Classification of Annotation Semirings over Query Containment

Егор В. Костылев Juan L. Reutter András Z. Salamon

LFCS, University of Edinburgh
Relational Database annotation
Relational Database annotation: Comments

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>Algebra</td>
<td></td>
<td>Top mark</td>
</tr>
<tr>
<td>Jane</td>
<td>Physics</td>
<td></td>
<td>Wants TA</td>
</tr>
<tr>
<td>Anne</td>
<td>History</td>
<td></td>
<td>Class Rep.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Likes</th>
<th>Student</th>
<th>Course</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>Algebra</td>
<td></td>
<td>Wants TA</td>
</tr>
<tr>
<td>Anne</td>
<td>Literature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relational Database annotation: Comments

Takes

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Top mark</th>
<th>Wants TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jane</td>
<td>Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anne</td>
<td>History</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Likes

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Wants TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>Algebra</td>
<td></td>
</tr>
<tr>
<td>Anne</td>
<td>Literature</td>
<td></td>
</tr>
</tbody>
</table>

```
SELECT Student, Course
FROM Takes, Likes
WHERE Takes.S = Likes.S
AND Takes.C = Likes.C
```
Relational Database annotation: *Belief*

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>Teach. Office</th>
<th>Stud. Union</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>Algebra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jane</td>
<td>Physics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anne</td>
<td>History</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Likes</th>
<th>Student</th>
<th>Course</th>
<th>Stud. Union</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>Algebra</td>
<td></td>
<td>Stud. Union</td>
</tr>
<tr>
<td>Anne</td>
<td>Literature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Jane, Algebra): Stud. Union
Relational Database annotation: *Bag Semantics*

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>Algebra</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Jane</td>
<td>Physics</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Anne</td>
<td>History</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Likes</th>
<th>Student</th>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>Algebra</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Anne</td>
<td>Literature</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

```
SELECT Student, Course
FROM Takes, Likes
WHERE Takes.S = Likes.S
AND Takes.C = Likes.C
```

(Jane, Algebra):

\[2 \times 2 = 4\]
Relational Database annotation: Fuzzy Databases

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>Algebra</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Jane</td>
<td>Physics</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Anne</td>
<td>History</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Likes</th>
<th>Student</th>
<th>Course</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>Algebra</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Anne</td>
<td>Literature</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(Jane, Algebra): $0.6 \times 0.5 = 0.3$
Semirings

(Green et al. 07):

- Domains of annotations are \textit{commutative semirings}.
- Typical example: \textit{natural numbers}
- $\mathcal{K} = \langle K, +, \times, 0, 1 \rangle$
Semirings

(Green et al. 07):

- Domains of annotations are **commutative semirings**.
- Typical example: **natural numbers**
- $\mathcal{K} = \langle K, +, \times, 0, 1 \rangle$

More examples:

- **Comments**: $\langle \{c_1, c_2, c_3, \ldots \}, \cup, \cup, \emptyset, \emptyset \rangle$
- **Belief**: $\langle x, y, z, \ldots, \cup, \cap, \emptyset, \emptyset \rangle$
- **Fuzzy Databases**: $\langle [0, 1], \max, \times, 0, 1 \rangle$
Semirings

(Green et al. 07):

- Domains of annotations are **commutative semirings**.
- Typical example: **natural numbers**
- \(K = \langle K, +, \times, 0, 1 \rangle \)

For query evaluation (positive relational algebra):

- Joins we **Multiply** the annotations
- Unions we **Add** the annotations
We study query containment in annotated databases
What is so **special** about containment?

- Not the same as Set Semantics
- **Varies** depending on the annotation domain
- **Open Problems** (Bag Semantics)
What is so special about containment?

- Not the same as Set Semantics
- Varies depending on the annotation domain
- Open Problems (Bag Semantics)

\[
Q_1 := \exists u \exists v, \exists w \text{ Takes}(u, v), \text{ Takes}(u, w)
\]
\[
Q_2 := \exists u \exists v \text{ Takes}(u, v)
\]
What is so **special** about containment?

