
An executable semantics for CompCert

Brian Campbell

LFCS, University of Edinburgh

Project FP7-ICT-2009-C-243881

December 2012

1 / 32

Introduction

In the CerCo project we’ve been working on

the construction of a formally verified complexity
preserving compiler from a large subset of C to some
typical microcontroller assembly

Inspired by (and borrowing a little from) Leroy et al’s CompCert.

They define languages by small-step inductive definitions.
We define language with executable interpreters.

Executable semantics are easier to test.

Can we retrofit executable semantics to CompCert and find out
anything interesting?

2 / 32

C is quirky, flawed, and an enormous success.

— dmr, HOPL’93.

3 / 32

What’s so difficult about C?

Around 160 A4 pages of specification (400 with libraries added).

Implicit conversions:

int x = ’a’ + 0.5;

Mixed reads and writes of an object are undefined:

x = i + i++;

Evaluation order constraints very lax, not uniform:

x = i++ && i++;

x = i++ & i++;

Annoying corner cases:

int x[];

int main() { return x[0]; }

4 / 32

CompCert History (up to 1.8 — a.k.a. V4)

I CompCert starts with big-step Clight semantics

I Side-effect free expressions, no gotos.
. Some of the literature refers to these versions.

I Switch to small-step Clight semantics

I Side-effect free expressions, gotos.
. CerCo project started from here

I Small-step CompCert C language

I C-like expressions,
I gotos, and . . .

The latter comes in two flavours:

1. A non-deterministic version (the intended input language)

2. A deterministic version (what the compiler actually does)

5 / 32

CompCert History (up to 1.8 — a.k.a. V4)

I CompCert starts with big-step Clight semantics

I Side-effect free expressions, no gotos.
. Some of the literature refers to these versions.

I Switch to small-step Clight semantics

I Side-effect free expressions, gotos.
. CerCo project started from here

I Small-step CompCert C language

I C-like expressions,
I gotos, and . . .

The latter comes in two flavours:

1. A non-deterministic version (the intended input language)

2. A deterministic version (what the compiler actually does)

6 / 32

CompCert History (up to 1.8 — a.k.a. V4)

I CompCert starts with big-step Clight semantics

I Side-effect free expressions, no gotos.
. Some of the literature refers to these versions.

I Switch to small-step Clight semantics

I Side-effect free expressions, gotos.
. CerCo project started from here

I Small-step CompCert C language

I C-like expressions,
I gotos, and . . .

The latter comes in two flavours:

1. A non-deterministic version (the intended input language)

2. A deterministic version (what the compiler actually does)

7 / 32

CompCert History (up to 1.8 — a.k.a. V4)

I CompCert starts with big-step Clight semantics

I Side-effect free expressions, no gotos.
. Some of the literature refers to these versions.

I Switch to small-step Clight semantics

I Side-effect free expressions, gotos.
. CerCo project started from here

I Small-step CompCert C language

I C-like expressions,
I gotos, and . . .

The latter comes in two flavours:

1. A non-deterministic version (the intended input language)

2. A deterministic version (what the compiler actually does)

8 / 32

CompCert and testing

Untrustworthy OCaml Formal development in Coq

C → CompCert C → Clight ASM → Machine code

C → CompCert C → Clight ASM → Machine code

Coq sections get ‘extracted’ to OCaml for execution.

There’s a formal proof in the middle,
but the edges are a bit worrying.

9 / 32

CompCert and testing

Untrustworthy OCaml Formal development in Coq

C → CompCert C → Clight ASM → Machine code

C →

CompCert C

→

Clight ASM

→ Machine code

Normal testing tries all of the code.

10 / 32

CompCert and testing

Untrustworthy OCaml Formal development in Coq

C → CompCert C → Clight ASM → Machine code

C →

CompCert C → Clight ASM

→ Machine code

Proofs exercise the formal development.

I Tactical interactive theorem proving helps you notice bad
definitions

11 / 32

CompCert and testing

Untrustworthy OCaml Formal development in Coq

C → CompCert C → Clight ASM → Machine code

C → CompCert C

→ Clight ASM → Machine code

With an executable semantics we can test the first part.

