Data Exchange:
Source instance ⇒ Target instance

Problem 1:
▶ There may be infinitely many valid target instances for a given source instance

Problem 2. Query Answering
▶ What does it mean to answer a query over the target schema?
▶ Can we answer queries using only one target instance?

Fagin, Kolaitis, Miller, Popa, 2003:
▶ Use a certain answers semantics
▶ Canonical Solution: "good" target instance that can be computed in polynomial time
▶ Union of conjunctive queries: their certain answers can be computed using only the canonical solution
Data Exchange:
Source instance ⇒ Target instance

Problem 1:

- There may be infinitely many valid target instances for a given source instance
Data Exchange:
Source instance ⇒ Target instance

Problem 1:
- There may be infinitely many valid target instances for a given source instance

Problem 2. Query Answering
Data Exchange:
Source instance ⇒ Target instance

Problem 1:
- There may be infinitely many valid target instances for a given source instance

Problem 2. Query Answering
- What does it mean to answer a query over the target schema?
- Can we answer queries using only one target instance?
Data Exchange:
Source instance ⇒ Target instance

Problem 1:
- There may be infinitely many valid target instances for a given source instance

Problem 2. Query Answering
- What does it mean to answer a query over the target schema?
- Can we answer queries using only one target instance?

Fagin, Kolaitis, Miller, Popa, 2003:
- Use a certain answers semantics
- Canonical Solution: “good” target instance that can be computed in polynomial time
- Union of conjunctive queries: their certain answers can be computed using only the canonical solution
We propose a tractable query language that express *negation*

For union of conjunctive queries, the certain answers can be computed in polynomial time.

- Union of conjunctive queries have this good property because they are preserved under homomorphisms
We propose a tractable query language that express *negation*

For union of conjunctive queries, the certain answers can be computed in polynomial time.

- Union of conjunctive queries have this good property because they are preserved under homomorphisms
- **Datalog** queries can also be computed in polynomial time
We propose a tractable query language that express *negation*

For union of conjunctive queries, the certain answers can be computed in polynomial time.

- Union of conjunctive queries have this good property because they are preserved under homomorphisms
- *Datalog* queries can also be computed in polynomial time
- Both *Datalog* and union of conjunctive queries keep us on the realm of positive

Computing certain answers of conjunctive queries with inequalities is *coNP*-complete

How can we add negation while keeping good properties for data exchange?
We propose a tractable query language that expresses *negation*. For union of conjunctive queries, the certain answers can be computed in polynomial time.

- Union of conjunctive queries have this good property because they are preserved under homomorphisms.
- Datalog queries can also be computed in polynomial time.
- Both Datalog and union of conjunctive queries keep us on the realm of positive.
- Computing certain answers of conjunctive queries with inequalities is coNP-complete.
We propose a tractable query language that express *negation*

For union of conjunctive queries, the certain answers can be computed in polynomial time.

- Union of conjunctive queries have this good property because they are preserved under homomorphisms
- **Datalog** queries can also be computed in polynomial time
- Both **Datalog** and union of conjunctive queries keep us on the realm of positive

- Computing certain answers of conjunctive queries with inequalities is coNP-complete

How can we add negation while keeping good properties for data exchange?
Query Languages for Data Exchange: Beyond Unions of Conjunctive Queries

Marcelo Arenas Pablo Barceló Juan Reutter
PUC Chile Univ. of Chile PUC Chile

Khipu: South Andean Center for Database Research
Data exchange settings:

- Source schema S (Source instances with constant values)
- Target schema T (Target instance can contain nulls)
- Set Σ_{st} of st-tgds of the form:

$$\phi_S(\bar{x}) \rightarrow \exists \bar{y} \psi_T(\bar{x}, \bar{y})$$

- $C(a)$ holds if a is a constant value

An instance J is a solution for I if

- $(I, J) \models \Sigma_{st}$
A homomorphism from J_1 to J_2 is a function that:

▶ Preserve the relations
▶ Is the identity on constants

J is a universal solution if

▶ There is a homomorphism from J to every other solution
Homomorphism and Universal Solutions

A homomorphism from J_1 to J_2 is a function that:

▶ Preserve the relations
▶ Is the identity on constants

J is a universal solution if

▶ There is a homomorphism from J to every other solution

Canonical universal solution can be computed in polynomial time using a chase procedure (FKMP 03).
Certain answers for conjunctive queries with negation are empty/false

Example:

\[M : \]
\[G(x, y) \rightarrow E(x, y) \]
\[S(x) \rightarrow P(x) \]
\[T(x) \rightarrow R(x) \]

\[Q : \exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y)) \]
Certain answers for conjunctive queries with negation are empty/false

