
Type-based amortized stack memory

prediction

Brian Campbell
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2007



Abstract

Controlling resource usage is important for the reliability, efficiency and security of

software systems. Automated analyses for bounding resource usage can be invaluable

tools for ensuring these properties.

Hofmann and Jost have developed an automated static analysis for finding linear

heap space bounds in terms of the input size for programs in a simple functional pro-

gramming language. Memory requirements are amortized by representing them as a

requirement for an abstract quantity, potential, which is supplied by assigning potential

to data structures in proportion to their size. This assignment is represented by anno-

tations on their types. The type system then ensures that all potential requirements can

be met from the original input’s potential if a set of linear constraints can be solved.

Linear programming can optimise this amount of potential subject to the constraints,

yielding a upper bound on the memory requirements.

However, obtaining bounds on the heap space requirements does not detect a faulty

or malicious program which uses excessive stack space.

In this thesis, we investigate extending Hofmann and Jost’s techniques to infer

bounds on stack space usage, first by examining two approaches: using the Hofmann-

Jost analysis unchanged by applying a CPS transformation to the program being anal-

ysed, then showing that this predicts the stack space requirements of the original pro-

gram; and directly adapting the analysis itself, which we will show is more practical.

We then consider how to deal with the different allocation patterns stack space

usage presents. In particular, the temporary nature of stack allocation leads us to a

system where we calculate the total potential after evaluating an expression in terms

of assignments of potential to the variables appearing in the expression as well as the

result. We also show that this analysis subsumes our previous systems, and improves

upon them.

We further increase the precision of the bounds inferred by noting the importance

of expressing stack memory bounds in terms of the depth of data structures and by

taking the maximum of the usage bounds of subexpressions. We develop an analysis

which uses richer definitions of the potential calculation to allow depth and maxima to

be used, albeit with a more subtle inference process.
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Chapter 1

Introduction

Automatically predicting resource requirements for programs is of considerable inter-

est. Such analyses can be used to prevent failures due to exhausted resources, discover

‘hot spots’ in programs where improvements would yield the greatest gain in effi-

ciency, debug unexpectedly high resource usage, or check that malicious parties will

be unable to consume and withhold resources. This is particularly important in highly

constrained environments such as smart cards, especially where failures are difficult

or expensive to recover from. Here we are primarily concerned with memory usage,

although in principle the techniques can be applied for other resources.

Hofmann and Jost have presented an automatic linear heap space analysis for a

functional programming language (Hofmann and Jost, 2003). It is an amortized analy-

sis; data structures are assigned some amount of potential to ‘pay’ for later allocations,

and changes in allocation are conservatively approximated by changes in potential.

Thus the potential at the start of the program is a bound on the free memory required.

The potential is represented by type annotations, and the type system ensures that it is

sufficient for all allocations. However, their analysis does not include stack memory,

so some forms of excessive memory consumption may go unnoticed. In fact, restrict-

ing ourselves to a linear heap size does not have a huge effect on the class of functions

that can be evaluated; with an unbounded stack we can compute any of the class of

functions requiring O(2cn) time (Cook, 1971).

Stack memory is used in a different way to heap memory. It is usually short-lived;

providing temporary information about the progress in processing a data structure,

rather than forming a data structure in its own right. One important consequence is

that the stack memory usage of a program is typically proportional to the depth of its

input data structures, not their total sizes.

1



Chapter 1. Introduction 2

The thesis of this work is that type-based amortized analyses can be developed

which provide good bounds on stack memory usage for programs which run in linear

space. Thus we will be able to estimate the total memory usage of a program by

combining the heap space analysis with one of our stack space analyses.

1.1 Outline

In Chapter 2 we introduce the simple LFD programming language which will be used

to develop the analyses, and survey the Hofmann-Jost analysis for heap memory.

In Chapter 3 we consider using a form of continuation passing style (CPS) trans-

formation to yield a new program which only uses heap space. Thus Hofmann-Jost can

be used on the new program to predict total memory requirements. We then consider

the effectiveness of this approach.

Then in Chapter 4 we provide a more direct analysis on the original program in-

cluding a treatment of tail-call optimisation. We examine the limitations of this analy-

sis.

In Chapter 5 we present an extension to overcome poor approximations of stack

space caused by limitations on which data structure sizes the bounds are parametrised

by. The soundness of the extended analysis (and the previous analyses) is proven.

In Chapters 6 and 7 our attention turns to using the depth of data structures in

the bounds. We present a type system for the depth analysis in Chapter 6 which uses

extra structure in the typing context to determine the form of the bounds, then prove

its soundness and give some examples. Following this, in Chapter 7 we complete the

depth analysis by providing an inference procedure for the type system.

In Chapter 8 we consider related work on the Hofmann-Jost system and other ap-

proaches to bounding and verifying resource usage. In Chapter 9 we consider further

work that could be conducted based upon the analyses we have developed.

Finally, in Chapter 10 we present our conclusions.

We also give an extended example of our analyses (on a functional heap sort pro-

gram) in Appendix A.



Chapter 2

Background

To develop our analyses we require a language with clear semantics to study, and an

understanding of the Hofmann-Jost system that we base them upon. In this chapter

we introduce the LFD language and its operational semantics (including metering of

space usage), along with some variations of the semantics. We will also discuss some

of the issues surrounding memory management in the language. Finally, we examine

the Hofmann-Jost system for bounding heap memory requirements.

This chapter is primarily based on Hofmann and Jost’s original paper (Hofmann

and Jost, 2003). We augment the operational semantics with stack space usage me-

tering, tail-call optimisation, and partial executions to allow reasoning about non-

terminating programs. These features will be needed for later chapters. The analy-

sis that we present in this chapter is extended by ‘resource polymorphism’, due to its

importance for practical use and to discuss the effects of this polymorphism on the

complexity of the analysis.

2.1 The LFD language

For consistency with Hofmann and Jost’s work we use their basic language, LF, ex-

tended with algebraic datatypes instead of built-in lists. The resulting LFD language is

close to the language used in Jost’s implementation of their analysis (Jost, 2004b). We

include algebraic datatypes because they are required for the transformation described

in Chapter 3. It is a simple first-order call-by-value functional programming language.

We consider a first-order language in part because higher-order extensions of the

Hofmann-Jost system are a topic of ongoing research by Jost, and also because their

main impact from our perspective is on individual stack frame sizes, which we take as

3



Chapter 2. Background 4

P := let B | let B P

B := D | D and B

D := f (x1, . . . ,xp) = e f

e := ∗ | true | false | x | f (x1, . . . ,xp) | let x = e1 in e2 | if x then et else e f

| (x1,x2) | match x with (x1,x2)→ e

| inl(x) | inr(x) | match x with inl(xl)→ el p inr(xr)→ er

| c(x1, . . . ,xp) | match x with p1 → e1 p · · · p pm → em

p := c(x1, . . . ,xp) | c(x1, . . . ,xp)′

Figure 2.1: Syntax

given1.

The syntax for programs is given in Figure 2.1, where f is a function name, ∗ is

the value of unit type, c is a constructor name, x and xi are variable names and the ei

are subexpressions. Programs, P, take the form of a number of function definitions, D,

arranged in mutually recursive groups, B. We may omit the parenthesis from function

calls and declarations when there is only one argument. Patterns, p, can be destructive

or non-destructive (′) to provide memory management information. We will discuss

the distinction shortly.

We will implicitly assume that all bound variable names and function names are

unique throughout. There is no requirement for match expressions to be exhaustive.

In fact, requiring the addition of ‘dummy’ cases which will never be executed can

interfere with the analyses. Instead we allow the program to fail upon a bad match

by not yielding a result. We do not rule out repeated patterns — while they are not

particularly useful, it is worth noting that their presence does not affect the analyses,

despite introducing non-determinism into the operational semantics.

The syntax requires the program to be in a ‘let-normal’ form by using variables

rather than subexpressions where possible. This makes the evaluation order explicit

and allows the typing rules to be simpler. It can be helpful to consider let-normal form

as the intermediate language of a compiler. This is similar to K-normal form (Birkedal

et al., 1996) and A-normal form (Flanagan et al., 1993) used in other analyses and

compilers. Indeed, Jost’s implementation (Jost, 2004b) uses a similar intermediate

1We will discuss this in a little more detail in Section 9.1.1.
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language produced from the Camelot compiler as part of the Mobile Resource Guar-

antees project (Aspinall et al., 2005). There, the results of the analysis were used to

produce machine-checkable certificates of heap space bounds.

The types are T := 1 | bool | T ⊗ T | T + T | ty for unit, boolean, pairs, sums

and algebraic datatypes, respectively. The tys range over a set of opaque type names.

Our analyses will annotate these types to indicate resource requirements. Function

signatures are of the form T1, . . . ,Tp → T and constructors have similar signatures

T1, . . . ,Tp → ty, or just ty for a nullary constructor. Thus each constructor is asso-

ciated with a unique type ty. We leave parametric polymorphism to future work, see

Section 9.1.1. As a result, we omit type constructors such as generic lists to reduce the

amount of notation.

The product and sum types could be subsumed into the algebraic datatypes, but

are included here to provide a contrast between heap-allocated datatype values, and

product and sum values which are not heap-allocated except where they are included

in a datatype value. This distinction becomes particularly important in Chapter 5.

For the analyses we presume that the unannotated types have already been inferred.

This can be done with standard unification based type inference.

To reason about heap space we require some mechanism to limit the lifetime of

heap allocated data, so we mark places in the code where deallocations can safely

occur. Only algebraic datatype values are heap allocated, so we distinguish between

(potentially) destructive c(. . .) match cases and benign, ‘read-only’ c(. . .)′ ones. There

is more than one possible implementation of heap management using these marks. A

direct approach is to explicitly perform deallocation when executing match expres-

sions, although this may result in some memory fragmentation that we do not take

into account. Alternatively, we could use compacting garbage collection, where the

‘destructive’ matches provide a conservative approximation of the value’s lifetime.

This choice affects the meaning of the bounds which we infer. The total amount

of live memory is always within the bound, and with immediate deallocation the total

allocated memory respects the bound. For compacting garbage collection the memory

used after collection respects the bound, or we may go further and use the bound as a

trigger for collection and always remain under it (modulo any extra space required for

the collection).

We presume the existence of some external analysis which ensures that the destruc-

tive marks are used safely so that no data can be deallocated while live references to

it exist, a property called benign sharing. Aspinall and Hofmann’s usage aspects (As-
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pinall et al., 2008) or Konečný’s DEEL typing (Konečný, 2003) are suitable systems.

They also provide a conservative estimate of the set of variables whose values do not

share any heap locations with the result of a given expression in the program. We will

make use of this separation property in Chapter 5.

Example 2.1. Suppose we have a datatype boollist with constructors

nil : boollist and cons : bool,boollist→ boollist.

A simple example of a program in this language is a function to negate a list of

booleans:

let notlist l = match l with nil’ -> nil | cons(h,t)’ ->

let hh = if h then false else true in

let tt = notlist t in

cons(hh,tt)

The function uses a non-destructive match expression so that the argument, l, is left

intact. As a result, the function needs extra heap memory equal to the amount of space

occupied by the argument. Using a destructive match instead would allow it to run

without requiring extra heap space, but that would only be suitable if the input list is

never used again. Regardless of the variant used, the function requires stack space

proportional to the length of the argument.

2.1.1 Operational semantics

Values v ∈ val in the operational semantics consist of unit, booleans, pairs, variants

(inl(v) and inr(v) for a value v) and heap locations l ∈ loc for algebraic datatypes. The

set of locations, loc, is assumed to be infinite and have a special location null which

can represent one nullary constructor per datatype, for example, a nil list. We define a

set nullc of the nullary constructors which are represented by null.

An environment S maps variables to values, and a store σ ∈ heap is a partial map

from non-null locations to constructor and value tuples for the contents of each datatype

value.

The operational semantics is given in Figures 2.2 and 2.3, with judgements of the

form

m,S,σ ` e v,σ′,m′
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meaning that with m ∈ N units of free memory, the environment S and the store σ, the

expression e can be evaluated to value v, with the new store σ′ and m′ units of free

memory. The evaluation of a whole program is realised by the evaluation of a chosen

‘initial’ function f (x1, . . . ,xp) on some arguments provided as the values v1, . . . ,vp and

initial store σ,

m, [x1 7→ v1, . . . ,xp 7→ vp],σ ` f (x1, . . . ,xp) v,σ′,m′.

The operational semantics uses two auxiliary functions to define the memory re-

quirements. The first, size(c), gives the amount of heap memory required to store

c(v1, . . . ,vp) where each vi is of the corresponding type Ti from c’s signature. Thus, we

assume that all values of the same type are allocated the same amount of space. Note

that this requirement forces values of sum types to be assigned the same size regard-

less of the choice made at runtime. Algebraic datatypes are slightly different: the value

is the location pointing to the data structure, and locations are always the same size.

When c ∈ nullc we have size(c) = 0 because no memory is required for a constructor

represented by the null location. The second auxiliary function, stack( f ), gives the size

of stack frame required to call function f .

The size and stack functions can be defined using concrete values from a particular

compiler, yielding a precise account of memory use. However, we can also use simpler

definitions to obtain rougher estimates. For example, we could obtain an estimate of

stack( f ) by examining the local variables in the function body of f . Such an estimate

may be suitable for a variety of compilers. In many of our examples we will take the

even simpler approach of assigning uniform sizes—essentially counting the number of

objects or stack frames rather than their exact sizes.

Heap space can be considered alone, without regard for stack space, by fixing

stack( f ) to be zero everywhere. Similarly, stack space can be measured alone by

fixing size(c) = 0 for all constructors c.

We will also require an unmetered form of the operational semantics, where the

resource amounts are dropped from all of the rules. Judgements then take the form

S,σ ` e v,σ′. This is equivalent to setting both stack and size to be zero everywhere.

Finally, we need to formalise the guarantees that we expect a benign sharing anal-

ysis to give. First we define a reachability function R which gives the set of heap
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m,S,σ ` ∗ ∗,σ,m
(E-UNIT) c ∈ {true, false}

m,S,σ ` c c,σ,m
(E-BOOL)

m,S,σ ` x S(x),σ,m
(E-VAR)

S(x1) = v1 . . . S(xp) = vp m, [y1 7→ v1, . . . ,yp 7→ vp],σ ` e f  v,σ′,m′

the yi are the symbolic arguments in the definition of f
m+ stack( f ),S,σ ` f (x1, . . . ,xp) v,σ′,m′+ stack( f )

(E-FUN)

m,S,σ ` e1 v0,σ0,m0 m0,S[x 7→ v0],σ0 ` e2 v,σ′,m′

m,S,σ ` let x = e1 in e2 v,σ′,m′ (E-LET)

S(x) = true m,S,σ ` et  v,σ′,m′

m,S,σ ` if x then et else e f  v,σ′,m′ (E-IFTRUE)

S(x) = false m,S,σ ` e f  v,σ′,m′

m,S,σ ` if x then et else e f  v,σ′,m′ (E-IFFALSE)

v = (S(x1),S(x2))
m,S,σ ` (x1,x2) v,σ,m

(E-PAIR)

S(x) = (v1,v2) m,S[x1 7→ v1][x2 7→ v2],σ ` e v,σ′,m′

m,S,σ `match x with (x1,x2)→ e v,σ′,m′ (E-MATCHPAIR)

S(x) = v
m,S,σ ` inl(x) inl(v),σ,m

(E-INL)
S(x) = v

m,S,σ ` inr(x) inr(v),σ,m
(E-INR)

S(x) = inl(v0) m,S[xl 7→ v0],σ ` el  v,σ′,m′

m,S,σ `match x with inl(xl)→ el p inr(xr)→ er v,σ′,m′ (E-MATCHINL)

S(x) = inr(v0) m,S[xr 7→ v0],σ ` er v,σ′,m′

m,S,σ `match x with inl(xl)→ el p inr(xr)→ er v,σ′,m′ (E-MATCHINR)

Figure 2.2: Operational semantics
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s = (c,S(x1), . . . ,S(xp)) c /∈ nullc l 6∈ dom(σ)
m+ size(c),S,σ ` c(x1, . . . ,xp) l,σ[l 7→ s],m

(E-CONSTRUCT)

c ∈ nullc

m,S,σ ` c null,σ,m
(E-CONSTRUCTN)

S(x) = l σ(l) = (ci,v1, . . . ,vp)
m+ size(ci),S[x1 7→ v1, . . . ,xp 7→ vp],σ\l ` ei v,σ′,m′

m,S,σ `match x with · · · p ci(x1, . . . ,xp)→ ei p · · · v,σ′,m′ (E-MATCH)

S(x) = l σ(l) = (ci,v1, . . . ,vp)
m,S[x1 7→ v1, . . . ,xp 7→ vp],σ ` ei v,σ′,m′

m,S,σ `match x with · · · p ci(x1, . . . ,xp)′→ ei p . . . v,σ′,m′ (E-MATCH′)

S(x) = null ci ∈ nullc m,S,σ ` ei v,σ′,m′

m,S,σ `match x with · · · p ci → ei p . . . v,σ′,m′ (E-MATCHN)

S(x) = null ci ∈ nullc m,S,σ ` ei v,σ′,m′

m,S,σ `match x with · · · p c′i → ei p . . . v,σ′,m′ (E-MATCHN′)

Figure 2.3: Operational semantics (continued)

locations reachable from a given value or environment:

R (σ,∗) = R (σ, true) = R (σ, false) = /0

R (σ,(v1,v2)) = R (σ,v1)∪R (σ,v2)

R (σ, inl(v)) = R (σ, inr(v)) = R (σ,v)

R (σ,null) = /0

R (σ, l) = {l}∪
[

i

R (σ,vi) where σ(l) = (c,v1, . . . ,vp)

R (σ,S) =
[

v∈dom(S)

R (σ,v)

Definition 2.2. We say that an execution satisfies the benign sharing conditions when:

1. At every use of E-MATCH the ‘dead’ location should not be accessible from the

‘live’ variables that the subexpression may use,

l /∈ R (σ,S[x1 7→ v1, . . . ,xp 7→ vp] � FV(ei)), (2.1)

and
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2. at every use of E-LET the parts of the heap needed for e2 should not be altered

by match expressions in e1,

σ � R (σ,Se2) = σ0 � R (σ,Se2), (2.2)

where Se2 = S � (FV(e2)\ x).

The heap separation property can also be formalised. For any expression e in the

program, the benign sharing analysis should provide a set of variables Ve ⊆ FV(e) that

do not overlap with the result of e. More precisely:

Definition 2.3. Given an expression e in some program, we say that a set of variables

Ve are separate from the result of a given evaluation S,σ ` e v,σ′ when we have

R (σ,S �Ve)∩R (σ′,v) = /0.

In the typing rules presented in Chapter 5 we will assume that we can find suit-

able sets of variables which will satisfy this condition during any evaluation of the

corresponding expression within an evaluation of the whole program. This allows an

analysis providing these sets to use sharing information derived from other parts of the

program.

Both of these properties may be derived from (for example) the correctness theorem

of (Konečný, 2003).

2.1.2 Tail call optimisation

The operational semantics above does not reflect a common expectation in functional

programming that a tail recursive call will not use extra stack space. Indeed, compil-

ers may provide more general forms of tail call optimisation and there may be wide

variation in practice.

We would like a flexible approach to obtaining conservative bounds so that we may

adjust the system when considering different environments. To this end we split our

modelling of tail calls into noting when we are in tail position, and deciding what effect

this has on the stack consumption.

Tracking which expressions are in tail position is straightforward. For the opera-

tional semantics we add a boolean flag to the judgements indicating whether the current

expression is in tail position, and mark the premises as appropriate. We also add the

current function’s name to the judgements to provide more information about whether
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a tail call is possible. Thus we use ` f ,t instead of `, where f is the function name and t

is true or false. Thanks to the use of let-normal form, only the E-LET rule and E-FUN

rule have premises with different flags to the conclusion because only the E-LET rule

can introduce a subexpression that is not in tail position:

S(x1) = v1 . . . S(xp) = vp m, [y1 7→ v1, . . . ,yp 7→ vp],σ ` f ,true e f  v,σ′,m′

the yi are the symbolic arguments in the definition of f
m+ stack′(g, f , t),S,σ `g,t f (x1, . . . ,xp) v,σ′,m′+ stack′(g, f , t)

(E-FUN-TAIL)

m,S,σ ` f ,false e1 v0,σ0,m0 m0,S[x 7→ v0],σ0 ` f ,t e2 v,σ′,m′

m,S,σ ` f ,t let x = e1 in e2 v,σ′,m′

(E-LET-TAIL)

and the other rules merely propagate the flag to the subexpression, if there is one.

We replace the stack function with a stack′ function which also depends upon the

calling function and tail position flag. Hence stack′( f ,g, true) is the amount of stack

memory required for a call from f to g in tail position. General tail call optimisation

can be modelled by setting

stack′( f ,g, true) = stack(g)− stack( f ) and stack′( f ,g, false) = stack(g)

for all f ,g. Note that this means that the stack space used may fall if we tail-call a

function with a smaller frame size. We could use other definitions for stack′, such as

restricting tail call optimisation to recursive function calls.

Finally, the evaluation judgement for the initial function ( f , say) always requires a

frame to be allocated,

m, [x1 7→ v1, . . . ,xp 7→ vp],σ `initial,false f (x1, . . . ,xp) v,σ′,m′,

with the assumption that stack′(initial, f , t) = stack( f ) for all f , t.

2.1.3 Partial executions

The big-step operational semantics above does not allow for non-terminating pro-

grams. Any judgement describing the evaluation of an expression e must end with

some result v:

m,S,σ ` e v,σ′,m′.

Nevertheless, non-terminating programs are of considerable interest. For example,

programs providing network services often run continuously and it is important for

reliability that they do not leak memory.
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m,S,σ ` e halted,σ,m
(E-STOP)

m,S,σ ` e1 halted,σ0,m0

m,S,σ ` let x = e1 in e2 halted,σ0,m0
(E-STOPLET)

m,S,σ ` e1 v0,σ0,m0 v0 6= halted m0,S[x 7→ v0],σ0 ` e2 v,σ′,m′

m,S,σ ` let x = e1 in e2 v,σ′,m′

(E-LET)

Figure 2.4: Changes to the operational semantics for partial executions of programs

Thus we augment the semantics to allow the execution to be halted at any point. If

a memory bound can be shown for all such ‘partial’ executions of a program then the

program will run indefinitely without exceeding the bound.

We add two new rules to the operational semantics and modify E-LET slightly.

These rules are given in Figure 2.4. The set of values is extended by the special value

halted, to indicate that execution was prematurely terminated. The E-STOP rule says

that we may halt execution at any time. The new precondition v0 6= halted on E-LET

prevents any further execution, instead the new E-STOPLET rule propagates the halted

value. E-LET is the only existing rule that requires modification because the semantics

requires programs to be in let-normal form.

These changes also provide the semantics for programs with inexhaustive matches

which fail, up to the evaluation of the match expression which fails. We will be able

to show that our inferred memory bounds are respected despite the failure.

We will not make any claims about the amount of free memory at the point the

program is halted, although with some care it should be possible to show that a bound

on it can be extracted from the analyses.

2.2 The Hofmann-Jost analysis

Now we consider the analysis for bounding heap space usage developed by Hofmann

and Jost (Hofmann and Jost, 2003). This work grew out of the study of programming

languages which capture particular complexity classes. A simple method to construct

these languages is to impose severe syntactic constraints which exclude ‘expensive’

programs. For example, (Bellantoni and Cook, 1992) describes limiting the use of re-

cursion and the results of recursive functions to obtain a programming language which
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characterises PTIME.

To construct more palatable languages for programming more features are required,

such as inductive datatypes and higher-order functions, and we should use more natural

restrictions to maintain the desired complexity class. See (Hofmann, 2000a) for a

survey of construction techniques.

Inductive datatypes can be included in a restricted language by requiring all func-

tions to be non-size-increasing, by which we mean that the result of the function is

no larger than its arguments. Hofmann produced languages with non-size-increasing

functions by using a linear type system with a special resource type, �, inhabited by a

singleton value also denoted �. These values are obtained upon matching data struc-

tures, and are required to construct new ones. For instance, the cons constructor for

integer lists might be given the signature

cons : int×�× list→ list,

instead of the usual int× list→ list. The linearity of the type system prevents multiple

uses of � values and the data structures they were obtained from, so that the size of the

result values is bounded by the size of the input arguments.

With structural recursion the resulting language characterises PTIME, or PSPACE if

the linearity of some higher-order functions is relaxed slightly (Hofmann, 2003; Hof-

mann, 2002). Allowing full recursion yields a more typical functional programming

language at the ‘expense’ of increasing the complexity class to EXPTIME (Hofmann,

2002). The first-order fragment, LFPL, is more interesting: the complexity is reduced2

to O(2cn) for constant c, and it can be implemented by a translation to C which reuses

the memory from matched data structures rather than calling the normal allocator (Hof-

mann, 2000b). Values of the � type correspond to free memory cells and can be realised

as pointers in the implementation. Now the linearity of the type system ensures mem-

ory safety. (Relaxing the linearity of non-� values in the type system can be used to

construct memory safety analyses such as those discussed in Section 2.1.)

