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Abstract

Controlling resource usage is important for the reliability, efficiency and security of
software systems. Automated analyses for bounding resource usage can be invaluable
tools for ensuring these properties.

Hofmann and Jost have developed an automated static analysis for finding linear
heap space bounds in terms of the input size for programs in a simple functional pro-
gramming language. Memory requirements are amortized by representing them as a
requirement for an abstract quantity, potential, which is supplied by assigning potential
to data structures in proportion to their size. This assignment is represented by anno-
tations on their types. The type system then ensures that all potential requirements can
be met from the original input’s potential if a set of linear constraints can be solved.
Linear programming can optimise this amount of potential subject to the constraints,
yielding a upper bound on the memory requirements.

However, obtaining bounds on the heap space requirements does not detect a faulty
or malicious program which uses excessive stack space.

In this thesis, we investigate extending Hofmann and Jost’s techniques to infer
bounds on stack space usage, first by examining two approaches: using the Hofmann-
Jost analysis unchanged by applying a CPS transformation to the program being anal-
ysed, then showing that this predicts the stack space requirements of the original pro-
gram; and directly adapting the analysis itself, which we will show is more practical.

We then consider how to deal with the different allocation patterns stack space
usage presents. In particular, the temporary nature of stack allocation leads us to a
system where we calculate the total potential after evaluating an expression in terms
of assignments of potential to the variables appearing in the expression as well as the
result. We also show that this analysis subsumes our previous systems, and improves
upon them.

We further increase the precision of the bounds inferred by noting the importance
of expressing stack memory bounds in terms of the depth of data structures and by
taking the maximum of the usage bounds of subexpressions. We develop an analysis
which uses richer definitions of the potential calculation to allow depth and maxima to

be used, albeit with a more subtle inference process.
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Chapter 1
Introduction

Automatically predicting resource requirements for programs is of considerable inter-
est. Such analyses can be used to prevent failures due to exhausted resources, discover
‘hot spots’ in programs where improvements would yield the greatest gain in effi-
ciency, debug unexpectedly high resource usage, or check that malicious parties will
be unable to consume and withhold resources. This is particularly important in highly
constrained environments such as smart cards, especially where failures are difficult
or expensive to recover from. Here we are primarily concerned with memory usage,
although in principle the techniques can be applied for other resources.

Hofmann and Jost have presented an automatic linear heap space analysis for a
functional programming language (Hofmann and Jost, 2003). It is an amortized analy-
sis; data structures are assigned some amount of potential to ‘pay’ for later allocations,
and changes in allocation are conservatively approximated by changes in potential.
Thus the potential at the start of the program is a bound on the free memory required.
The potential is represented by type annotations, and the type system ensures that it is
sufficient for all allocations. However, their analysis does not include stack memory,
so some forms of excessive memory consumption may go unnoticed. In fact, restrict-
ing ourselves to a linear heap size does not have a huge effect on the class of functions
that can be evaluated; with an unbounded stack we can compute any of the class of
functions requiring O(2") time (Cook, 1971).

Stack memory is used in a different way to heap memory. It is usually short-lived;
providing temporary information about the progress in processing a data structure,
rather than forming a data structure in its own right. One important consequence is
that the stack memory usage of a program is typically proportional to the depth of its

input data structures, not their fotal sizes.
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The thesis of this work is that type-based amortized analyses can be developed
which provide good bounds on stack memory usage for programs which run in linear
space. Thus we will be able to estimate the total memory usage of a program by

combining the heap space analysis with one of our stack space analyses.

1.1 Outline

In Chapter [2| we introduce the simple LFD programming language which will be used
to develop the analyses, and survey the Hofmann-Jost analysis for heap memory.

In Chapter |3| we consider using a form of continuation passing style (CPS) trans-
formation to yield a new program which only uses heap space. Thus Hofmann-Jost can
be used on the new program to predict total memory requirements. We then consider
the effectiveness of this approach.

Then in Chapter ] we provide a more direct analysis on the original program in-
cluding a treatment of tail-call optimisation. We examine the limitations of this analy-
sis.

In Chapter [5] we present an extension to overcome poor approximations of stack
space caused by limitations on which data structure sizes the bounds are parametrised
by. The soundness of the extended analysis (and the previous analyses) is proven.

In Chapters [6] and [7] our attention turns to using the depth of data structures in
the bounds. We present a type system for the depth analysis in Chapter [6| which uses
extra structure in the typing context to determine the form of the bounds, then prove
its soundness and give some examples. Following this, in Chapter /| we complete the
depth analysis by providing an inference procedure for the type system.

In Chapter 8| we consider related work on the Hofmann-Jost system and other ap-
proaches to bounding and verifying resource usage. In Chapter [9] we consider further
work that could be conducted based upon the analyses we have developed.

Finally, in Chapter |10 we present our conclusions.

We also give an extended example of our analyses (on a functional heap sort pro-
gram) in Appendix



Chapter 2
Background

To develop our analyses we require a language with clear semantics to study, and an
understanding of the Hofmann-Jost system that we base them upon. In this chapter
we introduce the LFD language and its operational semantics (including metering of
space usage), along with some variations of the semantics. We will also discuss some
of the issues surrounding memory management in the language. Finally, we examine
the Hofmann-Jost system for bounding heap memory requirements.

This chapter is primarily based on Hofmann and Jost’s original paper (Hofmann
and Jost, 2003). We augment the operational semantics with stack space usage me-
tering, tail-call optimisation, and partial executions to allow reasoning about non-
terminating programs. These features will be needed for later chapters. The analy-
sis that we present in this chapter is extended by ‘resource polymorphism’, due to its
importance for practical use and to discuss the effects of this polymorphism on the

complexity of the analysis.

2.1 The LFD language

For consistency with Hofmann and Jost’s work we use their basic language, LF, ex-
tended with algebraic datatypes instead of built-in lists. The resulting LFD language is
close to the language used in Jost’s implementation of their analysis (Jost, 2004b). We
include algebraic datatypes because they are required for the transformation described
in Chapter 3] It is a simple first-order call-by-value functional programming language.

We consider a first-order language in part because higher-order extensions of the
Hofmann-Jost system are a topic of ongoing research by Jost, and also because their

main impact from our perspective is on individual stack frame sizes, which we take as
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P:=letB|let BP

B:=D|DandB

D:= f(x1,...,xp) =ef

e:= x |true | false | x | f(x1,...,xp) |letx=e; in ey | if x then ¢; else ef
| (x1,x2) | match x with (x1,x) — e
|inl(x) | inr(x) | match x with inl(x;) — ¢; 1inr(x,;) — e,
| ¢(x1,...,xp) | match x with py — ey 1+ 1 py — ep,

pi=c(xi,....xp) | e(xry...,xp)

Figure 2.1: Syntax

givetﬂ

The syntax for programs is given in Figure 2.1} where f is a function name, * is
the value of unit type, c is a constructor name, x and x; are variable names and the e;
are subexpressions. Programs, P, take the form of a number of function definitions, D,
arranged in mutually recursive groups, B. We may omit the parenthesis from function
calls and declarations when there is only one argument. Patterns, p, can be destructive
or non-destructive (') to provide memory management information. We will discuss
the distinction shortly.

We will implicitly assume that all bound variable names and function names are
unique throughout. There is no requirement for match expressions to be exhaustive.
In fact, requiring the addition of ‘dummy’ cases which will never be executed can
interfere with the analyses. Instead we allow the program to fail upon a bad match
by not yielding a result. We do not rule out repeated patterns — while they are not
particularly useful, it is worth noting that their presence does not affect the analyses,
despite introducing non-determinism into the operational semantics.

The syntax requires the program to be in a ‘let-normal’ form by using variables
rather than subexpressions where possible. This makes the evaluation order explicit
and allows the typing rules to be simpler. It can be helpful to consider let-normal form
as the intermediate language of a compiler. This is similar to K-normal form (Birkedal
et al., 1996) and A-normal form (Flanagan et al., 1993) used in other analyses and

compilers. Indeed, Jost’s implementation (Jost, 2004b) uses a similar intermediate

I'We will discuss this in a little more detail in Section m
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language produced from the Camelot compiler as part of the Mobile Resource Guar-
antees project (Aspinall et al., 2005). There, the results of the analysis were used to
produce machine-checkable certificates of heap space bounds.

The types are T :=1 | bool | T®T | T + T | ty for unit, boolean, pairs, sums
and algebraic datatypes, respectively. The fys range over a set of opaque type names.
Our analyses will annotate these types to indicate resource requirements. Function
signatures are of the form Ti,...,7, — T and constructors have similar signatures
Ti,...,T, — ty, or just ty for a nullary constructor. Thus each constructor is asso-
ciated with a unique type ry. We leave parametric polymorphism to future work, see
Section[9.1.1] As a result, we omit type constructors such as generic lists to reduce the
amount of notation.

The product and sum types could be subsumed into the algebraic datatypes, but
are included here to provide a contrast between heap-allocated datatype values, and
product and sum values which are not heap-allocated except where they are included
in a datatype value. This distinction becomes particularly important in Chapter [5]

For the analyses we presume that the unannotated types have already been inferred.
This can be done with standard unification based type inference.

To reason about heap space we require some mechanism to limit the lifetime of
heap allocated data, so we mark places in the code where deallocations can safely
occur. Only algebraic datatype values are heap allocated, so we distinguish between
(potentially) destructive c(...) match cases and benign, ‘read-only’ ¢(...)’ ones. There
is more than one possible implementation of heap management using these marks. A
direct approach is to explicitly perform deallocation when executing match expres-
sions, although this may result in some memory fragmentation that we do not take
into account. Alternatively, we could use compacting garbage collection, where the
‘destructive’ matches provide a conservative approximation of the value’s lifetime.

This choice affects the meaning of the bounds which we infer. The total amount
of live memory is always within the bound, and with immediate deallocation the total
allocated memory respects the bound. For compacting garbage collection the memory
used after collection respects the bound, or we may go further and use the bound as a
trigger for collection and always remain under it (modulo any extra space required for
the collection).

We presume the existence of some external analysis which ensures that the destruc-
tive marks are used safely so that no data can be deallocated while live references to

it exist, a property called benign sharing. Aspinall and Hofmann’s usage aspects (As-
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pinall et al., 2008) or Kone¢ny’s DEEL typing (Konecny, 2003) are suitable systems.
They also provide a conservative estimate of the set of variables whose values do not
share any heap locations with the result of a given expression in the program. We will

make use of this separation property in Chapter 5

Example 2.1. Suppose we have a datatype boollist with constructors
nil : boollist and cons: bool, boollist — boollist.

A simple example of a program in this language is a function to negate a list of

booleans:

let notlist 1 = match 1 with nil’ -> nil | cons(h,t)’ ->
let hh = if h then false else true in
let tt = notlist t in
cons (hh, tt)

The function uses a non-destructive match expression so that the argument, 1, is left
intact. As a result, the function needs extra heap memory equal to the amount of space
occupied by the argument. Using a destructive match instead would allow it to run
without requiring extra heap space, but that would only be suitable if the input list is
never used again. Regardless of the variant used, the function requires stack space

proportional to the length of the argument.

2.1.1 Operational semantics

Values v € val in the operational semantics consist of unit, booleans, pairs, variants
(inl(v) and inr(v) for a value v) and heap locations / € loc for algebraic datatypes. The
set of locations, loc, is assumed to be infinite and have a special location null which
can represent one nullary constructor per datatype, for example, a nil list. We define a
set nullc of the nullary constructors which are represented by null.

An environment S maps variables to values, and a store ¢ € heap is a partial map
from non-null locations to constructor and value tuples for the contents of each datatype
value.

The operational semantics is given in Figures [2.2] and [2.3] with judgements of the
form

m,S,cFe~sv,6' m
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meaning that with m € N units of free memory, the environment § and the store G, the
expression e can be evaluated to value v, with the new store ¢’ and m’ units of free
memory. The evaluation of a whole program is realised by the evaluation of a chosen
‘initial” function f(xy,...,x,) on some arguments provided as the values vy, ...,v, and

initial store G,
l_ / /
m, (X1 —=Vvi,...,xp = vp|, 0 f(x1,...,xp) ~v,0°,m'.

The operational semantics uses two auxiliary functions to define the memory re-
quirements. The first, size(c), gives the amount of heap memory required to store
c(v1,...,vp) where each v; is of the corresponding type 7; from c’s signature. Thus, we
assume that all values of the same type are allocated the same amount of space. Note
that this requirement forces values of sum types to be assigned the same size regard-
less of the choice made at runtime. Algebraic datatypes are slightly different: the value
is the location pointing to the data structure, and locations are always the same size.
When ¢ € nullc we have size(c) = 0 because no memory is required for a constructor
represented by the null location. The second auxiliary function, stack(f), gives the size
of stack frame required to call function f.

The size and stack functions can be defined using concrete values from a particular
compiler, yielding a precise account of memory use. However, we can also use simpler
definitions to obtain rougher estimates. For example, we could obtain an estimate of
stack(f) by examining the local variables in the function body of f. Such an estimate
may be suitable for a variety of compilers. In many of our examples we will take the
even simpler approach of assigning uniform sizes—essentially counting the number of
objects or stack frames rather than their exact sizes.

Heap space can be considered alone, without regard for stack space, by fixing
stack(f) to be zero everywhere. Similarly, stack space can be measured alone by
fixing size(c) = 0 for all constructors c.

We will also require an unmetered form of the operational semantics, where the
resource amounts are dropped from all of the rules. Judgements then take the form
S,0 e~ v,6’. This is equivalent to setting both stack and size to be zero everywhere.

Finally, we need to formalise the guarantees that we expect a benign sharing anal-

ysis to give. First we define a reachability function & which gives the set of heap
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¢ € {true,false}

m,S,G F %~ %, G,m m,S,Gl—cwc,G,m( )
E-VAR

m,S,6 Fx~ S(x),0,m ( )

Sx1)=vi ... S(xp) =vp m,[y1— vi,...,yp — vpl,6 Fep~> v, 6" m’
the y; are the symbolic arguments in the definition of f (E-FUN)
-FUN
m+stack(f),S,ot f(x1,...,xp) ~ v,0',m' + stack(f)
m,S,6 e ~ vy, 00,my mg, S[x — vol|,00 ez ~ v,0',m’ (E-LET)
-LET
m,S,cFlet x=-ej iney ~v,0,m
S(x) = true m,S,c ke ~v,0' . m

(E-IFTRUE)

m,S,c F if x then ¢, else ef ~~ v, 6’ ,m’

S(x) = false m,S,cFep~>v, 6’ m

- — (E-IFFALSE)
m,S,o = if x then ¢; else ey ~~ v,6",m
v=(S(x1),5(x2))

E-PAIR
m,S,6 = (x1,x) ~ v,6,m ( )

S(x) = (vi,v2) m,S[x; — vi]|[x2 — w],0F e~ v,0' m

E-MATCHPAIR
m, S, 6 F match x with (x1,x2) — e~ v,0’,m’ ( )

S(x)=v Sx)=v

. . (E-INL) , . (E-INR)
m,S,6 = inl(x) ~ inl(v),c,m m,S,6 = inr(x) ~ inr(v),6,m

S(x) = inl(vo) m, S[x; — vo|,0F e~ v,6' m’

E-MATCHINL
m,S,6 - match x with inl(x;) — ¢; 1inr(x,) — e, ~ v,0’,m’ ( )

S(x) =inr(v m,S[x, — vol,0 e, ~v,0',m’
(x) = inr(vo) 57— vol, O €~  (B-MATCHINR)

m, S, 6 F match x with inl(x;) — e, 1inr(x,) — e, ~>v,6',m

Figure 2.2: Operational semantics
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s=(c,S(x1),...,S(xp)) ¢ ¢ nullc [ ¢ dom(o)
m+size(c),S,06 - c(x1,...,xp) ~ [,0[l — s],m

(E-CONSTRUCT)

¢ € nullc

(E-CONSTRUCTN)
m,S,6 ¢~ null,6,m

Sx)=1 o(l) = (ci,vis---,vp)
m+size(c;),S[x1 — vi,...,xp = v,],0\l F e; ~ v,0',m’

, — (E-MATCH)
m,S,6 = match x with--- 1 ¢;(x1,...,x,) = ej1---~>v,6",m

S(x)=1 o(l) = (ci,vis---,Vp)

m,S[x; —vi,....x, —v,]|,0F e ~v,0 m
) [ . s yAp p]v /l P / /(E-MATCH/)
m,S,6 F match x with -1 ¢i(x1,...,x,) —€j1...~>v,06' ,m
S(x) = null c; € nullc m,S,6 e~ v, m
: —— (E-MATCHN)
m,S,6 F match x with ---1¢; —e;1... ~v,06',m
S(x) = null c¢; € nullc m,S,6 ke~ v, m .
, ; —— (E-MATCHN")
m,S,6 = match x with ---1¢; —e¢;j1...~v,6,m

Figure 2.3: Operational semantics (continued)

locations reachable from a given value or environment:

R (0,%) = R (0,true) = R (o, false) = 0
R(0,(v1,v2)) = R(0,v1) UR(G,v2)
R (c,inl(v)) = R(0,inr(v)) = R(0,v)
R (o,null) =0
R (o,l) = {l}UUﬂ( o,v;) where 6(l) = (c,v1,...,vp)

Definition 2.2. We say that an execution satisfies the benign sharing conditions when:

1. Atevery use of E-MATCH the ‘dead’ location should not be accessible from the

‘live’ variables that the subexpression may use,
I & R(0,S[x1 = vi,...,xp = vp] [ FV(e;)), 2.1)

and
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2. at every use of E-LET the parts of the heap needed for e, should not be altered

by match expressions in ej,

Y f -‘R,(Gasez) =00 f -‘R,(67S6’2>7 (22)
where S, =S [ (FV(e2) \ x).