- Not the same as Set Semantics
- **Varies** depending on the annotation domain
- **Open Problems** (Bag Semantics)

\[
Q_1 := \exists u \exists v, \exists w \text{ Takes}(u, v), \text{ Takes}(u, w)
\]

\[
Q_2 := \exists u \exists v \text{ Takes}(u, v)
\]

Q₁ is contained in Q₂ under Set Semantics

Q₁ is not contained in Q₂ under Bag Semantics
What is so special about containment?

- Not the same as Set Semantics
- Varies depending on the annotation domain
- Open Problems (Bag Semantics)

\[Q_1 := \exists u \exists v, \exists w \text{ } Takes(u, v), Takes(u, w) \]
\[Q_2 := \exists u \exists v \text{ } Takes(u, v) \]

\textbf{Q2 is contained in Q1 under Set Semantics or Bag Semantics}

\textbf{Q2 is not contained in Q1 over fuzzy databases}
Previous Work has focused on particular semirings

- Bag Semantics
- Probabilistic Databases
- Various semirings for provenance

But new applications may use new semirings

We focus on classes of semirings
Contributions

- Identify several classes of semirings for annotation with decision procedures for checking: containment of CQs and UCQs.

- Generalize previous work

- Some results by known techniques (homomorphisms)
- Others using new machinery, based on
 - Relationships between queries and polynomials
 - Small model properties
Outline

- Formalization of \mathcal{K}-containment
- Some results in the paper
Outline

- Formalization of \mathcal{K}-containment
- Some results in the paper
Query Evaluation on annotated databases

Bag Semantics: $\langle \mathbb{N}, +, \times \rangle$

$$Q := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w)$$

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>P</td>
<td>1</td>
</tr>
</tbody>
</table>
Query Evaluation on annotated databases

Bag Semantics: $\langle \mathbb{N}, +, \times \rangle$

- For each homomorphism h from Q to I:
 1. Compute the annotation of $h(Q)$
 2. Sum over all homomorphisms.

$$Q := \exists u, \exists v, \exists w \text{Takes}(u, v), \text{Takes}(u, w)$$

<table>
<thead>
<tr>
<th>I: Takes</th>
<th>Student</th>
<th>Course</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>A</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>P</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Query Evaluation on annotated databases

Bag Semantics: $\langle \mathbb{N}, +, \times \rangle$

For each homomorphism h from Q to I:
1. Compute the annotation of $h(Q)$
2. Sum over all homomorphisms.

$Q := \exists u, \exists v, \exists w \text{ Takes}(u, v), \text{ Takes}(u, w)$
$h(Q) := \text{ Takes}(J, A), \text{ Takes}(J, P)$

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>P</td>
<td>1</td>
</tr>
</tbody>
</table>

$Q_1(I) = 2 \cdot 1$
Query Evaluation on annotated databases

Bag Semantics: \(\langle \mathbb{N}, +, \times \rangle \)

- For each homomorphism \(h \) from \(Q \) to \(I \):
 1. Compute the annotation of \(h(Q) \)
 2. Sum over all homomorphisms.

\[
Q := \exists u, \exists v, \exists w \text{ Takes}(u, v), \text{ Takes}(u, w)
\]

\[
h(Q) := \text{ Takes}(J, P), \text{ Takes}(J, A)
\]

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>P</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Q_1(I) = 2 \cdot 1 + 1 \cdot 2\]
Query Evaluation on annotated databases

Bag Semantics: $\langle \mathbb{N}, +, \times \rangle$

- For each homomorphism h from Q to I:
 1. Compute the annotation of $h(Q)$
 2. Sum over all homomorphisms.

\[
Q := \exists u, \exists v, \exists w \ \text{Takes}(u, v), \ \text{Takes}(u, w)
\]

\[
h(Q) := \text{Takes}(J, A), \ \text{Takes}(J, A)
\]