Thus, if we could take a program in a similar language without �s and add them

automatically, we would obtain a program which runs in heap space bounded by the

number of �s. Note that as well as reusing the space occupied by the original argu-

ments, functions in these programs can obtain extra space by requiring � values as

arguments. For example, if we have the following function which inserts an integer

into a sorted list,
2In LFPL we cannot replace a data structure by a ‘free’ closure — a trick which increases the expres-

siveness of the higher-order language to EXPTIME.
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let insert(e,l) =

match l with nil -> cons(e,nil)

| cons(h,t) ->

if e < h then cons(e,cons(h,t))

else cons(h,insert(e,t))

to make it a well-typed LFPL function we need to supply an extra � for the new list

element:

let insert(e,d1,l) =

match l with nil -> cons(e,d1,nil)

| cons(h,d2,t) ->

if e < h then cons(e,d1,cons(h,d2,t))

else cons(h,d1,insert(e,d2,t))

insert : int×�× int list→ int list.

The extra memory need not be a fixed amount. For instance, the function

let double l =

match l with nil -> nil

| cons(h,t) -> let t’ = double t in cons(h,cons(h,t’))

double : bool list→ bool list

duplicates each element in a list (assuming that the boolean h can be treated non-

linearly). We would like to infer a new version

let double l =

match l with nil -> nil

| cons(h,d1,t) -> match h with (h’,d2) ->

let t’ = double t in cons(h,d1,cons(h,d2,t’))

double : (bool×�) list→ bool list

where we require an extra cell of memory for each input list element to allocate its

duplicate. Counting the number of � values required gives a bound on the number of

memory cells required by the original function.

Note that we do not need to traverse each data structure to count the �s. Instead,

we can derive a function from the type which maps the structure’s size to the number



Chapter 2. Background 15

of � values. Then we can build a function for the entire signature and bound the heap

memory requirements for the original function. The double example is simple:

ϒbool×�(·) = 1, so ϒ(bool×�) list(n) = n, so ϒdouble(n) = n.

That is, for a list of length n, double requires n extra cells of memory.

These functions can be considered as assigning potential to each data structure, in

the sense of the ‘physicist’s view’ of amortized analysis described by (Tarjan, 1985). In

that work, differences between the real cost of an operation and the amortized cost are

accounted for by changes in the potential of the data structure. On a cheap operation

the potential can be increased, then on a complex operation (say, a tree rebalancing)

the accumulated potential may be used to compensate for the extra time required. The

potential can be interpreted as the amount of ‘free time’ you have spare to spend on

later operations.

In our setting, the potential corresponds to free memory that we have for later

operations. Allocation lowers potential (by consuming a � value), and deallocation

increases potential (by providing a new � value).

The discrete � type can only represent integer amounts of memory of uniform size

and requires explicit manipulation of � values to be introduced. The Hofmann-Jost

analysis overcomes these limitations, replacing the � type with rational annotations on

existing types to represent amounts of free memory.

2.2.1 Informal description

The Hofmann-Jost analysis also defines functions to assign potential to data structures.

Numerical type annotations are used to derive these functions, rather than the presence

of � types. As in LFPL, the analysis is based upon a type system which constrains these

annotations to ensure that the resulting potential will be large enough to account for all

allocations.

The system annotates typings and function signatures with non-negative rational

values3 in two places. First, we add ‘before’ and ‘after’ amounts to typing judgements

and function signatures to represent fixed amounts of potential (free memory). The

constraints on these will mirror the operational semantics, and so require the ‘before’

annotation at an allocation to be at least as large as the amount to be allocated plus the

3Fractional annotations can arise naturally in this system. For example, if we require a unit of
memory for every second element of a boolean list l, then l will have the type boollist(1/2). See
Example 2.8 on page 27.
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‘after’ annotation. Similarly, when typing a deallocation such as

match x with nil → e1 p cons(h, t)→ e2,

the ‘before’ fixed amount for typing e2 is higher than the amount for the whole match

expression because the list cell can be reused.

Second, we place annotations on types to denote ‘per-constructor’ amounts of po-

tential. So if a list x has type boollist(k) then the k annotation represents k×|x| units of

potential, k for each cons. Where an annotated type appears in the context, its potential

contributes to the bound on the memory that is sufficient for evaluation. The potential

for an annotated result type is part of the lower bound on the amount of memory free

after evaluation. In both cases we can calculate the total ‘before’ or ‘after’ bound by

summing all of the potential from the types, plus the ‘fixed’ amount.

For example, consider the judgement

x : boollist(k),n ` cons(true,x) : boollist(k),n′

and assume that one unit of space is consumed when allocating a boolean list cell.

From the context we see that we have k×|x| units of potential from x, plus the fixed

amount, n. Afterwards we will have k×|cons(true,x)|+n′ = k× (|x|+1)+n′ units of

potential, and we will have allocated one unit of space. Thus for a successful typing

we require (after cancelling the k×|x|)

n ≥ 1+ k +n′. (2.3)

The intuition behind this constraint is that we require one unit for allocation and reserve

k units of potential for later processing of the new element in the list. When we use

match to take an element from the list, we will ‘release’ the k units of potential again

by adding them to the fixed amount (plus one unit more if we deallocate the element).

We add similar annotations to function signatures. For example, the notlist func-

tion might be given the function signature

notlist : boollist(3),0 → boollist(2),0,

which says that if it is invoked with a boolean list x and 3× |x|+ 0 cells of memory

are free, then all of the allocations in the function will succeed, and some boolean list

y will be returned along with 2×|y|+0 free cells for later use. Note that this typing is

not unique; we consider other values for the annotations below.
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Allocating a constant sized data structure can transform a ‘fixed’ annotation into a

‘per-constructor’ one. For example, in

·,9 ` cons(false,cons(false,cons(false,nil))) : boollist(2),0

we consume 3 cells for allocation, then the remaining 6 = 3× 2 units of potential

satisfy the ‘per-cons’ annotation of the list, 2.

To infer these annotations the typing rules give linear constraints that their values

must satisfy, like Equation 2.3 above. We can use standard linear programming tech-

niques such as the Simplex algorithm (Dantzig, 1963) to solve these constraints and

find a minimal set of satisfying annotations. The ‘objective function’ should be chosen

so as to minimise the annotations on the left hand side of the function signature, so

that the bound is minimised. Note that we must analyse the whole program at once to

obtain an optimal bound, although self-contained parts can be examined alone.

One subtlety is that we allow function signatures to have different values for an-

notations at each application outside of its definition. This resource polymorphism is

required to reflect differing resource requirements at different points in the program.

For example, consider the heap memory required in the following function:

let id l = let notl = notlist l in notlist notl

This allocates a fresh list for both applications of notlist. If the second is given the

signature

notlist : boollist(1),0 → boollist(0),0,

to indicate that it needs enough potential to make the new list but no more, then the

type for the variable notl must be boollist(1). The expression notlist l must be

given the same type, so the first use of notlist must be typed differently:

notlist : boollist(2),0 → boollist(1),0.

Intuitively, this says that we need enough memory to allocate a new list and enough

left over to satisfy the potential required for the notlist notl expression.

To allow these different typings, we use a set of abstract constraint variables for

annotations rather than explicit rational values and collect the constraints. At each

function application we make duplicate copies of the constraints for the function body

with fresh constraint variables, except at applications involved in defining the function

itself. A copy of the constraints is added to the function signature for this purpose. A

set of satisfying assignments for the constraints in the initial function’s signature gives
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an upper bound on resource usage. This resource polymorphism extension was sug-

gested in the conclusion to Hofmann and Jost’s original paper, and which also features

in Jost’s later work on extensions to support higher-order functions (Jost, 2004a).

We can now give a more general signature for notlist of

notlist : boollist(k),n → boollist(k′),n′ |{k ≥ k′+1, n ≥ n′},

and the signatures given above are particular solutions of the constraints. The con-

straints given in some of our examples are simplified; the full set generated by the type

system will also contain constraints for annotations within the type derivation of the

function’s body. In a few examples we will just give a particular illustrative solution to

the constraints, as with the earlier typings for notlist.

2.2.2 Formal definition

To formalise the system, we need a precise notion of the meaning of the annotations.

The annotated types are

Ta := 1 | bool | Ta⊗Ta | (Ta,kl)+(Ta,kr) | ty(k),

where kl and kr are constraint variables and k is a tuple of constraint variables. Sum

types are annotated to reflect different resource requirements depending upon the choice

made. Similarly, datatypes have different annotations for each constructor.

The constraints on annotations take the form of linear equalities and inequalities,

a1k1 + · · ·+ankn = an+1kn+1 + · · ·+amkm + c, or

a1k1 + · · ·+ankn ≥ an+1kn+1 + · · ·+amkm + c,

where ai ∈Q and c ∈Q. Thus a set of constraints, Φ, plus some objective function to

optimise forms a linear program. In general we use inequalities when there is a need

for weakening of a fixed amount of potential, and equalities elsewhere.

The function signatures now take the form

Σ( f ) = T1, . . . ,Tp,k → T,k′ |Φ

where Ti and T are the annotated types for the arguments and the result respectively,

k and k′ are extra amounts of free memory required and released (analogous to n and

n′ above), and Φ is the set of constraints on annotations required for the body to type-

check. Constructor signatures have the form

Σ(ci) = ∀k.T1, . . . ,Tp,ki → ty(k)
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where k is a sequence of annotations that the type ty(k) is quantified over. In general,

k should include all the annotations in all of the constructor signatures associated with

ty(k).

In our examples we have introduced a datatype boollist. The constructors for this

type now have the signatures

Σ(nil) = ∀kn,kc. kn → boollist(kn,kc)

and Σ(cons) = ∀kn,kc. bool,boollist(kn,kc),kc → boollist(kn,kc).

The signatures for the constructors of nested datatypes need to quantify over the anno-

tations of the inner datatypes. For example, we can introduce constructors for a list of

boolean lists type:

Σ(lnil) = ∀kn,kc,k′n,k
′
c. k′n → listlist(kn,kc,k′n,k

′
c)

and Σ(lcons) = ∀kn,kc,k′n,k
′
c. boollist(kn,kc), listlist(kn,kc,k′n,k

′
c),k

′
c → listlist(kn,kc,k′n,k

′
c).

We can now define the function to assign potential to typed values by summing the

annotations over every reachable value:

ϒ : heap× val×Ta →Q+,

ϒ(σ,∗,1) = ϒ(σ, true,bool) = ϒ(σ, false,bool) = 0

ϒ(σ,(v′,v′′),T ′⊗T ′′) = ϒ(σ,v′,T ′)+ϒ(σ,v′′,T ′′),

ϒ(σ, inl(v),(T ′,k′)+(T ′′,k′′)) = k′+ϒ(σ,v,T ′),

ϒ(σ, inr(v),(T ′,k′)+(T ′′,k′′)) = k′′+ϒ(σ,v,T ′′),

ϒ(σ,null, ty(k)) = ki where c ∈ nullc

and Σ(c)[k] = ki → ty(k),

ϒ(σ, l, ty(k)) =
p

∑
i=1

ϒ(σ\ l,vi,Ti)+ k j,

where σ(l) = (c,v1, . . . ,vp),

and Σ(c)[k] = T1, . . . ,Tp,k j → ty(k).

We can extend it to environments:

ϒ(σ,S,Γ) = ∑
x∈dom(Γ)

ϒ(σ,S(x),Γ(x)).

Thus the bound on the free memory required to evaluate an expression is the potential

from the data, ϒ(σ,S,Γ), plus the fixed amount from the typing judgement.
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Continuing our list example, if x is a list of booleans then ϒ(σ,S(x),boollist(kn,kc))

is kc times the length of x plus kn. Every list contains exactly one nil, so kn could

be safely set to zero because there is always an equivalent typing where kn has been

incorporated into the fixed amounts in the judgements. Hence we will use boollist(k)

as a shorthand for boollist(0,k) in our examples.

The typing rules for expressions in the Hofmann-Jost system are given in Fig-

ures 2.5 and 2.6, and uses the same size function as the operational semantics. The

typing judgements take the form

Γ,n `Σ,F e : T,n′ |Φ

where Γ is the typing context, n is the annotation for the fixed amount of potential

before evaluation (in addition to that from the type annotations in Γ), n′ is the corre-

sponding annotation for potential after evaluation, T is the annotated type of e, Σ con-

tains the function signatures, F is the set of function names defined in earlier blocks of

mutually recursive definitions and Φ is the set of constraints on annotations that must

hold for a valid typing. The pattern matching rules CASE and CASE′ also have the type

being matched, ty(k), in addition to the normal context:

Γ,n p ty(k) `Σ,F p → e : T,n′ |Φ

This allows us to remove the matched variable from the context, but keep the type

present so that we can use the type’s annotations in the rules.

The additional rules in Figure 2.7 check that mutually recursive blocks of functions

and entire programs are well typed, with functions conforming to their function signa-

tures in Σ. Note that all of the constraint sets for the functions in a mutually recursive

block are gathered together and put in all of the signatures. This is necessary for the

FUNDEF rule to be sound. We say that a program P is well-typed if it satisfies `Σ, /0 P.

The ‘leaf’ rules are similar to those in a normal type system, with the exception

of the function application rules. The key difference from a normal type system is the

constraint given for the annotations. For example, the CONSTRUCT rule requires that

n ≥ size(ci)+ ki +n′,

meaning that we reduce the fixed amount of free memory by at least the size of the

allocation and the increase in potential of the data structure compared to its arguments,

ki. The constraints maintain the invariant that the free memory is at least as large as

the potential.
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Γ,n `Σ,F ∗ : 1,n′ |{n ≥ n′}
(UNIT) c ∈ {true, false}

Γ,n `Σ,F c : bool,n′ |{n ≥ n′}
(BOOL)

x ∈ dom(Γ)
Γ,n `Σ,F x : Γ(x),n′ |{n ≥ n′}

(VAR)

f ∈ F Σ( f ) = T ′
1, . . . ,T

′
p,k → T ′,k′|Φ′ ρ(T ′

i ) = Ti ρ(T ′) = T
Φ = ρ(Φ′)∪{n ≥ ρ(k),n−ρ(k)+ρ(k′)≥ n′}

Γ,x1 : T1, . . . ,xp : Tp,n `Σ,F f (x1, . . . ,xp) : T,n′ |Φ
(FUN)

f /∈ F Σ( f ) = T1, . . . ,Tp,k → T,k′|Φ′

Φ = {n ≥ k,n− k + k′ ≥ n′}
Γ,x1 : T1, . . . ,xp : Tp,n `Σ,F f (x1, . . . ,xp) : T,n′ |Φ

(FUNDEF)

Γ1,n `Σ,F e1 : T0,n0 |Φ1 Γ2,x : T0,n0 `Σ,F e2 : T,n′ |Φ2

Γ1,Γ2,n `Σ,F let x = e1 in e2 : T,n′ |Φ1∪Φ2
(LET)

Γ,n `Σ,F et : T,n′ |Φ1 Γ,n `Σ,F e f : T,n′ |Φ2

Γ,x : bool,n `Σ,F if x then et else e f : T,n′ |Φ1∪Φ2
(IF)

Γ,x1 : T1,x2 : T2,n `Σ,F (x1,x2) : T1⊗T2,n′ |{n ≥ n′}
(PAIR)

Γ,x1 : T1,x2 : T2,n `Σ,F e : T,n′ |Φ
Γ,x : T1⊗T2,n `Σ,F match x with (x1,x2)→ e : T,n′ |Φ

(PAIRELIM)

Γ,x : Tl,n `Σ,F inl(x) : (Tl,kl)+(Tr,kr),n′ |{n ≥ kl +n′}
(INL)

Γ,x : Tr,n `Σ,F inr(x) : (Tl,kl)+(Tr,kr),n′ |{n ≥ kr +n′}
(INR)

Γ,xl : Tl,nl `Σ,F el : T,n′ |Φl Γ,xr : Tr,nr `Σ,F er : T,n′ |Φr
Φ = Φl ∪Φr∪{nl = n+ kl,nr = n+ kr}

Γ,x : (Tl,kl)+(Tr,kr),n `Σ,F match x with inl(xl)→ el p inr(xr)→ er : T,n′ |Φ
(SUMELIM)

Γ,a : T1,b : T2,n `Σ,F e : T ′,n′ |Φ T = T1⊕T2 |Φ′

Γ,x : T,n `Σ,F e[x/a,x/b] : T ′,n′ |Φ∪Φ′ (SHARE)

Figure 2.5: Typing rules for expressions in the Hofmann-Jost analysis
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Σ(ci)[k] = T1, . . . ,Tp,ki → ty(k)
Φ = {n ≥ size(ci)+ ki +n′}

Γ,x1 : T1, . . . ,xp : Tp,n `Σ,F ci(x1, . . . ,xp) : ty(k),n′ |Φ
(CONSTRUCT)

for all i, 1 ≤ i ≤ m, Γ,n p ty(k) `Σ,F pi → ei : T ′,n′ |Φi

Γ,x : ty(k),n `Σ,F match x with p1 → e1 p · · · p pm → em : T ′,n′ |
S

i Φi
(MATCH)

Σ(ci)[k] = T1, . . . ,Tp,ki → ty(k)
Γ,x1 : T1, . . . ,xp : Tp,ni `Σ,F e : T ′,n′ |Φ

Φ′ = {ni = n+ ki + size(ci)}
Γ,n p ty(k) `Σ,F ci(x1, . . . ,xp)→ e : T ′,n′ |Φ∪Φ′ (CASE)

Σ(ci)[k] = T1, . . . ,Tp,ki → ty(k)
Γ,x1 : T1, . . . ,xp : Tp,ni `Σ,F e : T ′,n′ |Φ

Φ′ = {ni = n+ ki}
Γ,n p ty(k) `Σ,F ci(x1, . . . ,xp)′→ e : T ′,n′ |Φ∪Φ′ (CASE′)

Figure 2.6: Typing rules for expressions in the Hofmann-Jost analysis (continued)

Σ( f ) = T1, . . . ,Tp,k → T,k′|Φ x1 : T1, . . . ,xp : Tp,k `Σ,F e f : T,k′ |Φ′

`Σ,F f (x1, . . . ,xp) = e f ⇒{ f},Φ′

`Σ,F D ⇒ F ′,Φ′ `Σ,F B ⇒ F ′′,Φ′′

`Σ,F D and B ⇒ F ′∪F ′′,Φ′∪Φ′′

`Σ,F B ⇒ F ′,Φ′

∀ f ∈ F ′. Σ( f ) = . . . |Φ′

`Σ,F let B

`Σ,F B ⇒ F ′,Φ′ `Σ,F∪F ′ P
∀ f ∈ F ′. Σ( f ) = . . . |Φ′

`Σ,F let B P

Figure 2.7: Typing rules for function signatures

1 = 1⊕1 | /0 bool = bool⊕bool | /0

T = T1⊕T2 |Φ T ′ = T ′
1 ⊕T ′

2 |Φ′

T ⊗T ′ = (T1⊗T ′
1)⊕ (T2⊗T ′

2) |Φ∪Φ′

T = T1⊕T2 |Φ T ′ = T ′
1 ⊕T ′

2 |Φ′ Φ′′ = {k = k1 + k2,k′ = k′1 + k′2}
(T,k)+(T ′,k′) = (T1,k1)+(T ′

1,k
′
1)⊕ (T2,k2)+(T ′

2,k
′
2) |Φ∪Φ′∪Φ′′

ty(k) = ty(k1)⊕ ty(k2) | {ki = k1,i + k2,i : ∀i}

Figure 2.8: Rules for splitting annotations
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The inductive rules must provide constraints linking the fixed amounts used in

typing the expression to those in the judgements for its subexpressions. As with the leaf

rules, these constraints must reflect changes in allocation and potential. In particular,

the CASE rule has a complementary constraint to CONSTRUCT,

ni = n+ ki + size(ci),

with the difference that ni is used in the judgement for the subexpression, rather than

as the fixed amount after the evaluation of the whole match expression. The set of

constraints must contain the union of those from each subexpression in addition to

these ‘local’ constraints.

The typing context is treated linearly; for example the MATCH rule does not pro-

vide the subexpressions with the variable being matched, x. This is prevent the du-

plication of the list’s potential, which would lead to an underestimate of the memory

requirements. Instead, we have an explicit contraction rule, SHARE, which divides

the potential between uses of a variable by dividing up the annotation. The auxiliary

rules in Figure 2.8 define this division, which ensures that the types’ annotations sum

pairwise to the combined type. For example, the judgement

boollist(k) = boollist(k1)⊕boollist(k2) |{k = k1 + k2}

allows boollist(3) = boollist(2)⊕boollist(1), splitting three units per element between

two uses of the list. The rule can also be used to reduce an annotation so that two

types match, because weakening of the typing context is admissible (which can be

seen directly from the typing rules).

There are two rules for typing function applications. The FUN rule allows the

resource polymorphism discussed above, which is embodied in a substitution ρ on

constraint variables (extended to types and constraint sets). For inference we choose

fresh names for every constraint variable that does not appear in the types T ′
1, . . . ,T

′
p,T

′.

Those appearing in the types are fixed by the side conditions ρ(T ′
i ) = Ti and ρ(T ′) = T .

Resource polymorphism is restricted to applications of previously defined func-

tions by checking that the function’s name appears in the set F in the judgements. This

is necessary during inference because the full set of constraints for the function being

examined will not be known when typing a recursive call. Hence, the simpler FUNDEF

rule is used to type such applications. This rule does not depend on the constraints in

the function signature, and so can be used while inferring them.
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2.2.3 Soundness

The soundness result of this analysis with respect to the operational semantics can

now be given. The intuition is that any well typed expression can be executed with

the amount of free memory predicted by the annotations (n + ϒ(σ,S,Γ)), and the an-

notation on the result conservatively predicts the amount of free memory afterwards.

Moreover, execution will not consume any extra free memory (q) that may be available.

Theorem 2.4. Suppose that stack( f ) = 0 for all f . If an expression e in a function f

in a well-typed program has a typing

Γ,n `Σ,F e : T,n′ |Φ

with an assignment of nonnegative rationals to constraint variables which satisfies

the constraints in f ’s signature, and an evaluation S,σ ` e v,σ′ which satisfies the

benign sharing conditions, and ϒ(σ,S,Γ) is defined, then for any q ∈ Q+ and m ∈ N
such that

m ≥ n+ϒ(σ,S,Γ)+q

we have m,S,σ ` e v,σ′,m′ where ϒ(σ′,v,T ) is defined and

m′ ≥ n′+ϒ(σ′,v,T )+q.

A direct proof would be very similar to that in (Hofmann and Jost, 2003), so we

merely note that it can also be viewed as a consequence of the soundness theorem in

Chapter 5. A soundness result for non-terminating programs also holds for this system

in the same way.

The proof essentially shows that any changes in the free memory during evaluation

are conservatively approximated by changes in the potential. Aside from the addition

of resource polymorphism and algebraic datatypes there is also a small technical dif-

ference in our presentation with respect to (Hofmann and Jost, 2003). We simplify the

theorem and soundness proof by removing the judgement that the typing context, value

environment and store are consistent. Instead, it is sufficient to note that ϒ(σ,S,Γ) is

defined only when the variables in Γ have values in S and σ that are of the correct type.

The soundness theorem leads to a bound on the evaluation of the initial function:

Corollary 2.5. Suppose a well typed program has an initial function f , arguments for

f are given as values v1, . . . ,vp with an initial store σ, and stack( f ) = 0 for all f . If

Σ( f ) = T1, . . . ,Tp,k → T ′,k′ |Φ
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then any execution of f (v1, . . . ,vp) will require at most

ϒ(σ, [x1 7→ v1, . . . ,xp 7→ vp],(x1 : T1, . . . ,xp : Tp))+ k

units of memory, for any assignment of nonnegative rationals to constraint variables

which satisfies Φ.

2.2.4 Examples

Now we can revisit the notlist and id examples to present typings for them. To

make the type derivations more manageable we omit the weakening of annotations

using SHARE, which is not required for these examples.

Example 2.6. Recall the notlist function defined in Example 2.1 on page 6. A typ-

ing for notlist is given in Figure 2.9, where the ni constraint variables represent fixed

amounts of potential, and the ki constraint variables for the type annotations determine

the potential of the data structures. We continue using boollist(k) as a shorthand for

boollist(0,k). Note that the function application must be typed with the simpler FUN-

DEF rule because it is recursive.

The notlist function allocates a new list without destroying the original one, so

a linear amount of space is required. More precisely, when evaluating notlist l we

will require

|l|× size(cons)

units of heap memory. Thus we expect the bound to be represented by assigning

size(cons) to k1, the annotation on l’s type, so that the potential of l is large enough

to allocate the result.

The sample solution for the constraints confirms this, and we can trace the require-

ments through the typing derivation. The CONSTRUCT rule for cons requires that n5

is large enough to account for the allocation (Φ2). The constraints on other parts of

the expression thread this requirement back through n4 and n3, and so the amount to

be allocated can be provided in one of three places: the fixed amount of free memory

required to invoke the function (n1), memory freed by the recursive function call (the

−n1 +n2 in Φ1) or the drop in potential on matching the list (k1).