The heap separation property can also be formalised. For any expression e in the
program, the benign sharing analysis should provide a set of variables V, C FV(e) that

do not overlap with the result of e. More precisely:

Definition 2.3. Given an expression e in some program, we say that a set of variables

V, are separate from the result of a given evaluation S,6 - e ~ v,6’ when we have

R (0,5 | Vo) NR(c,v) = 0.

In the typing rules presented in Chapter [5| we will assume that we can find suit-
able sets of variables which will satisfy this condition during any evaluation of the
corresponding expression within an evaluation of the whole program. This allows an
analysis providing these sets to use sharing information derived from other parts of the
program.

Both of these properties may be derived from (for example) the correctness theorem
of (Konecny, 2003).

2.1.2 Tail call optimisation

The operational semantics above does not reflect a common expectation in functional
programming that a tail recursive call will not use extra stack space. Indeed, compil-
ers may provide more general forms of tail call optimisation and there may be wide
variation in practice.

We would like a flexible approach to obtaining conservative bounds so that we may
adjust the system when considering different environments. To this end we split our
modelling of tail calls into noting when we are in tail position, and deciding what effect
this has on the stack consumption.

Tracking which expressions are in tail position is straightforward. For the opera-
tional semantics we add a boolean flag to the judgements indicating whether the current
expression is in tail position, and mark the premises as appropriate. We also add the

current function’s name to the judgements to provide more information about whether
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a tail call is possible. Thus we use -/ instead of -, where f is the function name and ¢
is true or false. Thanks to the use of let-normal form, only the E-LET rule and E-FUN
rule have premises with different flags to the conclusion because only the E-LET rule
can introduce a subexpression that is not in tail position:
S(x1)=vi ... S(xp) =vp e T e T I e R 8
the y; are the symbolic arguments in the definition of f

m+stack’(g, f.,1),8,6 F8 f(x1,...,x,) ~ v,0',m’ + stack'(g, f,1)
(E-FUN-TAIL)

m,S,o H/flse o1 s vo. 60, mo mo, S[x — vol, 0o It ey~ v, 60, m

m,S, 6 let x =e; in ey ~ v, 6", m’
(E-LET-TAIL)

and the other rules merely propagate the flag to the subexpression, if there is one.

We replace the stack function with a stack’ function which also depends upon the
calling function and tail position flag. Hence stack’(f,g,true) is the amount of stack
memory required for a call from f to g in tail position. General tail call optimisation

can be modelled by setting
stack’(f, g, true) = stack(g) — stack(f) and stack’(f,g,false) = stack(g)

for all f,g. Note that this means that the stack space used may fall if we tail-call a
function with a smaller frame size. We could use other definitions for stack’, such as
restricting tail call optimisation to recursive function calls.

Finally, the evaluation judgement for the initial function (f, say) always requires a

frame to be allocated,
initial,false !
m,[x; —vi,...,x, —vp),0k fx1,...,xp) »v,0,m',

with the assumption that stack’(initial, f,¢) = stack(f) for all f,z.

2.1.3 Partial executions

The big-step operational semantics above does not allow for non-terminating pro-
grams. Any judgement describing the evaluation of an expression e must end with
some result v:

m,S,cFe~sv,6' ,m'.

Nevertheless, non-terminating programs are of considerable interest. For example,
programs providing network services often run continuously and it is important for

reliability that they do not leak memory.
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(E-SToOP)
m,S,6 e ~ halted,c,m

m,S,o ey ~ halted, 6o, mg

- (E-STOPLET)
m,S,6 F let x = eq in ex ~~ halted, 6, mg

m,S,0 e ~ vy, 00, mo vo # halted mo, S[x — vol|,00 ez ~ v,0’',m’

m,S,6Flet x=-ej in ey ~ v,0',m’
(E-LET)

Figure 2.4: Changes to the operational semantics for partial executions of programs

Thus we augment the semantics to allow the execution to be halted at any point. If
a memory bound can be shown for all such ‘partial’ executions of a program then the
program will run indefinitely without exceeding the bound.

We add two new rules to the operational semantics and modify E-LET slightly.
These rules are given in Figure 2.4] The set of values is extended by the special value
halted, to indicate that execution was prematurely terminated. The E-STOP rule says
that we may halt execution at any time. The new precondition vy # halted on E-LET
prevents any further execution, instead the new E-STOPLET rule propagates the halted
value. E-LET is the only existing rule that requires modification because the semantics
requires programs to be in let-normal form.

These changes also provide the semantics for programs with inexhaustive matches
which fail, up to the evaluation of the match expression which fails. We will be able
to show that our inferred memory bounds are respected despite the failure.

We will not make any claims about the amount of free memory at the point the
program is halted, although with some care it should be possible to show that a bound

on it can be extracted from the analyses.

2.2 The Hofmann-Jost analysis

Now we consider the analysis for bounding heap space usage developed by Hofmann
and Jost (Hofmann and Jost, 2003)). This work grew out of the study of programming
languages which capture particular complexity classes. A simple method to construct
these languages is to impose severe syntactic constraints which exclude ‘expensive’
programs. For example, (Bellantoni and Cook, 1992) describes limiting the use of re-

cursion and the results of recursive functions to obtain a programming language which
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characterises PTIME.

To construct more palatable languages for programming more features are required,
such as inductive datatypes and higher-order functions, and we should use more natural
restrictions to maintain the desired complexity class. See (Hofmann, 2000a) for a
survey of construction techniques.

Inductive datatypes can be included in a restricted language by requiring all func-
tions to be non-size-increasing, by which we mean that the result of the function is
no larger than its arguments. Hofmann produced languages with non-size-increasing
functions by using a linear type system with a special resource type, ¢, inhabited by a
singleton value also denoted ¢. These values are obtained upon matching data struc-
tures, and are required to construct new ones. For instance, the cons constructor for

integer lists might be given the signature
cons : int x ¢ X list — list,

instead of the usual int X list — list. The linearity of the type system prevents multiple
uses of ¢ values and the data structures they were obtained from, so that the size of the
result values is bounded by the size of the input arguments.

With structural recursion the resulting language characterises PTIME, or PSPACE if
the linearity of some higher-order functions is relaxed slightly (Hotmann, 2003; Hof-
mann, 2002). Allowing full recursion yields a more typical functional programming
language at the ‘expense’ of increasing the complexity class to EXPTIME (Hofmann,
2002)). The first-order fragment, LFPL, is more interesting: the complexity is reduce
to O(2") for constant ¢, and it can be implemented by a translation to C which reuses
the memory from matched data structures rather than calling the normal allocator (Hof-
mann, 2000b). Values of the ¢ type correspond to free memory cells and can be realised
as pointers in the implementation. Now the linearity of the type system ensures mem-
ory safety. (Relaxing the linearity of non-¢ values in the type system can be used to
construct memory safety analyses such as those discussed in Section[2.1])

Thus, if we could take a program in a similar language without ¢s and add them
automatically, we would obtain a program which runs in heap space bounded by the
number of ¢s. Note that as well as reusing the space occupied by the original argu-
ments, functions in these programs can obtain extra space by requiring ¢ values as
arguments. For example, if we have the following function which inserts an integer

into a sorted list,

%In LFPL we cannot replace a data structure by a ‘free’ closure — a trick which increases the expres-
siveness of the higher-order language to EXPTIME.
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let insert(e,1l) =
match 1 with nil -> cons(e,nil)
| cons(h,t) —>
if e < h then cons(e,cons(h,t))

else cons (h,insert (e, t))

to make it a well-typed LFPL function we need to supply an extra ¢ for the new list

element:

let insert(e,dl,l) =
match 1 with nil -> cons(e,dl,nil)
| cons(h,d2,t) ->
if e < h then cons(e,dl,cons(h,d2,t))

else cons(h,dl,insert (e,d2,t))

insert :int X ¢ X int list — int list.

The extra memory need not be a fixed amount. For instance, the function

let double 1 =
match 1 with nil -> nil

| cons(h,t) —> let t’ = double t in cons(h,cons(h,t’))

double : bool list — bool list

duplicates each element in a list (assuming that the boolean h can be treated non-

linearly). We would like to infer a new version

let double 1 =
match 1 with nil -> nil
| cons(h,dl,t) -> match h with (h',d2) —->
let t’ = double t in cons(h,dl,cons (h,d2,t’))

double : (bool x ¢) list — bool list

where we require an extra cell of memory for each input list element to allocate its
duplicate. Counting the number of ¢ values required gives a bound on the number of
memory cells required by the original function.

Note that we do not need to traverse each data structure to count the ¢s. Instead,

we can derive a function from the type which maps the structure’s size to the number
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of ¢ values. Then we can build a function for the entire signature and bound the heap

memory requirements for the original function. The double example is simple:

Thoolxo(') =1, s0 T(bool><<>) ist(n) =n, s0  Tqouvre(n) =n.

That is, for a list of length n, double requires n extra cells of memory.

These functions can be considered as assigning potential to each data structure, in
the sense of the ‘physicist’s view’ of amortized analysis described by (Tarjan, 1985). In
that work, differences between the real cost of an operation and the amortized cost are
accounted for by changes in the potential of the data structure. On a cheap operation
the potential can be increased, then on a complex operation (say, a tree rebalancing)
the accumulated potential may be used to compensate for the extra time required. The
potential can be interpreted as the amount of ‘free time’ you have spare to spend on
later operations.

In our setting, the potential corresponds to free memory that we have for later
operations. Allocation lowers potential (by consuming a ¢ value), and deallocation
increases potential (by providing a new < value).

The discrete ¢ type can only represent integer amounts of memory of uniform size
and requires explicit manipulation of ¢ values to be introduced. The Hofmann-Jost
analysis overcomes these limitations, replacing the ¢ type with rational annotations on

existing types to represent amounts of free memory.

2.2.1 Informal description

The Hofmann-Jost analysis also defines functions to assign potential to data structures.
Numerical type annotations are used to derive these functions, rather than the presence
of o types. As in LFPL, the analysis is based upon a type system which constrains these
annotations to ensure that the resulting potential will be large enough to account for all
allocations.

The system annotates typings and function signatures with non-negative rational
valuesﬂ in two places. First, we add ‘before’ and ‘after’ amounts to typing judgements
and function signatures to represent fixed amounts of potential (free memory). The
constraints on these will mirror the operational semantics, and so require the ‘before’

annotation at an allocation to be at least as large as the amount to be allocated plus the

3Fractional annotations can arise naturally in this system. For example, if we require a unit of
memory for every second element of a boolean list /, then I will have the type boollist(1/2). See

Example[2.8|on page
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‘after’ annotation. Similarly, when typing a deallocation such as
match x with nil — ej 1 cons(h,) — e,

the ‘before’ fixed amount for typing e; is higher than the amount for the whole match
expression because the list cell can be reused.

Second, we place annotations on types to denote ‘per-constructor’ amounts of po-
tential. So if a list x has type boollist(k) then the k annotation represents k x |x| units of
potential, k for each cons. Where an annotated type appears in the context, its potential
contributes to the bound on the memory that is sufficient for evaluation. The potential
for an annotated result type is part of the lower bound on the amount of memory free
after evaluation. In both cases we can calculate the total ‘before’ or ‘after’ bound by
summing all of the potential from the types, plus the ‘fixed’ amount.

For example, consider the judgement

x : boollist(k),n I cons(true, x) : boollist(k),n’

and assume that one unit of space is consumed when allocating a boolean list cell.
From the context we see that we have k x |x| units of potential from x, plus the fixed
amount, n. Afterwards we will have k X |cons(true,x)|+n’ =k X (]x| + 1) + 7 units of
potential, and we will have allocated one unit of space. Thus for a successful typing

we require (after cancelling the k x |x|)
n>1+k+n. (2.3)

The intuition behind this constraint is that we require one unit for allocation and reserve
k units of potential for later processing of the new element in the list. When we use
match to take an element from the list, we will ‘release’ the k units of potential again
by adding them to the fixed amount (plus one unit more if we deallocate the element).

We add similar annotations to function signatures. For example, the not1ist func-

tion might be given the function signature
notlist : boollist(3),0 — boollist(2),0,

which says that if it is invoked with a boolean list x and 3 x |x| + 0 cells of memory
are free, then all of the allocations in the function will succeed, and some boolean list
y will be returned along with 2 x |y| + 0 free cells for later use. Note that this typing is

not unique; we consider other values for the annotations below.
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Allocating a constant sized data structure can transform a ‘fixed’ annotation into a

‘per-constructor’ one. For example, in
-,9 I cons(false, cons(false, cons(false, nil))) : boollist(2),0

we consume 3 cells for allocation, then the remaining 6 = 3 x 2 units of potential
satisfy the ‘per-cons’ annotation of the list, 2.

To infer these annotations the typing rules give linear constraints that their values
must satisfy, like Equation [2.3]above. We can use standard linear programming tech-
niques such as the Simplex algorithm (Dantzig, 1963) to solve these constraints and
find a minimal set of satisfying annotations. The ‘objective function’ should be chosen
so as to minimise the annotations on the left hand side of the function signature, so
that the bound is minimised. Note that we must analyse the whole program at once to
obtain an optimal bound, although self-contained parts can be examined alone.

One subtlety is that we allow function signatures to have different values for an-
notations at each application outside of its definition. This resource polymorphism is
required to reflect differing resource requirements at different points in the program.

For example, consider the heap memory required in the following function:
let id 1 = let notl = notlist 1 in notlist notl

This allocates a fresh list for both applications of not1ist. If the second is given the
signature

notlist : boollist(1),0 — boollist(0),0,

to indicate that it needs enough potential to make the new list but no more, then the
type for the variable not1 must be boollist(1). The expression notlist 1 must be

given the same type, so the first use of not1ist must be typed differently:
notlist : boollist(2),0 — boollist(1),0.

Intuitively, this says that we need enough memory to allocate a new list and enough
left over to satisfy the potential required for the not1ist notl expression.

To allow these different typings, we use a set of abstract constraint variables for
annotations rather than explicit rational values and collect the constraints. At each
function application we make duplicate copies of the constraints for the function body
with fresh constraint variables, except at applications involved in defining the function
itself. A copy of the constraints is added to the function signature for this purpose. A

set of satisfying assignments for the constraints in the initial function’s signature gives
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an upper bound on resource usage. This resource polymorphism extension was sug-
gested in the conclusion to Hofmann and Jost’s original paper, and which also features
in Jost’s later work on extensions to support higher-order functions (Jost, 2004a)).

We can now give a more general signature for not1ist of
notlist : boollist(k),n — boollist(k'),n’ |{k > k' +1, n > n'},

and the signatures given above are particular solutions of the constraints. The con-
straints given in some of our examples are simplified; the full set generated by the type
system will also contain constraints for annotations within the type derivation of the
function’s body. In a few examples we will just give a particular illustrative solution to

the constraints, as with the earlier typings for not1list.

2.2.2 Formal definition

To formalise the system, we need a precise notion of the meaning of the annotations.