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>P</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
Q_1(I) = 2 \cdot 1 + 1 \cdot 2 + 2 \cdot 2
\]
Query Evaluation on annotated databases

Bag Semantics: $\langle \mathbb{N}, +, \times \rangle$

For each homomorphism h from Q to I:
1. Compute the annotation of $h(Q)$
2. Sum over all homomorphisms.

$$Q := \exists u, \exists v, \exists w \; Takes(u, v), Takes(u, w)$$

$$h(Q) := Takes(J, P), Takes(J, P)$$

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>P</td>
<td>1</td>
</tr>
</tbody>
</table>

$$Q_1(I) = 2 \cdot 1 + 1 \cdot 2 + 2 \cdot 2 + 1 \cdot 1 = 9$$
Fuzzy Databases: $\langle [0, 1], \text{max}, \times \rangle$

- For each homomorphism h from Q to I:
 1. Compute the annotation of $h(Q)$
 2. Sum over all homomorphisms.

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>I:</td>
<td>J</td>
<td>A</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>P</td>
<td>0.3</td>
</tr>
</tbody>
</table>

$Q_1(I) = \max (0.7 \times 0.3, 0.3 \times 0.7, 0.7 \times 0.7, 0.3 \times 0.3) = 0.49$
Query Containment over Annotated Databases

- Semirings with partial order \preceq_K
- For Bag Semantics, Fuzzy databases we use the order \leq
- For comments, belief, provenance we use order \subseteq
 \[
 \{\text{Wants TA}\} \subseteq \{\text{Top Mark, Wants TA}\}
 \]
Query Containment over Annotated Databases

- Semirings with partial order \leq_K

- For Bag Semantics, Fuzzy databases we use the order \leq

- For comments, belief, provenance we use order \subseteq:
 \[\{\text{Wants TA}\} \subseteq \{\text{Top Mark, Wants TA}\} \]

Definition of containment (boolean queries):

\[Q_1 \text{ is } K\text{-contained in } Q_2 \iff Q_1(I) \leq_K Q_2(I), \text{ for all instances } I \]

- Write $Q_1 \subseteq_K Q_2$
Outline

- Formalization of \mathcal{K}-containment
- Some results in the paper
Previous Work

Set semantics: $\langle \{0, 1\}, \lor, \land \rangle$
$Q_1 \subseteq Q_2$ iff homomorphism from Q_2 to Q_1.

Set semantics: $\langle \{0, 1\}, \lor, \land \rangle$
Previous Work

Positive Boolean Algebra

\[Q_1 \subseteq_{K} Q_2 \text{ iff homomorphism from } Q_2 \text{ to } Q_1. \]
Previous Work - Grahne et al. ’97

Distributive Lattices

B

PosBool
Previous Work - Grahne et al. ’97

Distributive Lattices

\(\mathcal{B} \)

PosBool

homomorphism
Previous Work

Distributive Lattices

\(\mathcal{N} \)

\(\mathbf{B} \)

\(\text{PosBool} \)

\(\text{homomorphism} \)
If surjective homomorphism from Q_2 to Q_1, then $Q_1 \subseteq \kappa Q_2$.

Distributive Lattices

\mathcal{N}

\mathcal{B}

PosBool

homomorphism
If $Q_1 \subseteq_K Q_2$ then homomorphic covering from Q_2 to Q_1.