Example:

\[M : \begin{align*} G(x, y) & \rightarrow E(x, y) \\ S(x) & \rightarrow P(x) \\ T(x) & \rightarrow R(x) \end{align*} \]

\[Q : \exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y)) \]

\[J_1 : \begin{align*} E(a, b) \\ E(b, c) \end{align*} \]
Certain answers for conjunctive queries with negation are empty/false

Example:

\[M : \begin{align*}
G(x, y) & \rightarrow E(x, y) \\
S(x) & \rightarrow P(x) \\
T(x) & \rightarrow R(x)
\end{align*} \]

\[Q : \exists x \exists y \exists z \left(E(x, z) \land E(z, y) \land \neg E(x, y) \right) \]

\[J_2 : \\
E(a, b) \\
E(b, c) \\
E(a, c) \]
Certain answers for conjunctive queries with negation are empty/false

Example:

\[M : \]
\[G(x, y) \rightarrow E(x, y) \]
\[S(x) \rightarrow P(x) \]
\[T(x) \rightarrow R(x) \]

\[Q : \exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y)) \]

\[J_2 : \]
\[E(a, b) \]
\[E(b, c) \]
\[E(a, c) \]

\[J_2 \text{ is also a solution!} \]
Certain answers for conjunctive queries with negation are empty/false

Example:

\[M : \]
\[G(x, y) \rightarrow E(x, y) \]
\[S(x) \rightarrow P(x) \]
\[T(x) \rightarrow R(x) \]

\[Q : \]
\[\exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y)) \]

\[J_2 : \]
\[E(a, b) \]
\[E(b, c) \]
\[E(a, c) \]

- Idea: solution where \(E \) contains the transitive closure of \(G \)
Certain answers for conjunctive queries with negation are empty/false

Example:

\[\mathcal{M} : \quad G(x, y) \rightarrow E(x, y)\]
\[S(x) \rightarrow P(x)\]
\[T(x) \rightarrow R(x)\]

\[Q : \quad \exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y))\]

\[J_2 : \]
\[E(a, b)\]
\[E(b, c)\]
\[E(a, c)\]

- Idea: solution where \(E \) contains the transitive closure of \(G \)
- \(Q \) is always false in that solution!
Unions of *positive* queries and conjunctive queries with negation are much more interesting

Example:

\[M : \begin{align*}
G(x, y) & \rightarrow E(x, y) \\
S(x) & \rightarrow P(x) \\
T(x) & \rightarrow R(x)
\end{align*} \]

\[Q : \begin{align*}
\exists x \exists y (P(x) \land R(y) \land E(x, y)) & \lor \\
\exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y))
\end{align*} \]
Unions of *positive* queries and conjunctive queries with negation are much more interesting

Example:

\[
\begin{align*}
M : & \quad G(x, y) \rightarrow E(x, y) \\
 & \quad S(x) \rightarrow P(x) \\
 & \quad T(x) \rightarrow R(x)
\end{align*}
\]

\[
Q : \quad \exists x \exists y (P(x) \land R(y) \land E(x, y)) \lor \\
\quad \exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y))
\]

▶ If we try to falsify the second disjunct (computing the transitive closure of \(G\)), we may end up satisfying the first one.
Unions of *positive* queries and conjunctive queries with negation are much more interesting

Example:

\[M : \]
\[
G(x, y) \rightarrow E(x, y) \\
S(x) \rightarrow P(x) \\
T(x) \rightarrow R(x)
\]

\[Q : \]
\[
\exists x \exists y (P(x) \land R(y) \land E(x, y)) \lor \\
\exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y))
\]

▶ If we try to falsify the second disjunct (computing the transitive closure of \(G \)), we may end up satisfying the first one.

▶ \(Q \) holds if there exist \(a, b \):
 ▶ \(P(a), R(b) \) hold
 ▶ \((a, b)\) is in the transitive closure of \(G \)
Using **Datalog** we compute certain answers for queries with negation in polynomial time

Idea: Encode Q using **Datalog** programs

$M : \begin{align*} G(x, y) \rightarrow E(x, y) \\
S(x) \rightarrow P(x) \\
T(x) \rightarrow R(x) \end{align*}$

$Q : \begin{align*} \exists x \exists y (P(x) \land R(y) \land E(x, y)) \lor \\
\exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y)) \end{align*}$
Using **Datalog** we compute certain answers for queries with negation in polynomial time

Idea: Encode Q using **Datalog** programs

$M :$

- $G(x, y) \rightarrow E(x, y)$
- $S(x) \rightarrow P(x)$
- $T(x) \rightarrow R(x)$

$Q :$

- $\exists x \exists y (P(x) \land R(y) \land E(x, y)) \lor$
- $\exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y))$

- $S(x, y) \leftarrow E(x, y)$
- $S(x, y) \leftarrow S(x, z), S(z, y)$
- $true \leftarrow P(x), R(y), S(x, y)$
Using \textbf{Datalog} we compute certain answers for queries with negation in polynomial time