The annotated types are
T,:=1|bool | T,&T, | (Tu,k;) + (Ty, k) | ty(k),

where k; and k, are constraint variables and k is a tuple of constraint variables. Sum
types are annotated to reflect different resource requirements depending upon the choice
made. Similarly, datatypes have different annotations for each constructor.

The constraints on annotations take the form of linear equalities and inequalities,

alkl + e +ankn = an+lkn+l + v +amkm + C, or
arky +---+auk, > arH—lkn-H + -t amky, +c,

where a; € Q and ¢ € Q. Thus a set of constraints, ®, plus some objective function to
optimise forms a linear program. In general we use inequalities when there is a need
for weakening of a fixed amount of potential, and equalities elsewhere.

The function signatures now take the form
2f)="Ti,....,Tp,k = T,k |®

where 7; and T are the annotated types for the arguments and the result respectively,
k and k" are extra amounts of free memory required and released (analogous to n and
n’ above), and P is the set of constraints on annotations required for the body to type-

check. Constructor signatures have the form

Y(ci) =Vk.Ti,...,Ty,ki — ty(k)
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where k is a sequence of annotations that the type ¢y (k) is quantified over. In general,

k should include all the annotations in all of the constructor signatures associated with

ty(k).
In our examples we have introduced a datatype boollist. The constructors for this

type now have the signatures

X(nil) = Vky, k. kn, — boollist(k,, k)
and X(cons) = Vk,, k.. bool, boollist(k,, k. ), k. — boollist(ky, k).

The signatures for the constructors of nested datatypes need to quantify over the anno-
tations of the inner datatypes. For example, we can introduce constructors for a list of

boolean lists type:

S (I0il) = Vi, ke, K Ko K, — listlist (kn, ke, K., KL
and  X(Icons) = Vky, ke, k., k... boollist(ky, k¢ ), listlist (ky, ke, Ky, K..), k.. — listlist (ky, ke, k), kL).

Cr™py™Me

We can now define the function to assign potential to typed values by summing the

annotations over every reachable value:

Y :heapxvalxT, — QT,

Y(o,*,1) =Y(o,true,bool) = Y (o, false,bool) = 0

Y(o,(V V"), T'@T") =Y(c,V,T") +Y(c,V", T"),
=K +Y(o,v,T'),
Y(o,inr(v), (T",K') + (T" k")) = +Y(GvT”)

)=

S, )
Y(o,inl(v), (T" k') +(T" k"))
( )

)

Y(o,null,ty(k) where ¢ € nullc

and X(c)[k] = k; — ty(k),

o

Y(o,l,ty(k)) =Y Y(o\1,v;,T;) +k;j,

i=1
where o(l) = (c,v1,...,vp),

and X(c)[k|=T,...,Tp,kj — ty(k).

We can extend it to environments:

Y(o,50)= Y Y(0,5(x),(x)).

xedom(T)

Thus the bound on the free memory required to evaluate an expression is the potential

from the data, Y(o,S,I’), plus the fixed amount from the typing judgement.
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Continuing our list example, if x is a list of booleans then Y (o, S(x), boollist(k,, k.))
is k. times the length of x plus k,. Every list contains exactly one nil, so k, could
be safely set to zero because there is always an equivalent typing where &, has been
incorporated into the fixed amounts in the judgements. Hence we will use boollist(k)
as a shorthand for boollist(0, k) in our examples.

The typing rules for expressions in the Hofmann-Jost system are given in Fig-
ures [2.5] and [2.6] and uses the same size function as the operational semantics. The

typing judgements take the form
Contype:T,n'|®

where I is the typing context, n is the annotation for the fixed amount of potential
before evaluation (in addition to that from the type annotations in I'), n is the corre-
sponding annotation for potential after evaluation, 7 is the annotated type of e, ¥ con-
tains the function signatures, F is the set of function names defined in earlier blocks of
mutually recursive definitions and @ is the set of constraints on annotations that must
hold for a valid typing. The pattern matching rules CASE and CASE' also have the type

being matched, ty(k), in addition to the normal context:
Conity(k)bspp—e:T,n'|®

This allows us to remove the matched variable from the context, but keep the type
present so that we can use the type’s annotations in the rules.

The additional rules in Figure[2.7|check that mutually recursive blocks of functions
and entire programs are well typed, with functions conforming to their function signa-
tures in X. Note that all of the constraint sets for the functions in a mutually recursive
block are gathered together and put in all of the signatures. This is necessary for the
FUNDEF rule to be sound. We say that a program P is well-typed if it satisfies -5 g P.

The ‘leaf’ rules are similar to those in a normal type system, with the exception
of the function application rules. The key difference from a normal type system is the

constraint given for the annotations. For example, the CONSTRUCT rule requires that
n > size(c;) +ki+n,

meaning that we reduce the fixed amount of free memory by at least the size of the
allocation and the increase in potential of the data structure compared to its arguments,
k. The constraints maintain the invariant that the free memory is at least as large as

the potential.
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(UNIT) c € {true,false}
F,I’l l_Z,F * 1 l,l’l/ ’{}’l > n/} r"n l_):,F c: b00|,n/ |{I’l > I’l/}

(BooL)

x € dom(T")
Conkypx:T(x),n {n>n'}

(VAR)

fEF  X(f)=T|,...TLk—T K| o(T)=T, p(T")=T

@ =p(®)U{n=p(k),n—p(k) +p(k) > n'}

; (FUN)
Coxi:Th,....xp: Tpontsp f(x1,...,xp) : T,n' | P
fFEF  X(f)=Ti,....Tyk— T, K|®
bd={n>kn—k+k>n'}
; (FUNDEF)
Coxi i, xp i Tpnbsp f(x1,...,xp) 1 T,n' | @
I'i,n l—z‘,’F e1:Ty,no ’CI)I I'y,x:To,ng l_E,F ey: T,l’l/’q)Q (LET)
I'i,In,n |_)Z,F letx=-ejiney: T,n']cbl Ud,
Ionkspe :T,n' | P Contyper:T,n'| D) I5)
F
[,x : bool,n s r if x then ¢, else ef : T,n' | @1 UD,
PAIR
I'xi1:T1,x:Th,n |_Z,F (X],Xz) ' T ®T2,n’ |{n > n’} ( )
Lx1:Ti,xp:Th,ntype:T,n'|®
L hr2 P _Z’F | ; (PAIRELIM)
I'x: 71 ® Th,n Fy r match x with (x1,x2) —e: T,n'| P
INL
Cox:Tp,nkspinl(x) : (Tp, k) + (Tr k), 0’ |{n >k +n'} (INL)
(INR)

Ux:Tontypinr(x): (T1,k) + (T, k), n' |[{n > k. +n'}

Uox;: Tymy by pe: Ton' | @ Uoxr: Trony by pep: Ton' | P,
S=0,Ud,U{m =n+k,n =n+k.}
C,x: (Th,ki) + (T, k) ,n by p match x with inl(x;) — ¢; 1inr(x,) — e, : T,n' | ®
(SUMELIM)

F,a:Tl,b:Tz,n|—27pe:T’,n'|CI> TZTl@Tz‘CI)/
Iox:T,ntyrelx/a,x/b]: T .0 |®UD

(SHARE)

Figure 2.5: Typing rules for expressions in the Hofmann-Jost analysis
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Z(C,)[%] = Tl,...,Tp,ki — ty(k)
® = {n >size(c;) +ki+n'
{n 2 size(ci) +hi+ '} - (CONSTRUCT)
Coxi:Th,..oxp : Tp,nbs pei(xi,...,xp) s ty(k),n’ |®

foralli, 1 <i<m, U,nity(k)Fyppi—ei:T n'|P
— . : — (MATCH)
I,x:ty(k),nbs F matchx with py —eq 11 pm —ep : T' 0" |U; P;

X(ci)lk] =Th,...,Ty,ki — ty(k)
Coxi:Th,..o.xp: Tp,niFype: T n'|®
P = {l’l,’ =n—+k+ SiZC(C,')}

— — p (CASE)
Lonity(k) Ferci(xr,...,xp) —e: T n' |[PUD
Z(Ci)[%] = Tl, .. .,Tp,k,’ — ty(%)
Coxi:T,....xp : Tp,nibspe: T n'|®
D ={n=n+k
_ {ni =n+ki} (CASE')

Conity(k) by rci(xr,...,xp) —e: T 0 |@UP

Figure 2.6: Typing rules for expressions in the Hofmann-Jost analysis (continued)

L(f) = n,...,Ty,k— T,k'|® xi:T,...,xp:Tpkbxpeyr: T,k |
Py fxn,.xp) =ep = {f}, P

|—27FD:>F/,CI>/ f_27FB:>F”,CI)H
FyrDand B= F'UF" &' Ud”

|—Z7FB:>F/,CI)/ |—Z7FB:>F/,CD/ l_E,FUF’P
VFEF. X(f)=...|® VEEF. (f)=...|%
|_E,F let B l_Z,F let B P

Figure 2.7: Typing rules for function signatures

I=1®1|0 bool = bool & bool |0

T=Tioh|® T =TeT|d
TRT' =(MT)e(heT)|PUd

T=T1oh|® T =ToT|® & ={k=ktk,K=FK+K}
(T,k)+ (T k') = (T1, k1) + (T{,k}) ® (Tr, k2) + (T3, kb)) | U D' U D

ty(k) =ty(ky) @ty (k) | {ki = ki i+ ko Vi}

Figure 2.8: Rules for splitting annotations
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The inductive rules must provide constraints linking the fixed amounts used in
typing the expression to those in the judgements for its subexpressions. As with the leaf
rules, these constraints must reflect changes in allocation and potential. In particular,

the CASE rule has a complementary constraint to CONSTRUCT,
n; =n+k; +size(c;),

with the difference that n; is used in the judgement for the subexpression, rather than
as the fixed amount affer the evaluation of the whole match expression. The set of
constraints must contain the union of those from each subexpression in addition to
these ‘local’ constraints.

The typing context is treated linearly; for example the MATCH rule does not pro-
vide the subexpressions with the variable being matched, x. This is prevent the du-
plication of the list’s potential, which would lead to an underestimate of the memory
requirements. Instead, we have an explicit contraction rule, SHARE, which divides
the potential between uses of a variable by dividing up the annotation. The auxiliary
rules in Figure [2.8] define this division, which ensures that the types’ annotations sum

pairwise to the combined type. For example, the judgement
boollist(k) = boollist(k1) & boollist(ky) [{k = ki + k2 }

allows boollist(3) = boollist(2) & boollist(1), splitting three units per element between
two uses of the list. The rule can also be used to reduce an annotation so that two
types match, because weakening of the typing context is admissible (which can be
seen directly from the typing rules).

There are two rules for typing function applications. The FUN rule allows the
resource polymorphism discussed above, which is embodied in a substitution p on
constraint variables (extended to types and constraint sets). For inference we choose
fresh names for every constraint variable that does not appear in the types 77, . ..., TI;, T.
Those appearing in the types are fixed by the side conditions p(7}) = T; and p(T’) =T.

Resource polymorphism is restricted to applications of previously defined func-
tions by checking that the function’s name appears in the set F' in the judgements. This
is necessary during inference because the full set of constraints for the function being
examined will not be known when typing a recursive call. Hence, the simpler FUNDEF

rule is used to type such applications. This rule does not depend on the constraints in

the function signature, and so can be used while inferring them.
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2.2.3 Soundness

The soundness result of this analysis with respect to the operational semantics can
now be given. The intuition is that any well typed expression can be executed with
the amount of free memory predicted by the annotations (n+ Y(c,S,I")), and the an-
notation on the result conservatively predicts the amount of free memory afterwards.

Moreover, execution will not consume any extra free memory (g) that may be available.

Theorem 2.4. Suppose that stack(f) = 0 for all f. If an expression e in a function f
in a well-typed program has a typing

Contype:T,n'|®

with an assignment of nonnegative rationals to constraint variables which satisfies
the constraints in f’s signature, and an evaluation S,6 & e ~ v,6’ which satisfies the
benign sharing conditions, and Y(6,S,T) is defined, then for any g € Q* and m € N
such that

m>n+Y(c,5,T)+gq

we have m,S,6 t- e ~v,6’,m’ where Y(&',v,T) is defined and
m >n'+Y(6' v,T)+q.

A direct proof would be very similar to that in (Hofmann and Jost, 2003)), so we
merely note that it can also be viewed as a consequence of the soundness theorem in
Chapter[5] A soundness result for non-terminating programs also holds for this system
in the same way.

The proof essentially shows that any changes in the free memory during evaluation
are conservatively approximated by changes in the potential. Aside from the addition
of resource polymorphism and algebraic datatypes there is also a small technical dif-
ference in our presentation with respect to (Hofmann and Jost, 2003)). We simplify the
theorem and soundness proof by removing the judgement that the typing context, value
environment and store are consistent. Instead, it is sufficient to note that Y(c,S,I’) is
defined only when the variables in I" have values in S and ¢ that are of the correct type.

The soundness theorem leads to a bound on the evaluation of the initial function:

Corollary 2.5. Suppose a well typed program has an initial function f, arguments for

f are given as values vi,...,v, with an initial store &, and stack(f) = 0 for all f. If

2f)=",....Tp,k—T K |®
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then any execution of f(vi,...,v,) will require at most
Y(o,[x1 = Vi, xp = vyl (x1 2 Ty xp  Tp)) +k

units of memory, for any assignment of nonnegative rationals to constraint variables

which satisfies P.

2.2.4 Examples

Now we can revisit the not1list and id examples to present typings for them. To
make the type derivations more manageable we omit the weakening of annotations

using SHARE, which is not required for these examples.

Example 2.6. Recall the not1ist function defined in Example 2.1 on page[6] A typ-
ing for notlist is given in Figure[2.9] where the n; constraint variables represent fixed
amounts of potential, and the k; constraint variables for the type annotations determine
the potential of the data structures. We continue using boollist(k) as a shorthand for
boollist(0, k). Note that the function application must be typed with the simpler FUN-
DEF rule because it is recursive.

The notlist function allocates a new list without destroying the original one, so
a linear amount of space is required. More precisely, when evaluating notlist 1 we
will require

|1] x size(cons)

units of heap memory. Thus we expect the bound to be represented by assigning
size(cons) to k;, the annotation on 1’s type, so that the potential of 1 is large enough
to allocate the result.

The sample solution for the constraints confirms this, and we can trace the require-
ments through the typing derivation. The CONSTRUCT rule for cons requires that ns
is large enough to account for the allocation (®;). The constraints on other parts of
the expression thread this requirement back through n4 and n3, and so the amount to
be allocated can be provided in one of three places: the fixed amount of free memory
required to invoke the function (n1), memory freed by the recursive function call (the
—ny1 +ny in @) or the drop in potential on matching the list (ky).

The first two sources are ruled out by the recursive function call. If we try to raise
n to account for the allocation then we are required to find the same amount again

for the recursive call. Similarly, if we assume that the recursive call finds some free
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memory —nj + ny, then we need to free the same amount again by the end of the caller.

The only possibility left is to assign the cost to k1, as expected.
Example 2.7. Recall the id function:

let id 1 = let notl = notlist 1 in notlist notl

Figure [2.10] gives a typing for id. In this function we use the resource polymorphic
FUN rule for the two uses of not1ist. This allows the two uses to be typed in the two
different ways discussed in Section[2.2.1] which can be seen in the sample solution.
If notlist is modified to deallocate the supplied list then the deallocation can
satisfy the memory requirements for the new list. This is realised by changing the
typing derivation for notlist (Figure to use CASE rather than CASE’, which

changes the constraint to include the extra free memory:
@), = {n3 = n| +k; +size(cons)}.
Hence k; can be zero, yielding the signature
notlist : boollist(0),0 — boollist(0),0

showing that no extra memory is required.
This signature for not1ist can then be used for both function applications when
typing id. As a result, the same signature can be derived for id, indicating that it can

be evaluated in-place.

The next example illustrates why we allow rational solutions rather than restricting

ourselves to the integers.
Example 2.8. Consider the following function:

let evens 1 = match 1 with nil’ -> nil | cons(hl,tl)’ —>
match tl with nil’ -> nil | cons(h2,t2)’" ->

let t’ = evens t2 in cons(h2,t’)

This takes a list and creates a new list with every second element of the original. The

analysis gives this function the signature (after constraint solving) of
evens : booIIist(%),O — boollist(0),0

because we allocate a list half as long as the argument.
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A more demanding example is a functional implementation of heap sort. Most
imperative implementations work in-place on the array of data to be sorted, using the
array indices to keep track of the heap structure. In contrast, a purely functional version
may explicitly build a heap data structure, see (Paulson, 1996, Section 4.16).