Distributive Lattices

PosBool

homomorphism
Previous Work - Green '09

Lineage

\[\text{Distributive Lattices} \]

\[\mathcal{B} \]

\[\text{PosBool} \]

\[\text{homomorphism} \]
Previous Work - Green ’09

Why[X]

Why - Provenance

Lineage

Distributive Lattices

PosBool

B

homomorphism
Previous Work - Green ’09

Polynomials over variables X (Provenance Polynomials)

Why[X]

Lineage

$\mathcal{N}[X]$
$Q_1 \subseteq_K Q_2 \iff$ homomorphic covering from Q_2 to Q_1.
Previous Work - Green ’09

\[\mathcal{N}[X] \]

\[\text{Why}[X] \]

\text{surjective homomorphism}

\text{Lineage}

\text{homomorphically covering}

\text{Distributive Lattices}

\text{PosBool}

\text{homomorphism}
Previous Work - Green ’09

\[\mathcal{N}[X] \]
bijective homomorphism

\[\text{Why}[X] \]
surjective homomorphism

Lineage
homomorphic covering

Distributive Lattices

\[\mathcal{B} \]
homomorphism

\[\text{PosBool} \]
Summing up, we have:

- Different types of mappings (homomorphisms)
- For a semiring \mathcal{K} they can be:
 - *Sufficient condition* for containment
 - *Necessary condition* for containment
 - *Decision procedure* for containment
Summing up, we have:

- Different types of mappings (homomorphisms)
- For a semiring \mathcal{K} they can be:
 - *Sufficient condition* for containment

 \[
 \text{If mapping from } Q_2 \text{ to } Q_1 \text{ then } Q_1 \subseteq_{\mathcal{K}} Q_2
 \]
 - *Necessary condition* for containment
 - *Decision procedure* for containment
Summing up, we have:

- Different types of mappings (homomorphisms)
- For a semiring \mathcal{K} they can be:
 - *Sufficient condition* for containment
 - *Necessary condition* for containment

If $Q_1 \subseteq_{\mathcal{K}} Q_2$ then mapping from Q_2 to Q_1

- *Decision procedure* for containment
Summing up, we have:

- Different types of mappings (homomorphisms)
- For a semiring \mathcal{K} they can be:
 - Sufficient condition for containment
 - Necessary condition for containment
 - Decision procedure for containment

\[Q_1 \subseteq_{\mathcal{K}} Q_2 \text{ iff mapping from } Q_2 \text{ to } Q_1 \]
We fully characterize the universe of semirings
We fully characterize the universe of semirings

- Axiomatize classes of semirings for which different type of mappings are sufficient, or necessary conditions for \mathcal{K}-containment of CQ's

- Several classes for which \mathcal{K}-containment is decidable
We fully characterize the universe of semirings

- **Axiomatize classes of semirings** for which different type of mappings are sufficient, or necessary conditions for \mathcal{K}-containment of CQ’s

- Several classes for which \mathcal{K}-containment is **decidable**

- Generalize to **Unions of CQs**
We fully characterize the universe of semirings

- Axiomatize classes of semirings for which different type of mappings are sufficient, or necessary conditions for K-containment of CQ’s

- Several classes for which K-containment is decidable

- Generalize to Unions of CQs

- Additional decision procedures for K-containment
Outline

- Formalization of \mathcal{K}-containment
- Some results in the paper
- Results for homomorphisms
- Results for homomorphic covering...
 and a relevant class of polynomials
Containment of CQ's for set semantics

- Model set semantics as $B = \langle \{0, 1\}, \lor, \land, 0, 1 \rangle$

Q_1 is B-contained in Q_2 iff there is a homomorphism from Q_2 to Q_1
Containment of CQ's for set semantics

- Model set semantics as $B = \langle \{0, 1\}, \lor, \land, 0, 1 \rangle$

Q_1 is B-contained in Q_2 iff there is a homomorphism from Q_2 to Q_1

Is this true for any other semiring?
Many semirings behave as set semantics

- Boolean Algebra
- Event tables
- Type A systems (Ioannidis et al. 95)
- Distributive lattices
Many semirings behave as set semantics

- Boolean Algebra
- Event tables
- Type A systems (Ioannidis et al. 95)
- Distributive lattices

Can we characterize all semirings with this behavior?
Yes we can

A semiring \mathcal{K} is in \mathcal{H} if

1. $a \times a = a$
2. $1 + a = 1$

for all $a \in \mathcal{K}$.
A semiring \mathcal{K} is in \mathcal{H} if

1. $a \times a = a$
2. $1 + a = 1$

for all $a \in \mathcal{K}$.