Idea: Encode Q using \textbf{Datalog} programs

\begin{align*}
 \mathcal{M} : & \quad G(x, y) \rightarrow E(x, y) \\
 & \quad S(x) \rightarrow P(x) \\
 & \quad T(x) \rightarrow R(x)
\end{align*}

\begin{align*}
 Q : & \quad \exists x \exists y (P(x) \land R(y) \land E(x, y)) \lor \\
 & \quad \exists x \exists y \exists z (E(x, z) \land E(z, y) \land \neg E(x, y))
\end{align*}

\begin{align*}
 S(x, y) & \leftarrow E(x, y) \\
 S(x, y) & \leftarrow S(x, z), \; S(z, y) \\
 \text{true} & \leftarrow P(x), \; R(y), \; S(x, y)
\end{align*}

We only evaluate this program in the canonical solution.
Queries with inequalities cannot be answered directly in universal solutions

Problem:
We cannot add inequalities directly to Datalog.

- Preservation under homomorphisms is lost
- Language becomes intractable (Abiteboul, Dushka 1998)

Homomorphisms in data exchange are the identity on constants
- Thus, inequalities witnessed by constants are preserved under homomorphisms
Contributions

Query Language that extends \textsc{Datalog} with negation

- As good as \textsc{Datalog} for data exchange
- Can be used to find new tractable classes of queries

...And further

- Combined complexity of the new language and related query languages
Outline

Formalization
- \(\text{DATALOG}^{c(\neq)} \) programs

Beyond union of conjunctive queries
- Expressive power of \(\text{DATALOG}^{c(\neq)} \)
- New tractable classes of queries

Combined Complexity
- \(\text{DATALOG}^{c(\neq)} \) and queries with inequalities
- Restricting to \(\text{LAV} \) settings

Concluding remarks
Datalogₚ programs extend **Datalog** with inequalities over constants

Definition:
A collection of constant-inequality rules of the form:

\[S(\bar{x}) \leftarrow \ldots \]

- predicate symbols
- variables under predicate **C**
- inequalities of the form \(u \neq v \),
 \(u \) and \(v \) must be under predicate **C**
\textsc{Datalog}^{C(\neq)} \text{ programs extend Datalog with inequalities over constants}

Definition:
A collection of constant-inequality rules of the form:

\[S(\bar{x}) \leftarrow \ldots \]

- predicate symbols
- variables under predicate \(C \)
- inequalities of the form \(u \neq v \),
 \(u \) and \(v \) must be under predicate \(C \)

Example:

\[
\begin{align*}
S(x, y) & \leftarrow E(x, y) \\
S(x, y) & \leftarrow S(x, z), S(z, y), C(x), C(z), C(y), x \neq z, y \neq z \\
true & \leftarrow P(x), R(y), S(x, y), C(x), C(y), x \neq y
\end{align*}
\]
Datalog\(^C(\neq)\) programs extend **Datalog** with inequalities over constants

Definition:
A collection of constant-inequality rules of the form:

\[
S(\bar{x}) \leftarrow ... \\
\quad \text{predicate symbols} \\
\quad \text{variables under predicate } C \\
\quad \text{inequalities of the form } u \neq v, \\
\quad \text{ } u \text{ and } v \text{ must be under predicate } C
\]

Example:

\[
S(x, y) \leftarrow E(x, y) \\
S(x, y) \leftarrow S(x, z), S(z, y), C(x), C(z), C(y), x \neq z, y \neq z \\
true \leftarrow P(x), R(y), S(x, y), C(x), C(y), x \neq y
\]
Datalog\(^C(\neq)\) programs extend **Datalog** with inequalities over constants

Definition:
A collection of constant-inequality rules of the form:

\[S(\bar{x}) \leftarrow \ldots \]

- predicate symbols
- variables under predicate \(C \)
- inequalities of the form \(u \neq v \),
 \(u \) and \(v \) must be under predicate \(C \)

Example:

\[
\begin{align*}
S(x, y) & \leftarrow E(x, y) \\
S(x, y) & \leftarrow S(x, z), S(z, y), C(x), C(z), C(y), x \neq z, y \neq z \\
true & \leftarrow P(x), R(y), S(x, y), C(x), C(y), x \neq y
\end{align*}
\]
Datalog\(^\mathcal{C}(\neq)\) programs extend **Datalog** with inequalities over constants

Definition:
A collection of constant-inequality rules of the form:

\[S(\bar{x}) \leftarrow \ldots \]

- predicate symbols
- variables under predicate \(C\)
- inequalities of the form \(u \neq v\),

 \(u\) and \(v\) must be under predicate \(C\)