The first two sources are ruled out by the recursive function call. If we try to raise

n1 to account for the allocation then we are required to find the same amount again

for the recursive call. Similarly, if we assume that the recursive call finds some free



Chapter 2. Background 26

D
1
=

B
O

O
L

·,n
3
` Σ

,/ 0
f
a
l
s
e

:b
o
ol

,n
4
|{

n 3
≥

n 4
}

B
O

O
L

·,n
3
` Σ

,/ 0
t
r
u
e

:b
o
ol

,n
4
|{

n 3
≥

n 4
}

IF
h

:b
o
ol

,n
3
` Σ

,/ 0
i
f
··
·:

b
o
ol

,n
4
|{

n 3
≥

n 4
}

D
2
=

F
U

N
D

E
F

t
:b

o
ol

lis
t(

k 1
),

n 4
` Σ

,/ 0
n
o
t
l
i
s
t
t

:b
o
ol

lis
t(

k 2
),

n 5
|Φ

1
C

O
N

S
T

R
U

C
T

h
h

:b
o
ol

,t
t

:b
o
ol

lis
t(

k 2
),

n 5
` Σ

,/ 0
c
o
n
s
··
·:

b
o
ol

lis
t(

k 2
),

n 2
|Φ

2
L

E
T

t
:b

o
ol

lis
t(

k 1
),
h
h

:b
o
ol

,n
4
` Σ

,/ 0
l
e
t
t
t
··
·:

b
o
ol

lis
t(

k 2
),

n 2
|Φ

1
∪

Φ
2

C
O

N
S

T
R

U
C

T
·,n

1
` Σ

,/ 0
n
i
l

:b
o
ol

lis
t(

k 2
),

n 2
|{

n 1
≥

n 2
}

C
A

S
E
′

·,n
1

pb
o
ol

lis
t(

k 1
)
` Σ

,/ 0
n
i
l
′ →

n
i
l

:b
o
ol

lis
t(

k 2
),

n 2
|{

n 1
≥

n 2
}

D
1

D
2

L
E

T
h

:b
o
ol

,t
:b

o
ol

lis
t(

k 1
),

n 3
` Σ

,/ 0
l
e
t
h
h
··
·:

b
o
ol

lis
t(

k 2
),

n 2
|Φ

3
C

A
S

E
′

·,n
1

pb
o
ol

lis
t(

k 1
)
` Σ

,/ 0
c
o
n
s
(h

,t
)′
→
··
·:

b
o
ol

lis
t(

k 2
),

n 2
|Φ

3
∪

Φ
4

M
A

T
C

H
l

:b
o
ol

lis
t(

k 1
),

n 1
` Σ

,/ 0
m
a
t
c
h
··
·:

b
o
ol

lis
t(

k 2
),

n 2
|Φ

` Σ
,/ 0
n
o
t
l
i
s
t
l

=
..

.⇒
{n
o
t
l
i
s
t
}

` Σ
,/ 0
l
e
t
n
o
t
l
i
s
t
l

=
..

.

Φ
1
=
{n

4
≥

n 1
,n

4
−

n 1
+

n 2
≥

n 5
}

Φ
2
=
{n

5
≥

si
ze

(c
o
n
s
)+

k 2
+

n 2
}

Φ
3
=
{n

3
≥

n 4
}∪

Φ
1
∪

Φ
2

Φ
4
=
{n

3
=

n 1
+

k 1
}

Φ
=

Φ
3
∪
{n

1
≥

n 2
}∪

Φ
4

Σ
=

   
n
i
l
7→
∀k

.b
o
ol

lis
t(

k)

c
o
n
s
7→
∀k

.b
o
ol

,b
o
ol

lis
t(

k)
,k
→

b
o
ol

lis
t(

k)

n
o
t
l
i
s
t
7→

b
o
ol

lis
t(

k 1
),

n 1
→

b
o
ol

lis
t(

k 2
),

n 2
|Φ

   
Sa

m
pl

e
so

lu
tio

n
fo

rΦ
:

n 1
=

n 2
=

0,
n 3

=
n 4

=
n 5

=
k 1

=
si

ze
(c
o
n
s
),

k 2
=

0.

Fi
gu

re
2.

9:
no

tl
is

t
ty

pi
ng



Chapter 2. Background 27

memory −n1 +n2, then we need to free the same amount again by the end of the caller.

The only possibility left is to assign the cost to k1, as expected.

Example 2.7. Recall the id function:

let id l = let notl = notlist l in notlist notl

Figure 2.10 gives a typing for id. In this function we use the resource polymorphic

FUN rule for the two uses of notlist. This allows the two uses to be typed in the two

different ways discussed in Section 2.2.1, which can be seen in the sample solution.

If notlist is modified to deallocate the supplied list then the deallocation can

satisfy the memory requirements for the new list. This is realised by changing the

typing derivation for notlist (Figure 2.9) to use CASE rather than CASE′, which

changes the constraint to include the extra free memory:

Φ
′
4 = {n3 = n1 + k1 + size(cons)}.

Hence k1 can be zero, yielding the signature

notlist : boollist(0),0 → boollist(0),0

showing that no extra memory is required.

This signature for notlist can then be used for both function applications when

typing id. As a result, the same signature can be derived for id, indicating that it can

be evaluated in-place.

The next example illustrates why we allow rational solutions rather than restricting

ourselves to the integers.

Example 2.8. Consider the following function:

let evens l = match l with nil’ -> nil | cons(h1,t1)’ ->

match t1 with nil’ -> nil | cons(h2,t2)’ ->

let t’ = evens t2 in cons(h2,t’)

This takes a list and creates a new list with every second element of the original. The

analysis gives this function the signature (after constraint solving) of

evens : boollist(1
2),0 → boollist(0),0

because we allocate a list half as long as the argument.
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A more demanding example is a functional implementation of heap sort. Most

imperative implementations work in-place on the array of data to be sorted, using the

array indices to keep track of the heap structure. In contrast, a purely functional version

may explicitly build a heap data structure, see (Paulson, 1996, Section 4.16).

The key properties of the imperative version which allow the in-place update are

using the indices to provide the heap structure (so no extra structure needs to be allo-

cated) and the lack of any need to look at an old copy of the data structure. We do not

need to refer to old versions of the list and heap in the functional version either; so list

elements can be deallocated as they are put into the heap, and vice versa on extracting

the sorted elements.

Example 2.9. See Appendix A for the functional version of heap sort, written in LFD

augmented by support for integers in addition to booleans. The analysis takes advan-

tage of the deallocation to infer a signature (after constraint solving) of

sort : intlist(k),0 → intlist(k),0,

k = size(node)− size(cons),

meaning that we only need enough extra memory to turn the list elements into tree

nodes, and that the extra memory is free again after evaluation. If we make list elements

as large as tree nodes then k = 0 and we regain the in-place behaviour of the imperative

version.

More detail may be found in Appendix A.

2.2.5 Inference and Complexity

Given a program, it is easy to infer an unannotated typing using standard unification

techniques. We then wish to infer an annotated typing, including a set of constraints

for each function, and finally a solution for the constraint set of the initial function.

We first add annotations to the types in the form of constraint variables, and use

the typing rules to build the constraint set for each function. There are only three rules

that are not syntax-directed: FUN, FUNDEF and SHARE. The choice between the two

application rules is broken by consulting the set of previously defined functions, F , as

described in Section 2.2.2.

We need to use the SHARE rule in two circumstances. The first use is for contrac-

tion, where a variable will be required multiple times during evaluation. For instance, if
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a variable appears twice in the arguments of a function (f(x,x)), or in different subex-

pressions of a let (let y=x in f(x,y)) then we need to use SHARE for contraction,

but not in the different branches of an if because the context is not split between them.

The SHARE rule divides the potential between the different uses of the variable. We

can place the SHARE rule at any point in the derivation between the binding of the

variable and the point at which it is required multiple times.

The second use of SHARE is to weaken type annotations. Rules involving multiple

subexpressions require their types to match, so we may wish to ‘leak’ some potential.

For example, in

if b then l else notlist l

one branch of computation allocates an extra list. If l has type boollist(1) then notlist

l will have the type boollist(0). By adding a use of the SHARE rule we can weaken the

left hand l’s annotation to match:

VAR
l1 : boollist(0),l2 : boollist(1),0 ` l1 : boollist(0),0

SHARE
l : boollist(1),0 ` l : boollist(0),0 . . .

IF
b : bool,l : boollist(1),0 ` if · · · : boollist(0),0

(Using solutions rather than constraints for brevity.) In general, it is sufficient to

weaken at the leaf rules which may yield annotated types: VAR, FUN, FUNDEF, PAIR,

INL, INR and CONSTRUCT.

Once we have the annotated typing we can solve the constraint set for the ini-

tial function using standard linear programming techniques. The remaining task is

to choose an objective function to minimise the bound found. Jost’s implementation

takes the annotations from the function signature and applies a simple scoring sys-

tem (Jost, 2004b). In particular, data structure annotations are more ‘expensive’ than

fixed amounts. With a little care, negative scores can be placed on the annotations on

the right hand side of the signature to maximise the bound on the memory free after

evaluation4.

An alternative approach is to consider the overall bound from Corollary 2.5,

ϒ(σ, [x1 7→ v1, . . . ,xp 7→ vp],(x1 : T1, . . . ,xp : Tp))+ k.

4The care is required because an unwise choice of negative scores can yield unbounded solutions.
For example, in

let fnil x = nil : ∗,0 → T list(k),0

k is unconstrained. Thus a negative score on k will give an unbounded objective function.
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The potential function ϒ essentially multiplies each annotation ki by the size of the data

structures involved. For example, a nested list x of type listlist(k1,k2) (the type of list

of lists of booleans introduced on page 19, with 0 for the nil annotations) has potential

k1×|x|+ ∑y∈x k2×|y|. Thus if we assign to every annotation a coefficient that is the

expected size of the corresponding data we obtain a bound optimised for the expected

case.

Once we have a bound on the free memory required we can add an extra constraint

to the linear program to fix that bound, then solve the new linear program with an

objective function which maximises the bound on the free memory after evaluation in

the same way.

Note that there is no ‘best’ objective function because it is not always possible

to express the optimal bound in the above form (an affine function on data structure

sizes). To see this, consider the following example:

Example 2.10. The family of functions

let f l = let l0 = nil in

match l with nil’ -> l0 | cons(_,t1)’ ->

let l1 = cons(true,l0) in

match t1 with nil’ -> l1 | cons(_,t2)’ ->

...

let ln = cons(true,l〈n−1〉) in

ln

constructs a list of length min{|l|,n}. However, the Hofmann-Jost system can infer

only one of |l| or n depending upon the choice of objective function.

Jost implemented the original system (without resource polymorphism, essentially

using the FUNDEF rule for all function applications) extended with user-defined alge-

braic datatypes (Jost, 2004b). It was used in the Mobile Resource Guarantees project

to produce resource bounds for an intermediate language of the Camelot compiler.

A version with resource polymorphism was produced by the author as part of the

work described in Chapter 4. Also, Jost’s implementation of his later system with

higher-order functions, ARTHUR, contains a similar mechanism (Jost, 2004a).

We now turn to the complexity of the inference. If resource polymorphism is ig-

nored (by using FUNDEF for all applications) then all of the typing rules bar SHARE are

syntax directed and contribute a constant number of constraints per use. The SHARE
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rule requires as many constraints as there are annotations in the type of the variable in

question. Thus so long as SHARE is only used for ‘real’ contraction and weakening

then the number of constraints generated is O(program size×number of constructors).

The resulting linear program can be solved in polynomial time, and so the entire

type inference can be performed in polynomial time with respect to the size of the

original program.

Adding resource polymorphism, however, allows an exponential growth in the

number of constraints with the size of the program:

Example 2.11. Consider the family of programs of the form:

let id1 x = x

let id2 x = let y = id1 x in id1 y

let id3 x = let y = id2 x in id2 y

let id4 x = let y = id3 x in id3 y

let id5 x = let y = id4 x in id4 y

...

Each function has a signature of the form

idi : T,ni → T,n′i |Φi,

with Φ1 = {n1 ≥ n′1}. Each subsequent constraint set Φi+1 contains two copies of the

previous one with the variables renamed, say Φi,1 and Φi,2. Then by FUN and LET,

Φi+1 = Φi,1∪Φi,2∪{ni+1 ≥ ni,1,n′i,1 ≥ ni,2,n′i,2 ≥ ni+1},

consisting of the two copies of the previous set, and three new constraints linking the

annotations for the fixed amounts of free memory at the start, middle and end of the

function’s evaluation.

Thus each Φi is more than double the size of the previous one.

It is not clear if the linear programs produced for functions could be simplified to

avoid this exponential complexity. We leave this question to future work.
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Using a CPS transformation to bound

stack requirements

We noted in the previous chapter that the LFD language used in this thesis can be

viewed as a compiler’s intermediate language. In particular, the Camelot compiler

used in the Mobile Resource Guarantees project performed its monomorphisation and

let-normalisation stages to produce LFD code for Hofmann and Jost’s analysis (Jost,

2004b). This removed the burden of handling polymorphism and evaluation order from

the analysis. In this chapter we consider using a further compiler stage to remove the

burden of handling stack space.

Some compilers use an intermediate language in Continuation Passing Style (CPS).

In programs of this form every function application is a tail call which takes a contin-

uation function as an argument to represent the remainder of the program. CPS has

similar advantages to let-normal form: evaluation order is explicit and intermediate

values are named. Another benefit is that the control flow is closer to the final machine

code because the continuations correspond to the link register and stack typically found

in compiled code.

This exposes some of the stack manipulation, and also gives the implementor the

choice of storing the frames on the heap instead. (For instance, (Appel, 1992, §10.8)

discusses a tradeoff where heap allocation of frames makes the use of first class con-

tinuations cheaper.) Thus we are interested in using a CPS transformation to make the

frames into explicit heap allocated structures and then inferring bounds on their size

using Hofmann and Jost’s heap analysis without alteration.

First we will define the transformation itself and show that the original analysis

can be used to obtain total bounds on the resulting programs. Then we establish the

33
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correctness of the transformation and consider using the analysis of the transformed

program to give bounds on the original program. Finally we discuss some examples

and difficulties which arise when using the CPS transformation for analysis, and moti-

vate the direct approach in the following chapters.

3.1 The CPS transformation

CPS transformations have a long history, both in compilers such as RABBIT (Steele,

1978) and SML/NJ (Appel, 1992), and in theoretical uses (for example (Plotkin, 1975)).

(Reynolds, 1993) provides a review of the early work using continuations and CPS.

Ironically, recent work tends toward using A-normal form in intermediate languages

rather than CPS (Flanagan et al., 2004) and the let-normal form of LFD reflects this, al-

though (Kennedy, 2007) makes a strong case for CPS using second class continuations.

Nonetheless, CPS is still of interest to us as a mechanism to bound stack usage.

Our CPS transformation is a little unusual as a result of choosing LFD as the source

and target language. LFD is a first-order language which prevents us from using real

continuations. Instead we use a defunctionalized CPS transform, where we construct

explicit closures for our continuations. Also, LFD has a simple type system which

forces us to add some extra complexity to maintain typability.

The main part of our transformation acts on expressions with unannotated type

information. It is presented in Figure 3.1 as a set of syntax-directed rules with judge-

ments of the form

Γ `Σ e : T,x,e′ 7→ e′′,(F,S,R)

where Γ is the typing context, Σ the source function signatures, e is the expression (of

type T ) to be transformed, e′ is the continuation expression (which expects the result of

e to be bound to x), e′′ is the transformed expression and the tuple (F,S,R) represents

information about the new continuation functions. The continuation expression is the

previously transformed expression representing ‘the rest of the program.’ It is not a

‘proper’ continuation because it may become part of the transformed expression e′′

rather than a continuation function. Tfinal is the result type of the initial function and

s and s′ are two fresh variable names used consistently throughout the transformation.

We use 〈′〉 in the C-MATCH rule to denote an optional ′.

The new continuation function information consists of a tuple (F,S,R) where the

first component F is the set of new functions, the second S is a map from new con-

structors to the constructor’s type signature, and the third R is a map from types to the



Chapter 3. Using a CPS transformation to bound stack requirements 35

Γ `Σ ∗ : 1,x,e′ 7→ let x = ∗ in e′, /0
(C-UNIT)

Γ `Σ c : bool,x,e′ 7→ let x = c in e′, /0
(C-BOOL)

Γ `Σ x0 : T,x,e′ 7→ let x = x0 in e′, /0
(C-VAR)

Γ `Σ (x1,x2) : T,x,e′ 7→ let x = (x1,x2) in e′, /0
(C-PAIR)

Γ `Σ inl(x0) : T,x,e′ 7→ let x = inl(x0) in e′, /0
(C-INL)

Γ `Σ inr(x0) : T,x,e′ 7→ let x = inr(x0) in e′, /0
(C-INR)

Γ `Σ c(x1, . . . ,xp) : T,x,e′ 7→ let x = c(x1, . . . ,xp) in e′, /0
(C-CONSTRUCT)

fresh C {z1, . . . ,zn}= FV(e′)\{x,s}

K = (contC(x,z1, . . . ,zn,s) = e′,
[

C 7→ (Γ(z1), . . . ,Γ(zn),stack→ stack),
contC 7→ (T,Γ(z1), . . . ,Γ(zn),stack→ Tfinal)

]
, [T 7→ {C}])

Γ `Σ f (x1, . . . ,xp) : T,x,e′ 7→ let s′ = C(z1, . . . ,zn,s) in f ′(x1, . . . ,xp,s′),K
(C-FUN)

Γ `Σ e1 : T,x1,e′2 7→ e′1,K1
Γ,x1 : T `Σ e2 : T ′,x,e′ 7→ e′2,K2

Γ `Σ let x1 : T = e1 in e2 : T ′,x,e′ 7→ e′1,K1]K2
(C-LET)

Γ `Σ e1 : T,x,e′ 7→ e′1,K1
Γ `Σ e2 : T,x,e′ 7→ e′2,K2

Γ `Σ if x0 then e1 else e2 : T,x,e′ 7→ if x0 then e′1 else e′2,K1]K2
(C-IF)

Γ(x0) = T1⊗T2 Γ,x1 : T1,x2 : T2 `Σ e1 : T,x,e′ 7→ e′1,K1

Γ `Σ match x0 with (x1,x2)→ e1 : T,x,e′ 7→match x0 with (x1,x2)→ e′1,K1
(C-MATCHPAIR)

Γ(x0) = T1 +T2
Γ,x1 : T1 `Σ e1 : T,x,e′ 7→ e′1,K1
Γ,x2 : T2 `Σ e2 : T,x,e′ 7→ e′2,K2

Γ `Σ match x0 with inl(x1)→ e1 p inr(x2)→ e2 : T,x,e′

7→match x0 with inl(x1)→ e′1 p inr(x2)→ e′2,K1]K2

(C-MATCHSUM)

for all i, 1 ≤ i ≤ m.

{
Σ(ci) = Ti,1, . . . ,Ti,pi → ty
Γ,xi,1 : Ti,1, . . . ,xi,pi,Ti,pi `Σ ei : T,x,e′ 7→ e′i,Ki

Γ `Σ match x0 with c1(x1,1, . . . ,x1,p1)〈′〉 → e1 p . . .cm(xm,1, . . . ,xm,pm)〈′〉 → em : T,x,e′

7→match x0 with c1(x1,1, . . . ,x1,p1)〈′〉 → e′1 p . . .cm(xm,1, . . . ,xm,pm)〈′〉 → e′m,
U

i Ki
(C-MATCH)

Figure 3.1: CPS transformation for expressions
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Σ( f ) = T1, . . . ,Tp → T
x1 : T1, . . . ,xp : Tp `Σ e f : T,x,unwind T (x,s) 7→ e′f ,K

`Σ f (x1, . . . ,xp) = e f 7→ ({ f ′(x1, . . . ,xp,s) = e′f }, /0, /0)]K
(C-FUNBODY)

`Σ D 7→ K1 `Σ B 7→ K2

`Σ D and B 7→ K1]K2

`Σ B 7→ K
`Σ let B 7→ K

`Σ B 7→ K1 `Σ P 7→ K2

`Σ let B P 7→ K1]K2

`Σ P 7→ (F,S,R)
∀T ∈ dom(R). MT = {p C(x1, . . . ,xn,s′)→ contC(x,x1, . . . ,xn,s′) : C ∈ R(T )}

FT =
{

unwind T (x,s) = match s with MT p end→ x if T = Tfinal
unwind T (x,s) = match s with MT otherwise

{F1, . . . ,Fm}= F ∪{FT : T ∈ dom(R)}
` Σ,P 7→ Σ+S[end 7→ stack], let F1 and F2 and . . . and Fm

We put end into nullc. If the original initial function was f (x1, . . . ,xp), our
new initial function is f ′(x1, . . . ,xp,s) where S(s) = null.

Figure 3.2: CPS transformation for whole programs

constructors for closures which are called with a value of that type. When we wish to

refer to an entire tuple at once, we denote it K. Similarly, we will use /0 as a shorthand

for ( /0, /0, /0). We define a function ] for joining this information as

(F1,S1,R1)] (F2,S2,R2) = (F1∪F2,S1 +S2,R′),

where + joins two disjoint partial maps and

R′ = [T 7→ {C : C ∈ R1(T ) or C ∈ R2(T )} : T ∈ dom(R1)∪dom(R2)].

The most important part of the CPS transformation is the C-FUN rule. Our princi-

ple requirement for a program in continuation passing style is that all functions must

be tail calls. Thus, to allow the continuation expression e′ to be executed after the func-

tion has been evaluated, the C-FUN rule packages e′ into a new continuation function

contC and constructs a closure C(y1, . . . ,yn,s) containing the values of the live bound
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variables. We call the datatype for these closures stack because it replaces the runtime

stack.

To see how the continuation is invoked consider the remainder of the transforma-

tion, detailed in Figure 3.2. The C-FUNBODY rule transforms the function f with

unwind T (x,s) as the continuation expression. The new unwind T family of functions

examines the ‘stack’ s and calls the relevant continuation function with the result from

the evaluation of f and the contents of the closure. Note that the closure will always

be deallocated; we know that this is safe because the stack discipline ensures that the

closure will never be accessed again.

The whole transformation is given as a judgement

` Σ,P 7→ Σ
′,P′

providing a new set of function signatures as well as the transformed program. A

consequence of the transformation is that P′ consists of functions in a single mutually-

recursive block. This is required because the unwind T functions are called throughout

the program, destroying the block structure.

To demonstrate the transformation, let us examine the effect on a simple function.

Example 3.1. Suppose we have a program containing the following function:

let pairf(a) = let b = f(a) in (a,b)

where

Σ =


f 7→ T1 → T2

pairf 7→ T1 → T1⊗T2
...

 .

We will trace the transformation of pairf starting at the function transformation rule,

C-FUNBODY. This requires us to find some e′pairf and K such that

a : T1 `Σ let b = · · · : T1⊗T2,x,unwind T1⊗T2(x,s) 7→ e′pairf,K.

Hence we wish to use C-LET, and need to fulfill its premises. We start with the pairing

expression (a,b) because we already know its continuation expression from C-LET:

Dpair =

C-PAIR

a : T1,b : T1 `Σ (a,b),x,unwind T1⊗T2(x,s)

7→ let x = (a,b) in unwind T1⊗T2(x,s), /0
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The pair expression produces the result for the entire function, so the transformed

version must call the next continuation on the stack, which it does via unwind T1 ⊗
T2(x,s).

Let us call the transformed expression for the pairing ep. It is now used as the

continuation expression for the first subexpression of the let, f(a):

K =

(
contC1(b,a,s) = ep,

[
C1 7→ (T1,stack→ stack)

contC1 7→ (T2,T1,stack→ Tfinal)

]
, [T2 7→ {C1}]

)
C-FUN

a : T1 `Σ f(a) : T2,b,ep 7→ let s′ = C1(a,s) in f′(a,s′),K Dpair
C-LET

a : T1 `Σ let b = · · · : T1⊗T2,x,unwind (x,s) 7→ let s′ = C1(a,s) in f′(a,s′),K

Thus the resulting code for pairf′ is

let pairf’(a,s) = let s’= C1(a,s) in f’(a,s’)

which puts a on to the ‘stack’ with tag C1 and calls the transformed f′. When this

produces a result, unwind T2 (defined by the last rule in 3.2 using the information in

K) will call the continuation contC1,

and contC1(b,a,s) = let x=(a,b) in unwind T1*T2(x,s)

with b and a to form the pair.

This CPS transformation has been implemented as an extension to Jost’s lfd infer.

We can now establish some basic properties of the transformed program:

Lemma 3.2. Every function call in a CPS transformed program is in tail position,

except for the ‘initial’ function call.

Proof. By induction on the transformation derivation. Only let expressions can intro-

duce a subexpression which is not in tail position, but the only transformation rules

which produce a let are the leaf rules (C-UNIT, C-BOOL, C-VAR, C-PAIR, C-INL,

C-INR, C-CONSTRUCT and C-FUN), none of which place a function call in the left

hand subexpression.

Thus all of the function calls which appear in transformed function bodies are in

tail position. This leaves only the initial function call, which is not in tail position by

definition.

Using this we can show that we only need enough ‘real’ stack space for the current

function:
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Corollary 3.3. Under the ‘general tail-call optimisation’ version of the operational

semantics (Section 2.1.2) the stack memory used in evaluating a transformed program

is at most max f (stack( f )).

Proof. Let m = max f (stack( f )). By Lemma 3.2 all function calls are tail calls except

for the initial function. The initial function (say, f1) requires

stack′(initial, f1, false) = stack( f1)≤ m

units of stack space. Each subsequent call requires a change of

stack′( fi, fi+1, true) = stack( fi+1)− stack( fi)

units. Thus the amount of stack space required during the evaluation of fi is

stack( f1)+(stack( f2)− stack( f1))+ · · ·+(stack( fi)− stack( fi−1)) = stack( fi)≤ m.