The key properties of the imperative version which allow the in-place update are
using the indices to provide the heap structure (so no extra structure needs to be allo-
cated) and the lack of any need to look at an old copy of the data structure. We do not
need to refer to old versions of the list and heap in the functional version either; so list
elements can be deallocated as they are put into the heap, and vice versa on extracting

the sorted elements.

Example 2.9. See Appendix A for the functional version of heap sort, written in LFD
augmented by support for integers in addition to booleans. The analysis takes advan-

tage of the deallocation to infer a signature (after constraint solving) of

sort : intlist(k),0 — intlist(k),0,

k = size(node) — size(cons),

meaning that we only need enough extra memory to turn the list elements into tree
nodes, and that the extra memory is free again after evaluation. If we make list elements
as large as tree nodes then k = 0 and we regain the in-place behaviour of the imperative
version.

More detail may be found in Appendix

2.2.5 Inference and Complexity

Given a program, it is easy to infer an unannotated typing using standard unification
techniques. We then wish to infer an annotated typing, including a set of constraints
for each function, and finally a solution for the constraint set of the initial function.

We first add annotations to the types in the form of constraint variables, and use
the typing rules to build the constraint set for each function. There are only three rules
that are not syntax-directed: FUN, FUNDEF and SHARE. The choice between the two
application rules is broken by consulting the set of previously defined functions, F, as
described in Section

We need to use the SHARE rule in two circumstances. The first use is for contrac-

tion, where a variable will be required multiple times during evaluation. For instance, if
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a variable appears twice in the arguments of a function (f (x, x) ), or in different subex-
pressions of a let (let y=x in f(x,y)) then we need to use SHARE for contraction,
but not in the different branches of an if because the context is not split between them.
The SHARE rule divides the potential between the different uses of the variable. We
can place the SHARE rule at any point in the derivation between the binding of the
variable and the point at which it is required multiple times.

The second use of SHARE is to weaken type annotations. Rules involving multiple
subexpressions require their types to match, so we may wish to ‘leak’ some potential.
For example, in

if b then 1 else notlist 1

one branch of computation allocates an extra list. If 1 has type boollist(1) then not1ist
1 will have the type boollist(0). By adding a use of the SHARE rule we can weaken the

left hand 1’s annotation to match:

VAR

1; : boollist(0), 15 : boollist(1),0 - 11 : boollist(0),0
1 : boollist(1),0+ 1 : boollist(0),0
b : bool,1: boollist(1),0F if ---: boollist(0),0

SHARE

ok

(Using solutions rather than constraints for brevity.) In general, it is sufficient to
weaken at the leaf rules which may yield annotated types: VAR, FUN, FUNDEF, PAIR,
INL, INR and CONSTRUCT.

Once we have the annotated typing we can solve the constraint set for the ini-
tial function using standard linear programming techniques. The remaining task is
to choose an objective function to minimise the bound found. Jost’s implementation
takes the annotations from the function signature and applies a simple scoring sys-
tem (Jost, 2004b). In particular, data structure annotations are more ‘expensive’ than
fixed amounts. With a little care, negative scores can be placed on the annotations on
the right hand side of the signature to maximise the bound on the memory free after
evaluation(]

An alternative approach is to consider the overall bound from Corollary [2.5]

Y(o,[x1 = Vi, sxp = vyl (x1 2 Thy . xp 0 Tp)) 4K

4The care is required because an unwise choice of negative scores can yield unbounded solutions.
For example, in
let fnil x = nil:*,0— Tlist(k),0

k is unconstrained. Thus a negative score on k will give an unbounded objective function.
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The potential function Y essentially multiplies each annotation k; by the size of the data
structures involved. For example, a nested list x of type listlist(k,k>) (the type of list
of lists of booleans introduced on page[19] with O for the nil annotations) has potential
ki X |x| + Yyexka x |y|. Thus if we assign to every annotation a coefficient that is the
expected size of the corresponding data we obtain a bound optimised for the expected
case.

Once we have a bound on the free memory required we can add an extra constraint
to the linear program to fix that bound, then solve the new linear program with an
objective function which maximises the bound on the free memory after evaluation in
the same way.

Note that there is no ‘best’ objective function because it is not always possible
to express the optimal bound in the above form (an affine function on data structure

sizes). To see this, consider the following example:
Example 2.10. The family of functions

let £ 1 = 1let 10 = nil in
match 1 with nil’” -> 10 | cons(_,tl)’ —>
let 11 = cons(true,10) in

match tl with nil’ -> 11 | cons(_,t2)’ ->

let 1n = cons(true,l(n—1)) in

1n

constructs a list of length min{|1|,n}. However, the Hofmann-Jost system can infer

only one of |1| or n depending upon the choice of objective function.

Jost implemented the original system (without resource polymorphism, essentially
using the FUNDEEF rule for all function applications) extended with user-defined alge-
braic datatypes (Jost, 2004b). It was used in the Mobile Resource Guarantees project
to produce resource bounds for an intermediate language of the Camelot compiler.

A version with resource polymorphism was produced by the author as part of the
work described in Chapter 4 Also, Jost’s implementation of his later system with
higher-order functions, ARTHUR, contains a similar mechanism (Jost, 2004a).

We now turn to the complexity of the inference. If resource polymorphism is ig-
nored (by using FUNDEF for all applications) then all of the typing rules bar SHARE are

syntax directed and contribute a constant number of constraints per use. The SHARE
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rule requires as many constraints as there are annotations in the type of the variable in
question. Thus so long as SHARE is only used for ‘real’ contraction and weakening
then the number of constraints generated is O(program size X number of constructors).
The resulting linear program can be solved in polynomial time, and so the entire
type inference can be performed in polynomial time with respect to the size of the
original program.
Adding resource polymorphism, however, allows an exponential growth in the

number of constraints with the size of the program:
Example 2.11. Consider the family of programs of the form:

let idl x

X

let id2 x = let y = idl x in idl y
let id3 x
let id4

let id5 x = let y

let vy id2 x in i1d2 y

b
Il

let y id3 x in 1id3 y

id4 x in id4 y

Each function has a signature of the form
idi: T,n; — T,n}|®;,

with ®@; = {n; > n/}. Each subsequent constraint set ®; | contains two copies of the

previous one with the variables renamed, say ®; ; and ®;>. Then by FUN and LET,
@iy =@  URioU{nip1 > nia,nmiy > nig,nin > nivt},

consisting of the two copies of the previous set, and three new constraints linking the
annotations for the fixed amounts of free memory at the start, middle and end of the
function’s evaluation.

Thus each ®; is more than double the size of the previous one.

It is not clear if the linear programs produced for functions could be simplified to

avoid this exponential complexity. We leave this question to future work.



Chapter 3

Using a CPS transformation to bound

stack requirements

We noted in the previous chapter that the LFD language used in this thesis can be
viewed as a compiler’s intermediate language. In particular, the Camelot compiler
used in the Mobile Resource Guarantees project performed its monomorphisation and
let-normalisation stages to produce LFD code for Hofmann and Jost’s analysis (Jost,
2004b). This removed the burden of handling polymorphism and evaluation order from
the analysis. In this chapter we consider using a further compiler stage to remove the
burden of handling stack space.

Some compilers use an intermediate language in Continuation Passing Style (CPS).
In programs of this form every function application is a tail call which takes a contin-
uation function as an argument to represent the remainder of the program. CPS has
similar advantages to let-normal form: evaluation order is explicit and intermediate
values are named. Another benefit is that the control flow is closer to the final machine
code because the continuations correspond to the link register and stack typically found
in compiled code.

This exposes some of the stack manipulation, and also gives the implementor the
choice of storing the frames on the heap instead. (For instance, (Appel, 1992, §10.8)
discusses a tradeoff where heap allocation of frames makes the use of first class con-
tinuations cheaper.) Thus we are interested in using a CPS transformation to make the
frames into explicit heap allocated structures and then inferring bounds on their size
using Hofmann and Jost’s heap analysis without alteration.

First we will define the transformation itself and show that the original analysis

can be used to obtain total bounds on the resulting programs. Then we establish the

33
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correctness of the transformation and consider using the analysis of the transformed
program to give bounds on the original program. Finally we discuss some examples
and difficulties which arise when using the CPS transformation for analysis, and moti-

vate the direct approach in the following chapters.

3.1 The CPS transformation

CPS transformations have a long history, both in compilers such as RABBIT (Steele,
1978)) and SML/NJ (Appel, 1992), and in theoretical uses (for example (Plotkin, 1975)).
(Reynolds, 1993) provides a review of the early work using continuations and CPS.
Ironically, recent work tends toward using A-normal form in intermediate languages
rather than CPS (Flanagan et al., 2004)) and the let-normal form of LFD reflects this, al-
though (Kennedy, 2007) makes a strong case for CPS using second class continuations.
Nonetheless, CPS is still of interest to us as a mechanism to bound stack usage.

Our CPS transformation is a little unusual as a result of choosing LFD as the source
and target language. LFD is a first-order language which prevents us from using real
continuations. Instead we use a defunctionalized CPS transform, where we construct
explicit closures for our continuations. Also, LFD has a simple type system which
forces us to add some extra complexity to maintain typability.

The main part of our transformation acts on expressions with unannotated type
information. It is presented in Figure as a set of syntax-directed rules with judge-
ments of the form

Thkye:T,x,e — € (F,S,R)

where I is the typing context, X the source function signatures, e is the expression (of
type T) to be transformed, ¢’ is the continuation expression (which expects the result of
e to be bound to x), ¢” is the transformed expression and the tuple (F,S,R) represents
information about the new continuation functions. The continuation expression is the
previously transformed expression representing ‘the rest of the program.” It is not a
‘proper’ continuation because it may become part of the transformed expression e’
rather than a continuation function. Ty is the result type of the initial function and
s and s” are two fresh variable names used consistently throughout the transformation.
We use (') in the C-MATCH rule to denote an optional .

The new continuation function information consists of a tuple (F,S,R) where the
first component F is the set of new functions, the second § is a map from new con-

structors to the constructor’s type signature, and the third R is a map from types to the
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ke *:1,x,¢ —letx=xine .0 (C-UNIT)

'ty c:bool,x,e’ —letx=cine 0 (C-BooL)
Iy xo:T,x,e —letx=xpine,0 (C-VAR)
Chy (x1,x2) : T,x,€ — let x = (x1,x2) in€,0 (C-PAIR)
[ Fyinl(xg) : T,x,e’ — let x =inl(xg) in ¢’',0 (C-INL)
(C-INR)

[k inr(xo) : T,x,e' — let x =inr(xp) in €', 0

- (C-CONSTRUCT)
Tk e(x,...,xp) : T,x, ¢ v letx =c(xq,...,xp) in€,0

freshC  {z1,...,z,} =FV()\{x,s}
, C— (I'(z1),...,I'(z,),stack — stack),

K = (contC(x,z1,...,2n,5) = ¢, contC — (T,I(zy),...,T(zn),stack — Tgpa) AT = A{G)

Ths f(x1,...,xp) : Tox,¢’ —let s’ =C(z1,...,zn,8) in f(x1,...,xp,5),K

(C-Fun)
I'Fyer: T>x1’/e/2 I—: e’l,lgl
[x1:Tkyey: T, x,¢ — €5, K
I'F5 let x; :lT:eEI iri eZ;T/7X7€/'—2>e/jK1L-_UK2 (C-LET)
I'Fyep: T,x,e/ |—>e’17[(1
Ibyer:T,x,e — el27K2 .

I by if xo then e else ey : T, x,¢’ — if xq then ¢} else €}, K| W K>

Ixo) =TT Ix;:T,x: by e :T,x,e’»—>e'1,K1

" by match xp with (x,x2) — ey : T,x, e’ — match xp with (x1,x2) — €},K)
(C-MATCHPAIR)

F()C()) =T1+1
Loxp:Tibrer:Tox,el — e),K;
Coxy:htser:Tx,e— ey, K

C-MATCHSUM
[y match xp with inl(x;) — ey 1inr(xy) — ex : T, x, €’ ( )

— match xo with inl(x;) — €} 1inr(xy) — €5, K1 WK

Z(Ci) - T;'?la" '77}7]7,‘ - ty

foralli, 1 <i<m. , ,
’ Uoxin:Tinse s Xip, Tip e i Tox, e — e, K;

I" by match xp with ¢ (x1,1,...,x1, ) () = et 1...omXm 1, Xmp, ) () — em: T,x,€
— match xo with 1 (x11,...,x1,)() = €} 1.ccomXm 1, Xmp, ) () — en, 8 Ki
(C-MATCH)

Figure 3.1: CPS transformation for expressions
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S(f)=T,....Ty—T
x1:T1,...,xp : Ty by e o Tox,unwind T (x, 5) — e},K

Py f(x1sexp) = ep = ({F/ (21,0 xp,8) = €1,0,0) WK

(C-FuNBoODY)

Fy D — Kj Fy B— K>
Fy Dand B— K; WK>

Fy B— K
Fylet B— K

Fy B— Kj Fy P— K>
Fylet BP— KiWK>

Fx P+ (F,S,R)
VT € dom(R). My = {i C(x1,...,Xn,s") — contC(x,x1,...,x,,5") : C € R(T)}
[ unwind_T'(x,s) = match s with M7 1 end = x if T = Thpal
r= { unwind_T (x,s) = match s with My otherwise
{Fi,....,Fu} =FU{Fr:T € dom(R)}
FX,P— X+ S[end — stack],let F; and F; and ... and F;,

We put end into nullc. If the original initial function was f(xi,...,x,), our
new initial function is f’(x1,...,x,,s) where S(s) = null.

Figure 3.2: CPS transformation for whole programs

constructors for closures which are called with a value of that type. When we wish to
refer to an entire tuple at once, we denote it K. Similarly, we will use 0 as a shorthand

for (0,0,0). We define a function W for joining this information as
(F1,81,R)) W (F,8,Ry) = (F{UF,S1+ S, R'),
where + joins two disjoint partial maps and
R =[T—{C:CeR(T)orCe€RyT)}: T € dom(R;) Udom(R»)].

The most important part of the CPS transformation is the C-FUN rule. Our princi-
ple requirement for a program in continuation passing style is that all functions must
be tail calls. Thus, to allow the continuation expression ¢’ to be executed after the func-
tion has been evaluated, the C-FUN rule packages ¢’ into a new continuation function

contC and constructs a closure C(yy,...,y,,s) containing the values of the live bound
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variables. We call the datatype for these closures stack because it replaces the runtime
stack.

To see how the continuation is invoked consider the remainder of the transforma-
tion, detailed in Figure @ The C-FUNBODY rule transforms the function f with
unwind_T (x,s) as the continuation expression. The new unwind_7 family of functions
examines the ‘stack’ s and calls the relevant continuation function with the result from
the evaluation of f and the contents of the closure. Note that the closure will always
be deallocated; we know that this is safe because the stack discipline ensures that the
closure will never be accessed again.

The whole transformation is given as a judgement
FX,P—Y P

providing a new set of function signatures as well as the transformed program. A
consequence of the transformation is that P’ consists of functions in a single mutually-
recursive block. This is required because the unwind_T functions are called throughout
the program, destroying the block structure.

To demonstrate the transformation, let us examine the effect on a simple function.
Example 3.1. Suppose we have a program containing the following function:
let pairf(a) = let b = f(a) in (a,b)

where
f — T1—1T

Y= | pairf — T1 —-T1 T

We will trace the transformation of pairf starting at the function transformation rule,

C-FuNBoODY. This requires us to find some ¢, _; s and K such that

pair

a:TiFyletb=---: T} ® T,x,unwind T} @ T»(x,s) — . K.

pairf>

Hence we wish to use C-LET, and need to fulfill its premises. We start with the pairing

expression (a,b) because we already know its continuation expression from C-LET:

C-PAIR

Dair = 2 Ti,b: T Fx (a,b),x,unwind T} ® T>(x, s)

— let x = (a,b) in unwind T} ® T>(x,s),0
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The pair expression produces the result for the entire function, so the transformed
version must call the next continuation on the stack, which it does via unwind_ T} ®
T (x,s).