Example:

\[
\begin{align*}
S(x, y) & \leftarrow E(x, y) \\
S(x, y) & \leftarrow S(x, z), S(z, y), C(x), C(z), C(y), x \neq z, y \neq z \\
\text{true} & \leftarrow P(x), R(y), S(x, y), C(x), C(y), x \neq y
\end{align*}
\]
\textbf{Datalog}^C(\neq) programs have the same good properties as conjunctive queries

\begin{itemize}
 \item \textbf{Datalog}^C(\neq) programs are preserved under homomorphisms
\end{itemize}
\textbf{Datalog}^C(\neq) programs have the same good properties as conjunctive queries

- \textbf{Datalog}^C(\neq) programs are preserved under homomorphisms
 - \textbf{Datalog} programs are preserved under homomorphisms
 - every inequality must be witnessed by constants
 - homomorphisms are the identity on constants

\textbf{Proposition} Certain answers of \textbf{Datalog}^C(\neq) programs can be computed by evaluating the programs over the canonical universal solution.

\textbf{Theorem} Computing the certain answers of a \textbf{Datalog}^C(\neq) program takes polynomial time (data complexity)
Datalog\(^C(\neq)\) programs have the same good properties as conjunctive queries

- **Datalog**\(^C(\neq)\) programs are preserved under homomorphisms
 - **Datalog** programs are preserved under homomorphisms
 - every inequality must be witnessed by constants
 - homomorphisms are the identity on constants

Proposition

Certain answers of **Datalog**\(^C(\neq)\) programs can be computed by evaluating the programs over the canonical universal solution.
Datalog\(^C(\neq)\) programs have the same good properties as conjunctive queries

- **Datalog**\(^C(\neq)\) programs are preserved under homomorphisms
 - **Datalog** programs are preserved under homomorphisms
 - every inequality must be witnessed by constants
 - homomorphisms are the identity on constants

Proposition

Certain answers of **Datalog**\(^C(\neq)\) programs can be computed by evaluating the programs over the canonical universal solution.

Theorem

Computing the certain answers of a **Datalog**\(^C(\neq)\) program takes polynomial time (data complexity)
$\text{DATALOG}_c^C(\neq)$ can express queries with negation

Theorem

Every union of conjunctive query with at most
- One negated atom
- One inequality

per disjunct, can be expressed as a $\text{DATALOG}_c^C(\neq)$ program.
\textbf{DATALOG}_C(\neq) \text{ can express queries with negation}

\begin{center}
\textbf{Theorem}

Every union of conjunctive query with at most
\begin{itemize}
 \item One negated atom
 \item One inequality
\end{itemize}
per disjunct, can be expressed as a \textbf{DATALOG}_C(\neq) program.
\begin{itemize}
 \item Certain answers for this class of queries can be computed in polynomial time
 \item Result for inequalities had been proved by FKMP03 using different techniques
\end{itemize}
\end{center}
\(\text{Datalog}^{\text{C}(\neq)} \) can express queries with negation.

Theorem

Every union of conjunctive query with at most
- One negated atom
- One inequality per disjunct, can be expressed as a \(\text{Datalog}^{\text{C}(\neq)} \) program.

- Certain answers for this class of queries can be computed in polynomial time
- Result for inequalities had been proved by FKMP03 using different techniques
- Next example gives a hint on the proof
Writing DATALOG\(^C(\neq)\) programs to answer queries with negation

\[
Q : \quad \exists x \exists y (E(x, y) \land x \neq y) \lor \\
\exists x \exists y \exists z (E(x, y) \land E(y, z) \land \neg E(x, z))
\]
Writing \(\text{DATALOG}^{C(\neq)} \) programs to answer queries with negation

\[
Q : \quad \exists x \exists y \ (E(x, y) \land x \neq y) \lor \\
\exists x \exists y \exists z \ (E(x, y) \land E(y, z) \land \neg E(x, z))
\]

\[
\begin{align*}
dom(x) & \leftarrow E(x, z) \\
dom(x) & \leftarrow E(z, x)
\end{align*}
\]

- Collect the domain
Writing $\textsc{Datalog}^{C(\neq)}$ programs to answer queries with negation

$$Q : \quad \exists x \exists y \ (E(x, y) \land x \neq y) \lor \\
\quad \exists x \exists y \exists z \ (E(x, y) \land E(y, z) \land \neg E(x, z))$$