I Holes in the specification can mask holes in the proof

I Can also detect undefined behaviour in C programs

12 / 32

Constructing the executable semantics

CompCert provides us with a head start:

I the memory model is executable,

I local and global environments are defined in terms of
functions,

I the semantics of operators such as +, ==, etc are defined by
functions,

I an error monad is available for failing.

In particular, environments are used by the compiler, so they are
also fairly efficient.

13 / 32

Constructing the executable semantics

Syntax directed relations are easy to make functions from:

Inductive lred: expr -> mem -> expr -> mem -> Prop :=

| red_var_local: forall x ty m b,

e!x = Some(b, ty) ->

lred (Evar x ty) m

(Eloc b Int.zero ty) m

...

Definition exec_lred (e:expr) (m:mem) : res (expr * mem) :=

match e with

| Evar x ty =>

match en!x with

| Some (b, ty’) => match type_eq ty ty’ with

| left _ => OK (Eloc b Int.zero ty, m)

| right _ => Error (msg "type mismatch")

end

...

14 / 32

Constructing the executable semantics

Syntax directed relations are easy to make functions from:

Inductive lred: expr -> mem -> expr -> mem -> Prop :=

| red_var_local: forall x ty m b,

e!x = Some(b, ty) ->

lred (Evar x ty) m

(Eloc b Int.zero ty) m

...

Definition exec_lred (e:expr) (m:mem) : res (expr * mem) :=

match e with

| Evar x ty =>

match en!x with

| Some (b, ty’) => match type_eq ty ty’ with

| left _ => OK (Eloc b Int.zero ty, m)

| right _ => Error (msg "type mismatch")

end

...

15 / 32

Constructing the executable semantics — non-determinism

e → e ′ ⇒ C [e] → C [e ′]

Non-determinism appears as the choice of redex and context.

We encode execution strategies as functions

expr -> kind * expr * (expr -> expr)

and require that it really does give a subexpression and context.

Doesn’t cover all strategies:

I Implementations could use contextual information,
randomness. . .

I various methods can solve this, but not terribly important here

16 / 32

Constructing the executable semantics — stuck
subexpressions

The non-deterministic semantics check for stuck subexpressions.

I picks up non-terminating programs with undefined behaviour

I example where f does not terminate:

f() + (10 / x) with x = 0

I should be able to get stuck after substituting x

I but without check we can always reduce f()

Näıve implementation would be inefficient:

any subexpression in an evaluation context is either a
value, or has a further subexpression that is reducible

but there is a nice structurally recursive version.

17 / 32

Soundness and completeness

We want to know that the executable semantics does the same
thing as the original semantics.

I (mostly boring) inductive proofs

I Coq’s Function feature for generating induction principles
tailored to particular functions is great, but still a bit limited

Caveats apply to completeness:

I Limitations on strategies — cheat by single-stepping

I No I/O (CerCo uses a resumption monad for I/O.)

18 / 32

Strategies and the deterministic semantics
Two variants have been implemented:

1. a simple left-most inner-most strategy,

2. the actual strategy implemented by the compiler

Non-deterministic Deterministic

Executable

(safe only)

(no stuck expression check)

(strategy)

Completeness proof interesting:

I Deterministic semantics has big-step for ‘simple’ expressions

I Proof shows that this really does correspond to
non-deterministic

19 / 32

Strategies and the deterministic semantics
Two variants have been implemented:

1. a simple left-most inner-most strategy,

2. the actual strategy implemented by the compiler

Non-deterministic Deterministic

Executable

(safe only)

(no stuck expression check)

(strategy)

Completeness proof interesting:

I Deterministic semantics has big-step for ‘simple’ expressions

I Proof shows that this really does correspond to
non-deterministic

20 / 32

OCaml driver code

Complete the interpreter with some untrustworthy OCaml:

1. Repeat the Coq step function until the program stops or fails.

2. Add optional code to work around bugs
I don’t need to fix them properly
I don’t need to prove anything

3. Also good for hacks: memcpy, printf, . . .
Implement things outside of CompCert’s model of C.

21 / 32

Testing — function pointers

The example that I originally wanted to try.

int zero(void) { return 0; }

int main(void) {

int (*f)(void) = zero;

return f();

}

22 / 32

Testing — function pointers

The example that I originally wanted to try.

int zero(void) { return 0; }

int main(void) {

int (*f)(void) = zero;

return f();

}

$../compcert-git-badfn/cexec fnptr-simple.c

stuck expression: function value hasn’t a function type

The function call rule requires f to evaluate directly to a function,
not a pointer.