Let us call the transformed expression for the pairing ep. It is now used as the

continuation expression for the first subexpression of the let, f (a):

C1 Ty,stack tack
contCl(b,a,s) = ep, = (T, stack — stack) [T — {C1}]
contCl — (T»,Ty,stack — Tgpar)
C-FuN

a: Ty f(a):Th,b,ep— lets’=Cl(a,s) in f'(a,s),K Drai

" C-LeT
a:TiFyletb=---:T] ® T,x,unwind_(x,s) — let s’ = Cl(a,s) in '(a,s),K

Thus the resulting code for pairf’ is
let pairf’ (a,s) = let s’= Cl(a,s) in f’'(a,s’)

which puts a on to the ‘stack’ with tag C1 and calls the transformed £’. When this
produces a result, unwind_7, (defined by the last rule in using the information in

K) will call the continuation contC1,
and contCl(b,a,s) = let x=(a,b) in unwind_T1*T2(x,s)
with b and a to form the pair.

This CPS transformation has been implemented as an extension to Jost’s 1fd_infer.

We can now establish some basic properties of the transformed program:

Lemma 3.2. Every function call in a CPS transformed program is in tail position,

except for the ‘initial’ function call.

Proof. By induction on the transformation derivation. Only let expressions can intro-
duce a subexpression which is not in tail position, but the only transformation rules
which produce a let are the leaf rules (C-UNIT, C-BOOL, C-VAR, C-PAIR, C-INL,
C-INR, C-CONSTRUCT and C-FUN), none of which place a function call in the left
hand subexpression.

Thus all of the function calls which appear in transformed function bodies are in
tail position. This leaves only the initial function call, which is not in tail position by
definition. ]

Using this we can show that we only need enough ‘real’ stack space for the current

function:
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Corollary 3.3. Under the ‘general tail-call optimisation’ version of the operational
semantics (Section the stack memory used in evaluating a transformed program
is at most max s(stack(f)).

Proof. Let m = maxy(stack(f)). By Lemma [3.2|all function calls are tail calls except

for the initial function. The initial function (say, f1) requires
stack’(initial, f1, false) = stack(f1) < m
units of stack space. Each subsequent call requires a change of

stack’(f;, fir1,true) = stack(f;1 ) — stack(f;)

units. Thus the amount of stack space required during the evaluation of f; is

stack(f1) + (stack(f2) — stack(f1)) + - - - + (stack(f;) — stack(fi—1)) = stack(f;) < m.
[

When combined with the Hofmann-Jost analysis to infer a bound on the heap mem-

ory this result provides a bound on the total memory usage of the transformed program.

3.2 Correctness of the transformation

We have shown that the transformed program’s total memory usage can be analysed,
but we still need to establish that it faithfully reproduces the original program’s be-
haviour.

First we must show that we can remove dead variables from the environment of an

evaluation because C-FUN only places potentially live variables in the closure.

Lemma 3.4. Given S,6+ e~ v,6’ and any V C dom(S) such that FV(e) NV = 0 we
have
S\V,c e~ 0.

Proof. A straightforward induction on the evaluation shows that the values of V are

not used by any rule. O
We are also able to extend the environment and state:

Lemma 3.5. Given S,0+ e ~ v,6’ and some S},0, disjoint from the evaluation, then
we have

S+S;,6+0;Fe~v,0 +0;.
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Proof. Induction on the evaluation, adding the new environment S and state 6| where
necessary. As they are disjoint from the given evaluation they do not interfere in any

way, and v and ¢’ are not changed. [
We can now show that the transformation of an expression is correct.

Theorem 3.6. Suppose we have a typed program and its CPS transformation. For any

part of the transformation on an expression
X / 1
I'Fye:T,x,e— e K

if S,6 F e~ vy,00 and S[x — vo,s — 1],60 + 05 € ~ V', 6’ for some 1,0 disjoint
from & and G then
S[s—1],0+05F e~V o

Proof. We proceed by induction on the evaluation of the original expression, e.

E-UNIT, E-BOOL, E-VAR, E-PAIR, E-INL, E-INR, E-CONSTRUCT, E-CONSTRUCTN.
We have ¢’/ = let x = e in ¢/. Hence:

by Lemma[3.5| by hypothesis

S[s+—1],6+ 04 - e ~ vy, 060 + O Sx = vo,s+—1],00 +05 €&~V o
E-LET

S[s—1I,0+05Fletx=eine ~V o

E-FUN. First, consider the invocation of the function in the original program,

1= 8(x1),- -, yp = S(xp)], 0 Fef ~ 1,00
E-FuN

S,oF f(xg,... ,xp) ~ V9, 00
and the transformed program:

o= oy[l = (C,S(z1), .., S(z0)1)]
D, = 2 E-CONSTRUCT
S[s+—1],6+03FC(z1,...,2n,5) ~ I',6+ 0,

1= S(x1),...,yp— S(xp),s = I'],0+ 0, Fep~V, 0
E-FUN

E-LET

D, Sis—1s' = 1,0+0,F fl(x1,...,xp,8") ~ V0

Sls—1),0+05Flets’ =Clz1,....z0,8) in f/(x1,...,xp,5") =V, 0

where the y; are the names of f’s arguments and the z; are the live variables for
the closure.

The body of f7, e  was created from ey by a transformation of the form:

yi:Ti,...,yp : Ty = ep,x,unwind T (x,s) — ep, F
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To use the induction hypothesis with this transformation we need to derive an
evaluation for our new continuation, unwind_7T (x,s), from our original continu-
ation, ¢’:
by hypothesis and Lemma [3.4]
(S TFV(e)\{x,s})[x+— vo,s —[],60+ 05 e ~V o

E-FUN
[x —vo,21 — S(z1), .-, 20 — S(z0),8 +— 1],60 + 05 F contC(x,z1,...,24,8 ) ~ V', 0
E-MATCH
[x = vo, s — l/],Go—{—G; - match s with ---1C(z1,...,20,8') — ...~V &
E-FUN

1= S(x1),...,yp = S(xp),x = vo,s — 1'],60+ 0, - unwind T (x,s5) ~ V', 6’
Thus the induction hypothesis yields the evaluation of e required to complete
the transformed expression’s evaluation, above.

E-LET. The original expression’s evaluation takes the form:

S,Gl—elwvl,(ﬁ S[levl],Glf—ezva,Go
E-LET

S,cFlet x; = e in ey ~ v,0p

We can apply the induction hypothesis to e, using ¢’ as the continuation expres-
sion to yield an evaluation for 5. Now we apply the induction hypothesis to
e1, using ¢ as the continuation expression which gives an evaluation for ¢, as

required.

E-IFTRUE. Consider the evaluation of the original expression:

S(x) = true S,6e ~v,0
E-IFTRUE

S, = if x then e; else ey ~~ v,6’

The induction hypothesis on ¢, yields the evaluation of the e, subexpression in
the transformed program. It is then sufficient to apply the E-IFTRUE rule again

to get the evaluation of ¢’

E-IFFALSE, E-MATCHPAIR, E-MATCHINL, E-MATCHINR, E-MATCH, E-MATCH',
E-MATCHN, E-MATCHN’. Similar to E-IFTRUE; apply the induction hypothe-

sis to the subexpression and then use the original evaluation rule. [

Of course, this extends to the whole program:

Corollary 3.7. Given a typed program and its CPS transformation, for any evaluation
of the initial function

S,0F f(x1,...,xp) ~ 0,0
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we have

Sls — nulll,o F f'(x1,...,xp,5) ~ v,0’
in the transformed program.

Proof. The evaluation of the original program begins with E-FUN, so we have
[x1 = S(x1),...,xp — S(xp)],0 F ef ~ 0.
The transformation must include a judgement for the body of f,
x1:T1,...,xp 1 Ty Fx e Thnal, X, unwind_Tipa (x,5) — e, K,

and we can evaluate the continuation as follows:

; /E-VAR
[x—vs—null],6’ Fx~ V0

; E-MATCHN

[x — v,s — null],6’ - match s with --- 1end — x ~ 1,6
E-FUN

[x1 = S(x1),...,xp — S(xp),s — null,x — v],6" - unwind_Tspa (x, ) ~~ v,06’

So by Theorem 3.6 we have
x1 = 8(x1),...,xp — S(xp),s—null],cep ~v,0
[ S(x1) p = S(xp) .ot ey /
and hence by E-FUN

Sis—nulll,o = f'(x1,...,xp,5) ~ 0. O

3.3 Bounding the original program

An obvious complaint with the above approach is that we require the compiler to use
the CPS transformation as part of the compilation. This is inconvenient if we already
possess a perfectly good compiler. Moreover, it can be impossible if the target does
not allow for general tail call optimisation, as was the case with Java bytecode in the
MRG project.

Fortunately, there is a converse result to the correctness theorem which shows that
in addition to computing the correct result, we can bound the total space used by the
original program using a bound on the heap space of the transformed program.

We defer consideration of tail call optimisation in the evaluation of the original
program for now. The transformed program is necessarily ‘executed’ with tail call
optimisation, but as there is no real machine involved we may choose size and stack’

to suit our theorem.



Chapter 3. Using a CPS transformation to bound stack requirements 43

Theorem 3.8. Suppose we have a typed program and its CPS transformation where
size(C) = stack(f) for every continuation closure C introduced in the transformation

of the body of f. Given the transformation
Ikye:T,x,e —e' K

of any expression e in the program, suppose that we have evaluations for e, ¢’ and ¢’

as per Theorem and moreover that we have m, m' such that
/! / / /
m,S[s—1],6+05F e ~~v, o, m

where we do not count stack space (that is, stack(f") = 0 for all functions f' in the

transformed program). Then there exists mg such that

m+ mg — stack(g), S, e ~> vy, o, mo + my — stack(g)

and mo,S[x — vo,s+— 1],060+0; e~V o m
where ms; = max s stack(f) and g is the function containing e.

Proof. We consider each of the cases from Theorem and show that we can de-
termine suitable values for m( and other intermediate amounts of memory for e from
the derivation for ¢”. For clarity we omit the environments, state and values from the

derivations below.

E-UNIT, E-PAIR, E-VAR, E-PAIR, E-INL, E-INR, E-CONSTRUCT, E-CONSTRUCTN.

The evaluation of the transformed program takes the form

/! /! ‘/ /
mbe~m m e ~m

E-LET-TAIL
mhEletx=-eine ~m

for some m”. Taking mo = m" and adding m, — stack(g) throughout the evalua-

tion of e we get
m + mg — stack(g) - e ~» mo + m; — stack(g)
and mg - € ~~ m’ as required.
E-FUN. The derivation of the transformed function call is of the form
my b ep ~ m

; E-CONSTRUCT p ; /E—FUN—TAIL
mbC(z1,...,20,5 ) ~> my my b= fl(x1,...,np,8) ~>m

- — - p E-LET-TAIL
mblets =C(z1,...,2n,8) In f(x1,...,Xp,8 ) ~>m
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with

m=m; +size(C) by E-CONSTRUCT

= m) +stack(g) by assumption.

Recall that ey is the result of transforming e with unwind_T (x,s) as the con-
tinuation expression. Applying the induction hypothesis to e, gives us my, such

that
my +ms—stack(f) - ep ~> my+ms—stack(f) and mg - unwind_T (x,s) ~> m'.

The derivation for unwind_7'(x,s) has the form

/ /
mobeée ~~m

E-FUN-TAIL
mo = contC(x,y1,...,yn,s') ~ m'
E-MATCH
mjy - match s with ...~ m’
E-FUN-TAIL

myy F unwind T (x,s) ~~ m’
where my = my, + size(C) = mj, + stack(g).

Now consider the evaluation of the original expression by applying E-FUN to

the judgement for e we obtained from the induction hypothesis,

my +ms — stack(f) b e ~» mg + ms — stack(f)
E-FUN

mp b f(x1,...,xp) ~> my

where

my = my +mg = m+ mg — stack(g),

m'y = mg -+ mg = mo + my — stack(g).
So,

m—+mg —stack(g) = f(x1,...,xp) ~ mo+m;—stack(g) and mot e ~m'.

E-LET. Following the proof of Theorem in reverse, we apply the induction

hypothesis to e; with ¢}, as the continuation expression, yielding m; such that

m+ mg — stack(g) - ey ~» my +mg —stack(g) and my ke~ m'.
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Then we apply the induction hypothesis to e, with ¢’ as the continuation expres-
sion, giving mg similarly. Thus

m+ mg — stack(g) F e ~» m| +my — stack(g) my +my — stack(g) F ey ~» mo + my — stack(g)
E-LET

m+mg — stack(g) - let x; = ey in ey ~> my + m; — stack(g)

and mg - € ~ m’ as required.

E-IFTRUE, E-IFFALSE, E-MATCHPAIR, E-MATCHINL, E-MATCHINR, E-MATCH,
E-MATCH’, E-MATCHN, E-MATCHN'. As in Theorem [3.6] we apply the induc-
tion hypothesis to the subexpression which will be evaluated, and then use the

evaluation rule to obtain the result. L]

We can also give a bound on the total memory required to evaluate the whole

program, starting with the initial function:

Corollary 3.9. Given the same assumptions as Theorem [3.8 about the program and

the size and stack measures, if we have

m,S[s — null],c = f'(x1,...,xp,5) ~ v,6" . m’
then

m+mg,S,6t f(x1,...,xp) ~ v,6',m’ +my,
where ms; = max s stack(f).

Proof. The transformed program’s evaluation begins with the initial function call:

m,[y1 — S(x1),...,yp > S(xp),s — null],c - ep ~>v,6",m'
E-FUN-TAIL

m,S[s — null],c = f'(x1,...,xp,5) ~ v,6",m’
The body ey is ey CPS transformed with continuation expression unwind_T'(x,s).

Applying Theorem 3.8 we get my such that
m+mg — stack(f) F ey ~» mo+ mg; — stack(f)

and mg - unwind_T (x,s) ~ m’. The evaluation of unwind_T (x, s) takes the form
—_ E-VAR

m =x~m
E-MATCHN

E-FuN

m' b match s with ...end — x ~ m’

m' = unwind T (x,s) ~ m’
using S(s) = null, so mg = m’. Finally, by E-FUN we have

m—+mg — stack(f), [y1 — S(x1),...,yp — S(x,)],0 & e~ v,06',m’ + mg — stack(f)

E-FUN.
m+mg,S,6t f(x1,...,xp) ~ v,6',m’ +my
N
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Thus we can use Hofmann-Jost on the transformed program to obtain a bound on

the rotal memory usage of the original program.

3.4 Tail call optimisation

We can also model the effect of tail call optimisation by adding a special rule for it to
the transformation. The idea is to skip the construction of the unnecessary continua-

tion:

(C-FUNTAIL)
Iy f(x1,...,xp) : T, x,unwind T (x,s) — f(x1,...,%p,5),0
Before we prove that this rule behaves correctly, we first note the following useful

lemma (which is true regardless of whether we include C-FUNTAIL):

Lemma 3.10. In a transformation derivation the continuation expression is of the form

unwind_T (x,s) iff the original expression is in tail position.

Proof. By induction on the depth of the CPS transformation. The only rule which can
introduce unwind_T (x,s) is C-FUNBODY which transforms function definitions. This
corresponds exactly to the introduction of a true tail position flag in the operational
semantics.

Now suppose the lemma is true for an original expression in the transformation.
If it is a leaf expression — the C-UNIT, C-BoOOL, C-VAR, C-PAIR, C-INL, C-INR,
C-CONSTRUCT, and C-FUN cases — then there are no subexpressions.

For the C-IF, C-MATCHPAIR, C-MATCHSUM and C-MATCH cases all the subex-
pressions are in tail position iff the current expression is. They are also transformed
with the same continuation expression, so the Lemma holds.

The remaining case is C-LET. The e, subexpression follows by the same reason-
ing as the previous case. The e; subexpression is not in tail position, and its con-
tinuation expression is the result of transforming e,. However, the result of a trans-
formation is never the continuation expression alone, and we have already remarked
that unwind_T'(x,s) is only introduced as a continuation expression when transform-
ing a function body. Thus the continuation expression for transforming e; is not

unwind_T (x, s). O

Now we can show that the addition of the rule preserves correctness and predicts

the memory usage of programs under tail call optimisation.
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Theorem 3.11. With the addition of full tail call optimisation for the original pro-

gram’s evaluation and the C-FUNTAIL rule in the transformation,

1. the simulation result of Theorem[3.6|and Corollary and

2. the memory usage result of Theorem 3.8 and Corollary[3.9
still hold.

