one single
model. The robot follows an arc, a sine, or a straight line starting from
different points in the workspace.

V. CONCLUSIONS AND FUTURE WORK

In this paper we present a method in which arbitrary dis-
crete motions are modeled as nonlinear autonomous dynam-
ics. The sufficient conditions to make the motion globally
stable are provided, and a learning method, called SEDS, is
proposed to estimate the model’s parameters. This method
enables a robot to perform a task starting from any point in
the operational space while keeping the motion as similar as
possible to the demonstrations. The obtained results illustrate
the ability of SEDS in handling both temporal and spatial
perturbations. Using SEDS, the robot is able to on-the-fly
adapt its trajectory to a change in the target position.

However, one should emphasize that the optimization
problem given by Eq. 12 is non-convex, and convergence
to the global minimum cannot be ensured. But, often the
obtained approximation of the minimum is good enough
to accurately model the represented motion. Furthermore,
similar to GMM, SEDS requires a user to predefine the
number of Gaussian functions, i.e. K. While it still remains
an open question, in practice we noticed that the Bayesian
Information Criterion (BIC) [17] can be used as a relatively
good estimate to the optimum number of K. Finally, an
assumption made in this paper is that represented motions
can be modeled with a first order time-invariant ODE. While
the nonlinear function given by Eq. 8 is able to model a
wide variety of motions, the method cannot be used for some
special cases violating this assumption. Most of the time, this
limitation can be tackled through a change of variable (for
example see Figure 8).
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APPENDIX I
POSITIVE AND NEGATIVE DEFINITE MATRIX

A d × d real symmetric matrix A is positive definite if
ξTAξ > 0 for all non-zero vectors ξ ∈ Rd, where ξT

denotes the transpose of ξ. We call A a negative definite
matrix if ξTAξ < 0. For a non-symmetric matrix, A is
positive (negative) definite if and only if its symmetric part
Ã = (A+AT )/2 is positive (negative) definite.

APPENDIX II
PROOF OF THEOREM 1

We start the proof by first recalling the standard Lyapunov
Stability theorem [10]:

Lyapunov Stability Theorem: An arbitrary function ξ̇ =
f̂(ξ;θ) is asymptotically stable at the point ξ∗, if a continu-
ous and continuously differentiable Lyapunov function V (ξ)
can be found such that:


(a) V (ξ) > 0 ∀ξ ∈ Rd & ξ ̸= ξ∗

(b) V̇ (ξ) < 0 ∀ξ ∈ Rd & ξ ̸= ξ∗

(c) V (ξ∗) = 0 & V̇ (ξ∗) = 0

(16)

Note that V̇ is a function of both ξ and ξ̇. However, since
ξ̇ can be directly expressed in terms of ξ using Eq. 8, one
can finally infer that V̇ only depends on ξ.

Consider a Lyapunov function V (ξ) of the form:

V (ξ) =
1

2
(ξ − ξ∗)T (ξ − ξ∗) ∀ξ ∈ Rd (17)

First observe that V (ξ) is a quadratic function and hence
satisfies condition Eq. 16.a. Condition given by Eq. 16.b
follows from taking the first derivative of V (ξ) w.r.t. time,
we have:

V̇ (ξ) =
dV

dt
=

dV

dξ

dξ

dt

⇒ =
1

2

d

dξ

(
(ξ − ξ∗)T (ξ − ξ∗)

)
ξ̇

⇒ = (ξ − ξ∗)T ξ̇ = (ξ − ξ∗)T f̂(ξ;θ)

⇒ = (ξ − ξ∗)T
K∑

k=1

hk(ξ)(Akξ + bk)︸ ︷︷ ︸
=ξ̇ (see Eq. 8)

⇒ = (ξ − ξ∗)T
K∑

k=1

hk(ξ)(Ak(ξ − ξ∗) + Akξ∗ + bk︸ ︷︷ ︸
=0 (see Eq. 11-a)

)

⇒ = (ξ − ξ∗)T
K∑

k=1

hk(ξ)Ak(ξ − ξ∗)

⇒ =

K∑
k=1

hk(ξ)︸ ︷︷ ︸
hk>0

(ξ − ξ∗)TAk(ξ − ξ∗)︸ ︷︷ ︸
<0 (see Eq. 11-b)

(18)

⇒ < 0 ∀ξ ̸= ξ∗

Conditions given by Eq. 16.c are satisfied when substituting
ξ = ξ∗ into Eqs. 17 and 18:

V (ξ∗) =
1

2
(ξ − ξ∗)T (ξ − ξ∗)

∣∣∣∣
ξ=ξ∗

= 0 (19)

V̇ (ξ∗) =
K∑

k=1

hk(ξ)(ξ − ξ∗)TAk(ξ − ξ∗)

∣∣∣∣∣
ξ=ξ∗

= 0 (20)

Therefore, an arbitrary ODE function ξ̇ = f̂(ξ;θ) given
by Eq. 8 is globally asymptotically stable if conditions of
Eq. 11 are satisfied.
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