23 / 32

Testing — function pointers

The example that I originally wanted to try.

int zero(void) { return 0; }

int main(void) {

int (*f)(void) = zero;

return f();

}

Fixing this is easy — the compiler already had the correct type
check!

And the proof scripts got shorter.

24 / 32

Testing — Csmith

Random program generator by Yang et al from U. Utah.

I Targets ‘middle-end’ bugs

I Regular testing only found bugs in untrustworthy OCaml code

I Random code didn’t find any errors in semantics

. . . but the non-random code of safe mathematics functions. . .

25 / 32

Testing — Csmith

Random program generator by Yang et al from U. Utah.

I Targets ‘middle-end’ bugs

I Regular testing only found bugs in untrustworthy OCaml code

I Random code didn’t find any errors in semantics

. . . but the non-random code of safe mathematics functions. . .

26 / 32

Testing — Csmith

. . . but the non-random code of safe mathematics functions. . .

int8_t lshift_func_int8_t_s_s(int8_t left, int right)

{

return

((left < 0) ||

(((int)right) < 0) ||

(((int)right) >= 32) ||

(left > (INT8_MAX >> ((int)right)))) ?

left :

(left << ((int)right));

}

Semantics is missing arithmetic conversion for ?;.

But the compiler works on this example, because ‘all’ integers are
32 bits.

27 / 32

Testing — Csmith

Semantics is missing arithmetic conversion for ?;.

But the compiler worked on that example, because ‘all’ integers are
32 bits.

double f(int x, int a, double b) {

return x ? a : b;

}

The compiler is missing the conversion too:

$../compcert-git/ccomp conditional.c

Error during RTL type inference: type mismatch

In function main: RTL type inference error

We made a failing test-case from a working one.

28 / 32

Testing — Csmith

Semantics is missing arithmetic conversion for ?;.

But the compiler worked on that example, because ‘all’ integers are
32 bits.

double f(int x, int a, double b) {

return x ? a : b;

}

The compiler is missing the conversion too:

$../compcert-git/ccomp conditional.c

Error during RTL type inference: type mismatch

In function main: RTL type inference error

We made a failing test-case from a working one.

29 / 32

Testing — gcc-torture

An executable subset of GCC’s C test suite, pre-filtered by another
executable semantics project (kcc from U. Illinois).
Lots of fun:

I lack of initialisation

1. only in the semantics, and
2. not in the compiler in OCaml

I a little array/pointer confusion (OCaml)

I incomplete array type mismatches (both, kind of)

I Missing trivial cases for cast (semantics, fixed already)

I pointer comparisons (semantics, intentional limitation)
I bad line numbers in errors (OCaml)

I not helped by OCaml’s non-deterministic evaluation order. . .

30 / 32

Related work

CompCert response

I bugs fixed, sometimes before I found them
I fresh interpreter implementation

? inspired by this work, but different: finds all possible redexes,
turns out smaller and neater; doesn’t explicitly do deterministic
semantics

Lots of other executable semantics exist

I kcc, CompCertTSO, some JVMs, . . .

I often the natural way to use a system (e.g., ACL2)
Milner and Weyhrauch 1972

More fun things you can do

I Add I/O, full program evaluation

I Check for coverage

31 / 32

Conclusions

Took an existing verified compiler,

I added an executable version of the semantics,
I found bugs through testing,

? including a bug in the formalized front-end
? even though the original test-case is compiled properly

I useful for illustrating limitations of the semantics,
especially ones you didn’t know about,

I showed that the semantics cope with a large group of tests,

I showed a connection between the original deterministic and
non-deterministic semantics.

http://homepages.inf.ed.ac.uk/bcampbe2/compcert/

32 / 32

http://homepages.inf.ed.ac.uk/bcampbe2/compcert/