When combined with the Hofmann-Jost analysis to infer a bound on the heap mem-

ory this result provides a bound on the total memory usage of the transformed program.

3.2 Correctness of the transformation

We have shown that the transformed program’s total memory usage can be analysed,

but we still need to establish that it faithfully reproduces the original program’s be-

haviour.

First we must show that we can remove dead variables from the environment of an

evaluation because C-FUN only places potentially live variables in the closure.

Lemma 3.4. Given S,σ ` e v,σ′ and any V ⊆ dom(S) such that FV(e)∩V = /0 we

have

S\V,σ ` e v,σ′.

Proof. A straightforward induction on the evaluation shows that the values of V are

not used by any rule.

We are also able to extend the environment and state:

Lemma 3.5. Given S,σ ` e v,σ′ and some S1,σ1 disjoint from the evaluation, then

we have

S +S1,σ+σ1 ` e v,σ′+σ1.
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Proof. Induction on the evaluation, adding the new environment S1 and state σ1 where

necessary. As they are disjoint from the given evaluation they do not interfere in any

way, and v and σ′ are not changed.

We can now show that the transformation of an expression is correct.

Theorem 3.6. Suppose we have a typed program and its CPS transformation. For any

part of the transformation on an expression

Γ `Σ e : T,x,e′ 7→ e′′,K

if S,σ ` e v0,σ0 and S[x 7→ v0,s 7→ l],σ0 + σs ` e′  v′,σ′ for some l,σs disjoint

from σ and σ0 then

S[s 7→ l],σ+σs ` e′′ v′,σ′.

Proof. We proceed by induction on the evaluation of the original expression, e.

E-UNIT, E-BOOL, E-VAR, E-PAIR, E-INL, E-INR, E-CONSTRUCT, E-CONSTRUCTN.

We have e′′ = let x = e in e′. Hence:

by Lemma 3.5

S[s 7→ l],σ+σs ` e v0,σ0 +σs

by hypothesis

S[x 7→ v0,s 7→ l],σ0 +σs ` e′ v′,σ′
E-LET

S[s 7→ l],σ+σs ` let x = e in e′ v′,σ′

E-FUN. First, consider the invocation of the function in the original program,

[y1 7→ S(x1), . . . ,yp 7→ S(xp)],σ ` e f  v0,σ0
E-FUN

S,σ ` f (x1, . . . ,xp) v0,σ0

and the transformed program:

Dc =
σ
′
s = σs[l′ 7→ (C,S(z1), . . . ,S(zn), l)]

E-CONSTRUCT
S[s 7→ l],σ+σs `C(z1, . . . ,zn,s) l′,σ+σ

′
s

Dc

[y1 7→ S(x1), . . . ,yp 7→ S(xp),s 7→ l′],σ+σ
′
s ` e f ′  v′,σ′

E-FUN
S[s 7→ l,s′ 7→ l′],σ+σ

′
s ` f ′(x1, . . . ,xp,s′) v′,σ′

E-LET
S[s 7→ l],σ+σs ` let s′ = C(z1, . . . ,zn,s) in f ′(x1, . . . ,xp,s′) v′,σ′

where the yi are the names of f ’s arguments and the zi are the live variables for

the closure.

The body of f ′, e f ′ was created from e f by a transformation of the form:

y1 : T1, . . . ,yp : Tp ` e f ,x,unwind T (x,s) 7→ e f ′,F
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To use the induction hypothesis with this transformation we need to derive an

evaluation for our new continuation, unwind T (x,s), from our original continu-

ation, e′:

by hypothesis and Lemma 3.4

(S � FV(e)\{x,s})[x 7→ v0,s 7→ l],σ0 +σs ` e′ v′,σ′
E-FUN

[x 7→ v0,z1 7→ S(z1), . . . ,zn 7→ S(zn),s′ 7→ l],σ0 +σs ` contC(x,z1, . . . ,zn,s′) v′,σ′
E-MATCH

[x 7→ v0,s 7→ l′],σ0 +σ
′
s `match s with · · · p C(z1, . . . ,zn,s′)→ . . . v′,σ′

E-FUN
[y1 7→ S(x1), . . . ,yp 7→ S(xp),x 7→ v0,s 7→ l′],σ0 +σ

′
s ` unwind T (x,s) v′,σ′

Thus the induction hypothesis yields the evaluation of e f ′ required to complete

the transformed expression’s evaluation, above.

E-LET. The original expression’s evaluation takes the form:

S,σ ` e1 v1,σ1 S[x1 7→ v1],σ1 ` e2 v0,σ0
E-LET

S,σ ` let x1 = e1 in e2 v0,σ0

We can apply the induction hypothesis to e2 using e′ as the continuation expres-

sion to yield an evaluation for e′2. Now we apply the induction hypothesis to

e1, using e′2 as the continuation expression which gives an evaluation for e′′, as

required.

E-IFTRUE. Consider the evaluation of the original expression:

S(x) = true S,σ ` et  v,σ′
E-IFTRUE

S,σ ` if x then et else e f  v,σ′

The induction hypothesis on et yields the evaluation of the e′t subexpression in

the transformed program. It is then sufficient to apply the E-IFTRUE rule again

to get the evaluation of e′′.

E-IFFALSE, E-MATCHPAIR, E-MATCHINL, E-MATCHINR, E-MATCH, E-MATCH′,

E-MATCHN, E-MATCHN′. Similar to E-IFTRUE; apply the induction hypothe-

sis to the subexpression and then use the original evaluation rule.

Of course, this extends to the whole program:

Corollary 3.7. Given a typed program and its CPS transformation, for any evaluation

of the initial function

S,σ ` f (x1, . . . ,xp) v,σ′
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we have

S[s 7→ null],σ ` f ′(x1, . . . ,xp,s) v,σ′

in the transformed program.

Proof. The evaluation of the original program begins with E-FUN, so we have

[x1 7→ S(x1), . . . ,xp 7→ S(xp)],σ ` e f  v,σ′.

The transformation must include a judgement for the body of f ,

x1 : T1, . . . ,xp : Tp `Σ e f : Tfinal,x,unwind Tfinal(x,s) 7→ e f ′,K,

and we can evaluate the continuation as follows:

E-VAR
[x 7→ v,s 7→ null],σ′ ` x v,σ′

E-MATCHN
[x 7→ v,s 7→ null],σ′ `match s with · · · p end→ x v,σ′

E-FUN
[x1 7→ S(x1), . . . ,xp 7→ S(xp),s 7→ null,x 7→ v],σ′ ` unwind Tfinal(x,s) v,σ′

So by Theorem 3.6 we have

[x1 7→ S(x1), . . . ,xp 7→ S(xp),s 7→ null],σ ` e f ′  v,σ′

and hence by E-FUN

S[s 7→ null],σ ` f ′(x1, . . . ,xp,s) v,σ′.

3.3 Bounding the original program

An obvious complaint with the above approach is that we require the compiler to use

the CPS transformation as part of the compilation. This is inconvenient if we already

possess a perfectly good compiler. Moreover, it can be impossible if the target does

not allow for general tail call optimisation, as was the case with Java bytecode in the

MRG project.

Fortunately, there is a converse result to the correctness theorem which shows that

in addition to computing the correct result, we can bound the total space used by the

original program using a bound on the heap space of the transformed program.

We defer consideration of tail call optimisation in the evaluation of the original

program for now. The transformed program is necessarily ‘executed’ with tail call

optimisation, but as there is no real machine involved we may choose size and stack′

to suit our theorem.
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Theorem 3.8. Suppose we have a typed program and its CPS transformation where

size(C) = stack( f ) for every continuation closure C introduced in the transformation

of the body of f . Given the transformation

Γ `Σ e : T,x,e′ 7→ e′′,K

of any expression e in the program, suppose that we have evaluations for e, e′ and e′′

as per Theorem 3.6, and moreover that we have m, m′ such that

m,S[s 7→ l],σ+σs ` e′′ v′,σ′,m′

where we do not count stack space (that is, stack( f ′) = 0 for all functions f ′ in the

transformed program). Then there exists m0 such that

m+ms− stack(g),S,σ `e v0,σ0,m0 +ms− stack(g)

and m0,S[x 7→ v0,s 7→ l],σ0 +σs `e′ v′,σ′,m′

where ms = max f stack( f ) and g is the function containing e.

Proof. We consider each of the cases from Theorem 3.6 and show that we can de-

termine suitable values for m0 and other intermediate amounts of memory for e from

the derivation for e′′. For clarity we omit the environments, state and values from the

derivations below.

E-UNIT, E-PAIR, E-VAR, E-PAIR, E-INL, E-INR, E-CONSTRUCT, E-CONSTRUCTN.

The evaluation of the transformed program takes the form

m ` e m′′

···
m′′ ` e′ m′

E-LET-TAIL
m ` let x = e in e′ m′

for some m′′. Taking m0 = m′′ and adding ms− stack(g) throughout the evalua-

tion of e we get

m+ms− stack(g) ` e m0 +ms− stack(g)

and m0 ` e′ m′ as required.

E-FUN. The derivation of the transformed function call is of the form

E-CONSTRUCT
m `C(z1, . . . ,zn,s′) m1

···
m1 ` e f ′  m′

E-FUN-TAIL
m1 ` f ′(x1, . . . ,np,s′) m′

E-LET-TAIL
m ` let s′ = C(z1, . . . ,zn,s) in f ′(x1, . . . ,xp,s′) m′
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with

m = m1 + size(C) by E-CONSTRUCT

= m1 + stack(g) by assumption.

Recall that e f ′ is the result of transforming e f with unwind T (x,s) as the con-

tinuation expression. Applying the induction hypothesis to e f ′ gives us m′
0 such

that

m1+ms−stack( f )` e f  m′
0+ms−stack( f ) and m′

0 ` unwind T (x,s) m′.

The derivation for unwind T (x,s) has the form

···
m0 ` e′ m′

E-FUN-TAIL
m0 ` contC(x,y1, . . . ,yn,s′) m′

E-MATCH
m′

0 `match s with . . . m′

E-FUN-TAIL
m′

0 ` unwind T (x,s) m′

where m0 = m′
0 + size(C) = m′

0 + stack(g).

Now consider the evaluation of the original expression by applying E-FUN to

the judgement for e f we obtained from the induction hypothesis,

m1 +ms− stack( f ) ` e f  m′
0 +ms− stack( f )

E-FUN
m f ` f (x1, . . . ,xp) m′

f

where

m f = m1 +ms = m+ms− stack(g),

m′
f = m′

0 +ms = m0 +ms− stack(g).

So,

m+ms− stack(g) ` f (x1, . . . ,xp) m0 +ms− stack(g) and m0 ` e′ m′.

E-LET. Following the proof of Theorem 3.6 in reverse, we apply the induction

hypothesis to e1 with e′2 as the continuation expression, yielding m1 such that

m+ms− stack(g) ` e1 m1 +ms− stack(g) and m1 ` e′2 m′.
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Then we apply the induction hypothesis to e2 with e′ as the continuation expres-

sion, giving m0 similarly. Thus

m+ms− stack(g) ` e1 m1 +ms− stack(g) m1 +ms− stack(g) ` e2 m0 +ms− stack(g)
E-LET

m+ms− stack(g) ` let x1 = e1 in e2 m0 +ms− stack(g)

and m0 ` e′ m′ as required.

E-IFTRUE, E-IFFALSE, E-MATCHPAIR, E-MATCHINL, E-MATCHINR, E-MATCH,

E-MATCH′, E-MATCHN, E-MATCHN′. As in Theorem 3.6 we apply the induc-

tion hypothesis to the subexpression which will be evaluated, and then use the

evaluation rule to obtain the result.

We can also give a bound on the total memory required to evaluate the whole

program, starting with the initial function:

Corollary 3.9. Given the same assumptions as Theorem 3.8 about the program and

the size and stack measures, if we have

m,S[s 7→ null],σ ` f ′(x1, . . . ,xp,s) v,σ′,m′

then

m+ms,S,σ ` f (x1, . . . ,xp) v,σ′,m′+ms,

where ms = max f stack( f ).

Proof. The transformed program’s evaluation begins with the initial function call:

m, [y1 7→ S(x1), . . . ,yp 7→ S(xp),s 7→ null],σ ` e f ′  v,σ′,m′

E-FUN-TAIL
m,S[s 7→ null],σ ` f ′(x1, . . . ,xp,s) v,σ′,m′

The body e f ′ is e f CPS transformed with continuation expression unwind T (x,s).

Applying Theorem 3.8 we get m0 such that

m+ms− stack( f ) ` e f  m0 +ms− stack( f )

and m0 ` unwind T (x,s) m′. The evaluation of unwind T (x,s) takes the form

E-VAR
m′ ` x m′

E-MATCHN
m′ `match s with . . .end→ x m′

E-FUN
m′ ` unwind T (x,s) m′

using S(s) = null, so m0 = m′. Finally, by E-FUN we have

m+ms− stack( f ), [y1 7→ S(x1), . . . ,yp 7→ S(xp)],σ ` e f  v,σ′,m′+ms− stack( f )
E-FUN

m+ms,S,σ ` f (x1, . . . ,xp) v,σ′,m′+ms
.
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Thus we can use Hofmann-Jost on the transformed program to obtain a bound on

the total memory usage of the original program.

3.4 Tail call optimisation

We can also model the effect of tail call optimisation by adding a special rule for it to

the transformation. The idea is to skip the construction of the unnecessary continua-

tion:

Γ `Σ f (x1, . . . ,xp) : T,x,unwind T (x,s) 7→ f (x1, . . . ,xp,s), /0

(C-FUNTAIL)

Before we prove that this rule behaves correctly, we first note the following useful

lemma (which is true regardless of whether we include C-FUNTAIL):

Lemma 3.10. In a transformation derivation the continuation expression is of the form

unwind T (x,s) iff the original expression is in tail position.

Proof. By induction on the depth of the CPS transformation. The only rule which can

introduce unwind T (x,s) is C-FUNBODY which transforms function definitions. This

corresponds exactly to the introduction of a true tail position flag in the operational

semantics.

Now suppose the lemma is true for an original expression in the transformation.

If it is a leaf expression — the C-UNIT, C-BOOL, C-VAR, C-PAIR, C-INL, C-INR,

C-CONSTRUCT, and C-FUN cases — then there are no subexpressions.

For the C-IF, C-MATCHPAIR, C-MATCHSUM and C-MATCH cases all the subex-

pressions are in tail position iff the current expression is. They are also transformed

with the same continuation expression, so the Lemma holds.

The remaining case is C-LET. The e2 subexpression follows by the same reason-

ing as the previous case. The e1 subexpression is not in tail position, and its con-

tinuation expression is the result of transforming e2. However, the result of a trans-

formation is never the continuation expression alone, and we have already remarked

that unwind T (x,s) is only introduced as a continuation expression when transform-

ing a function body. Thus the continuation expression for transforming e1 is not

unwind T (x,s).

Now we can show that the addition of the rule preserves correctness and predicts

the memory usage of programs under tail call optimisation.
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Theorem 3.11. With the addition of full tail call optimisation for the original pro-

gram’s evaluation and the C-FUNTAIL rule in the transformation,

1. the simulation result of Theorem 3.6 and Corollary 3.7, and

2. the memory usage result of Theorem 3.8 and Corollary 3.9

still hold.

Proof. We only need to consider the function application rules in the inductions. By

Lemma 3.10 only tail calls are affected by C-FUNTAIL and all other function calls are

unchanged. Thus we only consider expressions in tail position where C-FUNTAIL is

used. For part 1 note that the original program’s evaluation

[y1 7→ S(x1), . . . ,yp 7→ S(xp)],σ ` e f  v0,σ0
E-FUN-TAIL

S,σ ` f (x1, . . . ,xp) v0,σ0

and the transformed program’s (when using E-FUNTAIL)

[y1 7→ S(x1), . . . ,yp 7→ S(xp),s 7→ l],σ ` e f ′  v′,σ′
E-FUN-TAIL

S[s 7→ l],σ ` f ′(x1, . . . ,xp,s) v′,σ′

proceed in the same way because we do not form a new continuation. The result then

follows by the induction hypothesis on e f because it was also transformed with the

continuation expression unwind T (x,s).

For part 2, the evaluation of the transformed expression has the form

m ` e f ′  m′

E-FUN-TAIL
m ` f ′(x1, . . . ,xp,s) m′

because stack( f ′) = 0 by assumption. By the induction hypothesis on e f there exists

m0 such that

m+ms− stack( f ) `e f  m0 +ms− stack( f )

and m0 `unwind T (x,s) m′.

Now, by E-FUN-TAIL the space required for the function call in the original program

is m plus

(ms−stack( f ))+stack′(g, f , true)= ms−stack( f )+stack( f )−stack(g)= ms−stack(g)

so we have

m+ms− stack(g) ` f (x1, . . . ,xp) m0 +ms− stack(g)

and m0 `unwind T (x,s) m′,

as required.
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3.5 Examples and drawbacks

We now return to the examples from Section 2.2.4.

Example 3.12. Recall the notlist function:

let notlist l =

match l with nil’ -> nil

| cons(h,t)’ ->

let hh = if h then false else true in

let tt = notlist t in

cons(hh,tt)

The CPS transformation places the new list elements on the ‘stack’ and creates the list

as it is unwound:

let notlist’(l, s) =

match l with nil’ -> let x = nil in unwind_boollist(x,s)

| cons(h,t)’ ->

if h then let hh = false in

let s’ = C1(hh,s) in notlist’(t,s’)

else let hh = true in

let s’ = C1(hh,s) in notlist’(t,s’)

and contC1(tt,hh,s) = let x = cons(hh,tt) in unwind_boollist(x,s)

and unwind_boollist(x,s) = match s with C1(hh,s’) -> contC1(x,hh,s’)

| end -> x

with

Σ =



nil 7→ boollist,

cons 7→ bool,boollist→ boollist,

end 7→ stack,

C1 7→ bool,stack→ stack,

notlist′ 7→ boollist,stack→ boollist,

contC1 7→ boollist,bool,stack→ boollist,

unwind boollist 7→ boollist,stack→ boollist


.

The total memory usage of notlist’(l,end) will be at most

|l|×max{size(C1),size(cons)}+max f (stack( f )),
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because the list’s contents is built on the ‘stack’ using C1, then the list is constructed

as the stack is unwound, while at most max f (stack( f )) will be required to store local

variables.

If we assume that the sizes of the two data structures are both one, then the Hofmann-

Jost analysis yields the signatures

notlist′ : boollist(1),stack(1),0 → boollist(0),0

contC1 : boollist(0),bool,stack(1),1 → boollist(0),0

unwind boollist : boollist(0),stack(1),0 → boollist(0),0

confirming that |l| units of free heap space is required by the transformed program. If

we add the largest frame size as per Corollary 3.3 then it agrees with the total usage

above. This also bounds the total memory usage of the original program.

We can consider the stack space alone by setting size(cons) to zero. If we assume

that the closure’s size (that is, C1’s size) is equal to stack(notlist) then the stack

usage should be

|l+1|× stack(notlist).

Indeed the signatures are now

notlist′ : boollist(1),stack(0),0 → boollist(0),0

contC1 : boollist(0),bool,stack(0),0 → boollist(0),0

unwind boollist : boollist(0),stack(0),0 → boollist(0),0

showing that |l| heap-allocated frames are required by the transformed program. Fol-

lowing Corollary 3.3 again, we add another frame to get the expected total. Note that

the annotation on the stack types is now zero, because we no longer require memory

for the allocation of the new list. However, the overall bound on the stack space alone

is equal to the bound on total space, because the size of the free ‘stack’ space is large

enough to account for the allocation of the new list on the heap.

Example 3.13. The Hofmann-Jost analysis can be successfully applied to the result of

transforming the functional heap sort of Appendix A. Using a reasonable size model

for the data structures (one word for each integer or location, plus one for constructor

tags where necessary) we obtain a signature for the sorting function of

intlist(2),stack(. . .),11 → intlist(2),6.

This tells us that 11 + 2×|l| words of memory is sufficient to sort a list l. (We omit

the annotations on the stack type because they do not contribute to the bound on the
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free memory required at the start of the evaluation.) However, the bound on the free

memory afterwards is 5 words lower. We know from the heap-only analysis that all of

the extra heap memory is returned and the stack space must be returned at the end of

the evaluation. Thus the analysis is ‘losing track’ of the 5 words at some point.

Attempting to solve this mystery by examining the types is difficult because all the

functions have the same result type, ‘boollist(2),6’, rather than information about the

free memory after that function is evaluated. To get this information would require

examining the types of the unwind T functions and reasoning about the contents of

the closures. Fortunately the solution can be found by examining a similar problem in

Example 3.14 below.

Analysing the stack space alone gives a higher bound of 11 + 4× |l|. The stack

contains many partially broken up data structures and the total bound assumes that

the space from the deallocated structures can be counted against the stack space used.

Thus if stack space and heap space are not immediately interchangeable (as is often the

case in practice) more stack space is required. In such situations analysing the heap and

stack requirements separately gives a more useful account of memory requirements.

Example 3.14. Recall the id function introduced in the discussion on resource poly-

morphism on page 17, which uses notlist:

let id l = let notl = notlist l in notlist notl

Using the CPS transformation on the entire program the id portion becomes

let id’ l s = let s’ = C2(s) in notlist’ l s’

and contC2(notl,s) = notlist’ notl s

and ... [notlist’ as before] ...

and unwind_boollist(x,s) =

match s with C1(hh,s’) -> contC1(x,hh,s’)

| C2(s’) -> contC2(x,s’)

| end -> x

However, the Hofmann-Jost analysis fails (by producing an infeasible linear program).

The first obstacle is that our analysis of the original program in Chapter 2 relied on re-

source polymorphism. The CPS transformation places all of the functions into a single

mutually recursive block, so our resource polymorphism mechanism is no longer ap-

plicable. We can overcome this by recalling that resource polymorphism is equivalent

to duplicating the function in question, so we use two copies of notlist.
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Unfortunately, this is still not sufficient for the analysis to produce a bound. Con-

sider the type of the lists produced by each call to notlist in the original program.

The first is

boollist(size(cons))

because we require enough potential to allocate the second list. The second type is

boollist(0)

because no further allocations are performed, so no potential is required. However,

every function which produces a boollist value calls the same unwind boollist function,

forcing the types’ annotations in the transformed program to be the same throughout.

Thus the generated linear program is unfeasible because size(cons) 6= 0. That is, the

change in potential and the type equality cannot be satisfied simultaneously.

We can work around this problem by duplicating the unwind boollist function once

for each notlist function and removing the unused cases from each copy. That is,

after duplicating notlist we have

...

and unwind_boollist(x,s) =

match s with C1(hh,s’) -> contC1(x,hh,s’)

| C2(s’) -> contC2(x,s’)

| C3(hh,s’) -> contC3(x,hh,s’)

| end -> x

and we then produce:

...

and unwind_boollist1(x,s) =

match s with C1(hh,s’) -> contC1(x,hh,s’)

| C2(s’) -> contC2(x,s’)

and unwind_boollist2(x,s) =

match s with C3(hh,s’) -> contC3(x,hh,s’)

| end -> x

These can be given different signatures, one where x is given the type boollist(size(cons))

and one where it is boollist(0), as required.

However, further complicating the transformation to recover the power of the orig-

inal analysis does not seem worthwhile if a more direct approach is successful.
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On a more positive note, analysing the stack space alone using the transformed

program does yield a bound because no resource polymorphism is required.

The trick of manually partitioning the unwind T functions also works on the heap

sort example, recovering the missing 5 words from the bound on the free memory after

evaluation.

3.6 Summary

The CPS transformation does provide useful bounds on total memory usage, both when

used as part of the compilation process and when performed purely for the analysis.

However, to allow a similar range of programs to be analysed as the heap-only analysis

would require a yet more complex transformation to perform the function duplication

and partitioning of the stack unwinding functions sufficient to replace resource poly-

morphism. This additional complexity is undesirable, and coupled with the difficulty

in relating the inferred types to the original program we conclude that a more direct

analysis is preferable. We pursue this in the following chapters.



Chapter 4

A direct adaption of Hofmann-Jost

Our attempt to avoid changing the analysis itself by considering programs in an inter-

mediate CPS language succeeded in providing stack memory bounds and total memory

bounds for some programs, but would require a yet more complex transformation to

reach the applicability of the heap-only analysis. Thus we now consider how to adapt

the analysis directly, without transforming the program.

The principle used in this chapter is to reflect the changes in stack memory alloca-

tion in the operational semantics as changes in the potential in the type system, in the

same way that heap allocation is handled in the plain Hofmann-Jost analysis.

4.1 Simple adaption

We briefly consider the operational semantics without tail call optimisation to illustrate

the principle without too much notational clutter. First, recall the evaluation and typing

rules for constructing a (non-null) data structure:

s = (c,S(x1), . . . ,S(xp)) c /∈ nullc l 6∈ dom(σ)
m+ size(c),S,σ ` c(x1, . . . ,xp) l,σ[l 7→ s],m

(E-CONSTRUCT)

Σ(ci)[k] = T1, . . . ,Tp,ki → ty(k)
Φ = {n ≥ size(ci)+ ki +n′}

Γ,x1 : T1, . . . ,xp : Tp,n `Σ,F ci(x1, . . . ,xp) : ty(k),n′ |Φ
(CONSTRUCT)

When typing the same term, c = ci, and so size(ci) = size(c), the size of the allocation.