Proof. We only need to consider the function application rules in the inductions. By
Lemma 3.10|only tail calls are affected by C-FUNTAIL and all other function calls are
unchanged. Thus we only consider expressions in tail position where C-FUNTAIL is
used. For part[I] note that the original program’s evaluation

yi—S(x1),...,yp — S(x,)],0 F e~ vg, 00
[ ) p ( p)] f E-FUN-TAIL

S,oF f(xp,... ,xp) ~ V9,00
and the transformed program’s (when using E-FUNTAIL)

y1— S(x1),...,y,— S(x,),s—1],6F e~V 6
| =) P (57) ] ! E-FUN-TAIL

Sls—=1],6 f(x1,...,xp,5) ~V, 0
proceed in the same way because we do not form a new continuation. The result then
follows by the induction hypothesis on ey because it was also transformed with the
continuation expression unwind_7T (x, s).
For part 2] the evaluation of the transformed expression has the form

mbk ep ~ m'
E-FUN-TAIL

mb f(x1,...,Xp,8) ~>m'
because stack(f’) = 0 by assumption. By the induction hypothesis on e there exists

mp such that

m~+myg — stack(f) Fes ~» mo 4 mg — stack(f)

and  mg Funwind_T (x,s) ~~ n'.

Now, by E-FUN-TAIL the space required for the function call in the original program

is m plus
(my —stack(f))+stack’(g, f, true) = my — stack(f) + stack( f) —stack(g) = m, — stack(g)
so we have

m+my — stack(g) Ff(x1,...,xp) ~» mo+ ms — stack(g)

and  mg Funwind_T (x,s) ~ m’,

as required. O
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3.5 Examples and drawbacks

We now return to the examples from Section [2.2.4
Example 3.12. Recall the not1ist function:

let notlist 1 =
match 1 with nil’ -> nil

| cons(h,t)’ ->

let hh = if h then false else true in
let tt = notlist t in
cons (hh, tt)

The CPS transformation places the new list elements on the ‘stack’ and creates the list

as it is unwound:

let notlist’ (1, s) =
match 1 with nil’ -> let x = nil in unwind_boollist (x,s)
| cons(h,t)’ ->
if h then let hh
let s’ = Cl(hh,s) in notlist’ (t,s’)

false in

else let hh = true in

let s’

Cl(hh,s) in notlist’ (t,s’)
and contCl(tt,hh,s) = let x = cons(hh,tt) in unwind_boollist (%, s)
and unwind_boollist (xX,s) = match s with Cl(hh,s’) -> contCl(x,hh,s’)

| end —> x

with
nil — boollist,

cons — bool, boollist — boollist,
end — stack,

rX= C1 — bool,stack — stack,

notlist’ — boollist,stack — boollist,
contC1 — boollist, bool, stack — boollist,

unwind boollist — boollist,stack — boollist

The total memory usage of not1list’ (1, end) will be at most

|1| x max{size(C1),size(cons)} +max(stack(f)),
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because the list’s contents is built on the ‘stack’ using C1, then the list is constructed
as the stack is unwound, while at most max ¢(stack(f)) will be required to store local
variables.

If we assume that the sizes of the two data structures are both one, then the Hofmann-

Jost analysis yields the signatures

notlist’: boollist(1),stack(1),0 — boollist(0),0
contC1 : boollist(0), bool,stack(1),1 — boollist(0),0
unwind boollist: boollist(0),stack(1),0 — boollist(0),0

confirming that |1| units of free heap space is required by the transformed program. If
we add the largest frame size as per Corollary then it agrees with the total usage
above. This also bounds the total memory usage of the original program.

We can consider the stack space alone by setting size(cons) to zero. If we assume
that the closure’s size (that is, C1’s size) is equal to stack(notlist) then the stack
usage should be

|1+ 1] x stack(notlist).

Indeed the signatures are now

notlist’: boollist(1),stack(0),0 — boollist(0),0
contC1 : boollist(0), bool, stack(0),0 — boollist(0),0
unwind boollist: boollist(0),stack(0),0 — boollist(0),0

showing that |/| heap-allocated frames are required by the transformed program. Fol-
lowing Corollary [3.3] again, we add another frame to get the expected total. Note that
the annotation on the stack types is now zero, because we no longer require memory
for the allocation of the new list. However, the overall bound on the stack space alone
is equal to the bound on total space, because the size of the free ‘stack’ space is large

enough to account for the allocation of the new list on the heap.

Example 3.13. The Hofmann-Jost analysis can be successfully applied to the result of
transforming the functional heap sort of Appendix |[Al Using a reasonable size model
for the data structures (one word for each integer or location, plus one for constructor

tags where necessary) we obtain a signature for the sorting function of
intlist(2),stack(...), 11 — intlist(2),6.

This tells us that 1142 x |/| words of memory is sufficient to sort a list /. (We omit

the annotations on the stack type because they do not contribute to the bound on the
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free memory required at the start of the evaluation.) However, the bound on the free
memory afterwards is 5 words lower. We know from the heap-only analysis that all of
the extra heap memory is returned and the stack space must be returned at the end of
the evaluation. Thus the analysis is ‘losing track’ of the 5 words at some point.

Attempting to solve this mystery by examining the types is difficult because all the
functions have the same result type, ‘boollist(2),6’, rather than information about the
free memory after that function is evaluated. To get this information would require
examining the types of the unwind_T functions and reasoning about the contents of
the closures. Fortunately the solution can be found by examining a similar problem in
Example below.

Analysing the stack space alone gives a higher bound of 11 +4 X |I|. The stack
contains many partially broken up data structures and the fofal bound assumes that
the space from the deallocated structures can be counted against the stack space used.
Thus if stack space and heap space are not immediately interchangeable (as is often the
case in practice) more stack space is required. In such situations analysing the heap and

stack requirements separately gives a more useful account of memory requirements.

Example 3.14. Recall the id function introduced in the discussion on resource poly-

morphism on page[I7, which uses notlist:
let id 1 = let notl = notlist 1 in notlist notl
Using the CPS transformation on the entire program the id portion becomes

let id” 1 s = let s’ = C2(s) in notlist’ 1 s’
and contC2(notl,s) = notlist’ notl s
and ... [notlist’ as before]
and unwind_boollist (x,s)
match s with C1(hh,s’) -> contCl(x,hh,s’)
| C2(s") —-> contC2(x,s")

| end -> x

However, the Hofmann-Jost analysis fails (by producing an infeasible linear program).
The first obstacle is that our analysis of the original program in Chapter 2] relied on re-
source polymorphism. The CPS transformation places all of the functions into a single
mutually recursive block, so our resource polymorphism mechanism is no longer ap-
plicable. We can overcome this by recalling that resource polymorphism is equivalent

to duplicating the function in question, so we use two copies of not1ist.
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Unfortunately, this is still not sufficient for the analysis to produce a bound. Con-
sider the type of the lists produced by each call to not1list in the original program.
The first is

boollist(size(cons))

because we require enough potential to allocate the second list. The second type is
boollist(0)

because no further allocations are performed, so no potential is required. However,
every function which produces a boollist value calls the same unwind_boollist function,
forcing the types’ annotations in the transformed program to be the same throughout.
Thus the generated linear program is unfeasible because size(cons) # 0. That is, the
change in potential and the type equality cannot be satisfied simultaneously.

We can work around this problem by duplicating the unwind_boollist function once
for each notlist function and removing the unused cases from each copy. That is,

after duplicating not1ist we have

and unwind boollist (x,s) =
match s with C1(hh,s’) -> contCl(x,hh,s’)
| C2(s") -> contC2(x,s")
| C3(hh,s’) -> contC3(x,hh,s’)

| end -> X

and we then produce:

and unwind_boollistl (x, s)
match s with C1(hh,s’) -> contCl (x,hh,s’)
| C2(s") -> contC2(x,s")

and unwind_boollist2(x, s)
match s with C3(hh,s’) -> contC3(x,hh,s’)

| end -> X

These can be given different signatures, one where x is given the type boollist(size(cons))
and one where it is boollist(0), as required.
However, further complicating the transformation to recover the power of the orig-

inal analysis does not seem worthwhile if a more direct approach is successful.
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On a more positive note, analysing the stack space alone using the transformed

program does yield a bound because no resource polymorphism is required.

The trick of manually partitioning the unwind_T" functions also works on the heap
sort example, recovering the missing 5 words from the bound on the free memory after

evaluation.

3.6 Summary

The CPS transformation does provide useful bounds on total memory usage, both when
used as part of the compilation process and when performed purely for the analysis.
However, to allow a similar range of programs to be analysed as the heap-only analysis
would require a yet more complex transformation to perform the function duplication
and partitioning of the stack unwinding functions sufficient to replace resource poly-
morphism. This additional complexity is undesirable, and coupled with the difficulty
in relating the inferred types to the original program we conclude that a more direct

analysis is preferable. We pursue this in the following chapters.



Chapter 4
A direct adaption of Hofmann-Jost

Our attempt to avoid changing the analysis itself by considering programs in an inter-
mediate CPS language succeeded in providing stack memory bounds and total memory
bounds for some programs, but would require a yet more complex transformation to
reach the applicability of the heap-only analysis. Thus we now consider how to adapt
the analysis directly, without transforming the program.

The principle used in this chapter is to reflect the changes in stack memory alloca-
tion in the operational semantics as changes in the potential in the type system, in the

same way that heap allocation is handled in the plain Hofmann-Jost analysis.

4.1 Simple adaption

We briefly consider the operational semantics without tail call optimisation to illustrate
the principle without too much notational clutter. First, recall the evaluation and typing
rules for constructing a (non-null) data structure:

s=(c,S(x1),...,S(xp)) c ¢ nullc [ ¢ dom(o)
m+size(c),S,6 - c(x1,...,xp) ~ 1,6[l — s],m

(E-CONSTRUCT)

Z(C,‘)[k] =T1,.. .,Tp,kl’ — ty(k)
® = {n >size(c;) +ki+n
{n = size(ci) +ki+n'} _ (CONSTRUCT)
Coxi T, xp: Tp,nbs poci(xi,. .. xp) i ty(k),n’ | ®

When typing the same term, ¢ = ¢;, and so size(c;) = size(c), the size of the allocation.
Therefore the typing rule ensures that the overall potential drops by at least the size of
the allocation. (The k; term in the constraint does not change the overall potential, but

instead compensates for the enlargement of the data structure.)

53
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We wish to adjust the function application rules FUN and FUNDEF in a similar
way to reduce the potential during the function call by the size of the extra stack space
required in the evaluation rule:

Sx1)=vi ... S(xp) =vp m,[y1—Vvi,...,yp — Vpl,0 Fep~> v, 6" m’
the y; are the symbolic arguments in the definition of f

m+stack(f),S,6F f(x1,...,xp) ~» v,6',m' + stack(f)

(E-FuN)
The existing FUNDEF rule from Section [2.2.2]is:
féF Xf)=",....,Tp,k — T,K'|®
bd={n>kn—k+k>n}
(FUNDEF)

Coxi: T, xp : Tponbsp f(xi,...,xp) : T’ | ®

The function signature X( f) tells us the potential required to execute the function body,

T(G,S(x,-), Tl) +k:

on

i=1

and the potential subsequently produced, Y(o’,v,T)+k’. The fixed amounts k and &’ in
the signature are related to those in the judgement, n and »’, by the constraints ®. We
will change these constraints to require stack(f) more units of potential, and ‘release’
it again afterwards. Thus the first constraint becomes n > k + stack(f). The second is

unchanged because
n— (k+stack(f)) + (k' +stack(f)) =n—k+k,

that is, the stack required and released cancel out. We treat FUN in the same way,

giving us the new rules:

fer X(f)=T1,.. ,Tlﬁ,k—>T’ K| p(T)) =T, p(T"Y=T
@ =p () U{n = p(k) +stack(f) ,n—p(k)+p(K') = n'}
F,xl:Tl,...,xp:Tp,nl—gpf(xl,...,xp) /|(I)
(FuN’)
feF Xf)=",....Tp,k — T,K'|®
® = {n >k +stack(f) ,n—k+k >n'}
(FUNDEF)

Coxi T, xp i Tponbsp f(x1,...,xp) : Ton' | ®

Example 4.1. Consider the analysis of the not 1ist function from Section[2.2.4](page[25).

The recursive function call is now typed as

®; = {ng > ny +stack(notlist),ns —n;+ny > ns}
FUNDEF

t : boollist(k1),ns Fx g notlist t : boollist(ky),ns | Py
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with the remainder of the derivation the same as before. The minimal solution will

have the form

ny =ny =0, n3 = ng = ns = k; = max{stack(notlist),size(cons)}, k» =0,

notlist : boollist(max{stack(notlist),size(cons)}),0 — boollist(0),0.

The maximum is taken because the stack space is returned before the allocation occurs.
As usual, if we want independent heap and stack bounds then we can perform the
analysis twice, setting stack(notlist) and size(cons) equal to zero in turn.

Note that the function signature does not include the stack frame from the initial
call to not1list. This is included in the typing of the caller. For a bound on the whole
program (that is, a call to the ‘initial function’ f) we add stack(f) to the bound from

the function signature, in accordance with the FUN typing rule.
Example 4.2. The function

let every 1 = match 1 with nil’ -> true
| cons(h,t)’” -> if h then every t

else false

computes the conjunction of all the elements of a boolean list. Without tail call opti-

misation each recursive every t call requires stack(every) units of free space:

. - FUNDEF . - BooL
7. — t:boollist(k),ny by every t : bool,n’ [P t : boollist(k),n; Fy g false : bool,n’ | P,
cons —

IF

h : bool, t : boollist(k),n; Fyg if - : bool,n' |3

/ BooL
-,ntygtrue:bool,n | Py Deons

ASE/ CASE’
-1 boollist(k),n Fygnil” — - : bool,n’ | @4 -1 boollist(k),n by ¢ cons(h,t)’ — -+ : bool,n’ | Ps
MATCH

1: boollist(k),n Fygmatch 1---: bool,n’|Pg
@ = {n; > n+stack(every)}, @, = {n >n'}, ®3 =P, UD,,
dy={n> n/}, D5 =P3U{n; =n+k}, Og=DsUDs,

with a minimal solution of

n=n"=0, n| = k = stack(every),

every : boollist(stack(every)),0 — bool, 0.

Due to the lack of tail call optimisation, this linear memory bound from the analysis is

exactly the amount required according to the operational semantics.
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4.2 Tail call optimisation

We can apply the same principle with the tail call optimisation semantics from Sec-
tion Recall the function application rule:
S(x1)=vi ... S(xp) =vp e T e T I R o 8 4
the y; are the symbolic arguments in the definition of f

m+stack’(g, f,1),S,0 F8" f(x1,...,xp) ~ v,0',m’ +stack’(g, f,1)
(E-FUN-TAIL)

The amount of allocated memory now changes by stack’(g, f,¢), which also depends

on the tail position part of the judgement, . Thus in addition to changing the function
application rules in the type system we need to add the tail position marking that is
present in the operational semantics to the typing rules. In particular, the LET and
function definition rules need to set the tail position appropriately. These rules now
become:
feF  X(f)=T,... . Tpk—=TK|®  p(I/)=T p(T")=T
@ = p(P') U{n > p(k) +stack'(g, f,1) .,n—p(k) +p(K') = n'}

z
Coxi:1,...,xp: Tp,n l—;F flxt,..xp) : Ton' | @
(FUN-TAIL)

féF  X(f)=T,....,Tyk— T,K|¥
® = {n >k +stack'(g, f,t) ,n—k+K >n'}

; (FUNDEF-TAIL)
Coxi:Th,...,xp: Tp,n I—;’F flxt,...xp) : T,n' |

ffalse fit p
Fl,nl—zf el :To,n0|<131 rz,x:To,no l_Z,F 62:T,n ‘CIDQ

7t .
I',T,n I—ZfF letx=ejiney:T,n'|®UD,
(LET-TAIL)

f,true
Xf)=",....Tp,k =T ,K|®  xi:T,....xp:Tpktyp ep:TK|P

e f(x1,..,xp) = e = {f}
We defer the formal soundness proof until the next chapter because it is a consequence

of the theorem for the extended type system presented there. Informally, we have
extended both the operational semantics and the Hofmann-Jost system with extra costs
in the same way. This close correspondence preserves the soundness of the type system
and thus the inferred bounds.