Theorem

\mathcal{H} captures precisely all semirings that behave as Set Semantics (wrt. containment of CQs)
A semiring \mathcal{K} is in \mathcal{H} if

1. $a \times a = a$
2. $1 + a = 1$

for all $a \in \mathcal{K}$.

Theorem

\mathcal{H} captures precisely all semirings that behave as Set Semantics (wrt. containment of CQs)

If \mathcal{K} is in \mathcal{H} then

- Homomorphism is a decision procedure for \mathcal{K}-containment
A semiring \mathcal{K} is in \mathcal{H} if

1. $a \times a = a$
2. $1 + a = 1$

for all $a \in \mathcal{K}$.

Theorem

\mathcal{H} captures precisely all semirings that behave as Set Semantics (wrt. containment of CQs)

If Homomorphism is a decision procedure for \mathcal{K}-containment

➤ Then \mathcal{K} is in \mathcal{H}
Class \mathcal{H}

$\mathcal{N}[X]$

Why$[X]$

\mathcal{N}

Lineage

Homomorphism from Q_2 to Q_1, iff $Q_1 \subseteq_{K} Q_2$

Distributive Lattices

PosBool

\mathcal{B}

$a \times a = a$

$1 + a = 1$
Outline

- Formalization of \mathcal{K}-containment
- Some results in the paper
- Results for homomorphisms
- Results for homomorphic covering...
 and a relevant class of polynomials
Moving away from \mathcal{H}

Two options:

- Keep $a \times a = a$
- Keep $1 + a = 1$
Moving away from \mathcal{H}

Two options:

- Keep $a \times a = a$
- Keep $1 + a = 1$

Example:

- Lineage $\text{Lineage} = \langle \{x, y, z, w, \ldots \}, \cup, \uplus \rangle$
Semirings satisfying $a \times a = a$
Semirings satisfying $a \times a = a$

- Homomorphisms are not sufficient condition

\[Q_1 := \exists u, \exists v, \exists w \text{ Takes}(u, v), \text{Likes}(u, w) \]
\[Q_2 := \exists u, \exists v \text{ Takes}(u, v) \]

- Homomorphism from Q_2 to Q_1
- Q_1 is not Lineage-contained in Q_2
Semirings satisfying $a \times a = a$

- Homomorphisms are not sufficient condition

$$Q_1 := \exists u, \exists v, \exists w \ Takes(u, v), Likes(u, w)$$
$$Q_2 := \exists u, \exists v \ Takes(u, v)$$

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>Lineage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I:</td>
<td>J</td>
<td>A</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>P</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Likes</th>
<th>Student</th>
<th>Course</th>
<th>Lineage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J</td>
<td>A</td>
<td>y</td>
</tr>
</tbody>
</table>
Semirings satisfying $a \times a = a$

- Homomorphisms are not sufficient condition

\[Q_1 := \exists u, \exists v, \exists w \quad \text{Takes}(u, v), \text{Likes}(u, w) \]
\[Q_2 := \exists u, \exists v \quad \text{Takes}(u, v) \]

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>Lineage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I:)</td>
<td>J</td>
<td>A</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>P</td>
<td>x</td>
</tr>
<tr>
<td>(L:)</td>
<td>J</td>
<td>A</td>
<td>y</td>
</tr>
</tbody>
</table>

- \(Q_1(I) = \{x, y\}\)
- \(Q_2(I) = \{x\}\)
We need a stricter notion of mapping

Idea:

- force both queries to target the same relations
Homomorphic Covering from Q_1 to Q_2

Intuition:
Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

$Q_1 := \exists u, \exists v, \exists w \ Takes(u, v), Likes(u, w)$

$Q_2 := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w), Likes(u, w)$
Homomorphic Covering from Q_1 to Q_2