Therefore the typing rule ensures that the overall potential drops by at least the size of

the allocation. (The ki term in the constraint does not change the overall potential, but

instead compensates for the enlargement of the data structure.)

53
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We wish to adjust the function application rules FUN and FUNDEF in a similar

way to reduce the potential during the function call by the size of the extra stack space

required in the evaluation rule:

S(x1) = v1 . . . S(xp) = vp m, [y1 7→ v1, . . . ,yp 7→ vp],σ ` e f  v,σ′,m′

the yi are the symbolic arguments in the definition of f
m+ stack( f ),S,σ ` f (x1, . . . ,xp) v,σ′,m′+ stack( f )

(E-FUN)

The existing FUNDEF rule from Section 2.2.2 is:

f /∈ F Σ( f ) = T1, . . . ,Tp,k → T,k′|Φ′

Φ = {n ≥ k,n− k + k′ ≥ n′}
Γ,x1 : T1, . . . ,xp : Tp,n `Σ,F f (x1, . . . ,xp) : T,n′ |Φ

(FUNDEF)

The function signature Σ( f ) tells us the potential required to execute the function body,

p

∑
i=1

ϒ(σ,S(xi),Ti)+ k,

and the potential subsequently produced, ϒ(σ′,v,T )+k′. The fixed amounts k and k′ in

the signature are related to those in the judgement, n and n′, by the constraints Φ. We

will change these constraints to require stack( f ) more units of potential, and ‘release’

it again afterwards. Thus the first constraint becomes n ≥ k + stack( f ). The second is

unchanged because

n− (k + stack( f ))+(k′+ stack( f )) = n− k + k′,

that is, the stack required and released cancel out. We treat FUN in the same way,

giving us the new rules:

f ∈ F Σ( f ) = T ′
1, . . . ,T

′
p,k → T ′,k′|Φ′ ρ(T ′

i ) = Ti ρ(T ′) = T
Φ = ρ(Φ′)∪{n ≥ ρ(k) +stack( f ) ,n−ρ(k)+ρ(k′)≥ n′}

Γ,x1 : T1, . . . ,xp : Tp,n `Σ,F f (x1, . . . ,xp) : T,n′ |Φ
(FUN′)

f /∈ F Σ( f ) = T1, . . . ,Tp,k → T,k′|Φ′

Φ = {n ≥ k +stack( f ) ,n− k + k′ ≥ n′}
Γ,x1 : T1, . . . ,xp : Tp,n `Σ,F f (x1, . . . ,xp) : T,n′ |Φ

(FUNDEF′)

Example 4.1. Consider the analysis of the notlist function from Section 2.2.4 (page 25).

The recursive function call is now typed as

Φ1 = {n4 ≥ n1 + stack(notlist),n4−n1 +n2 ≥ n5}
FUNDEF′

t : boollist(k1),n4 `Σ, /0 notlist t : boollist(k2),n5 |Φ1



Chapter 4. A direct adaption of Hofmann-Jost 55

with the remainder of the derivation the same as before. The minimal solution will

have the form

n1 = n2 = 0, n3 = n4 = n5 = k1 = max{stack(notlist),size(cons)}, k2 = 0,

notlist : boollist(max{stack(notlist),size(cons)}),0 → boollist(0),0.

The maximum is taken because the stack space is returned before the allocation occurs.

As usual, if we want independent heap and stack bounds then we can perform the

analysis twice, setting stack(notlist) and size(cons) equal to zero in turn.

Note that the function signature does not include the stack frame from the initial

call to notlist. This is included in the typing of the caller. For a bound on the whole

program (that is, a call to the ‘initial function’ f ) we add stack( f ) to the bound from

the function signature, in accordance with the FUN typing rule.

Example 4.2. The function

let every l = match l with nil’ -> true

| cons(h,t)’ -> if h then every t

else false

computes the conjunction of all the elements of a boolean list. Without tail call opti-

misation each recursive every t call requires stack(every) units of free space:

Dcons =
FUNDEF′

t : boollist(k),n1 `Σ, /0 every t : bool,n′ |Φ1
BOOL

t : boollist(k),n1 `Σ, /0 false : bool,n′ |Φ2
IF

h : bool,t : boollist(k),n1 `Σ, /0 if · · · : bool,n′ |Φ3

BOOL
·,n `Σ, /0 true : bool,n′ |Φ4

CASE′

· p boollist(k),n `Σ, /0 nil
′→ ··· : bool,n′ |Φ4

Dcons
CASE′

· p boollist(k),n `Σ, /0 cons(h,t)′→ ··· : bool,n′ |Φ5
MATCH

l : boollist(k),n `Σ, /0 match l · · · : bool,n′ |Φ6

Φ1 = {n1 ≥ n+ stack(every)}, Φ2 = {n1 ≥ n′}, Φ3 = Φ1∪Φ2,

Φ4 = {n ≥ n′}, Φ5 = Φ3∪{n1 = n+ k}, Φ6 = Φ4∪Φ5,

with a minimal solution of

n = n′ = 0, n1 = k = stack(every),

every : boollist(stack(every)),0 → bool,0.

Due to the lack of tail call optimisation, this linear memory bound from the analysis is

exactly the amount required according to the operational semantics.
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4.2 Tail call optimisation

We can apply the same principle with the tail call optimisation semantics from Sec-

tion 2.1.2. Recall the function application rule:

S(x1) = v1 . . . S(xp) = vp m, [y1 7→ v1, . . . ,yp 7→ vp],σ ` f ,true e f  v,σ′,m′

the yi are the symbolic arguments in the definition of f
m+ stack′(g, f , t),S,σ `g,t f (x1, . . . ,xp) v,σ′,m′+ stack′(g, f , t)

(E-FUN-TAIL)
The amount of allocated memory now changes by stack′(g, f , t), which also depends

on the tail position part of the judgement, t. Thus in addition to changing the function

application rules in the type system we need to add the tail position marking that is

present in the operational semantics to the typing rules. In particular, the LET and

function definition rules need to set the tail position appropriately. These rules now

become:

f ∈ F Σ( f ) = T ′
1, . . . ,T

′
p,k → T ′,k′|Φ′ ρ(T ′

i ) = Ti ρ(T ′) = T
Φ = ρ(Φ′)∪{n ≥ ρ(k) +stack′(g, f , t) ,n−ρ(k)+ρ(k′)≥ n′}

Γ,x1 : T1, . . . ,xp : Tp,n `
g,t

Σ,F f (x1, . . . ,xp) : T,n′ |Φ
(FUN-TAIL)

f /∈ F Σ( f ) = T1, . . . ,Tp,k → T,k′|Φ′

Φ = {n ≥ k +stack′(g, f , t) ,n− k + k′ ≥ n′}

Γ,x1 : T1, . . . ,xp : Tp,n `
g,t

Σ,F f (x1, . . . ,xp) : T,n′ |Φ
(FUNDEF-TAIL)

Γ1,n `
f ,false

Σ,F e1 : T0,n0 |Φ1 Γ2,x : T0,n0 `
f ,t

Σ,F e2 : T,n′ |Φ2

Γ1,Γ2,n `
f ,t

Σ,F let x = e1 in e2 : T,n′ |Φ1∪Φ2
(LET-TAIL)

Σ( f ) = T1, . . . ,Tp,k → T,k′|Φ x1 : T1, . . . ,xp : Tp,k `
f ,true

Σ,F e f : T,k′ |Φ
`Σ,F f (x1, . . . ,xp) = e f ⇒{ f}

We defer the formal soundness proof until the next chapter because it is a consequence

of the theorem for the extended type system presented there. Informally, we have

extended both the operational semantics and the Hofmann-Jost system with extra costs

in the same way. This close correspondence preserves the soundness of the type system

and thus the inferred bounds.

It would also be sound to use a more conservative (that is, larger) stack′ in the

analysis than the operational semantics. This can allow for variations between imple-

mentations, or minor optimisations that are not modelled by the analysis. Moreover, if
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we fix stack′( f ,g, t) = stack(g) we get the analysis without tail call optimisation from

the previous section.

Example 4.3. The notlist function’s typing derivation now has the form

D1 =
BOOL

− `false
Σ, /0 false : −

BOOL
− `false

Σ, /0 true : −
IF

− `false
Σ, /0 if · · · : −

D2 =
FUNDEF-TAIL

− `false
Σ, /0 notlist t : −

CONSTRUCT
− `true

Σ, /0 cons · · · : −
LET-TAIL

− `true
Σ, /0 let tt · · · : −

CONSTRUCT
− `true

Σ, /0 nil : −
CASE′

− `true
Σ, /0 nil′→ nil : −

D1 D2
LET-TAIL

− `true
Σ, /0 let hh · · · : −

CASE′

− `true
Σ, /0 cons(h,t)′→··· : −

MATCH
− `true

Σ, /0 match · · · : −

`Σ, /0 notlist l = . . .⇒{notlist}

`Σ, /0 let notlist l = . . .

The recursive call is not in tail position, so

Φ1 = {n4 ≥ n1 + stack′(notlist,notlist, false),n4−n1 +n2 ≥ n5},

and stack′(notlist,notlist, false) = stack(notlist). Therefore the constraints are

the same as for the simple adaption, and we get the same total and stack space bounds.

Example 4.4. The every function’s typing derivation now has the form

BOOL
− `true

Σ, /0 true : −|−
CASE′

− `true
Σ, /0 nil′→ ··· : −|−

FUNDEF-TAIL
− `true

Σ, /0 every t : −|−
BOOL

− `true
Σ, /0 false : −|−

IF
− `true

Σ, /0 if · · · : −|−
CASE′

− `true
Σ, /0 cons(h,t)′→ ··· : −|−

MATCH
− `true

Σ, /0 match l · · · : −|−

Every expression, including the recursive call, is in tail position. So under the reason-

able assumption that stack′(every,every, true) = 0, solving the resulting constraints

will give the type signature

every : boollist(0),0 → bool,0.

Thus any call to every requires only enough memory for the stack frame for the initial

call to every; namely, stack(every) units of space.
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Example 4.5. The total memory usage of the id function from Example 3.14 can now

be analysed directly (in contrast to our attempt with the CPS transform). The resource

polymorphism allows the type signatures for the two notlist calls to differ. In an

optimal solution to the generated linear program these will be

notlist : boollist(k1),0 → boollist(k2),0

notlist : boollist(k2),0 → boollist(0),0

where k2 = max{stack(notlist),size(cons)}

k1 = max{stack(notlist),size(cons)+ k2}= size(cons)+ k2,

because at the first call we must have enough potential to perform the recursive call

(stack(notlist)), then allocate the new list element (size(cons)) and provide enough

potential through the new list’s type annotation for the second call (k2).

Thus id will be given the signature

id : boollist(k1),stack(notlist)→ boollist(0),stack(notlist),

and so evaluating id l will require k1 × |l|+ stack(notlist) + stack(id) units of

space, which is a tight bound on the total space required.

4.3 Limitations

The above examples show the analysis performing well in a few simple functions. To

gain a better understanding of how well the analysis performs in general we need to

consider features of programs that are not well represented by those examples. Three

classes which we look at here are programs for which linear bounds on stack space are

necessarily overestimates; functions which build their results during recursion (using

an accumulator); and larger programs composed from functions for which we can find

reasonable bounds on their own.

Note that the limitations we encounter also affect the analysis using CPS transfor-

mation from the previous chapter. The CPS method of obtaining stack bounds uses the

Hofmann-Jost analysis unchanged, which shows that these limitations also affect the

analysis of heap space with Hofmann-Jost where stack-like allocation of data struc-

tures occurs.

Sub-linear bounds are often the case for the manipulation of tree structures (for

example, the heap in the heap sort example, or the handling of an abstract syntax tree
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for a language), and require stack space in proportion to the depth of the data struc-

ture. Such bounds cannot be expressed in our current analysis because the potential

functions use total sizes and the typing rules work on per-element amounts of poten-

tial, implicitly requiring us to measure total sizes. We will consider how to lift these

restrictions in Chapter 6.

To examine functions which use accumulators we consider the classic reverse-and-

append function:

Example 4.6. The function

let revapp(r,a) = match r with nil -> a

| cons(h,t) -> let a’ = cons(h,a)

in revapp(t,a’)

reverses r and appends the result to a. The original r is deallocated in the process. The

function can be typed by the following derivation (we omit the g,Σ,F from `g,t
Σ,F and

present the constraints afterwards for clarity):

Drevapp = FUNDEF-TAIL
t : T list(kr),a′ : T list(ka),n2 `true revapp · · · : T list(ka),n′

Dcons =

CONSTRUCT
h : T,a : T list(ka),n1 `false cons · · · : T list(ka),n2 Drevapp

LET-TAIL
h : T,t : T list(kr),a : T list(ka),n1 `true let · · · : T list(ka),n′

CASE
a : T list(ka),n p T list(kr) `true cons(h,t)→ ··· : T list(ka),n′

VAR
a : T list(ka),n `true a : T list(ka),n′

CASE
a : T list(ka),n p T list(kr) `true nil→ a : T list(ka),n′ Dcons

MATCH
r : T list(kr),a : T list(ka),n `true match · · · : T list(ka),n′

where

Σ(notlist) = T list(kr),T list(ka),n → T list(ka),n′.

The constraints accumulated from the typing rules are:

{n ≥ n′, from VAR

n1 = n+ kr + size(cons), from CASE for cons

n1 ≥ size(cons)+ ka +n2, from CONSTRUCT

n2 ≥ n+ stack′(revapp,revapp, true),

n2 ≥ n′}

}
from FUNDEF-TAIL
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Note that the function call does not require any constraints on kr or ka because the

annotations in the context match those in the function signature. In general we would

add weakening of the annotations using SHARE where this is not the case.

If we allow tail call optimisation the function runs in-place, with

n = n′ = n2 = 0, n1 = size(cons)+ kr, kr = ka for any ka.

Now suppose that we have no tail call optimisation, so stack′(revapp,revapp, true)=

stack(revapp). The only way to express the (linear) cost of the recursive function calls

is the potential of the list kr, via n1 and n2. During evaluation, the stack memory is

— as always — returned afterwards, but note that the construction of the new list cell

occurs before the function call. Hence the potential for the result, ka, cannot include

the potential for the function call, n2, because of the constraint from CONSTRUCT.

Solutions thus take the form

n = n′ = 0, n1 = size(cons)+kr, n2 = stack(revapp), kr = ka+stack(revapp) for any ka,

so we require at least (stack(revapp)+ka)×|r|+ka×|a| units of stack space, but our

bound on the amount afterwards is only ka times the length of the result. The analysis

‘loses track’ of the other stack(revapp)×|r| units of space.

Accumulating parameters are typically used to facilitate tail recursion. This means

that this problem rarely occurs, and we defer a full treatment of accumulating param-

eters to further work (see Section 9.1.3). However, the extension presented in the next

chapter will aid some examples.

Finally, we consider what happens when the analysis is applied to larger programs.

One limitation is that we only ever sum the potential for variables in the typing context.

For instance, if we have a context

a : boollist(ka),b : boollist(kb)

the resulting bound will be of the form ka × |a|+ kb × |b|1. However, if we call a

function which performs recursion over a, and afterwards one which recurses over b,

then the real stack space requirements will be of the form max{ka×|a|,kb×|b|}. We

will consider expressing such bounds precisely in Chapter 6, along with the treatment

of bounds which use the depth of data structures.

1Finding an optimal solution for the generated linear program may implicitly assign the maximum
of some fixed values to ka or kb, as in Example 4.5. But we cannot obtain bounds which include the
maximum of the size of two variables such as |a| and |b| in the present system.
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There is another limitation on the form of the bounds which affects larger pro-

grams:

Example 4.7. The heap sort program uses a tail recursive list length function to help

build the heap. If we change it to a version which is not tail recursive then the stack

bound is overestimated. To see why, consider the function’s signature:

length : intlist(k),n → int,n′

Given a list l, the stack memory bound will have the form k× |l|+ n, and choosing

k = stack(length) is sufficient to satisfy the constraints. However, the bound on the

free memory afterwards can only be a fixed amount, n′, because no potential is given to

integer values. Thus there is no way to express the fact that the k×|l| units of memory

are free again, so the analysis ‘loses track’ of it. This results in an overestimate for the

whole heap sort implementation because the reuse of that stack space cannot be taken

into account.

We will consider this problem in more detail in the next chapter.



Chapter 5

Accounting for stack space reuse

At the end of the previous chapter we noted that the analysis could not express some

bounds on the free stack memory after evaluating a function. In particular, the ‘poten-

tial’ functions that give the bound are defined only in terms of the result’s size. This

is a problem when the stack memory used cannot be expressed in terms of the result’s

size alone, or we wish to assign the potential to a later use of one of the arguments.

In this chapter we construct an extended version of the space usage analysis where

the potential after evaluation can be given in terms of the size of the result and the

arguments.

5.1 Motivation

The temporary nature of stack memory usage leads to a loss of precision in the analysis

presented in Chapter 4. To understand the problem we consider a pair of examples.

First, we revisit the list length function from the last chapter.

(In these examples we estimate only the stack memory because the problem affects

stack space analysis more acutely, so let size(c) = 0 and stack( f ) = 1 for all c, f for

these examples. We will show that the extended analysis is sound for both stack and

heap memory bounds, however. The extension we will present can also provide some

benefit when heap memory is used in a stack-like fashion.)

Example 5.1. Consider the non-tail-recursive list length function,

let length l = match l with nil’ -> 0

| cons(h,t)’ -> let n = length t in 1+n

length : intlist(k),n → int,n′ | {k ≥ 1,n ≥ n′}

62
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where one stack frame per element (i.e. |l| frames) is required. This stack memory is

free again after the function returns, but this is not reflected in the function’s annotated

signature — there is no annotation on the result’s type that is capable of representing

|l| frames. Should we attempt to use the function twice on the same argument,

let twicelength l = let n1 = length l in

let n2 = length l in n1+n2

then the same stack memory suffices for both calls to length. However, the SHARE

rule is used to perform contraction of l in the typing, as follows:

l1 : intlist(k1),l2 : intlist(k2),n `true
Σ,F

let n1 = length l1 in

let n2 = length l2 in n1+n2 : int,n′
|Φ

SHARE

l : intlist(k),n `true
Σ,F

let n1 = length l in

let n2 = length l in n1+n2 : int,n′
|Φ∪{k = k1 + k2}

This sums the memory requirements for each use of l, so the resulting function signa-

ture is

twicelength : intlist(k),n → int,n′ | {k ≥ 2,n ≥ 1,n ≥ n′},

giving a bound of 2× |l|+ 1. So the best stack memory bound on twicelength

is almost twice the actual usage, and again the annotated function signature cannot

indicate that the stack memory used is free again after the function returns.

We also need to consider more subtle cases where new data structures are created

and they require enough potential to account for memory requirements of later stages

of the program.

Example 5.2. The function

let andlists (l1, l2) = match l1 with nil’ -> nil | cons(h1,t1)’ ->

match l2 with nil’ -> nil | cons(h2,t2)’ ->

let h = if h1 then h2 else false in

let t = andlists(t1, t2) in

cons(h,t)

computes the pairwise boolean ‘and’ of two lists. The size of either list would be a

reasonable upper bound on the number of stack frames required because the actual

number used is the size of the shorter list. The function signature reflects this estimate

by requiring a non-zero annotation on at least one of the two arguments:

andlists : boollist(k1),boollist(k2),n → boollist(k1 + k2),n′ |{k1 + k2 ≥ 1,n ≥ n′}.
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Note that we get a reasonable estimate on the free memory afterwards from the k1 +k2

annotation on the result.

Now consider using andlists twice, with the same first argument:

let andlists2 (l1,l2,l3) = let r1 = andlists (l1,l2) in

let r2 = andlists (l1,l3) in (r1, r2)

The actual stack bound is min{|l1|,max{|l2|, |l3|}}+ 1 frames, so one bound we

might expect the analysis to be able to produce is |l1|+1. However, the signature we

obtain is:

andlists2 : boollist(kl1 + kl1′),boollist(kl2),boollist(kl3),n →
boollist(kr1)⊗boollist(kr2),n′

| {kl1 + kl2 ≥ 1, kl1′ + kl3 ≥ 1, kl1 + kl2 ≥ kr1, kl1′ + kl3 ≥ kr2, n ≥ 1, n ≥ n′}

because l1’s annotation kl1 + kl1′ is split between its two uses by the SHARE rule. So

while |l1|+ 1 is a bound on the actual stack usage, the best bound from the typing is

2×|l1|+1.

Ideally, we ought to be able to reuse the potential from kl1 in place of the extra kl1′ ,

but with the present system we can only assign the potential to the result, in the form

of the kr1 annotation.

There are two approaches to extending the potential functions to express tighter

bounds for these situations. We could annotate more types and extend the potential

function ϒ accordingly. In particular, we could annotate the int types and assign val-

ues potential proportional to their magnitude. This would enable us to express a tight

bound on the stack memory after evaluating length l. However, it would not help

with twicelength because the analysis does not attempt to capture the size relation-

ship between the integer n1 and the list l. Thus assigning potential to n1 does not help

with the second use of l. Moreover, it does not help with the andlists example at all.

Hence, we leave this idea to future work.

Instead, let us consider extending the calculation of the post-evaluation bounds by

including the arguments as well as the result. The simplest form of this would be to

restrict our attention to stack space and note that we always get back all the free stack

memory required for any function call, and so we can simply reuse the old assignment

of potential.

For instance, in this hypothetical analysis we could type the two function applica-

tions in twicelength in the same way by reusing the original assignment of potential
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to l:

l : intlist(k),n `false
Σ,F length l : int,n0 |Φ1

l : intlist(k),n1 : int,n `true
Σ,F let n2 = · · · : int,n′ |Φ2

HYP-LET
l : intlist(k),n `true

Σ,F let n1 = · · · : int,n′ |Φ1∪Φ2

Note that the potential in the result of the first length l, n0, is ignored. Instead we use

the original assignment to l and n (in contrast to our previous typing using SHARE).

We could then get the signature

twicelength : intlist(1),1 → int,1,

which means a bound of |l|+ 1 for twicelength l, which is the actual number of

stack frames required.

When typing andlists2 in such a system, however, we may need to assign po-

tential to the result to satisfy some later use. The two calls to andlists could be

typed

l1 : boollist(1),l2 : boollist(0),1 `false
Σ,F andlists(l1,l2) : boollist(0),1

l1 : boollist(1),l3 : boollist(0),1 `false
Σ,F andlists(l1,l3) : boollist(1),1

reusing the old assignment of potential to l1 after the first call, but passing it on to r2

on the second. This suggests that during inference we would need to make a binary

decision at each function application; namely whether to use the old assignment of

potential or to assign it to the result instead. This may require an exponential search

for the optimal stack memory bound. Also, it forbids splitting the potential between

the arguments and the result.

Thus we opt for a more complex system, which uses extra annotations to assign

potential to the arguments after evaluation, while still producing constraints which

form a linear program and so avoid the binary choices. We also retain the ability to

bound the heap space usage in the system because we do not need to assume that

allocation follows a stack discipline.

5.2 The ‘give-back’ analysis

We extend the analysis from Chapter 4 by adding an extra give-back annotation for

each data type annotation in the original system. These new annotations represent the

potential assignment to variables after the evaluation of the expression. To illustrate
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the idea, consider the examples above. For the list length functions in Example 5.1 we

will obtain the function signatures

length : intlist(1 1),0 → int,0

twicelength : intlist(1 1),1 → int,1

which mean that each function requires one stack frame per list element (plus an extra

frame for twicelength), and that same amount of potential is available for later uses

of the list. In particular, both uses of l in twicelength use the same potential, because

the signature of length says that we can reuse it.

For Example 5.2 there are several possibilities for the typing, depending upon the

requirements for later parts of the program. For each case we will show the typing

judgements for the two andlists calls and the corresponding function signature for

andlists2. One choice is to reassign all of the potential to the original list:

l1 : boollist(1 1),l2 : boollist(0 0),1 `false
Σ,F andlists(l1,l2) : boollist(0 0),1

l1 : boollist(1 1),l3 : boollist(0 0),1 `false
Σ,F andlists(l1,l3) : boollist(0 0),1

andlists2 : boollist(1 1),boollist(0 0),boollist(0 0),1

→ boollist(0 0)×boollist(0 0),1

Another is to reuse the potential on l1 internally, but assign the final potential to part

of the result:

l1 : boollist(1 1),l2 : boollist(0 0),1 `false
Σ,F andlists(l1,l2) : boollist(0 0),1

l1 : boollist(1 0),l3 : boollist(0 0),1 `false
Σ,F andlists(l1,l3) : boollist(1 0),1

andlists2 : boollist(1 0),boollist(0 0),boollist(0 0),1

→ boollist(0 0)×boollist(1 0),1

(In this extension we can only assign the potential to the part of the result evaluated last

(r2) unless we also increase the overall memory bound. When we consider introduc-

ing maximums into the potential functions in later chapters we will be able to assign

potential to the first part of the result, too.)