It would also be sound to use a more conservative (that is, larger) stack’ in the
analysis than the operational semantics. This can allow for variations between imple-

mentations, or minor optimisations that are not modelled by the analysis. Moreover, if
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we fix stack’(f,g,t) = stack(g) we get the analysis without tail call optimisation from

the previous section.

Example 4.3. The not1ist function’s typing derivation now has the form

BooL BooL
Dy — I—false false: — — kg"ge true:
1= IF
l_false _
false : FUNDEF-TAIL — CONSTRUCT
D, = —F5p notlistt:— —Fyg cons---:—
’ LET-TAIL

Hr“e let tt -

Dy
CONSTRUCT LET—TAIL
—H¥ e nil: — — % let hh -
CASE/ CASE’
—F{nil’ —nil: - — % cons(h,t) — - —
e — MATCH
v match ---:
Frpnotlist 1l =...= {notlist}

Frolet notlistl =

The recursive call is not in tail position, so
= {ny > ny +stack’(not1list,notlist,false),nq —ny +ny > ns},

and stack’(notlist,notlist,false) = stack(notlist). Therefore the constraints are

the same as for the simple adaption, and we get the same total and stack space bounds.

Example 4.4. The every function’s typing derivation now has the form

FUNDEF-TAIL

— g every t: —|— — H false: —|—
true | BooL true |
—Fyp true: —|— — by if-oi—|—
CASE' : - CASE’
—Hnil — |- — 9 cons(h,t) — - — |-
MATCH

—H{ ¢ match 1. —|—
Every expression, including the recursive call, is in tail position. So under the reason-
able assumption that stack’(every, every,true) = 0, solving the resulting constraints

will give the type signature
every : boollist(0),0 — bool, 0.

Thus any call to every requires only enough memory for the stack frame for the initial

call to every; namely, stack(every) units of space.

BooL

IF
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Example 4.5. The total memory usage of the id function from Example can now
be analysed directly (in contrast to our attempt with the CPS transform). The resource
polymorphism allows the type signatures for the two notlist calls to differ. In an

optimal solution to the generated linear program these will be

notlist : boollist(k;),0 — boollist(k;),0

notlist : boollist(k;),0 — boollist(0),0

where k; = max{stack(notlist),size(cons)}

(
(
)
k1 = max{stack(notlist),size(cons)+ky} = size(cons) +kz,

because at the first call we must have enough potential to perform the recursive call
(stack(notlist)), then allocate the new list element (size(cons)) and provide enough
potential through the new list’s type annotation for the second call (k7).

Thus id will be given the signature
id : boollist(k ), stack(notlist) — boollist(0),stack(notlist),

and so evaluating id 1 will require k; x |1| 4 stack(notlist) + stack(id) units of

space, which is a tight bound on the total space required.

4.3 Limitations

The above examples show the analysis performing well in a few simple functions. To
gain a better understanding of how well the analysis performs in general we need to
consider features of programs that are not well represented by those examples. Three
classes which we look at here are programs for which linear bounds on stack space are
necessarily overestimates; functions which build their results during recursion (using
an accumulator); and larger programs composed from functions for which we can find
reasonable bounds on their own.

Note that the limitations we encounter also affect the analysis using CPS transfor-
mation from the previous chapter. The CPS method of obtaining stack bounds uses the
Hofmann-Jost analysis unchanged, which shows that these limitations also affect the
analysis of heap space with Hofmann-Jost where stack-like allocation of data struc-
tures occurs.

Sub-linear bounds are often the case for the manipulation of tree structures (for

example, the heap in the heap sort example, or the handling of an abstract syntax tree
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for a language), and require stack space in proportion to the depth of the data struc-
ture. Such bounds cannot be expressed in our current analysis because the potential
functions use total sizes and the typing rules work on per-element amounts of poten-
tial, implicitly requiring us to measure total sizes. We will consider how to lift these
restrictions in Chapter [6]

To examine functions which use accumulators we consider the classic reverse-and-

append function:
Example 4.6. The function

let revapp(r,a) = match r with nil -> a
| cons(h,t) -> let a’" = cons(h,a)

in revapp(t,a’)

reverses r and appends the result to a. The original r is deallocated in the process. The
function can be typed by the following derivation (we omit the g,X, F' from I—‘;’tF and

present the constraints afterwards for clarity):

D, = ) " T : - FUNDEF-TAIL
TeVapP T ¢ : Tlist(k,),a’ : Tlist(k,),np F'"™® revapp--- : Tlist(k,),n

CONSTRUCT
h:T,a:Tlist(ky),n -false cons. .- Tlist(kg),n2 Drevapp
Do LET-TAIL
cons h:T,t: Tlist(k,),a: Tlist(k,),n; F'™¢ let---: Tlist(k,),n’

a: Tlist(kg),n1 Tlist(k,) - cons(h,t) — --- : Tlist(ky),n’

CASE

VAR
a: Tlist(ky),n " a: Tlist(k,),n’

CASE
a: Tlist(ky),n1 Tlist(k,) F'™® nil — a: Tlist(k,),n’ Deons
MATCH

r: Tlist(k,),a: Tlist(k,),n =" match--- : Tlist(k,),n’

where
Y(notlist) = Tlist(k,), Tlist(k,),n — Tlist(ky),n’.
The constraints accumulated from the typing rules are:
{n>n, from VAR
ny = n+k, + size(cons), from CASE for cons
ny > size(cons) +k, +ny, from CONSTRUCT

n, > n+ stack’(revapp, revapp, true),

} from FUNDEF-TAIL
np >n'}
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Note that the function call does not require any constraints on k, or k, because the
annotations in the context match those in the function signature. In general we would
add weakening of the annotations using SHARE where this is not the case.

If we allow tail call optimisation the function runs in-place, with
n=n"=ny=0, n| = size(cons) +k,, k, =k, forany k,.

Now suppose that we have no tail call optimisation, so stack’(revapp, revapp, true) =
stack(revapp). The only way to express the (linear) cost of the recursive function calls
is the potential of the list k,, via n; and n,. During evaluation, the stack memory is
— as always — returned afterwards, but note that the construction of the new list cell
occurs before the function call. Hence the potential for the result, k,, cannot include
the potential for the function call, ny, because of the constraint from CONSTRUCT.

Solutions thus take the form
n=n'=0, n| =size(cons)+k,, n, = stack(revapp), k, = k, + stack(revapp) for any k,,

so we require at least (stack(revapp) +k,) X |r|+k, X |a| units of stack space, but our
bound on the amount afterwards is only k, times the length of the result. The analysis

‘loses track” of the other stack(revapp) x |r| units of space.

Accumulating parameters are typically used to facilitate tail recursion. This means
that this problem rarely occurs, and we defer a full treatment of accumulating param-
eters to further work (see Section . However, the extension presented in the next
chapter will aid some examples.

Finally, we consider what happens when the analysis is applied to larger programs.
One limitation is that we only ever sum the potential for variables in the typing context.

For instance, if we have a context
a : boollist(k,),b : boollist(kp)

the resulting bound will be of the form k, x |a| + k; X |b|ﬂ However, if we call a
function which performs recursion over a, and afterwards one which recurses over b,
then the real stack space requirements will be of the form max{k, x |a|,k, % |b|}. We
will consider expressing such bounds precisely in Chapter [0 along with the treatment

of bounds which use the depth of data structures.

IFinding an optimal solution for the generated linear program may implicitly assign the maximum
of some fixed values to k, or kp, as in Example But we cannot obtain bounds which include the
maximum of the size of two variables such as |a| and |b| in the present system.
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There is another limitation on the form of the bounds which affects larger pro-

grams:

Example 4.7. The heap sort program uses a tail recursive list length function to help
build the heap. If we change it to a version which is not tail recursive then the stack

bound is overestimated. To see why, consider the function’s signature:
length : intlist(k),n — int,n’

Given a list /, the stack memory bound will have the form k x |/| + n, and choosing
k = stack(length) is sufficient to satisfy the constraints. However, the bound on the
free memory afterwards can only be a fixed amount, 7', because no potential is given to
integer values. Thus there is no way to express the fact that the k x |/| units of memory
are free again, so the analysis ‘loses track’ of it. This results in an overestimate for the
whole heap sort implementation because the reuse of that stack space cannot be taken

into account.

We will consider this problem in more detail in the next chapter.



Chapter 5
Accounting for stack space reuse

At the end of the previous chapter we noted that the analysis could not express some
bounds on the free stack memory after evaluating a function. In particular, the ‘poten-
tial” functions that give the bound are defined only in terms of the result’s size. This
is a problem when the stack memory used cannot be expressed in terms of the result’s
size alone, or we wish to assign the potential to a later use of one of the arguments.
In this chapter we construct an extended version of the space usage analysis where
the potential after evaluation can be given in terms of the size of the result and the

arguments.

5.1 Motivation

The temporary nature of stack memory usage leads to a loss of precision in the analysis
presented in Chapter 4 To understand the problem we consider a pair of examples.
First, we revisit the list length function from the last chapter.

(In these examples we estimate only the stack memory because the problem affects
stack space analysis more acutely, so let size(c) = 0 and stack(f) = 1 for all ¢, f for
these examples. We will show that the extended analysis is sound for both stack and
heap memory bounds, however. The extension we will present can also provide some

benefit when heap memory is used in a stack-like fashion.)
Example 5.1. Consider the non-tail-recursive list length function,

let length 1 = match 1 with nil’” -> 0
| cons(h,t)’ -> let n = length t in 1+n

length :intlist(k),n — int,n’ | {k > 1,n>n}

62
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where one stack frame per element (i.e. |1| frames) is required. This stack memory is
free again after the function returns, but this is not reflected in the function’s annotated
signature — there is no annotation on the result’s type that is capable of representing

|1| frames. Should we attempt to use the function twice on the same argument,

let twicelength 1 = let nl

length 1 in
let n2

length 1 in nl+n2

then the same stack memory suffices for both calls to length. However, the SHARE

rule is used to perform contraction of 1 in the typing, as follows:

let nl = length1j in

1) @ intlist(k1), 1 : intlist(ky), n Y8 g |
9 . . /

let n2 = lengthly; innl+n2:int,n

SHARE

let nl = length 1l in

1:intlist(k),n FY'% |PU{k =k +ko}

let n2 = lengthl innl+n2:int,n

This sums the memory requirements for each use of [, so the resulting function signa-
ture 1s

twicelength : intlist(k),n — int,n’ | {k>2,n>1,n>n'},

giving a bound of 2 x |1| 4+ 1. So the best stack memory bound on twicelength
is almost twice the actual usage, and again the annotated function signature cannot

indicate that the stack memory used is free again after the function returns.

We also need to consider more subtle cases where new data structures are created
and they require enough potential to account for memory requirements of later stages

of the program.
Example 5.2. The function

let andlists (11, 12) = match 11 with nil’” -> nil | cons(hl,tl)’ —>
match 12 with nil’” -> nil | cons(h2,t2)’ —>

let h = if hl then h2 else false in
let t = andlists(tl, t2) in
cons (h, t)

computes the pairwise boolean ‘and’ of two lists. The size of either list would be a
reasonable upper bound on the number of stack frames required because the actual
number used is the size of the shorter list. The function signature reflects this estimate

by requiring a non-zero annotation on at least one of the two arguments:

andlists : boollist(k;),boollist(ky),n — boollist(ky + ko), n’ [{ki + ko > 1,n>n'}.
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Note that we get a reasonable estimate on the free memory afterwards from the kj + k2
annotation on the result.

Now consider using andlists twice, with the same first argument:

let andlists2 (11,12,13) = let rl = andlists (11,12) in
let r2 = andlists (11,13) in (rl, r2)

The actual stack bound is min{|11|,max{|12|,|13|}} 4+ | frames, so one bound we
might expect the analysis to be able to produce is |11| + 1. However, the signature we

obtain is:

andlists2: boollist(k;; + k;11),boollist(k;p), boollist(k;3),n —
boollist(k1 ) ® boollist(k,2),n’
| {kin+kp > 1, kjy+kiz > 1,k + ki > ket ke + ki3 > ko, n> 1, n>n'}

because 11’s annotation k;; + k;1/ is split between its two uses by the SHARE rule. So
while |11|+ 1 is a bound on the actual stack usage, the best bound from the typing is
2x |11+ 1.

Ideally, we ought to be able to reuse the potential from k;; in place of the extra k;y/,
but with the present system we can only assign the potential to the result, in the form

of the k,; annotation.

There are two approaches to extending the potential functions to express tighter
bounds for these situations. We could annotate more types and extend the potential
function Y accordingly. In particular, we could annotate the int types and assign val-
ues potential proportional to their magnitude. This would enable us to express a tight
bound on the stack memory after evaluating length 1. However, it would not help
with twicelength because the analysis does not attempt to capture the size relation-
ship between the integer n1 and the list 1. Thus assigning potential to n1 does not help
with the second use of 1. Moreover, it does not help with the and1lists example at all.
Hence, we leave this idea to future work.

Instead, let us consider extending the calculation of the post-evaluation bounds by
including the arguments as well as the result. The simplest form of this would be to
restrict our attention to stack space and note that we always get back all the free stack
memory required for any function call, and so we can simply reuse the old assignment
of potential.

For instance, in this hypothetical analysis we could type the two function applica-

tions in twicelength in the same way by reusing the original assignment of potential
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to 1:

1:intlist(k),n I—fﬁ'f?e length 1 :int,ng| P
1:intlist(k),nt :int,n F{% let n2 =--- rint,n’ [Py

— - — HYP-LET
1:intlist(k),ntyF let nl =---int,n’ | UD,

Note that the potential in the result of the first length 1, ng, is ignored. Instead we use

the original assignment to 1 and » (in contrast to our previous typing using SHARE).

We could then get the signature
twicelength :intlist(1),1 — int, 1,

which means a bound of |1| + 1 for twicelength 1, which is the actual number of
stack frames required.

When typing andlists2 in such a system, however, we may need to assign po-
tential to the result to satisfy some later use. The two calls to andlists could be

typed

11 : boollist(1),12 : boollist(0), 1 f—fﬁlﬁe andlists(11,12) : boollist(0), 1

11 : boollist(1),13 : boollist(0), 1 fzallfie andlists(11,13) : boollist(1),1

reusing the old assignment of potential to 11 after the first call, but passing it on to r2
on the second. This suggests that during inference we would need to make a binary
decision at each function application; namely whether to use the old assignment of
potential or to assign it to the result instead. This may require an exponential search
for the optimal stack memory bound. Also, it forbids splitting the potential between
the arguments and the result.

Thus we opt for a more complex system, which uses extra annotations to assign
potential to the arguments after evaluation, while still producing constraints which
form a linear program and so avoid the binary choices. We also retain the ability to
bound the heap space usage in the system because we do not need to assume that

allocation follows a stack discipline.

5.2 The ‘give-back’ analysis

We extend the analysis from Chapter 4] by adding an extra give-back annotation for
each data type annotation in the original system. These new annotations represent the

potential assignment to variables after the evaluation of the expression. To illustrate
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the idea, consider the examples above. For the list length functions in Example (5.1 we

will obtain the function signatures

length :intlist(1 ~~ 1),0 — int,0

twicelength :intlist(1 ~> 1),1 —int, 1

which mean that each function requires one stack frame per list element (plus an extra
frame for twicelength), and that same amount of potential is available for later uses
of the list. In particular, both uses of 1 in twicelength use the same potential, because
the signature of length says that we can reuse it.

For Example there are several possibilities for the typing, depending upon the
requirements for later parts of the program. For each case we will show the typing
judgements for the two andlists calls and the corresponding function signature for

andlists2. One choice is to reassign all of the potential to the original list:

11 : boollist(1 ~+ 1),12 : boollist(0 ~ 0),1 H*and1ists(11,12) : boollist(0 ~ 0),1

11 : boollist(1 ~~ 1),13 : boollist(0 ~ 0), 1 fzafeandlists(ll,IS) : boollist(0 ~~ 0), 1

andlists2: boollist(1 ~~ 1),boollist(0 ~~ 0), boollist(0 ~ 0),1
— boollist(0 ~~ 0) x boollist(0 ~~ 0), 1

Another is to reuse the potential on 11 internally, but assign the final potential to part

of the result:

11 : boollist(1 ~~ 1),12 : boollist(0 ~~ 0), 1 fzafeandlists(ll,u) : boollist(0 ~~ 0), 1
11 : boollist(1 ~~ 0),13 : boollist(0 ~~ 0), 1 fZa’llieandlists(11,13) : boollist(1 ~~ 0), 1

andlists2 : boollist(1 ~ 0),boollist(0 ~~ 0), boollist(0 ~~ 0), 1
— boollist(0 ~» 0) x boollist(1 ~~ 0), 1

(In this extension we can only assign the potential to the part of the result evaluated last
(r2) unless we also increase the overall memory bound. When we consider introduc-
ing maximums into the potential functions in later chapters we will be able to assign
potential to the first part of the result, too.)