- $\text{dom}(x) \leftarrow E(x, z)$
- $\text{dom}(x) \leftarrow E(z, x)$ - Collect the domain
- $\text{EQ}(x, x) \leftarrow \text{dom}(x)$ - Formalize the Equality
- $\text{EQ}(x, y) \leftarrow \text{EQ}(x, w), \text{EQ}(w, y)$
Writing \(\text{DATALOG}^{C(\neq)} \) programs to answer queries with negation

\[
Q : \quad \begin{align*}
\exists x \exists y & \ (E(x, y) \land x \neq y) \lor \\
\exists x \exists y \exists z & \ (E(x, y) \land E(y, z) \land \neg E(x, z))
\end{align*}
\]

\[
\begin{align*}
\text{dom}(x) & \leftarrow E(x, z) \\
\text{dom}(x) & \leftarrow E(z, x) \quad \text{- Collect the domain} \\
\text{EQ}(x, x) & \leftarrow \text{dom}(x) \quad \text{- Formalize the Equality} \\
\text{EQ}(x, y) & \leftarrow \text{EQ}(x, w), \text{EQ}(w, y) \quad \text{- Copy E into U} \\
U(x, y) & \leftarrow E(x, y)
\end{align*}
\]
Writing \textsc{Datalog}^C(\neq) programs to answer queries with negation

\begin{align*}
Q : & \quad \exists x \exists y \ (E(x, y) \land x \neq y) \lor \\
& \quad \exists x \exists y \exists z \ (E(x, y) \land E(y, z) \land \neg E(x, z))
\end{align*}

\begin{align*}
\text{dom}(x) & \leftarrow E(x, z) \\
\text{dom}(x) & \leftarrow E(z, x) \\
\text{EQ}(x, x) & \leftarrow \text{dom}(x) \quad \text{- Collect the domain} \\
\text{EQ}(x, y) & \leftarrow \text{EQ}(x, w), \text{EQ}(w, y) \quad \text{- Formalize the Equality} \\
U(x, y) & \leftarrow E(x, y) \quad \text{- Copy E into U} \\
U(x, y) & \leftarrow \text{EQ}(u, v), \text{EQ}(u, x), \text{EQ}(v, y) \quad \text{- Replace equals in U}
\end{align*}
Writing $\text{Datalog}^C(\neq)$ programs to answer queries with negation

$$Q : \quad \exists x \exists y (E(x, y) \land x \neq y) \lor$$
$$\exists x \exists y \exists z (E(x, y) \land E(y, z) \land \neg E(x, z))$$

- Collect the domain
- Formalize the Equality
- Copy E into U
- Replace equals in U
- Simulate negation

$$\begin{align*}
dom(x) & \leftarrow E(x, z) \\
dom(x) & \leftarrow E(z, x) \\
EQ(x, x) & \leftarrow dom(x) \\
EQ(x, y) & \leftarrow EQ(x, w), EQ(w, y) \\
U(x, y) & \leftarrow E(x, y) \\
U(x, y) & \leftarrow EQ(u, v), EQ(u, x), EQ(v, y) \\
U(x, y) & \leftarrow U(x, z), U(z, y)
\end{align*}$$
Writing **Datalog**\(^C(\neq)\) programs to answer queries with negation

\[
Q : \quad \exists x \exists y (E(x, y) \land x \neq y) \lor \\
\exists x \exists y \exists z (E(x, y) \land E(y, z) \land \neg E(x, z))
\]

\[
\begin{align*}
\text{dom}(x) & \leftarrow E(x, z) \\
\text{dom}(x) & \leftarrow E(z, x) \\
EQ(x, x) & \leftarrow \text{dom}(x) & \text{- Collect the domain} \\
EQ(x, y) & \leftarrow EQ(x, w), EQ(w, y) & \text{- Formalize the Equality} \\
U(x, y) & \leftarrow E(x, y) & \text{- Copy E into U} \\
U(x, y) & \leftarrow EQ(u, v), \\
& \quad EQ(u, x), EQ(v, y) & \text{- Replace equals in U} \\
U(x, y) & \leftarrow U(x, z), U(z, y) & \text{- Simulate negation} \\
EQ(x, y) & \leftarrow U(x, y) & \text{- Simulate inequality}
\end{align*}
\]
Writing \textbf{Datalog} C(\neq) programs to answer queries with negation

\[Q : \quad \exists x \exists y \ (E(x, y) \land x \neq y) \lor \exists x \exists y \exists z \ (E(x, y) \land E(y, z) \land \neg E(x, z)) \]

<table>
<thead>
<tr>
<th>Rule</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{dom}(x) & \leftarrow E(x, z)</td>
<td></td>
</tr>
<tr>
<td>\texttt{dom}(x) & \leftarrow E(z, x)</td>
<td></td>
</tr>
<tr>
<td>\texttt{EQ}(x, x) & \leftarrow \texttt{dom}(x)</td>
<td>- Collect the domain</td>
</tr>
<tr>
<td>\texttt{EQ}(x, y) & \leftarrow \texttt{EQ}(x, w), \texttt{EQ}(w, y)</td>
<td>- Formalize the Equality</td>
</tr>
<tr>
<td>\texttt{U}(x, y) & \leftarrow E(x, y)</td>
<td>- Copy E into U</td>
</tr>
<tr>
<td>\texttt{U}(x, y) & \leftarrow \texttt{EQ}(u, v), \texttt{EQ}(u, x), \texttt{EQ}(v, y)</td>
<td>- Replace equals in U</td>
</tr>
<tr>
<td>\texttt{U}(x, y) & \leftarrow \texttt{U}(x, z), \texttt{U}(z, y)</td>
<td>- Simulate negation</td>
</tr>
<tr>
<td>\texttt{EQ}(x, y) & \leftarrow \texttt{U}(x, y)</td>
<td>- Simulate inequality</td>
</tr>
<tr>
<td>\texttt{TRUE} & \leftarrow \texttt{EQ}(z, y), \texttt{C}(y), \texttt{C}(z), y \neq z</td>
<td>- Answer</td>
</tr>
</tbody>
</table>
Outline