Our final instance is to split the potential between the argument and the result:

l1 : boollist(1 1),l2 : boollist(0 0),1 `false
Σ,F andlists(l1,l2) : boollist(0 0),1

l1 : boollist(1 1
2),l3 : boollist(0 0),1 `false

Σ,F andlists(l1,l3) : boollist(1
2  0),1



Chapter 5. Accounting for stack space reuse 67

andlists2 : boollist(1 1
2),boollist(0 0),boollist(0 0),1

→ boollist(0 0)×boollist(1
2  0),1

Notice that the result types also have give-back annotations. These have a slightly

different meaning — they indicate that there may be some ‘overlap’ between the po-

tential assigned to the result and the potential assigned to the arguments. To understand

why such overlaps can be useful, consider the following functions:

let tail l = match l with cons(h,t)’ -> t

let andtail (l1,l2) = let t1 = tail l1 in andlists(t1,l2)

One stack frame per element of l1 is sufficient to evaluate andtail and we expect that

the potential can be given back to l1 after evaluation:

andlists : boollist(1 1),boollist(0 0),0 → boollist(0 0),0,

andtail : boollist(1 1),boollist(0 0),1 → boollist(0 0),1.

What, then, should the signature of tail be? It must indicate that l1 can be reas-

signed its potential (using the annotations 1 1), but only if t1 can be reassigned its

potential after evaluating andlists (again, by the type annotations 1 1). Thus we

give tail the signature

tail : boollist(1 1),0 → boollist(1 1),0,

which we take to mean that l1 can be reassigned 1 unit of potential per element after

we have finished using t1. More precisely, we require that we only reassign the ‘given-

back’ potential to l1 once we have evaluated an expression whose result does not

contain any part of l1, because our analysis will ensure that distinct values do not have

any overlap in potential.

As andlists(t1,l2) returns a freshly allocated list, the result does not contain

any part of l1 and so we can assign the next use of l1 the same amount of potential it

had before. In general we will use the heap separation condition derived from a safety

analysis for this (as we noted in Section 2.1).

Major changes to the typing rules from the analysis in Chapter 4 are only required

in two places. First, we must introduce a new form of contraction which reassigns

the given-back potential where possible. We need to ensure that the two uses of the

variable occur sequentially, so we add the new contraction to the LET typing rule, and

we will add a side condition to prevent overlapping between those variables and the

result of the first subexpression.
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Second, we will adjust the pattern matching rules, CASE and CASE′, to ‘reserve’

the given-back potential in proportion to the data structure’s size.

5.2.1 Definition

The annotated types in our new system are

Ta := 1 | bool | Ta⊗Ta | (Ta,kl)+(Ta,kr) | ty(k k′),

where kl and kr are constraint variables and k k′ is a tuple of pairs of constraint

variables. This differs from Hofmann-Jost in that all of the annotations in an algebraic

datatype ty(k k′) now come in pairs, ki  k′i. The first annotation ki in each pair

plays the same role as before. The second annotation in each pair, k′i, determines the

given-back potential, as outlined above. Function signatures have the same form as

before:

Σ( f ) = T1, . . . ,Tp,k → T,k′ |Φ

Constructor signatures now have the form

Σ(ci) = ∀k k′.T1, . . . ,Tp,ki k′i → ty(k k′)

To avoid cluttering the typing rules with extra constraints we adopt the conven-

tion that for any pair of annotations k k′ used in the typing we implicitly add the

constraint

k ≥ k′

to the linear program. This bounds the give-back annotation k′ for unused variables.

When reassigning the given-back potential we need to show that there is no overlap

with the potential assigned to the result. As discussed above, we use the heap sepa-

ration condition from the safety analysis for this. However, some values are not heap

allocated and so the separation condition is not useful for them. Thus we do not pro-

vide give-back annotations for sum types, and also adopt the convention that for any

constructor represented by null (that is, any ci ∈ nullc) we add the constraint

k′i = 0

to the linear program (where Σ(ci)[k k′] = ki k′i → ty(k k′)).

This is a mild restriction because only a fixed amount of potential is involved,

which can be represented by the fixed amount of potential in the typing judgements

instead.
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To calculate the potential prior to evaluation we use the same function as Hofmann-

Jost, ignoring the new give-back annotations:

ϒ : heap× val×Ta →Q+,

ϒ(σ,∗,1) = ϒ(σ, true,bool) = ϒ(σ, false,bool) = 0

ϒ(σ,(v′,v′′),T ′⊗T ′′) = ϒ(σ,v′,T ′)+ϒ(σ,v′′,T ′′),

ϒ(σ, inl(v),(T ′,k′)+(T ′′,k′′)) = k′+ϒ(σ,v,T ′),

ϒ(σ, inr(v),(T ′,k′)+(T ′′,k′′)) = k′′+ϒ(σ,v,T ′′),

ϒ(σ,null, ty(k k′)) = ki where c ∈ nullc

and Σ(c)[k k′] = ki k′i → ty(k k′),

ϒ(σ, l, ty(k k′)) =
p

∑
i=1

ϒ(σ\ l,vi,Ti)+ k j,

where σ(l) = (c,v1, . . . ,vp),

and Σ(c)[k k′] = T1, . . . ,Tp,k j k′j → ty(k k′).

To define the potential after evaluation we also use an extra potential function for the

give-back annotations:

ϒ
′ : heap× val×Ta× loc→Q+

ϒ
′(σ,∗,1, l) = ϒ

′(σ, true,bool, l) = ϒ
′(σ, false,bool, l) = 0

ϒ
′(σ,(v′,v′′),T ′⊗T ′′, l) = ϒ

′(σ,v′,T ′, l)+ϒ
′(σ,v′′,T ′′, l)

ϒ
′(σ, inl(v),(T ′,k′)+(T ′′,k′′), l) = ϒ

′(σ,v,T ′, l)

ϒ
′(σ, inr(v),(T ′,k′)+(T ′′,k′′), l) = ϒ

′(σ,v,T ′′, l)

ϒ
′(σ,null, ty(k k′), l) = 0

ϒ
′(σ, l′, ty(k k′), l) =

p

∑
i=1

ϒ
′(σ\ l′,vi,Ti, l)+

{
k′j if l′ = l

0 otherwise

where σ(l) = (c,v1, . . . ,vp),

and Σ(c)[k k′] = T1, . . . ,Tp,k j k′j → ty(k k′).

In order to eliminate overlaps, ϒ′ is defined per heap location l. The overall post-

evaluation potential is the ‘normal’ potential of the result using ϒ, plus the give-back

potential less the amount that it overlaps with the result’s potential:

n′+ϒ(σ′,v,T )+ ∑
l∈loc

max{0,ϒ′(σ,S,Γ, l)−ϒ
′(σ′,v,T, l)},

for a typing judgement Γ,n `g,t
Σ,F e : T,n′ |Φ and evaluation S,σ ` e  v,σ′. The

max{0, . . .} part is to prevent freshly allocated parts of the result interfering with
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the total potential. We will be able to use the separation condition to eliminate the

ϒ′(σ′,v,T, l) term in the soundness proof, removing the overlap.

The typing rules for expressions in the give-back system are presented in Fig-

ures 5.1 and 5.2. They are based on the stack and heap analysis from Chapter 4 and

only the three highlighted rules, LET-GB, CASE′-GB and CASE-GB, have changed

significantly from the earlier system. The remainder of the rules do not involve the

new annotations directly, and we only need the extended definition for ⊕ in Figure 5.3.

The typing rules for functions and programs are presented in Figure 5.4 where the only

change is to include the tail position information.

Note that we retain the original contraction rule SHARE because the LET-GB form

we have introduced cannot be used in some circumstances; for example, the uses of l

in andlists(l,l) do not occur sequentially, and so we must use SHARE.

Our replacement rule for let expressions, LET-GB, takes advantage of the give-

back annotations. For each of the variables appearing in the subcontext ∆, it reassigns

the potential represented by the give-back annotation in ∆1 to the use of the variable

in the second subexpression ∆2. To deal with the overlapping potential issue discussed

above we have a side condition requiring that the variables involved in the contraction

are separate from the subexpression’s result.

We presumed in Section 2.1 the availability of ‘benign sharing’ analyses that can

give a conservative estimate of the set of variables satisfying the separation condition.

For instance, Konečný’s DEEL typing (Konečný, 2003) can be used. Thus we can use

this set during type inference to decide which variables from the context to put into ∆.

The 4-place relation · = · � · | · in Figure 5.5 formalises the use of the give-back

annotations. Informally, ∆ = ∆1 � ∆2 |Φ means that if the constraints in Φ are satisfied

and we are given a context ∆, then we can use ∆1 when typing one expression, then

∆2 in a subsequent expression — with ∆2 using the given-back potential in ∆1. For

example, if we are typing some let y = e1 in e2 expression with the context ∆ = x :

boollist(k k′) then we have

∆ = ∆1 � ∆2 |Φ� ∆1,n ` e1 : T0,n0 |Φ1 ∆2,y : T0,n0 ` e2 : T,n′ |Φ2
LET-GB

∆,n ` let y = e1 in e2 : T,n′ |Φ�∪Φ1∪Φ2

assuming that the result of e1 is separate from x, and ∆i = x : boollist(ki  k′i). The

judgement for � yields the constraints

Φ� = {k ≥ k1,k− k1 + k′1 ≥ k2,k′2 ≥ k′}

which mean that when using x in e1, the potential corresponding to k′1 out of the k1
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Γ,n `g,t
Σ,F ∗ : 1,n′ |{n ≥ n′}

(UNIT) c ∈ {true, false}
Γ,n `g,t

Σ,F c : bool,n′ |{n ≥ n′}
(BOOL)

x ∈ dom(Γ)

Γ,n `g,t
Σ,F x : Γ(x),n′ |{n ≥ n′}

(VAR)

f ∈ F Σ( f ) = T ′
1, . . . ,T

′
p,k → T ′,k′|Φ′ ρ(T ′

i ) = Ti ρ(T ′) = T
Φ = ρ(Φ′)∪{n ≥ ρ(k)+ stack′(g, f , t),n−ρ(k)+ρ(k′)≥ n′}

Γ,x1 : T1, . . . ,xp : Tp,n `g,t
Σ,F f (x1, . . . ,xp) : T,n′ |Φ

(FUN-TAIL)

f /∈ F Σ( f ) = T1, . . . ,Tp,k → T,k′|Φ′

Φ = {n ≥ k + stack′(g, f , t),n− k + k′ ≥ n′}
Γ,x1 : T1, . . . ,xp : Tp,n `g,t

Σ,F f (x1, . . . ,xp) : T,n′ |Φ
(FUNDEF-TAIL)

Γ1,∆1,n `g,false
Σ,F e1 : T0,n0 |Φ1 Γ2,∆2,x : T0,n0 `g,t

Σ,F e2 : T,n′ |Φ2

∆ = ∆1 � ∆2 |Φ3 Values for ∆ are separate from the result of e1

Γ1,Γ2,∆,n `g,t
Σ,F let x = e1 in e2 : T,n′ |Φ1∪Φ2∪Φ3

( LET-GB )

Γ,n `g,t
Σ,F et : T,n′ |Φ1 Γ,n `g,t

Σ,F e f : T,n′ |Φ2

Γ,x : bool,n `g,t
Σ,F if x then et else e f : T,n′ |Φ1∪Φ2

(IF)

Γ,x1 : T1,x2 : T2,n `g,t
Σ,F (x1,x2) : T1⊗T2,n′ |{n ≥ n′}

(PAIR)

Γ,x1 : T1,x2 : T2,n `g,t
Σ,F e : T,n′ |Φ

Γ,x : T1⊗T2,n `g,t
Σ,F match x with (x1,x2)→ e : T,n′ |Φ

(PAIRELIM)

Γ,x : Tl,n `g,t
Σ,F inl(x) : (Tl,kl)+(Tr,kr),n′ |{n ≥ kl +n′}

(INL)

Γ,x : Tr,n `g,t
Σ,F inr(x) : (Tl,kl)+(Tr,kr),n′ |{n ≥ kr +n′}

(INR)

Γ,xl : Tl,nl `g,t
Σ,F el : T,n′ |Φl Γ,xr : Tr,nr `g,t

Σ,F er : T,n′ |Φr

Φ = Φl ∪Φr∪{nl = n+ kl,nr = n+ kr}
Γ,x : (Tl,kl)+(Tr,kr),n `g,t

Σ,F match x with inl(xl)→ el p inr(xr)→ er : T,n′ |Φ
(SUMELIM)

Γ,a : T1,b : T2,n `g,t
Σ,F e : T ′,n′ |Φ T = T1⊕T2 |Φ′

Γ,x : T,n `g,t
Σ,F e[x/a,x/b] : T ′,n′ |Φ∪Φ′ (SHARE)

Figure 5.1: Typing rules for expressions in the give-back analysis
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Σ(ci)[k k′] = T1, . . . ,Tp,ki k′i → ty(k k′)
Φ = {n ≥ size(ci)+ ki +n′}

Γ,x1 : T1, . . . ,xp : Tp,n `g,t
Σ,F ci(x1, . . . ,xp) : ty(k k′),n′ |Φ

(CONSTRUCT)

for all i, 1 ≤ i ≤ m, Γ,n p ty(k k′) `g,t
Σ,F pi → ei : T ′,n′ |Φi

Γ,x : ty(k k′),n `g,t
Σ,F match x with p1 → e1 p · · · p pm → em : T ′,n′ |

S
i Φi

(MATCH)

Γ,x1 : T1, . . . ,xp : Tp,ni `g,t
Σ,F e : T ′,n′i |Φ

Φ′ = {ni = n+ ki + size(ci),n′i = n′+ k′i}
Σ(ci)[k k′] = T1, . . . ,Tp,ki k′i → ty(k k′)

Γ,n p ty(k k′) `g,t
Σ,F ci(x1, . . . ,xp)→ e : T ′,n′ |Φ∪Φ′ ( CASE-GB )

Γ,x1 : T1, . . . ,xp : Tp,ni `g,t
Σ,F e : T ′,n′i |Φ

Φ′ = {ni = n+ ki,n′i = n′+ k′i}
Σ(ci)[k k′] = T1, . . . ,Tp,ki k′i → ty(k k′)

Γ,n p ty(k k′) `g,t
Σ,F ci(x1, . . . ,xp)′→ e : T ′,n′ |Φ∪Φ′ ( CASE′-GB )

Figure 5.2: Typing rules for expressions in the give-back analysis (continued)

1 = 1⊕1 | /0 bool = bool⊕bool | /0

T = T1⊕T2 |Φ T ′ = T ′
1 ⊕T ′

2 |Φ′

T ⊗T ′ = (T1⊗T ′
1)⊕ (T2⊗T ′

2) |Φ∪Φ′

T = T1⊕T2 |Φ T ′ = T ′
1 ⊕T ′

2 |Φ′ Φ′′ = {k = k1 + k2,k′ = k′1 + k′2}
(T,k)+(T ′,k′) = (T1,k1)+(T ′

1,k
′
1)⊕ (T2,k2)+(T ′

2,k
′
2) |Φ∪Φ′∪Φ′′

ty(k k′) = ty(k1 k′1)⊕ ty(k2 k′2) | {ki = k1,i + k2,i,k′i = k′1,i + k′2,i : ∀i}

Figure 5.3: Rules for splitting with give-back annotations

Σ( f ) = T1, . . . ,Tp,k → T,k′|Φ x1 : T1, . . . ,xp : Tp,k ` f ,true
Σ,F e f : T,k′ |Φ′

`Σ,F f (x1, . . . ,xp) = e f ⇒{ f},Φ′

`Σ,F D ⇒ F ′,Φ′ `Σ,F B ⇒ F ′′,Φ′′

`Σ,F D and B ⇒ F ′∪F ′′,Φ′∪Φ′′

`Σ,F B ⇒ F ′,Φ′

∀ f ∈ F ′. Σ( f ) = . . . |Φ′

`Σ,F let B

`Σ,F B ⇒ F ′,Φ′ `Σ,F∪F ′ P
∀ f ∈ F ′. Σ( f ) = . . . |Φ′

`Σ,F let B P

Figure 5.4: Typing rules for function signatures in the give-back analysis
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1 = 1 � 1 | /0 bool = bool� bool | /0

T = T1 � T2 |Φ T ′ = T ′
1 � T ′

2 |Φ′

T ⊗T ′ = (T1⊗T ′
1)� (T2⊗T ′

2) |Φ∪Φ′

T = T1 � T2 |Φ T ′ = T ′
1 � T ′

2 |Φ′ Φ′′ = {k = k1 + k2,k′ = k′1 + k′2}
(T,k)+(T ′,k′) = (T1,k1)+(T ′

1,k
′
1)� (T2,k2)+(T ′

2,k
′
2) |Φ∪Φ′∪Φ′′

Φ = {k0,i ≥ k1,i, k0,i− k1,i + k′1,i ≥ k2,i, k′2,i ≥ k′0,i : ∀i}
ty(k0 k′0) = ty(k1 k′1)� ty(k2 k′2) | Φ

∀x ∈ dom(∆). ∆(x) = ∆1(x)� ∆2(x) |Φx

∆ = ∆1 � ∆2 |∪x∈dom(∆)Φx

Figure 5.5: Rules for contraction involving the give-back annotations

annotation in ∆1 is only needed temporarily, so it can be reused during the execution

of e2 through the k2 annotation in ∆2. (The portion of k that is not used in e1, k− k1,

can also be added to k2.)

Finally, the pattern matching rules enforce the existence of the potential represented

by the give-back annotations. Consider its effect when matching a boollist(k k′).

The CASE′ rule adds the ‘normal’ list annotation k to the fixed annotation n when

typing the cons case because we are removing an element from the list, and so get

one element’s worth of potential to use in the subexpression. Our replacement rule,

CASE′-GB, also requires the potential for the ‘give-back’ annotation to be returned

afterwards for a later use of x. We adapt CASE in the same way.

5.2.2 Soundness

To show that the heap and stack memory bounds derived from the potential are suffi-

cient for evaluation we will prove that the typing and corresponding evaluation rules

preserve the invariant that the free memory is greater than the potential throughout the

program’s execution. In order to perform the induction we will also show that any

excess free memory is preserved1.

Before the main theorem we will establish several lemmas about the behaviour of

the potential functions. First, we show that ϒ and ϒ′ are linear with respect to the type

1This is unsurprising because LFD programs have no way to adjust their behaviour to take advantage
of extra free memory. Indeed, they do not even have any way to observe the amount of free memory.
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operator ⊕ used in the SHARE rule.

Lemma 5.3. For any σ,v,T,T1,T2 and l, if we have

T = T1⊕T2 |Φ

then for any solution of Φ

ϒ(σ,v,T ) =ϒ(σ,v,T1)+ϒ(σ,v,T2), and

ϒ
′(σ,v,T, l) =ϒ

′(σ,v,T1, l)+ϒ
′(σ,v,T2, l).

Proof. For the first equation, we use induction on the size of σ,v. The unit and boolean

cases are trivial. For pairs, v = (v′,v′′) and T = T ′⊗T ′′. From the definition of ⊕ there

exist T ′
1,T

′′
1 ,T ′

2,T
′′

2 such that T1 = T ′
1 ⊗T ′′

1 , T2 = T ′
2 ⊗T ′′

2 and

T ′ = T ′
1 ⊕T ′

2 |Φ′ T ′′ = T ′′
1 ⊕T ′′

2 |Φ′′

for some Φ′,Φ′′ ⊆ Φ. So using the definition of ϒ and the induction hypothesis we

have

ϒ(σ,v,T ) = ϒ(σ,(v′,v′′),T ′⊗T ′′)

= ϒ(σ,v′,T ′)+ϒ(σ,v′′,T ′′)

= ϒ(σ,v′,T ′
1)+ϒ(σ,v′,T ′

2)+ϒ(σ,v′′,T ′′
1 )+ϒ(σ,v′′,T ′′

2 )

= ϒ(σ,v,T1)+ϒ(σ,v,T2).

For sums, suppose that v = inl(v′) (the inr case is similar) and T = (T ′,k′) +

(T ′′,k′′). From ⊕ we have T ′
i ,T

′′
i ,k′i,k

′′
i such that T1 = (T ′

1,k
′
1) + (T ′′

1 ,k′′1) and simi-

larly for T2, with k′ = k′1 + k′2 and k′′ = k′′1 + k′′2 . Also,

T ′ = T ′
1 ⊕T ′

2 |Φ′ T ′′ = T ′′
1 ⊕T ′′

2 |Φ′′

for some Φ′,Φ′′ ⊆Φ. Again, from the definition of ϒ and the induction hypothesis we

have

ϒ(σ,v,T ) = ϒ(σ, inl(v′),(T ′,k′)+(T ′′,k′′))

= k′+ϒ(σ,v′,T ′)

= k′1 + k′2 +ϒ(σ,v′,T ′)

= k′1 + k′2 +ϒ(σ,v′,T ′
1)+ϒ(σ,v′,T ′

2)

= ϒ(σ,v,T1)+ϒ(σ,v,T2).
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Finally, for datatype values v = l′ for some l′ ∈ loc, and T = ty(k k′). From⊕we

have T1 = ty(k1 k′1) and T2 = ty(k2 k′2) with k j = k1, j + k2, j for all j. If l′ = null

then there is a unique c ∈ nullc for type ty and Σ(c)[k k′] = ki k′i → ty(k k′).

Then

ϒ(σ,v,T ) = ki = k1,i + k2,i = ϒ(σ,v,T1)+ϒ(σ,v,T2).

If l′ 6= null then σ(l′) has the form (c,v1, . . . ,vp) with some signature Σ(c)[k k′] =

T1, . . . ,Tp,ki k′i → ty(k k′). Hence

ϒ(σ,v,T ) =
p

∑
j=1

ϒ(σ\ l′,v j,Tj)+ ki

=
p

∑
j=1

(ϒ(σ\ l′,v j,T1, j)+ϒ(σ\ l′,v j,T2, j))+ k1,i + k2,i

= ϒ(σ,v,T1)+ϒ(σ,v,T2).

using the induction hypothesis for the second step.

The second part takes the same form as the first, except that we omit the constant

in the T = (T ′,k′) + (T ′′,k′′) case and for the algebraic datatypes case we use k′i =

k′1,i + k′2,i as follows:

ϒ
′(σ,v,T, l) =

p

∑
j=1

ϒ
′(σ\ l′,v j,Tj, l)+

{
k′i if l′ = l

0 otherwise

=
p

∑
j=1

(ϒ′(σ\ l′,v j,T1, j, l)+ϒ
′(σ\ l′,v j,T2, j, l))+

{
k′1,i + k′2,i if l′ = l

0 otherwise

= ϒ
′(σ,v,T1, l)+ϒ

′(σ,v,T2, l).

The corresponding result for the � relation establishes the potential for each vari-

able in ∆ in each subexpression:

Lemma 5.4. Given T = T1 � T2 |Φ, we have

ϒ(σ,v,T )≥ ϒ(σ,v,T1),

ϒ
′(σ,v,T2, l)≥ ϒ

′(σ,v,T, l) and

∑
l∈loc

ϒ
′(σ,v,T1, l)+ϒ(σ,v,T )−ϒ(σ,v,T1)≥ ϒ(σ,v,T2).

Proof. The first two equations follow from the definitions. The · = · � · | · relation

ensures that the ‘normal’ annotations in T1 are no larger than the corresponding anno-

tations in T . So a simple induction on ϒ shows that ϒ(σ,v,T )≥ϒ(σ,v,T1). The second

equation is similar.
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For the last equation we use induction on the size of σ,v. Unit and boolean values

are trivial. Pairs reduce immediately to the induction hypothesis. For sums, suppose

that v = inl(v′) for some v′ and Ti = (T ′
i ,k

′
i)+(T ′′

i ,k′′i ). Then

∑
l∈loc

ϒ
′(σ,v,T1, l)+ϒ(σ,v,T )−ϒ(σ,v,T1)

= ∑
l∈loc

ϒ
′(σ,v′,T ′

1, l)+
(
k +ϒ(σ,v′,T ′)

)
− (k1 +ϒ(σ,v′,T ′

1))

≥ k2 + ∑
l∈loc

ϒ
′(σ,v′,T ′

1, l)+ϒ(σ,v′,T ′)−ϒ(σ,v′,T ′
1)

≥ k2 +ϒ(σ,v′,T ′
2)

= ϒ(σ,v,T2).

The inr case is similar.

Finally, for algebraic datatypes we have v = l′ ∈ loc,T = ty(k0 k′0). The defini-

tion of the � relation gives us T1 = ty(k1 k′1) and T2 = ty(k2 k′2) with k0,i−k1,i +

k′1,i ≥ k2,i. If l′ = null then

∑
l∈loc

ϒ
′(σ, l′,T1, l)+ϒ(σ, l′,T )−ϒ(σ, l′,T1) = k′1,i + k0,i− k1,i ≥ k2,i = ϒ(σ,v,T2),

because ϒ′(σ, l′,T1, l) = 0 by definition, and k′1,i = 0 by our convention on give-back

annotations for constructors represented by null.