Intuition:
Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

\[
Q_1 := \exists u, \exists v, \exists w \; Takes(u, v), Likes(u, w)
\]

\[
Q_2 := \exists u, \exists v, \exists w \; Takes(u, v), Takes(u, w), Likes(u, w)
\]
Homomorphic Covering from Q_1 to Q_2

Intuition:
Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

\[
Q_1 := \exists u, \exists v, \exists w \text{ Takes}(u, v), \text{ Likes}(u, w)
\]
\[
Q_2 := \exists u, \exists v, \exists w \text{ Takes}(u, v), \text{ Takes}(u, w), \text{ Likes}(u, w)
\]
Homomorphic Covering from Q_1 to Q_2

Intuition:
Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

\[
Q_1 := \exists u, \exists v, \exists w \; Takes(u, v), Likes(u, w) \\
Q_2 := \exists u, \exists v, \exists w \; Takes(u, v), Takes(u, w), Likes(u, w)
\]
Homomorphic Covering from Q_1 to Q_2

Intuition:
Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

\[
Q_1 := \exists u, \exists v, \exists w \ Takes(u, v), Likes(u, w)
\]
\[
Q_2 := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w), Likes(u, w)
\]
Homomorphic Covering from Q_1 to Q_2

Intuition:
Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

$Q_1 := \exists u, \exists v, \exists w \ Takes(u, v), Likes(u, w)$

$Q_2 := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w), Likes(u, w)$

There is a homomorphic covering from Q_1 to Q_2
Homomorphic Covering from Q_1 to Q_2

Intuition:
Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

$Q_1 := \exists u, \exists v, \exists w \text{ Takes}(u, v), \text{ Likes}(u, w)$
$Q_2 := \exists u, \exists v, \exists w \text{ Takes}(u, v), \text{ Takes}(u, w), \text{ Likes}(u, w)$

There is a homomorphic covering from Q_1 to Q_2

$Q_3 := \exists u, \exists v \text{ Takes}(u, v)$
$Q_4 := \exists u, \exists v, \exists w \text{ Takes}(u, v), \text{ Likes}(u, w)$

There is no homomorphic covering from Q_3 to Q_4
We can now capture semirings satisfying $a \times a = a$

Let \mathcal{K} be a semiring.

Theorem

If \mathcal{K} satisfies $a \times a = a$ then Homomorphic covering is a sufficient condition for \mathcal{K}-containment
We can now capture semirings satisfying \(a \times a = a \)

Let \(\mathcal{K} \) be a semiring.

Theorem

If \(\mathcal{K} \) satisfies \(a \times a = a \)

- Then *Homomorphic covering* is a *sufficient condition* for \(\mathcal{K} \)-containment

If *Homomorphic covering* is a *sufficient condition* for \(\mathcal{K} \)-containment

- Then, \(\mathcal{K} \) satisfies \(a \times a = a \)
We can now capture semirings satisfying $a \times a = a$

Let \mathcal{K} be a semiring.

Theorem

If \mathcal{K} satisfies $a \times a = a$

- Then Homomorphic covering is a **sufficient condition** for \mathcal{K}-containment

If Homomorphic covering is a **sufficient condition** for \mathcal{K}-containment

- Then, \mathcal{K} satisfies $a \times a = a$

$a \times a = a$ captures homomorphic covering, as **sufficient condition**.
Class \mathcal{H}

If homomorphically covering from Q_2 to Q_1, then $Q_1 \subseteq_{\mathcal{K}} Q_2$

$\mathcal{N}[X]$

Lineage

\mathcal{N}

\mathcal{B}

\mathcal{B}

\mathcal{N}

Why $[X]$

$a \times a = a$
semirings \mathcal{K} for which homomorphic covering is a necessary condition for \mathcal{K}-containment?

