
Update Monads: Cointerpreting Directed

Containers

Danel Ahman

1

and Tarmo Uustalu

2

1 Laboratory for Foundations of Computer Science, University of Edinburgh,
10 Crichton Street, Edinburgh EH8 9LE, United Kingdom; d.ahman@ed.ac.uk

2 Institute of Cybernetics, Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia; tarmo@cs.ioc.ee

Containers are a neat representation of a wide class of set functors. We have previously [1]
introduced directed containers as a concise representation of comonad structures on such func-
tors. Here we examine interpreting the opposite categories of containers and directed containers.
We arrive at a new view of a di↵erent (considerably narrower) class of set functors and monads
on them, which we call update monads.1

A container is given by a set S (of shapes) and an S-indexed family of sets P (of positions).
Containers form a category Cont with a (composition) monoidal structure. Containers interpet
into set functors by

JS, P Kc X = ⌃s : S. P s ! X

The functor J�Kc : Cont ! [Set,Set] is monoidal and fully faithful.
A directed container is a container (S, P ) together with operations

#: ⇧s : S.P s ! S (subshapes)
o : ⇧{s : S}. P s (the root)
�: ⇧{s : S}.⇧p : P s. P (s # p) ! P s (subshape positions as positions in the global shape)

satisfying the laws

8{s}. s # o = s

8{s, p, p0}. s # (p � p

0) = (s # p) # p

0

8{s, p}. p � {s} o = p

8{s, p}. o {s} � p = p

8{s, p, p0, p00}. (p � {s} p0) � p

00 = p � (p0 � p

00)

so (P, o,�) is a bit like a monoid (but dependently typed) and (S, #) like its action on a
set. Directed containers are the same as comonoids in the category of containers: DCont

⇠=
Comonoids(Cont). The interpretation of containers into set functors extends into an inter-
pretation of directed containers into comonads via

" : 8{X}. (⌃s : S. P s ! X) ! X

" (s, v) = v (o {s})
� : 8{X}. (⌃s : S. P s ! X) ! ⌃s : S. P s ! ⌃s0 : S. P s

0 ! X

� (s, v) = (s,�p. (s # p,�p

0
. v (p � p

0)))

The functor J�Kdc : DCont ! Comonads(Set) is the pullback of the functor J�Kc : Cont !
[Set,Set] along U : Comonads(Set) ! [Set,Set], meaning that directed containers are the
same as containers whose interpretation carries a comonad structure.

1
This is not the same as having containers with suitable additional structure interpret into monads under

the standard interpretation of containers into set functors.

16



Update Monads D. Ahman and T. Uustalu

Here we are interested in the “cointerpretation” of containers given by

hhS, P iic X = ⇧s : S. Ps⇥X

⇠= (⇧s : S. P s)⇥ (S ! X)

The functor hh�iic : Cont

op ! [Set,Set] fails to be monoidal (for the monoidal structure on
Cont

op taken from Cont), but it is lax monoidal. It is neither full nor faithful.
It is straightforward that DCont

op ⇠= (Comonoids(Cont))op ⇠= Monoids(Cont

op). It
follows therefore that directed containers cointerpret to monads via

⌘ : 8{X}. X ! ⇧s : S. P s⇥X

⌘ x = �s. (o {s}, x)
µ : 8{X}. (⇧s : S. P s⇥⇧s

0 : S. P s

0 ⇥X) ! ⇧s : S. P s⇥X

µf = �s. let (p, g) = f s; (p0, x) = g (s # p) in (p � p

0
, x)

i.e., hh�iic extends to a functor hh�iidc : DCont

op ! Monads(Set). We do not get that the
functor hh�iidc is the pullback of hh�iic along U : Monads(Set) ! [Set,Set].

hh�iidc describes the free models of the (generally non-finitary) Lawvere theory given by one
operation act : S ! ⇧s : S. P s and two equations

1
�s. ⇤

//

S

act

✏✏

S ⇥ S

�(s,f). (s,f s)
//

S⇥act

✏✏

S ⇥ (S ! S)

act⇥(S!S)

✏✏

S ⇥⇧s

0 : S. P s

0

�(s,f). (s,f s)
✏✏

S ⇥ (S ! ⇧s

0 : S. P s

0)

act⇥(S!⇧s0:S. P s0)
✏✏

1 ⇧s : S. P s

�⇤.�s. o {s}
oo (⇧s : S. P s)⇥ (S ! ⇧s

0 : S. P s

0) (⇧s : S. P s)⇥ (S ! S)
�(f,g). (�s. f s�g s (s#f s),�s. s#f s)

oo

For cointerpretation, it is useful to think of elements of S as states, those of P s as updates
applicable to a state s, s # p as the result of applying an update p to the state s, o{s} as the nil
update, p � p

0 composition of two updates. Monads induced by directed containers generalize
the state monad much in the spirit of the generalizations considered by Kammar [2], but still
a bit di↵erently. The state monad TX = S ! S ⇥X is recovered by taking S = S, P s = S,
s # p = p, o {s} = s, p � p

0 = p

0. The directed container for the nonempty list comonad,
S = Nat, P s = [0..s], s # p = s � p, o = 0, p � p

0 = p + p

0 gives us a monad on the functor
TX = ⇧s : Nat. [0..s]⇥X. The states are natural numbers; the updates applicable to a state s

are numbers not greater than s; applying an update means decrementing the state.

Acknowledgements We thank Ohad Kammar for discussions. This ongoing work is being sup-
ported by the University of Edinburgh Principal’s Career Development PhD Scholarship, the ERDF
funded Estonian Centre of Excellence in Computer Science, EXCS, and the Estonian Research Council
grant no. 9475.

References

[1] D. Ahman, J. Chapman, T. Uustalu. When is a container a comonad? In L. Birkedal, ed., Proc.
of 15th Int. Conf. on Foundations of Software Science and Computation Structures, FoSSaCS 2012

(Tallinn, March 2012), v. 7213 of Lect. Notes in Comput. Sci., pp. 74–88. Springer, 2012.

[2] O. Kammar. Take action for your state: e↵ective conservative restrictions. Slides from Scottish
Programming Language Seminar, Strathclyde, 2010.

17