Formalization

- $\text{DATALOG}^C(\neq)$ programs

Beyond union of conjunctive queries

- Expressive power of $\text{DATALOG}^C(\neq)$
- New tractable classes of queries

Combined Complexity

- $\text{DATALOG}^C(\neq)$ and queries with inequalities
- Restricting to LAV settings

Concluding remarks
Classes of queries

\((UCQ)CQ\)
- (union) of conjunctive queries

\((UCQ\neq)CQ\neq\)
- (union) of conjunctive queries with inequalities

\(k-CQ\neq\)
- conjunctive queries with at most \(k\) inequalities
Certain answers for conjunctive queries with two inequalities is intractable (data complexity)

[Madry 05]:

- The certain answers problem is coNP-complete for 2-$\text{CQ} \neq$
Certain answers for conjunctive queries with two inequalities is intractable (data complexity)

[Madry 05]:
- The certain answers problem is coNP-complete for $2\text{-CQ} \neq$

We find an interesting tractable fragment for this class of queries, using translation into $\text{DATALOG}^{\text{C}(\neq)}$ programs
We need to define two restrictions

- Constant Joins
- Almost constant inequalities
We need to define two restrictions

- Constant Joins
- Almost constant inequalities

Constant Joins:
No null values can witness a join of a relation
We need to define two restrictions

- **Constant Joins**
- **Almost constant inequalities**

Constant Joins:
No null values can witness a join of a relation

\[M : \]

\[P(u, v) \rightarrow T(u, v) \]
\[Q(u, v) \rightarrow \exists w U(u, w) \]

\[Q_1 : \]
\[\exists x \exists y \exists z (T(x, y) \land U(x, z)) \]
\[Q_2 : \]
\[\exists x \exists y \exists z (U(x, z) \land U(y, z)) \]
We need to define two restrictions

- **Constant Joins**
- **Almost constant inequalities**

Constant Joins:
No null values can witness a join of a relation

\[M : \quad P(u, v) \rightarrow T(u, v) \]
\[Q(u, v) \rightarrow \exists w U(u, w) \]

\[Q_1 : \quad \exists x \exists y \exists z (T(x, y) \land U(x, z)) \quad \text{YES} \]
\[Q_2 : \quad \exists x \exists y \exists z (U(x, z) \land U(y, z)) \]
We need to define two restrictions

- **Constant Joins**
- **Almost constant inequalities**

Constant Joins:
No null values can witness a join of a relation

\[
\mathcal{M} : \\
P(u, v) \rightarrow T(u, v) \\
Q(u, v) \rightarrow \exists w U(u, w)
\]

\[
Q_1 : \exists x \exists y \exists z (T(x, y) \land U(x, z)) \quad \text{YES}
\]

\[
Q_2 : \exists x \exists y \exists z (U(x, z) \land U(y, z)) \quad \text{NO}
\]
We need to define two restrictions

- Constant Joins
- Almost constant inequalities

Almost constant inequalities:
Every inequality can be witnessed by at most 1 null value
We need to define two restrictions

- Constant Joins
- Almost constant inequalities

Almost constant inequalities:
Every inequality can be witnessed by at most 1 null value

\[M : \]
\[P(u, v) \rightarrow T(u, v) \]
\[Q(u, v) \rightarrow \exists w U(u, w) \]

\[Q_1 : \exists x \exists y \exists z (U(x, y) \land U(x, z) \land x \neq z) \]
\[Q_2 : \exists x \exists y \exists z (U(x, y) \land U(x, z) \land y \neq z) \]
We need to define two restrictions

- Constant Joins
- Almost constant inequalities

Almost constant inequalities:
Every inequality can be witnessed by at most 1 null value

\[M : \ P(u, v) \rightarrow T(u, v) \]
\[Q(u, v) \rightarrow \exists w U(u, w) \]

\[Q_1 : \exists x \exists y \exists z (U(x, y) \land U(x, z) \land x \neq z) \text{ YES} \]

\[Q_2 : \exists x \exists y \exists z (U(x, y) \land U(x, z) \land y \neq z) \]
We need to define two restrictions

- Constant Joins
- Almost constant inequalities

Almost constant inequalities:
Every inequality can be witnessed by at most 1 null value

\[M : \]
\[P(u, v) \rightarrow T(u, v) \]
\[Q(u, v) \rightarrow \exists w U(u, w) \]

\[Q_1 : \exists x \exists y \exists z (U(x, y) \land U(x, z) \land x \neq z) \quad \text{YES} \]
\[Q_2 : \exists x \exists y \exists z (U(x, y) \land U(x, z) \land y \neq z) \quad \text{NO} \]
We use $\text{DATALOG}^C(\neq)$ to find a tractable fragment for union of conjunctive queries with at most two inequalities.