If l 6= null then σ(l′) = (c,v1, . . . ,vp) with Σ(c)[k0 k′0] = T1, . . . ,Tp,k0,i k′0,i →
ty(k0 k′0). Thus,

∑
l∈loc

ϒ
′(σ,v,T1, l)+ϒ(σ, l′,T )−ϒ(σ, l′,T1)

= k′1,i + ∑
l∈loc

p

∑
j=1

ϒ
′(σ\ l′,v j,T1, j, l)

+ k0,i +
p

∑
j=1

ϒ(σ\ l′,v j,Tj)−

(
k1,i +

p

∑
j=1

ϒ(σ\ l′,v j,T1, j)

)
≥ k0,i− k1,i + k′1,i

+
p

∑
j=1

(
∑

l∈loc

ϒ
′(σ\ l′,v j,T1, j, l)+ϒ(σ\ l′,v j,Tj)−ϒ(σ\ l′,v j,T1, j)

)

≥ k2,i +
p

∑
j=1

ϒ(σ\ l′,v j,T2, j)

= ϒ(σ, l′,T2),

as required.
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We must also show that ϒ gives a bound on ϒ′ to deal with unused parts of the

context:

Lemma 5.5. For any σ,v,T , if ϒ(σ,v,T ) is defined then

ϒ(σ,v,T )≥ ∑
l∈loc

ϒ
′(σ,v,T, l).

Proof. As before, the proof uses induction on the size of σ,v. In each case we expand

the definition of ϒ, use the induction hypothesis and finish using the definition of ϒ′.

We present the non-null datatype value case as it is the most involved.

Suppose v = l′ ∈ loc, σ(l′) = (c,v1, . . . ,vp) and T = ty(k k′) with Σ(c)[k k′] =

T1, . . . ,Tp,ki  k′i → T . By our convention on annotations, ki ≥ k′i. So, using the

definitions and the induction hypothesis,

ϒ(σ,v,T ) =
p

∑
j=1

ϒ(σ\ l′,v j,Tj)+ ki

≥
p

∑
j=1

∑
l∈loc

ϒ
′(σ\ l′,v j,Tj, l)+ k′i

= ∑
l∈loc

(
p

∑
j=1

ϒ
′(σ\ l′,v j,Tj, l)+

{
k′i if l′ = l

0 otherwise

)
= ∑

l∈loc

ϒ
′(σ,v,T, l).

We can lift these results to environments and typing contexts:

Corollary 5.6. Given Γ = Γ1⊕Γ2 |Φ then for any solution of Φ we have

ϒ(σ,S,Γ) = ϒ(σ,S,Γ1)+ϒ(σ,S,Γ2), (5.1)

ϒ
′(σ,S,Γ, l) = ϒ

′(σ,S,Γ1, l)+ϒ
′(σ,S,Γ2, l), (5.2)

whenever the left hand side is defined. Also, for any value v and type T ,

ϒ(σ,S[x 7→ v],(Γ,x : T )) = ϒ(σ,S,Γ)+ϒ(σ,v,T ), (5.3)

ϒ
′(σ,S[x 7→ v],(Γ,x : T ), l) = ϒ

′(σ,S,Γ, l)+ϒ
′(σ,v,T, l). (5.4)

Given Γ = Γ1 � Γ2 |Φ then for any solution of Φ we have

ϒ(σ,S,Γ)≥ ϒ(σ,S,Γ1), (5.5)

ϒ
′(σ,S,Γ2, l)≥ ϒ

′(σ,S,Γ, l), (5.6)

∑
l∈loc

ϒ
′(σ,S,Γ1, l)+ϒ(σ,S,Γ)−ϒ(σ,S,Γ1)≥ ϒ(σ,S,Γ2), (5.7)
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whenever ϒ(σ,S,Γ) is defined. Finally,

ϒ(σ,S,Γ)≥ ∑
l∈loc

ϒ
′(σ,S,Γ, l). (5.8)

Proof. Both ϒ and ϒ′ are defined on environments and typing contexts as sums over

the contents of the context. All of the properties given are preserved over sums.

We also need to know that bounds are only affected by relevant parts of the state to

allow for changes caused by the allocation and deallocation of other data structures:

Lemma 5.7. For any σ,S,Γ, if ϒ(σ,S,Γ) is defined then

ϒ(σ,S,Γ) = ϒ(σ � R (σ,S′),S′,Γ).

where S′ = S � dom(Γ). Similarly for ϒ′.

Proof. Straightforward induction on the values and state; ϒ and ϒ′ use exactly the

locations in σ which are reachable from S′.

Similarly, we also need to be able to weaken away unnecessary parts of the context

because the benign sharing conditions only apply to the free variables of the expres-

sion:

Lemma 5.8. Given a derivation of

Γ,n `g,t
Σ,F e : T,n′ |Φ

then there exists a derivation of

(Γ � FV(e)),n `g,t
Σ,F e : T,n′ |Φ′

for some Φ′ ⊆ Φ.

Proof. A straightforward induction on the derivation. The only rules which can affect

a variable that is not in FV(e) are for contraction (SHARE and LET-GB). These rules

merely add extra constraints on the type annotations for such variables. Thus we can

construct a typing without them.

We can now prove the main soundness result — that any assignment of poten-

tial which satisfies the constraints from a typing provides an upper bound on the free

memory required to evaluate an expression and a lower bound on the free memory

afterwards. Any extra potential, q, is preserved.
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Theorem 5.9. If an expression e in a well-typed program has a typing

Γ,n `g,t
Σ,F e : T,n′ |Φ

with an assignment of nonnegative rationals to constraint variables which satisfies the

constraints in g’s signature, and an evaluation S,σ `g,t e v,σ′ which satisfies the

benign sharing conditions, and ϒ(σ,S,Γ) is defined, then for any q ∈ Q+ and m ∈ N
such that

m ≥ n+ϒ(σ,S,Γ)+q

we have m,S,σ `g,t e v,σ′,m′ where

m′ ≥ n′+ ∑
l∈loc

max{0,ϒ′(σ,S,Γ, l)−ϒ
′(σ′,v,T, l)}+ϒ(σ′,v,T )+q.

Recall that the give-back potential is given as ∑l∈loc max{0, . . .} to subtract the

overlap between the give-back potential of the context and the give-back potential of

the result; the max is present so that we do not subtract potential for freshly constructed

parts of the result.

Proof. We proceed by simultaneous induction on the evaluation and typing deriva-

tions. The evaluation terminates, so the derivation of the evaluation must be finite. The

SHARE rule is the only one which has no counterpart in the operational semantics, so

we consider it separately.

Note that to obtain m,S,σ `g,t e v,σ′,m′ we only need to show that m is suf-

ficiently large because we already have S,σ `g,t e v,σ′. We will use Equation 5.8

in the leaf rules UNIT, BOOL, VAR, PAIR, INL, INR, CONSTRUCT, FUN-TAIL and

FUNDEF-TAIL to deal with unused parts of the context.

SHARE. We have Γ = Γ0,x : T and S = S0[x 7→ vx] for some Γ0 and S0 where

vx = S(x), so

m ≥ n+ϒ(σ,S,Γ)+q = n+ϒ(σ,S0,Γ0)+ϒ(σ,vx,T )+q

= n+ϒ(σ,S0,Γ0)+ϒ(σ,vx,T1)+ϒ(σ,vx,T2)+q

= n+ϒ(σ,S0[a 7→ vx,b 7→ vx],(Γ0,a : T1,b : T2))+q

by the linearity of ϒ (Equation 5.1) and context extension (Equation 5.3). Thus

by substitution of a and b for x in the appropriate parts of the execution deriva-

tion, we can apply the induction hypothesis and obtain the result by the corre-

sponding results for ϒ′ (Equations 5.2 and 5.4).
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UNIT, BOOL. From the definition, ϒ(σ,v,T ) = ϒ′(σ,v,T, l) = 0, so

m′ = m ≥ n+ϒ(σ,S,Γ)+q

≥ n′+ ∑
l∈loc

ϒ
′(σ,S,Γ, l)+q

≥ n′+ ∑
l∈loc

max
{

0,ϒ′(σ,S,Γ, l)−ϒ
′(σ,v,T, l)

}
+ϒ(σ,v,T )+q.

VAR. The context extension property (Equation 5.3) allows us to extract a vari-

able’s contribution to the bound:

m′ = m ≥ n+ϒ(σ,S,Γ)+q

= n+ϒ(σ,S,Γ\ x)+ϒ(σ,S(x),Γ(x))+q

≥ n′+ ∑
l∈loc

ϒ
′(σ,S,Γ\ x, l)+ϒ(σ,S(x),Γ(x))+q

= n′+ ∑
l∈loc

(
ϒ
′(σ,S,Γ, l)−ϒ

′(σ,S(x),Γ(x), l)
)
+ϒ(σ,S(x),Γ(x))+q

= n′+ ∑
l∈loc

max
{

0,ϒ′(σ,S,Γ, l)−ϒ
′(σ,S(x),Γ(x), l)

}
+ϒ(σ,S(x),Γ(x))+q.

PAIR. Similar to VAR, except that we extract two variables and use

ϒ(σ,v′,T ′)+ϒ(σ,v′′,T ′′) = ϒ(σ,(v′,v′′),T ′⊗T ′′)

from the definition of ϒ to check that m′ = m is sufficient.

INL (and INR). Similar to VAR, except that we use the constraint n≥ kl +n′ from

the typing rule to allow the use of

ϒ(σ,S(x),Tl)+ kl = ϒ(σ, inl(S(x)),(Tl,kl)+(Tr,kr))

from the definition of ϒ when checking that m′ = m is sufficient. INR follows in

the same manner.

CONSTRUCT with E-CONSTRUCTN. The value v = null. Using the constraint on

n from the typing rule to provide the ki for ϒ(σ,null, ty(k k′)),

m ≥ n+ϒ(σ,S,Γ)+q

≥ ki +n′+ ∑
l∈loc

ϒ
′(σ,S,Γ, l)+q

≥ n′+ ∑
l∈loc

max{0,ϒ′(σ,S,Γ, l)−ϒ
′(σ,null, ty(k k′), l)}+ϒ(σ,null, ty(k k′))+q,

because ϒ′(σ,null, ty(k k′), l) = 0 by definition.
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CONSTRUCT with E-CONSTRUCT. First we note that the constraint on n in the

typing rules is large enough for E-CONSTRUCT, which requires at least size(c)

units of memory:

m ≥ n+ϒ(σ,S,Γ)+q ≥ size(c)+ ki +n′+ϒ(σ,S,Γ)+q

The location for the newly created cell is fresh, that is l /∈ dom(σ). Thus extend-

ing σ to σ′ = σ[l 7→ (c,S(x1), . . . ,S(xp))] preserves the bound ϒ(σ,S(x),Γ(x)) =

ϒ(σ′,S(x),Γ(x)) for any variable x ∈ dom(Γ). Hence,

m′ = m− size(c)

≥ n′+ ki +ϒ(σ,S,Γ)+q

≥ n′+ ki +ϒ(σ,S,Γ\{x1, . . . ,xp})+
p

∑
j=1

ϒ(σ,S(x j),Tj)+q

≥ n′+ϒ(σ,S,Γ\{x1, . . . ,xp})+ϒ(σ′, l, ty(k k′))+q

≥ n′+ ∑
l′∈loc

ϒ
′(σ,S,Γ\{x1, . . . ,xp}, l′)+ϒ(σ′, l, ty(k k′))+q

≥ n′+ ∑
l′∈loc

max{0,ϒ′(σ,S,Γ, l′)−ϒ
′(σ′, l, ty(k k′), l′)}+ϒ(σ′, l, ty(k k′))+q

as required.

LET-GB. We can show that m is large enough to apply the induction hypothesis

to e1, while incorporating the remaining amount into the constant q so that we

can use it for e2:

m ≥ n+ϒ(σ,S,(Γ1,Γ2,∆))+q

≥ n+ϒ(σ,S,(Γ1,∆1))+(ϒ(σ,S,(Γ2,∆))−ϒ(σ,S,∆1)+q) .

The constant is nonnegative because of the corollary on the · = · � · | · relation,

Equation 5.5.

The induction hypothesis then yields m0 such that m,S,σ `g,t e1  vo,σ0,m0

with

m0 ≥ n0 + ∑
l∈loc

max
{

0,ϒ′(σ,S,(Γ1,∆1), l)−ϒ
′(σ0,v0,T0, l)

}
+ϒ(σ0,v0,T0)+(ϒ(σ,S,(Γ2,∆))−ϒ(σ,S,∆1)+q)

To form the precondition for applying the induction hypothesis to e2 we note

that the separation condition (Definition 2.3) guarantees that

R (σ,S � dom(∆1))∩R (σ′,v0) = /0,
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and so ϒ′(σ,S,∆1, l) = 0 for all l ∈ R (σ′,v0), and ϒ′(σ′,v0,T0, l) = 0 for all

l ∈ R (σ,S � dom(∆1)) by Lemma 5.7. Thus we can separate out the give-back

potential for ∆, and then apply Equation 5.7 to form the precondition:

m0 ≥ n0 + ∑
l∈R (σ,S�dom(∆1))

(
ϒ
′(σ,S,Γ1, l)+ϒ

′(σ,S,∆1, l)
)

+ ∑
l /∈R (σ,S�dom(∆1))

max
{

0,ϒ′(σ,S,Γ1, l)−ϒ
′(σ0,v0,T0, l)

}
+ϒ(σ0,v0,T0)+ϒ(σ,S,(Γ2,∆))−ϒ(σ,S,∆1)+q

≥ n0 + ∑
l∈loc

ϒ
′(σ0,S,∆1, l)+ ∑

l∈loc

max
{

0,ϒ′(σ,S,Γ1, l)−ϒ
′(σ,v0,T0, l)

}
+ϒ(σ0,v0,T0)+ϒ(σ,S,(Γ2,∆))−ϒ(σ,S,∆1)+q

≥ n0 +ϒ(σ,S,(Γ2,∆2))+ ∑
l∈loc

max
{

0,ϒ′(σ,S,Γ1, l)−ϒ
′(σ0,v0,T0, l)

}
+ϒ(σ0,v0,T0)+q

≥ n0 +ϒ(σ0,S[x 7→ v0],((Γ2,∆2) � FV(e2),x : T0))

+

(
∑

l∈loc

max
{

0,ϒ′(σ,S,Γ1, l)−ϒ
′(σ0,v0,T0, l)

}
+ϒ(σ,S,(Γ2,∆2)\FV(e2))+q

)
using the benign sharing condition

σ � R (σ,Se2) = σ0 � R (σ,Se2), (2.2)

where Se2 = S � (FV(e2)\ x), and Lemma 5.7 to account for changes in the state

in the last step. Note that we need to separate out the unused variables, because

the benign sharing conditions only make guarantees for FV(e2). We can apply

Lemma 5.8 to remove the unused variables from the typing of e2.

Finally, the induction hypothesis on e2 yields an m′ such that

m′ ≥ n′+ ∑
l∈loc

max
{

0,ϒ′(σ0,S[x 7→ v0],((Γ2,∆2) � FV(e2),x : T0), l)−ϒ
′(σ′,v,T, l)

}
+ϒ(σ′,v,T )

+

(
∑

l∈loc

max
{

0,ϒ′(σ,S,Γ1, l)−ϒ
′(σ0,v0,T0, l)

}
+ϒ(σ,S,(Γ2,∆2)\FV(e2))+q

)

≥ n′+ ∑
l∈loc

max

{
0,

ϒ′(σ,S,(Γ2,∆2), l) +ϒ′(σ0,v0,T0, l)−ϒ′(σ′,v,T, l)

+ϒ′(σ,S,Γ1, l)−ϒ′(σ0,v0,T0, l)

}
+ϒ(σ′,v,T )+q

≥ n′+ ∑
l∈loc

max
{

0,ϒ′(σ,S,(Γ1,Γ2,∆), l)−ϒ
′(σ′,v,T, l)

}
+ϒ(σ′,v,T )+q
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as required, using benign sharing and Lemma 5.7 to change back from σ0 to σ,

and Equation 5.6 to change ∆2 to ∆.

IF. We only remove the boolean (which has zero potential by definition) from the

context, so m must be large enough to invoke the induction hypothesis on the

appropriate branch. As the give-back potential ϒ′(σ,c,bool, l) = 0 as well, the

m′ from the induction hypothesis is sufficient.

PAIRELIM. The value of the pair is S(x) = (v1,v2) for some values v1,v2 and the

type is T = T1⊗T2 for some T1,T2. The definition of ϒ is linear for pairs, so

m ≥ n+ϒ(σ,S,Γ\ x)+ϒ(σ,(v1,v2),T1⊗T2)+q

≥ n+ϒ(σ,S[x1 7→ v1,x2 7→ v2],(Γ\ x,x1 : T1,x2 : T2))+q

and we can apply the induction hypothesis. The resulting m′ will be sufficiently

large because ϒ′ is also linear with respect to pairs.

SUMELIM with E-MATCHINL. The typing rule requires the constraint nl = n+kl

to be satisfied. Hence we establish that m is sufficient to apply the induction

hypothesis on el using the definition of ϒ on sum types:

m ≥ n+ϒ(σ,S,Γ\ x)+ϒ(σ, inl(v′),(Tl,kl)+(Tr,kr))+q

= n+ϒ(σ,S,Γ\ x)+ϒ(σ,v′,Tl)+ kl +q

= nl +ϒ(σ,S[xl 7→ v′],(Γ\ x,xl : Tl))+q.

By the induction hypothesis there is an m′ such that

m′ ≥ n′+ ∑
l∈loc

max
{

0,ϒ′(σ,S[xl 7→ v′],(Γ\ x,xl : Tl), l)−ϒ
′(σ′,v,T, l)

}
+ϒ(σ′,v,T )+q

= n′+ ∑
l∈loc

max
{

0,ϒ′(σ,S,Γ, l)−ϒ
′(σ′,v,T, l)

}
+ϒ(σ′,v,T )+q

as required, because ϒ′(σ, inl(v′),(Tl,kl)+(Tr,kr), l) = ϒ′(σ,v′,Tl, l) by the def-

inition of ϒ′.

SUMELIM with E-MATCHINR. Analogous to E-MATCHINL.

MATCH and CASE-GB with E-MATCHN. We use the constraint ni = n+ ki (the

size of a constructor represented by null is zero by definition) to show that

m ≥ n+ϒ(σ,S,Γ\ x)+ϒ(σ,null, ty(k k′))+q

≥ n+ ki +ϒ(σ,S,Γ\ x)+q

= ni +ϒ(σ,S,Γ\ x)+q.
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Then the induction hypothesis can be applied to ei. The resulting m′ is suffi-

ciently large because ϒ′(σ,null, ty(k k′), l) = 0 by definition, so ϒ′(σ,S,Γ \
x, l) = ϒ′(σ,S,Γ, l).

MATCH and CASE-GB with E-MATCH. The value of x is S(x) = l for some l ∈
loc, and σ(l) = (ci,v1, . . . ,vp).

The deallocation will provide an extra size(ci) units of memory to execute ei

with. The constraint ni = n + ki + size(ci) in the typing rule reflects this. Thus

we can show that m plus the deallocated memory is large enough to apply the

induction hypothesis:

m+ size(ci)

≥ n+ϒ(σ,S,Γ)+q+ size(ci)

≥ n+ϒ(σ,S,Γ\ x)+ϒ(σ,S(x), ty(k k′))+q+ size(ci)

≥ n+ ki + size(ci)+ϒ(σ,S,Γ\ x)+
p

∑
j=1

ϒ(σi,v j,Tj)+q

≥ ni +ϒ(σ,S,Γ\ x)+ϒ(σi, [x1 7→ v1, . . . ,xp 7→ vp],(x1 : T1, . . . ,xp : Tp))+q

= ni +ϒ(σi,Si,Γi)+(ϒ(σ,S,Γ\FV(ei))+q)

where σi = σ\ l, Si = (S\ x)[x1 7→ v1, . . . ,xp 7→ vp] and

Γi = ((Γ\ x) � FV(ei)),x1 : T1, . . . ,xp : Tp.

The last step uses the benign sharing condition

l′ /∈ R (σ,S[x1 7→ v1, . . . ,xp 7→ vp] � FV(ei)) (2.1)

together with Lemma 5.7 to remove the dead location l′ from the calculation of

the potential. As with LET-GB, we need to separate out the potential of any

unused variables because the condition is only valid for FV(ei). Again, we can

remove such variables from the typing of ei by Lemma 5.8.

For the bound after execution, we use the second constraint, n′i = n′+ k′i,

m′ ≥ n′i + ∑
l′∈loc

max
{

0,ϒ′(σi,Si,Γi, l′)−ϒ
′(σ′,v,T, l′)

}
+ϒ(σ′,v,T )+(ϒ(σ,S,Γ\FV(ei))+q)

≥ n′+ k′i + ∑
l′∈loc

max

{
0,ϒ′(σ,S,Γ\ x, l′)+

p

∑
i=1

ϒ
′(σ,v j,Tj, l′)−ϒ

′(σ′,v,T, l′)

}
+ϒ(σ′,v,T )+q

≥ n′+ ∑
l′∈loc

max
{

0,ϒ′(σ,S,Γ, l′)−ϒ
′(σ′,v,T, l′)

}
+ϒ(σ′,v,T )+q
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using the definition of ϒ′(σ, l′, ty(k k′), l′) to form the give-back potential for

x.

MATCH and CASE′-GB with E-MATCH′ or E-MATCHN′. Similar to the previ-

ous two cases, except that there is no deallocation. Thus the size(ci) terms

disappear from both the constraint and the operational semantics, and l is not

removed from σ. In all other respects, the argument is the same.

FUN-TAIL. As the whole program is well-typed and the FUN-TAIL rule requires

that there is a signature

Σ( f ) = T ′
1, . . . ,T

′
p,k → T ′,k′ |Φ′

for the function called, there must be a typing derivation ending in the judgement

x1 : T ′
1, . . . ,xp : T ′

p,k `
f ,true
Σ,F ′ e f : T ′,k′ |Φ′

where e f is the body of f (up to the replacement of variable names). Using the

substitution ρ, there is also a derivation ending in

x1 : T1, . . . ,xp : Tp,ρ(k) ` f ,true
Σ,F e f : T,ρ(k′) |ρ(Φ′)

which we will use for the induction.

Now we can show that m is large enough to execute e f , after the allocation of a

stack frame:

m ≥ n+ϒ(σ,S,Γ)+q

≥ ρ(k)+ stack′(g, f , t)+ϒ(σ,S,(x1 : T1, . . . ,xp : Tp))

+
(
n−ρ(k)− stack′(g, f , t)+ϒ(σ,S,Γ\{x1, . . . ,xp})+q

)
Note that we incorporate the unused portion of n and the potential from the

unused variables in the context into the constant for the induction to guarantee

that they are available in m′. The constraint on n in the typing rule guarantees

that the constant will be non-negative. The induction hypothesis plus the second
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constraint n−ρ(k)+ρ(k′)≥ n′ thus gives

m′ ≥ ρ(k′)+ stack′(g, f , t)

+ ∑
l∈loc

max
{

0,ϒ′(σ,S,(x1 : T1, . . . ,xp : Tp), l)−ϒ
′(σ′,v,T, l)

}
+ϒ(σ′,v,T )

+
(
n−ρ(k)− stack′(g, f , t)+ϒ(σ,S,Γ\{x1, . . . ,xp})+q

)
≥ n−ρ(k)+ρ(k′)+ ∑

l∈loc

max
{

0,ϒ′(σ,S,Γ, l)−ϒ
′(σ′,v,T, l)

}
+ϒ(σ′,v,T )+q

≥ n′+ ∑
l∈loc

max
{

0,ϒ′(σ,S,Γ, l)−ϒ
′(σ′,v,T, l)

}
+ϒ(σ′,v,T )+q

as required.

FUNDEF-TAIL. Similar to FUN-TAIL, except that we do not require the substitution ρ.

We can also show that the overall bound on a program is sound:

Corollary 5.10. Suppose a well typed program has an initial function f , and argu-

ments for f are given as values v1, . . . ,vp with an initial store σ. If

Σ( f ) = T1, . . . ,Tp,k → T ′,k′ |Φ

then any execution of f (v1, . . . ,vp) will require at most

ϒ(σ, [x1 7→ v1, . . . ,xp 7→ vp],(x1 : T1, . . . ,xp : Tp))+ stack( f )+ k

units of memory, for any assignment of nonnegative rationals to constraint variables

which satisfies Φ.

Proof. The definition of ϒ implies that the values vi and store σ are consistent with the

types in Σ( f ). Thus by FUN-TAIL we have

x1 : T1, . . . ,xp : Tp,n`initial,false
Σ,F f (x1, . . . ,xp) : T ′,n′ |Φ∪{n≥ k+stack( f ),n−k+k′≥ n′}

and so Theorem 5.9 guarantees that any execution with at least

ϒ(σ, [x1 7→ v1, . . . ,xp 7→ vp],(x1 : T1, . . . ,xp : Tp))+ stack( f )+ k

units of free memory will not run out of memory.
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5.2.3 Soundness of previous analyses

We can establish the soundness of the analysis in Chapter 4 by noting that this system

is a strict extension of it.

Lemma 5.11. Any typing in the system presented in Chapter 4 corresponds to a typing

in the ‘give-back’ system above. Therefore the soundness results for the bounds on

expressions (Theorem 5.9) and programs (Corollary 5.10) hold.

Proof. We add give-back annotations to the types in the derivation but fix them to be

zero. When typing let expressions we use LET-GB, taking ∆ to be the empty context

(so that all contraction is handled by the SHARE rule). We also replace CASE and

CASE′ by CASE-GB and CASE′-GB respectively. The resulting constraint sets are

then equivalent to those in the original derivation.

We can then apply Theorem 5.9 and Corollary 5.10.

This result also extends to the Hofmann-Jost system presented in Chapter 2 by

taking stack( f ) = 0 for all functions f , proving Theorem 2.4 and Corollary 2.5.