Our final instance is to split the potential between the argument and the result:

11 : boollist(1 ~~ 1),12 : boollist(0 ~~ 0), 1 l—g'ﬁeandlists(ll,m) : boollist(0 ~~ 0), 1

11 : boollist(1 ~ 3),13: boollist(0 ~ 0), 1 E'}eandlists(ll,m) : boollist(§ ~~ 0), 1
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andlists2 : boollist(1 ~~ 3),boollist(0 ~ 0), boollist(0 ~~ 0), 1

— boollist(0 ~~ 0) x boollist(3 ~ 0), 1

Notice that the result types also have give-back annotations. These have a slightly
different meaning — they indicate that there may be some ‘overlap’ between the po-
tential assigned to the result and the potential assigned to the arguments. To understand

why such overlaps can be useful, consider the following functions:

let tail 1 = match 1 with cons(h,t)’ > t
let andtail (11,12) = let tl = tail 11 in andlists(tl,12)

One stack frame per element of 11 is sufficient to evaluate andtail and we expect that

the potential can be given back to 11 after evaluation:

andlists : boollist(1 ~ 1), boollist(0 ~» 0),0 — boollist(0 ~ 0),0,

andtail : boollist(1 ~~ 1), boollist(0 ~» 0),1 — boollist(0 ~~ 0), 1.

What, then, should the signature of tail be? It must indicate that 11 can be reas-
signed its potential (using the annotations 1 ~~ 1), but only if t1 can be reassigned its
potential after evaluating andlists (again, by the type annotations 1 ~~ 1). Thus we

give tail the signature
tail: boollist(1 ~~ 1),0 — boollist(1 ~ 1),0,

which we take to mean that 11 can be reassigned 1 unit of potential per element after
we have finished using t 1. More precisely, we require that we only reassign the ‘given-
back’ potential to 11 once we have evaluated an expression whose result does not
contain any part of 11, because our analysis will ensure that distinct values do not have
any overlap in potential.

As andlists(tl,12) returns a freshly allocated list, the result does not contain
any part of 11 and so we can assign the next use of 11 the same amount of potential it
had before. In general we will use the heap separation condition derived from a safety
analysis for this (as we noted in Section[2.1)).

Major changes to the typing rules from the analysis in Chapter ] are only required
in two places. First, we must introduce a new form of contraction which reassigns
the given-back potential where possible. We need to ensure that the two uses of the
variable occur sequentially, so we add the new contraction to the LET typing rule, and
we will add a side condition to prevent overlapping between those variables and the

result of the first subexpression.
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Second, we will adjust the pattern matching rules, CASE and CASE’, to ‘reserve’

the given-back potential in proportion to the data structure’s size.

5.2.1 Definition

The annotated types in our new system are
T,:=1|bool | T,T, | (T, ki) + (Ty,ky) | ty(k ~~ k'),

where k; and k, are constraint variables and k ~ k is a tuple of pairs of constraint
variables. This differs from Hofmann-Jost in that all of the annotations in an algebraic
datatype ty(k ~~ k') now come in pairs, k; ~> k.. The first annotation k; in each pair
plays the same role as before. The second annotation in each pair, k;, determines the
given-back potential, as outlined above. Function signatures have the same form as
before:

2(f)=T,....Ty,k =T,k |P

Constructor signatures now have the form
Z(Ci) = Vk ~~ k/'T17' ) Tp7ki M k: - ty(k ~ k’)

To avoid cluttering the typing rules with extra constraints we adopt the conven-
tion that for any pair of annotations k ~» K’ used in the typing we implicitly add the
constraint

k>K

to the linear program. This bounds the give-back annotation k’ for unused variables.
When reassigning the given-back potential we need to show that there is no overlap
with the potential assigned to the result. As discussed above, we use the heap sepa-
ration condition from the safety analysis for this. However, some values are not heap
allocated and so the separation condition is not useful for them. Thus we do not pro-
vide give-back annotations for sum types, and also adopt the convention that for any

constructor represented by null (that is, any ¢; € nullc) we add the constraint

k=0

1

to the linear program (where X(¢;) [k ~ k'] = k; ~ ki — ty(k ~~ k')).
This is a mild restriction because only a fixed amount of potential is involved,
which can be represented by the fixed amount of potential in the typing judgements

instead.
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To calculate the potential prior to evaluation we use the same function as Hofmann-
Jost, ignoring the new give-back annotations:
Y :heap xvalxT, — QT,
Y(o,*,1) = Y(0,true,bool) = Y (o, false, bool) = 0
Y(o,V V), T'®T")=Y(c,V,T') +Y(c,v",T"),
Y(o,inl(v), (T, k') +(T", k")) =K + Y (o,v,T'),
Y(o,inr(v), (T, k') +(T", k")) = K"+ Y(o,0,T"),
Y(o,null,ty(k ~ k') = k;

; where c¢ € nullc

~— N N~

and  E(c)[k ~ K] = ki ~+ ki — ty(k ~ k),

Y(o,Lty(k~>K)) = } Y(O\L,vi, Tr) + kj,

-

N
Il
—

where o(l) = (c,v1,...,vp),
and E(c)[k~ K] =Ti,..., Ty kj~ K — ty(k ~ k).
To define the potential after evaluation we also use an extra potential function for the
give-back annotations:
Y : heap x val x T, x loc — Q7
Y'(0,*,1,1) = Y'(o,true,bool,l) = Y' (o, false, bool,l) = 0
Y (o, T 1)+ Y (o' T" 1)
Y (o,v,T',1)
Y (o,v,T",1)

)=

Y (c,vV V), T'®T",I)

Y (o,inl(v), (T, k') + (T",k"),1)
)
)

Y (o,inr(v), (T' k) +(T" K"),1
Y/ (o, null,ty(k ~ Kk'),1

0
Il
kj ifl'=1

Y'(G,l’,ty(k ~ k), 1)
0 otherwise

I
I

T’(G\l',vi,ﬂ,l)+{

where o(l) = (c,v1,...,vp),
and E(c)[k~ K] =T1,...,Tp,kj~ k; — ty(k~ k).
In order to eliminate overlaps, Y’ is defined per heap location I. The overall post-
evaluation potential is the ‘normal’ potential of the result using Y, plus the give-back
potential less the amount that it overlaps with the result’s potential:
n'+Y(0 v, T)+ Y max{0,Y(c,S,I',l)-Y'(¢' v, T,I)},
l€loc
for a typing judgement I',n F§". e : T,n’|® and evaluation S, I e ~» v,¢’. The

max{0,...} part is to prevent freshly allocated parts of the result interfering with
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the total potential. We will be able to use the separation condition to eliminate the
Y'(o’,v,T,l) term in the soundness proof, removing the overlap.

The typing rules for expressions in the give-back system are presented in Fig-
ures [5.1]and [5.2] They are based on the stack and heap analysis from Chapter [4] and
only the three highlighted rules, LET-GB, CASE’-GB and CASE-GB, have changed
significantly from the earlier system. The remainder of the rules do not involve the
new annotations directly, and we only need the extended definition for & in Figure[5.3]
The typing rules for functions and programs are presented in Figure[5.4] where the only
change is to include the tail position information.

Note that we retain the original contraction rule SHARE because the LET-GB form
we have introduced cannot be used in some circumstances; for example, the uses of 1
in andlists(1l,1) do not occur sequentially, and so we must use SHARE.

Our replacement rule for let expressions, LET-GB, takes advantage of the give-
back annotations. For each of the variables appearing in the subcontext A, it reassigns
the potential represented by the give-back annotation in A; to the use of the variable
in the second subexpression A,. To deal with the overlapping potential issue discussed
above we have a side condition requiring that the variables involved in the contraction
are separate from the subexpression’s result.

We presumed in Section the availability of ‘benign sharing’ analyses that can
give a conservative estimate of the set of variables satisfying the separation condition.
For instance, Kone¢ny’s DEEL typing (Konecny, 2003) can be used. Thus we can use
this set during type inference to decide which variables from the context to put into A.

The 4-place relation - = - > - |- in Figure formalises the use of the give-back
annotations. Informally, A = Aj > A, | ® means that if the constraints in & are satisfied
and we are given a context A, then we can use A; when typing one expression, then
A; in a subsequent expression — with A, using the given-back potential in A;. For
example, if we are typing some let y = ey in ep expression with the context A = x :

boollist(k ~~ k") then we have

A=A >A2|q)>. Al,nl— el To,n0|CI)1 Az,y:To,no Fep: T,n/’q)z
LET-GB

Antlety=ejiney:T,n'|®._ UDP UD,
assuming that the result of e is separate from x, and A; = x : boollist(k; ~~ k;) The

judgement for > yields the constraints
D, = {k >k, k—ki+ky > ko, k5 > k'}

which mean that when using x in ej, the potential corresponding to k] out of the k;
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o ; — (UNIT) c € {true, false}
F7n|_277F*:17n |{n2n} r,n}_‘%tFCbOOLn/HnZn’}

(BooL)

x € dom(T")
o8 x :T(x),n' |[{n>n'}

(VAR)

feF  X(f)=T{,...T) k=T KI® p(T/)=T, p(I)=T
D =p(P) U{n > p(k) +stack’(g, f.1),n — p(k) + p(K') > n'}

Coxi:7,...,xp: Tp,n I—f:’} fler,..xp) : Ton' |

(FUN-TAIL)
f¢F Z(f):Tl,...,Tp,k—>T,k’|CI>’
® = {n>k-+stack'(g, f,t),n—k+k' >n'}

Cxi - ; gt - ; (FUNDEF-TAIL)
X T xp i Tpon e flxt,...,xp) : T,n' | P

fal . . it .
I',Ar,n I—‘gi,; *er: To,no | Dy I2,A0,x: Ty, ng |—§7F er:T,n'| P,
A=A = Ay | D3 Values for A are separate from the result of e

; - - (LET-GB)
[0, AnkS  letx=ejiney: T,n' | @ UD, UD;
In I—g’fF e :T,n'| P In l—gng e T,n'| D, 15
I',x : bool,n l—g’tF if x then ¢; else ey : T,n' | P UD,
; (PAIR)
Coxi:Tyxo: To,n B (x1,x0) : T @ o, [{n > n'}
Loxp T, Tynt5 e T,on' | @
; — (PAIRELIM)
[,x: T ®Th,nty ' match x with (x1,x2) — e: T,n' |®
X ; ; (INL)
F,X : Tl7n I_Z‘,,F |n|(x) : (E7k1)+ (Trakr)an |{l’l 2 k[—|—l’l }
(INR)

U,x: Tpn F5 inr(x) 2 (Ty, k) + (T k) 0 [{n >k +1'}

L,x; : T,y l—‘g’tF e :T,n' | P, U,x,: Tpyny 5 ep: Ton' | ®,
S=0,Ud,U{m =n+k,n =n+k.}
U,x: (T;, k) + (T, k), I—f:’fF match x with inl(x;) — ¢; 1inr(x,) — e, : T,n’ | P
(SUMELIM)

Ta:T1,b:Dnte:T' 0 |[®@ T=T1oTh|d
Lx:T,nt5"% elx/a,x/b] : T',n' | @UP

(SHARE)

Figure 5.1: Typing rules for expressions in the give-back analysis
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Z(Ci)[kwk/] = Tl,-..,Tp,k,’ Wk; —>l‘y(kv—> k’)
® = {n >size(c;) +ki+n'}

- — (CONSTRUCT)
Coxi:Thyeyxp: Tpon B8 ci(xn, . ouxp) tty (k> k), | @
foralli, 1 <i<m, [,nity(k~ k)" pi—ei: T ,n'|P,
— 7 .( ) nE : J /l (MATCH)
L.x:ty(k~ K),nH$ match x with py — ej 1+ 1 py — ey 2 T, 0" |U; D
F,x1:Tl,...,xp:Tp,nil—i’fFe:T',nHCD
@' = {n; = n+k;i+size(c;),n, = n' +k}
L)k~ K]|=T,...,T), ki~ ki —ty(k ~Kk
(=R =T Ty K= 0 EF) o
Conity(k~K) 55 cilxi,....xp) = e: T/ 0 |PUD
F,x1:Tl,...,xp:Tp,nil—é’fFe:T’,nHCD
' = {nj =n+ki,n;, =n"+ki}
Y(e)k~K]|=T,...,T),ki~ k. —ty(k ~ Kk
(=T =Tiveoe Tyki = Ky F) o

Conity(k~K)FS . ci(xr,....x,) —e: T/ .0 |®UD
Y F p

Figure 5.2: Typing rules for expressions in the give-back analysis (continued)

1=151]0 bool = bool & bool |0

T=Tioh|® T =TT d
TRT = (9T ®(HhoT,) | dUd

TZT]EBT2|CD T’:T{@T2/|CI)’ CD”:{k:kl—{—kz,k/:k/l—i-k/z}
(T,k)+ (T k) = (T1, k1) + (T{,k}) ® (T2, ko) + (T5 , kb)) | U D' U D

ty(k~> k') =ty(ky ~ k) ©1y(ky ~ k) | {ki = ki i+ ko ki = ki ;+ k) ;2 Vi)

Figure 5.3: Rules for splitting with give-back annotations

X)) =Tp,.... Ty k—>T,K|®  x1:Th,... . xp: Tk FL " e T 1| D
P p-ip LF ¢f
l_Z,F f(xla"'v-xp) :ef:> {f}?q)/

l_Z,F D= F/,(D/ I—EJ: B = F”,‘DH
|—27FD and B=> F,UFU,CI)IUCI)//

Fyr B=F & FyrB=F', @ Fs Fur P
ViEF. I(f)=...|® VieF. X(f)=...|@
bx.rlet B Ferlet BP

Figure 5.4: Typing rules for function signatures in the give-back analysis
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I=1>1]|0 bool = bool > bool |0

T=T>T|® T/:T1/>-T2/’q)/
TRT = (M RT)) - (LT, | PUd

T:T1>T2|q> T/:T]/>T2/‘(I)/ (D”:{k:]q—l—kz,k/:kq—i-klz}
(T,k) +(T",K) = (T1, k1) + (T}, k1) = (T, k2) + (T, k) | @ U DT U D

D = {ko,; > ki, ko —kii+ky; > ko ky; > ko0 Vil
ty(ko ~» k) =ty (ki ~ k}) = ty(kp ~ kb)) | @

Vx € dom(A). A(x) = Aj(x) = Ax(x) | Dy
A=A -7 | Uxedom(A)cDx

Figure 5.5: Rules for contraction involving the give-back annotations

annotation in A; is only needed temporarily, so it can be reused during the execution
of e through the kp annotation in Ay. (The portion of k that is not used in ey, kK — ki,
can also be added to k».)

Finally, the pattern matching rules enforce the existence of the potential represented
by the give-back annotations. Consider its effect when matching a boollist(k ~ k).
The CASE’ rule adds the ‘normal’ list annotation k to the fixed annotation n when
typing the cons case because we are removing an element from the list, and so get
one element’s worth of potential to use in the subexpression. Our replacement rule,
CASE’-GB, also requires the potential for the ‘give-back’ annotation to be returned

afterwards for a later use of x. We adapt CASE in the same way.

5.2.2 Soundness

To show that the heap and stack memory bounds derived from the potential are suffi-
cient for evaluation we will prove that the typing and corresponding evaluation rules
preserve the invariant that the free memory is greater than the potential throughout the
program’s execution. In order to perform the induction we will also show that any
excess free memory is preservecﬂ

Before the main theorem we will establish several lemmas about the behaviour of

the potential functions. First, we show that Y and Y’ are linear with respect to the type

IThis is unsurprising because LFD programs have no way to adjust their behaviour to take advantage
of extra free memory. Indeed, they do not even have any way to observe the amount of