Theorem

Every 2-$\text{UCQ} \neq$ with:
- constant joins
- almost constant inequalities

... can be expressed as a $\text{DATALOG}^C(\neq)$ program in data exchange.

Removing any one of these conditions yields intractability. Stronger than Madry's proof (did not have these restrictions).
We use $\text{DATALOG}^{c(\neq)}$ to find a tractable fragment for union of conjunctive queries with at most two inequalities

Theorem

Every 2-UCQ\neq with:

- constant joins
- almost constant inequalities

can be expressed as a $\text{DATALOG}^{c(\neq)}$ program in data exchange.

Certain answers to this class of queries can be computed in polynomial time
We use $\text{DATALOG}^C(\neq)$ to find a tractable fragment for union of conjunctive queries with at most two inequalities.

Theorem

Every 2-UCQ \neq with:

- constant joins
- almost constant inequalities

can be expressed as a $\text{DATALOG}^C(\neq)$ program in data exchange.

Certain answers to this class of queries can be computed in polynomial time.

- Removing any one of these conditions yields intractability
We use $\text{DATALOG}^C(\neq)$ to find a tractable fragment for union of conjunctive queries with at most two inequalities

Theorem

Every 2-UCQ \neq with:
- constant joins
- almost constant inequalities

can be expressed as a $\text{DATALOG}^C(\neq)$ program in data exchange.

Certain answers to this class of queries can be computed in polynomial time

- Removing any one of this conditions yields to intractability
- Stronger than Madry’s proof (did not have these restrictions)
There is no hope for 3-CQ\neq

Theorem

There exists a query Q in 3-CQ\neq with
- constant joins
- almost constant inequalities

such that computing it’s certain answers is coNP-complete.
Outline

Formalization
- \textsc{Datalog}^C(\neq) \text{ programs}

Beyond union of conjunctive queries
- Expressive power of \textsc{Datalog}^C(\neq)
- New tractable classes of queries

Combined Complexity
- \textsc{Datalog}^C(\neq) \text{ and queries with inequalities}
- Restricting to \textsc{Lav} settings

Concluding remarks
Combined Complexity: a natural question

What is the complexity if we consider as inputs

- Database instance?
Combined Complexity: a natural question

What is the complexity if we consider as inputs

- Database instance
- Data exchange setting, query?
Combined Complexity: a natural question

What is the complexity if we consider as inputs
- Database instance
- Data exchange setting, query?

Kolaitis, Pantajja, Tan 06:
- Combined complexity of existence of solutions
- Lower bounds for query answering: 1-UCQ
Combined Complexity: a natural question

What is the complexity if we consider as inputs
- Database instance
- Data exchange setting, query?

Kolaitis, Pantajja, Tan 06:
- Combined complexity of existence of solutions
- Lower bounds for query answering: 1-UCQ

We study the combined complexity of query answering
- Tight lower bounds (single conjunctive queries)
- Results for DATALOG$^C(\neq)$ and related query languages
Combined Complexity for the general setting

Theorem

Input: Data exchange setting \mathcal{M}, query Q, instance I and tuple \bar{t}

Problem: Is \bar{t} in the certain answers of Q for I under \mathcal{M}?

EXPTIME-complete for $\text{DATALOG}^C(\neq)$ programs

▶ Same results hold for unions
▶ It follows from KPT06 that the problem is EXPTIME-complete for 1-UCQ(\neq)$ programs
Combined Complexity for the general setting

Theorem

Input: Data exchange setting \mathcal{M}, query Q, instance I and tuple \bar{t}

Problem: Is \bar{t} in the certain answers of Q for I under \mathcal{M}?

- **EXPTIME-complete** for DATALOG$^{C(\neq)}$ programs
- **EXPTIME-complete** for 1-CQ\neq

▶ Same results hold for unions

It follows from KPT06 that the problem is **EXPTIME-complete** for 1-UCQ\neq
Combined Complexity for the general setting

Theorem

Input: Data exchange setting \mathcal{M}, query Q, instance I and tuple \bar{t}

Problem: Is \bar{t} in the certain answers of Q for I under \mathcal{M}?