- Bag Semantics \mathbb{N} should belong to this class.
- We axiomatize this class
- By abstracting query evaluation into polynomials.
When annotating each tuple with a different variable:

Evaluation of queries correspond to polynomials

- We need to understand the structure of these polynomials
\[Q_1 := \exists u, \exists v, \exists w \ T akes(u, v), \ T akes(u, w) \]

\[
\begin{array}{c|c|c|c}
\text{Takes} & \text{Student} & \text{Course} & \text{P} \\
\hline
J & A & & x \\
J & P & & y \\
\end{array}
\]

\[Q_1(I) = x \cdot y + y \cdot x + x \cdot x + y \cdot y = x^2 + 2xy + y^2 \]
CQ-admissible polynomials

Obtained from evaluating a CQ over an instance annotated with (different) variables.
CQ-admissible polynomials

Obtained from evaluating a CQ over an instance annotated with (different) variables.

- Not every polynomial is CQ-admissible
- Only homogeneous polynomials are
Only Homogeneous Polynomials

\[Q_1 \ := \ \exists u, \exists v, \exists w \ \text{Takes}(u, v), \ \text{Takes}(u, w) \]

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J)</td>
<td>(A)</td>
<td></td>
<td>(x)</td>
</tr>
<tr>
<td>(J)</td>
<td>(P)</td>
<td></td>
<td>(y)</td>
</tr>
</tbody>
</table>

\[Q_1(I) = x \cdot y + y \cdot x + x \cdot x + y \cdot y = x^2 + 2xy + y^2 \]
Only Homogeneous Polynomials

\[Q_1 := \exists u, \exists v, \exists w \; \text{Takes}(u, v), \text{Takes}(u, w) \]

<table>
<thead>
<tr>
<th>Takes</th>
<th>Student</th>
<th>Course</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J)</td>
<td>(J)</td>
<td>(A)</td>
<td>(x)</td>
</tr>
<tr>
<td>(J)</td>
<td>(J)</td>
<td>(P)</td>
<td>(y)</td>
</tr>
</tbody>
</table>

\[Q_1(I) = x \cdot y + y \cdot x + x \cdot x + y \cdot y = x^2 + 2xy + y^2 \]

- Only homogeneous polynomials
- Precise definition is more technical
CQ-admissible polynomials

Obtained from evaluating a CQ over an instance annotated with (different) variables.

- Not every polynomial is CQ-admissible
- Only homogeneous polynomials are
- Every polynomial is UCQ-admissible
CQ-admissible polynomials

Obtained from evaluating a CQ over an instance annotated with (different) variables.

- Not every polynomial is CQ-admissible
- Only homogeneous polynomials are
- Every polynomial is UCQ-admissible

In the paper:

Syntactic characterization of CQ-admissible polynomials.
Homomorphic covering as necessary condition

Using CQ-admissible polynomials we define a class C of semirings, such that:

Theorem

C captures homomorphic coverings as a necessary condition

Note that C contains Bag Semantics, but not Set Semantics.
And obtain a class where containment is decidable

The following are equivalent:

Theorem

- \mathcal{K} belongs to \mathcal{C} and satisfies $a \times a = a$
- $Q_1 \subseteq_{\mathcal{K}} Q_2$ iff homomorphic covering from Q_2 to Q_1

Gives us a large class of semirings where \mathcal{K}-containment is decidable
And obtain a class where containment is decidable

\[N \subseteq_X B \]

Class \(C \)

Why \([X]\)

Homomorphic covering from \(Q_2 \) to \(Q_1 \), iff \(Q_1 \subseteq_K Q_2 \)

Lineage

\[a \times a = a \]

\(\mathcal{N} \)
Also in the paper

- Similar theorems for surjective homomorphism, injective homomorphisms and bijective homomorphisms
- Extension to UCQs
- Complete Descriptions of CQs and UCQs
- Small model property and new procedures for semirings satisfying

\[a + a = a \]
Future work

- Well behaved Semirings:
 \[a + a = a \]

- Containment of \textit{CQ-admissible} polynomials over various semirings

- Views over annotated databases