- **EXPTIME-complete** for $\text{DATALOG}^{C(\neq)}$ programs
- **EXPTIME-complete** for 1-CQ^{\neq}
- **coNEXPTIME-complete** for k-CQ^{\neq}, $k \geq 2$
- **coNEXPTIME-complete** for CQ^{\neq}
Combined Complexity for the general setting

Theorem

Input: Data exchange setting \mathcal{M}, query Q, instance I and tuple \bar{t}

Problem: Is \bar{t} in the certain answers of Q for I under \mathcal{M}?

- EXPTIME-complete for $\text{DATALOG}^c(\neq)$ programs
- EXPTIME-complete for 1-$\text{CQ} \neq$
- coNEXPTIME-complete for k-$\text{CQ} \neq$, $k \geq 2$
- coNEXPTIME-complete for $\text{CQ} \neq$

- Same results hold for unions

- It follows from KPT06 that the problem is EXPTIME-complete for 1-$\text{UCQ} \neq$
Lower combined complexity if we restrict to \textit{LAV} settings

A LAV setting is a data exchange setting where Σ_{st} is of the form:

$$R(\bar{x}) \rightarrow \exists \bar{y} \psi(\bar{x}, \bar{y})$$

- Premises are single relational atoms
Lower combined complexity if we restrict to LAV settings

A LAV setting is a data exchange settings where Σ_{st} is of the form:

$$R(\bar{x}) \rightarrow \exists \bar{y} \psi(\bar{x}, \bar{y})$$

- Premises are single relational atoms

Very used in practice!
Lower combined complexity if we restrict to LAV settings

A LAV setting is a data exchange settings where \sum_{st} is of the form:

$$R(\bar{x}) \rightarrow \exists \bar{y} \psi(\bar{x}, \bar{y})$$

- Premises are single relational atoms

Very used in practice!

Under LAV settings, canonical universal solutions are of polynomial size (combined complexity)
Lower combined complexity if we restrict to \(LAV \) settings

Theorem

Input: \(LAV \) setting \(\mathcal{M} \), query \(Q \), instance \(I \) and tuple \(\bar{t} \)

Problem: Is \(\bar{t} \) in the certain answers of \(Q \) for \(I \) under \(\mathcal{M} \)?

\[\text{EXPTIME-complete for } \text{Datalog}^C(\neq) \text{ programs} \]
Lower combined complexity if we restrict to \(LAV \) settings

Theorem

Input: \(LAV \) setting \(M \), query \(Q \), instance \(I \) and tuple \(\bar{t} \)

Problem: Is \(\bar{t} \) in the certain answers of \(Q \) for \(I \) under \(M \)?

- **Exptime-complete** for \(\text{Datalog}^C(\neq) \) programs
- **NP-complete** for 1-CQ\(\neq \)

▶ Same results hold for unions
Lower combined complexity if we restrict to LAV settings.

Theorem

Input: LAV setting \mathcal{M}, query Q, instance I and tuple \bar{t}

Problem: Is \bar{t} in the certain answers of Q for I under \mathcal{M}?

- **EXPTIME-complete** for $\text{Datalog}^C(\neq)$ programs
- **NP-complete** for 1-CQ\neq
- **Π^p_2-complete** for k-CQ\neq, $k \geq 2$
- **Π^p_2-complete** for CQ\neq
Lower combined complexity if we restrict to LAV settings

Theorem

Input: LAV setting \mathcal{M}, query Q, instance I and tuple \bar{t}

Problem: Is \bar{t} in the certain answers of Q for I under \mathcal{M}?

- EXPTIME-complete for $\text{DATALOG}^\text{C(\neq)}$ programs
- NP-complete for 1-$\text{CQ} \neq$
- Π^p_2-complete for k-$\text{CQ} \neq$, $k \geq 2$
- Π^p_2-complete for $\text{CQ} \neq$

- Same results hold for unions
Outline

Formalization

- \(\text{Datalog}^C(\neq) \) programs

Beyond union of conjunctive queries

- Expressive power of \(\text{Datalog}^C(\neq) \)
- New tractable classes of queries

Combined Complexity

- \(\text{Datalog}^C(\neq) \) and queries with inequalities
- Restricting to \(\text{Lav} \) settings

Concluding remarks
We propose $\text{DATALOG}^C(\neq)$ as a query language for data exchange.

Study its properties:
- Preserved under homomorphisms
- Certain answers can be computed in polynomial time (data complexity)

$\text{DATALOG}^C(\neq)$, a tractable language that express negation:
- Union of conjunctive queries with one negated atom per disjunct
- A fragment of $2-\text{UCQ}^{\neq}$

We can use $\text{DATALOG}^C(\neq)$ to find tractable classes of queries.
Outline

Formalization
- $\text{DATALOG}^C(\neq)$ programs

Beyond union of conjunctive queries
- Expressive power of $\text{DATALOG}^C(\neq)$
- New tractable classes of queries

Combined Complexity
- $\text{DATALOG}^C(\neq)$ and queries with inequalities
- Restricting to LAV settings

Concluding remarks