5.2.4 Partial executions

The soundness result can be extended to programs which do not terminate or which fail

at a match expression using the augmented operational semantics from Section 2.1.3.

The extended theorem will show that all such partial executions also respect the in-

ferred bound.

Theorem 5.12. If an expression e in a well-typed program has a typing

Γ,n `g,t
Σ,F e : T,n′ |Φ

with an assignment of nonnegative rationals to constraint variables which satisfies the

constraints in g’s signature, and an evaluation S,σ `g,t e v,σ′ in the augmented

semantics which satisfies the benign sharing conditions, and ϒ(σ,S,Γ) is defined, then

for any q ∈Q+ and m ∈ N such that

m ≥ n+ϒ(σ,S,Γ)+q

we have m,S,σ `g,t e v,σ′,m′ where either v = halted, or

m′ ≥ n′+ ∑
l∈loc

max{0,ϒ′(σ,S,Γ, l)−ϒ
′(σ′,v,T, l)}+ϒ(σ′,v,T )+q.
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Proof. The proof uses the same simultaneous induction as for Theorem 5.9, except

that we do not need to check m′ when v = halted. We only need to consider the three

new rules in the extended operational semantics (Figure 2.4):

E-STOP. Immediate because v = halted.

LET-GB with E-LET. The proof in Theorem 5.9 suffices because we have only

added the extra premise that v0 6= halted.

LET-GB with E-STOPLET. We can use the proof for LET-GB from Theorem 5.9

to show that we can invoke the induction hypothesis on e1. The result then

follows because v = halted.

We can also exploit the above soundness theorem to show that the analysis can be

used as a rather limited termination analysis. Consider the results of a stack-only anal-

ysis without tail-call optimisation. A non-terminating program must feature arbitrarily

large partial executions, and the only way to form such executions is by arbitrarily

large recursive call chains. However, any bound obtained from the analysis bounds

the call depth of all partial evaluations by the soundness theorem, so arbitrarily large

partial executions are impossible. Hence if the analysis yields a bound the program

must terminate. However, this termination analysis is rather weak because it requires

that the call depth has a linear bound in terms of the size of the program’s input.

5.2.5 Inference and implementation

The inference process has the same form as before (in Section 2.2.5); most of the

rules are syntax directed and we use linear programming techniques to minimise the

potential, which provides the bound. As before, the non-syntax directed rules are

function application and contraction, and the choice between FUN-TAIL and FUNDEF-

TAIL is decided by membership of the set of defined functions, F .

The key difference is that we use LET-GB for contraction wherever possible. We

can decide if LET-GB can be used by checking the separation information from the

safety analysis. The SHARE rule is used for other instances of contraction (such as

andlists(l,l)) and weakening as before. If LET-GB is used for contraction and

SHARE used for weakening of the context for the second subexpression, then the re-

sulting constraints allow strictly more solutions than SHARE alone. Using this tech-

nique wherever LET-GB can be used for contraction can only improve the bound.
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In the implementation, the type inference combines the LET-GB and SHARE rules,

but we have presented them separately to simplify the soundness proof above.

We take the linear program from the generated constraints and the constraints from

the two conventions on give-back annotations (k ≥ k′ or k′ = 0 depending upon the

circumstances), and solve them using linear programming techniques as before.

The number of constraints generated by inference in our new analysis is within

a constant factor of the Hofmann-Jost analysis. The extra constraints either accom-

pany an existing one (that is, constraints on give-back annotations which correspond

to constraints on the ‘normal’ annotations), or are the result of one of our conventions

on annotations. At most one constraint per annotation is required, so the increase in

constraints is linear.

The inference process has been implemented in an extension of Jost’s implemen-

tation (Jost, 2004b). It includes the other systems from the preceding chapters and

an option to perform the CPS transformation for comparison. The separation infor-

mation which is used to decide how to perform contraction is supplied as part of the

program text. Konečný’s implementation of his DEEL system (Konečný, 2003) has

been adapted to provide this information. Details on applying the analysis to the heap

sort example can be found in Appendix A.

5.2.6 Examples

As an extended example of the give-back analysis we present a full typing for the

andlists2 program from Example 5.2. Figure 5.6 shows a typing of the prerequisite

andlists function. The difference between this function signature and one from the

previous analysis is that we can express the potential after evaluation in terms of the

argument that supplied the potential required for evaluation. In particular, the three

solutions desired for the stack space of andlists from Section 5.2 can be obtained as

solutions;

boollist(1 1),boollist(0 0),0 → boollist(0 0),0,

boollist(1 0),boollist(0 0),0 → boollist(1 0),0,

boollist(1 1
2),boollist(0 0),0 → boollist(1

2  0),0,

where the free memory afterwards is described respectively in terms of the first ar-

gument, the result, and half of each. Only the middle form could be obtained in the

previous analysis. Note that the use of the CASE′-GB rule for l1 produces two sym-
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metric constraints (Φ7): one extracts the potential attached to the head of the list which

will be used for the recursive call; the other restores the corresponding give-back po-

tential, and any remainder provides potential for the result. There is no contraction in

andlists, so ∆ is always empty in the uses of the LET-GB rule.

Figure 5.7 presents the typing for andlists2, using the andlists typing for the

two function calls. The LET-GB rule allows us to use the give-back potential of the

first instance of l1 as the potential for its second use. Hence we can use the first

type signature for andlists above for the first function call and any of the three for

the second, reusing the potential assigned to l1. This yields the three solutions for

andlists2 from Section 5.2:

boollist(1 1),boollist(0 0),boollist(0 0),1 → boollist(0 0)×boollist(0 0),1

boollist(1 0),boollist(0 0),boollist(0 0),1 → boollist(0 0)×boollist(1 0),1

boollist(1 1
2),boollist(0 0),boollist(0 0),1 → boollist(0 0)×boollist(1

2  0),1

The side condition on the LET-GB rule requires that l1 is separate from the result of

andlists(l1,l2). It is satisfied because the result is freshly allocated.

We can also bound the total memory usage using the give-back analysis. Note

that the constraints in Ψ� allow some of the potential to be split between the uses of

l1 (like SHARE) as well as using the given-back potential. Thus the heap memory

requirements are simply added to the bound.

We claimed in Chapter 4 that our extended analysis would provide some assistance

for the problem with accumulating parameters discussed there.

Example 5.13. Recall the revapp reverse-and-append function from Example 4.6.

Previously, we could not show that the stack space required without tail-call optimisa-

tion was available afterwards. We could only obtain function signatures such as

revapp : boollist(k),boollist(0),0 → boollist(0),0,

where k = stack(revapp). With the give-back analysis we can get function signatures

of the form

revapp : boollist(k k),boollist(0 0),0 → boollist(0 0),0,

showing that the stack space is free afterwards through the give-back potential of the

first argument. (We still cannot solve the original problem, namely that we cannot

assign the corresponding potential to the result.)
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D1 = FUN-TAIL
l1 : T11,l2 : T2,n0 `f

Σ′,A andlists(l1,l2) : T4,n1 |Ψ1

D2 = FUN-TAIL
l1 : T12,l3 : T3,n1 `f

Σ′,A andlists(l1,l3) : T5,n2 |Ψ2

D3 = PAIR
r1 : T4,r2 : T5,n2 `t

Σ′,A (r1,r2) : T4⊗T5,n′ |{n2 ≥ n′}

D4 =
D2 D3

LET-GB
l1 : T12,l3 : T3,r1 : T4,n1 `t

Σ′,A let r2 · · · : T4⊗T5,n′ |Ψ2∪{n2 ≥ n′}

l1 : T1 = l1 : T11 � l1 : T12 |Ψ� D1 D4
LET-GB

l1 : T1,l2 : T2,l3 : T3,n0 `t
Σ′,A let r1 · · · : T4⊗T5,n′ |Ψ1∪Ψ2∪{n2 ≥ n′}∪Ψ�

Ti = boollist(ki k′i) A = {andlists}

Ψ1 = ρ1(Φ1,...,7)∪{n0 ≥ ρ1(n)+ stack′(andlists2,andlists, false), n0−ρ1(n)+ρ1(n′)≥ n1},

Ψ2 = ρ2(Φ1,...,7)∪{n1 ≥ ρ2(n)+ stack′(andlists2,andlists, false), n1−ρ2(n)+ρ2(n′)≥ n2},

Ψ� = {k1 ≥ ρ1(k1), k1−ρ1(k1)+ρ1(k′1)≥ ρ2(k1), ρ2(k′1)≥ k′1}.

Σ
′ = Σ∪ [andlists2 7→ T1,T2,T3,n0 → T4⊗T5,n′0]

Figure 5.7: andlists2 typing in the give-back analysis
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Sadly, for this particular example that knowledge is of little use — the original list

is destroyed by revapp, and so the given-back potential cannot be reused. However,

non-destructive accumulating functions can benefit from the give-back extension in

general. For instance, if we had a non-destructive version of revapp and some later

bound expressed in terms of the first argument for revapp, then the overall bound

would take into account the reuse of the stack memory.



Chapter 6

Bounding in terms of depth

We now return to the two problems discussed in Chapter 4 that we promised to in-

vestigate: providing stack space bounds in terms of the depth of data structures, and

extending the form the bounds can take to include maxima. Our motivation is to pro-

vide tighter bounds on stack space usage, and in particular, for tree-structured data,

and for larger programs where a sequence of function calls requires stack space which

is the maximum of their individual bounds. However, the new analysis will still have

no knowledge of ‘global’ invariants, such as balanced trees.

We intend to retain many of the features of the Hofmann-Jost analysis in our new

system. We assign potential to data structures via their types; use the type system

to produce constraints on the potential that express ‘local’ changes in the potential,

corresponding to allocation or transferring potential from one data structure to another

(to obtain bounds in terms of the input size rather than an intermediate variable’s size);

and we will continue to use linear programming to solve constraints provided by the

type system.

In this chapter we will present the type system for the analysis, prove its sound-

ness with respect to the operational semantics and discuss constraint solving and some

examples. The type system has a more substructural flavour than those in previous

chapters, and so we will require some additional inference to decide where and how

to use the non-syntax-directed rules. We will present an inference algorithm in the

following chapter.

Note that we only consider stack space in this analysis. This is partly because

bounds expressed in terms of depth are of little use when assessing heap space require-

ments, but also because it considerably simplifies the typing of let expressions, as we

will discuss below. Some preliminary ideas on using a similar system for heap space

94
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analysis are set out in Section 9.2.3.

6.1 Informal description of the type system

The potential functions for our new analysis must differ from the definitions in the pre-

vious systems by calculating amounts proportional to the depth for algebraic datatypes,

and also taking the maximum potential of several subcontexts where appropriate rather

than always summing them.

Consider the topmost node of a binary tree with boolean values, t, which has sub-

trees t1 and t2:

v

t1 t2
�

�
�

@
@

@

The depth of the whole tree is |t|d = max{|t1|d, |t2|d}+ 1. Thus it is natural to study

depth and maxima together. Moreover, when the tree t is unfolded by a match expres-

sion the (unannotated) typing context for the subexpression will contain

t1 : booltree, t2 : booltree, v : bool,

and the potential of the whole context must involve the maximum of the potential of t1
and t2, plus a fixed amount of potential for the top level of t.

Our approach to defining the new type system and potential functions is inspired

by O’Hearn’s Bunched Typing (O’Hearn, 2003). Bunched typing introduces tree-

structured typing contexts by using two context formers, ‘,’ and ‘;’. The use of various

structural rules, such as contraction, can be restricted depending upon the context for-

mer involved, and some rearrangement of the tree structure may be allowed. The main

application presented for bunched typing is to denote resource sharing (especially for

heap cells). There ‘,’ can be interpreted as ‘the subcontexts share no resources’ and ‘;’

as ‘the subcontexts may share resources’. Thus contraction is allowed for ‘;’ but not ‘,’

because the two resulting subcontexts share all resources. It is also easy to see that the

distributivity rule for contexts,

Γ,(∆;∆
′)∼= (Γ,∆);(Γ,∆′),

is sound in this application.
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For our purposes, the ‘,’ context former will mean ‘sum the potential of the sub-

contexts’ and ‘;’ will mean ‘take the maximum of the subcontexts’ potential.’ Thus the

context for the unfolded tree node above becomes

(t1 : booltree(k); t2 : booltree(k); v : bool), k

where k is the fixed amount of potential associated with the top node of the tree, and

so the total potential is max{k× |t1|d,k× |t2|d,0}+ k, as desired (where the 0 is the

potential of v : bool). Note that we will allow fixed amounts of potential to appear

anywhere in the context, even though no variables are involved. This allows us to

express bounds such as max{|x|d + k, |y|d} (using the context (x : T1,k);y : T2).

To exploit this correspondence between the depth of datatypes and using context

structure to take sums and maxima of potential, the potential functions for algebraic

datatypes are defined by putting contexts in the constructor’s signature. For example,

the signature for a node in the previous systems would be

Σprev(node) = ∀k.booltree(k), booltree(k), bool, k → booltree(k),

but here we use

Σdepth(node) = ∀k.(t1 : booltree(k); t2 : booltree(k); v : bool), k → booltree(k),

reflecting the potential function required1.

For nested types the potential is not simply the depth, but is influenced by the

potential of the ‘contents’. For example, consider a type of binary trees with unit lists

at the nodes:

Σ =


nil 7→ ∀kl.0 → list(kl)

cons 7→ ∀kl.(h : 1; t : list(kl)),kl → list(kl)

leaf 7→ ∀kt ,kl.0 → tree(kt ,kl)

node 7→ ∀kt ,kl.(l : tree(kt ,kl);r : tree(kt ,kl);v : list(kl)),kt → tree(kt ,kl)


The kt annotation is the per-tree-level amount of potential, and kl the per-list-element

potential. If we have the tree

[∗,∗,∗,∗]

[] [∗,∗]
�

�
@

@

1We retain variable names in the signature to reduce the quantity of notation; they are not strictly
required.
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then rather than looking at the total depth we need to consider the most expensive path

in terms of potential by taking the maximum of

1. following the list at the root of the tree (kt +4× kl);

2. following the left branch and the list there (2× kt +0× kl);

3. following the right branch and the list there (2× kt +2× kl).

An intuitive explanation is that the total potential assigned to the tree is the smallest

amount of potential sufficient to recursively process the tree and lists using the full

per-element amount of potential at each step.

6.2 Definition

The types are similar to Hofmann-Jost,

T := 1 | bool | T ⊗T | (T,kl)+(T,kr) | ty(k),

but the contexts are now structured as trees:

Γ := · | x : T | Γ,Γ | Γ;Γ | k,

where · is the empty context and k is an annotation for a fixed amount of potential.

The annotations are constraint variables as before, although we occasionally use an

explicit 0. We take the two context formers, ‘,’ and ‘;’, to be associative throughout.

As mentioned above, the ‘,’ means “sum the potential” and the ‘;’ means “take the

maximum potential”. We will define this more precisely in the potential function for

contexts, ϒc. The function signatures take the form

Γ → T,k |Φ,

for a (tree-structured) context Γ, type T , annotation k and constraint set Φ. Similarly,

constructor signatures have the form

∀k.Γ → ty(k),

where k is a sequence of annotations, as before. We require that variable names appear

only once in the context Γ for both kinds of signature. We restrict the signatures for

constructors in nullc to the form

∀k.ki → ty(k).
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Note that we can define algebraic datatypes which are the same except for the

calculation of potential. For example, we can define a max-pair and a plus-pair for

some types ty1(k1) and ty2(k2):

Σ(maxpair) = ∀k1 · k2. ty1(k1); ty2(k2)→maxpair(k1 · k2),

Σ(pluspair) = ∀k1 · k2. ty1(k1), ty2(k2)→ pluspair(k1 · k2),

(where s1 · s2 is the concatenation of the sequences s1 and s2). The two types are the

same operationally, except for the names of their constructors. However, for the first

we will use the maximum potential of the two values in the pair as the pair’s potential,

and for the second we use the sum of each value’s potential.

As we described above, we can define binary trees with potential proportional to

their depth by taking the maximum potential of each pair of subtrees and adding some

potential for the node:

Σ(leaf) = ∀kl,kn.kl → booltree(kl,kn),

Σ(node) = ∀kl,kn.(xl : booltree(kl,kn);xr : booltree(kl,kn);xv : bool),kn → booltree(kl,kn).

Like the nil annotations on lists in previous chapters, we can replace kl with 0 in exam-

ples without much loss of generality:

Σ(leaf) = ∀kn.0 → booltree(kn),

Σ(node) = ∀kn.(xl : booltree(kn);xr : booltree(kn);xv : bool),kn → booltree(kn).

In general we include one k per constructor, but this is not necessary for soundness.

Note that we can still define a form of trees where the potential is proportional to the

total size, by using the additive context former (,) throughout. (However, this does

not entirely subsume the earlier analyses because the SHARE rule in the previous type

systems has no complete replacement in this one, see the discussion on page 103 for

more details.)

To define the potential functions and typing rules we need to be able to extract the

names of the variables which appear in a context. Thus, we define a function to map a

context to the sequence containing the variable names in order of appearance:

names(x : T ) = (x),

names(k) = (),

names(Γ,∆) = names(Γ) ·names(∆),

names(Γ;∆) = names(Γ) ·names(∆).
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The potential functions can now be defined, using the contexts from the constructor

signatures to calculate the potential of data structures, and plus and max for combining

the potential of contexts depending upon the context former used. The functions for

types and contexts are mutually recursive, so we distinguish between the two:

ϒt(σ,∗,1) = ϒt(σ, true,bool) = ϒt(σ, false,bool) = 0

ϒt(σ,(v′,v′′),T ′⊗T ′′) = ϒt(σ,v′,T ′)+ϒt(σ,v′′,T ′′),

ϒt(σ, inl(v),(T ′,k′)+(T ′′,k′′)) = k′+ϒt(σ,v,T ′),

ϒt(σ, inr(v),(T ′,k′)+(T ′′,k′′)) = k′′+ϒt(σ,v,T ′′),

ϒt(σ,null, ty(k)) = ki where c ∈ nullc

and Σ(c)[k] = ki → ty(k),

ϒt(σ, l, ty(k)) = ϒc(σ\ l, [x1 7→ v1, . . . ,xp 7→ vp],Γ),

where σ(l) = (c,v1, . . . ,vp),

and Σ(c)[k] = Γ → ty(k), (x1, . . . ,xp) = names(Γ),

ϒc(σ,S, ·) = 0,

ϒc(σ,S,x : T ) = ϒt(σ,S(x),T ),

ϒc(σ,S,k) = k,

ϒc(σ,S,(Γ,∆)) = ϒc(σ,S,Γ)+ϒc(σ,S,∆),

ϒc(σ,S,(Γ;∆)) = max{ϒc(σ,S,Γ),ϒc(σ,S,∆)}.

The typing rules for expressions are presented in Figures 6.1 and 6.2. The judge-

ments take the form Γ `g,t
Σ,F e : T,k |Φ where Γ is a tree-structured context as defined

above, Σ contains the signatures, F is the set of previously defined functions, g is the

name of the current function and t the tail position flag. The expression has type T and

a fixed amount of potential k is added to the potential from T . As before, Φ is a set of

constraints on annotations. The notation Γ() represents a context with a ‘hole’ in place

of a subcontext, and Γ(∆) is Γ() with the hole replaced by ∆.

The constraints are still linear equalities and inequalities in terms of the annota-
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k `g,t
Σ,F ∗ : 1,k′ |{k ≥ k′}

(D-UNIT)

c ∈ {true, false}
k `g,t

Σ,F c : bool,k′ |{k ≥ k′}
(D-BOOL)

x : T,k `g,t
Σ,F x : T,k′ |{k ≥ k′}

(D-VAR)

f ∈ F Σ( f ) = Γ → T,k′1|Φ′ (y1, . . . ,yp) = names(Γ)
Φ = ρ(Φ′)∪{k ≥ stack′(g, f , t), k +ρ(k′1)≥ k′}

ρ(Γ)[x1/y1, . . . ,xp/yp],k `g,t
Σ,F f (x1, . . . ,xp) : ρ(T ),k′ |Φ

(D-FUN)

f /∈ F Σ( f ) = Γ → T,k′1|Φ′ (y1, . . . ,yp) = names(Γ)
Φ = {k ≥ stack′(g, f , t), k + k′1 ≥ k′}

Γ[x1/y1, . . . ,xp/yp],k `g,t
Σ,F f (x1, . . . ,xp) : T,k′ |Φ

(D-FUNDEF)

∆ `g,false
Σ,F e1 : T0,k0 |Φ1 Γ(x : T0,k0) `g,t

Σ,F e2 : T,k′ |Φ2

Γ(∆) `g,t
Σ,F let x = e1 in e2 : T,k′ |Φ1∪Φ2

(D-LET)

Γ(·) `g,t
Σ,F e1 : T,k |Φ1 Γ(·) `g,t

Σ,F e2 : T,k |Φ2

Γ(x : bool) `g,t
Σ,F if x then e1 else e2 : T,k |Φ1∪Φ2

(D-IF)

x1 : T1,x2 : T2,k `g,t
Σ,F (x1,x2) : T1⊗T2,k′ |{k ≥ k′}

(D-PAIR)

Γ(x1 : T1,x2 : T2) `g,t
Σ,F e : T,k′ |Φ

Γ(x : T1⊗T2) `g,t
Σ,F match x with (x1,x2)→ e : T,k′ |Φ

(D-PAIRELIM)

x : T1,k1,k `g,t
Σ,F inl(x) : (T1,k1)+(T2,k2),k′ |{k ≥ k′}

(D-INL)

x : T2,k2,k `g,t
Σ,F inr(x) : (T1,k1)+(T2,k2),k′ |{k ≥ k′}

(D-INR)

Γ(x1 : T1,k1) `g,t
Σ,F e1 : T,k′ |Φ1 Γ(x2 : T2,k2) `g,t

Σ,F e2 : T,k′ |Φ2

Γ(x : (T1,k1)+(T2,k2)) `g,t
Σ,F match x with inl(x1)→ e1 p inr(x2)→ e2 : T,k′ |Φ1∪Φ2

(D-SUMELIM)

Figure 6.1: Typing rules for expressions in the depth analysis
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Σ(c)[k] = Γ → ty(k) (y1, . . . ,yp) = names(Γ)

Γ[x1/y1, . . . ,xp/yp],k `g,t
Σ,F c(x1, . . . ,xp) : ty(k),k′ |{k ≥ k′}

(D-CONSTRUCT)

for all i, 1 ≤ i ≤ m, Γ() p ty(k) `g,t
Σ,F pi → ei : T,k′ |Φi

Γ(x : ty(k)) `g,t
Σ,F match x with p1 → e1 p · · · p pm → em : T,k′ |

S
i Φi

(D-MATCH)

Γ(∆[x1/y1, . . . ,xp/yp]) `g,t
Σ,F e : T,k′ |Φ Σ(c)[k] = ∆ → ty(k) (y1, . . . ,yp) = names(∆)

Γ() p ty(k) `g,t
Σ,F c(x1, . . . ,xp)〈′〉 → e : T,k′ |Φ

(D-CASE)

Γ(∆) `g,t
Σ,F e : T,k′ |Φ

Γ(Γ′(∆)) `g,t
Σ,F e : T,k′ |Φ

(D-WEAKEN)

Γ(x : T [k1/k]) `g,t
Σ,F e : T ′,k′ |Φ

Γ(x : T ) `g,t
Σ,F e : T ′,k′ |Φ∪{k ≥ k1}

(D-WEAKENA)

Γ(∆′) `g,t
Σ,F e : T,k′ |Φ ∆ ∼= ∆′ |Φ′

Γ(∆) `g,t
Σ,F e : T,k′ |Φ∪Φ′ (D-≡)

q∆ = ∆q |Φq (1−q)∆′ = ∆′q |Φ′
q

Γ(∆q,∆
′
q) `

g,t
Σ,F e : T,k′ |Φ

Γ(∆;∆′) `g,t
Σ,F e : T,k′ |Φ∪Φq∪Φ′

q∪{0 ≤ q,q ≤ 1}
(D-SPLIT)

Figure 6.2: Typing rules for expressions in the depth analysis (continued)

Γ,∆ ∼= ∆,Γ | /0 (plus-commute)
Γ,(∆;∆

′)∼= (Γ,∆);(Γ,∆′) | /0 (distribute)
Γ ∼= Γ, · | /0 (plus-empty)
Γ ∼= Γ,0 | /0 (plus-zero)

Γ;∆ ∼= ∆;Γ | /0 (max-commute)
Γ ∼= Γ;Γ | /0 (max-contract)
Γ ∼= Γ; · | /0 (max-empty)
Γ ∼= Γ;0 | /0 (max-zero)

qΓ = Γq |Φq (1−q)Γ = Γ′q |Φ′
q

Γ ∼= Γq,Γ
′
q |Φq∪Φ′

q∪{0 ≤ q,q ≤ 1}
(plus-contract)

Γ ∼= ∆ |Φ
∆ ∼= Γ |Φ

(symmetry)

Figure 6.3: Equivalent contexts (for the D-≡ rule)
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q(1) = 1 | /0 q(bool) = bool | /0

q(T1) = T ′
1 |Φ1 q(T2) = T ′

2 |Φ2

q(T1⊗T2) = T ′
1 ⊗T ′

2 |Φ1∪Φ2

q(T1) = T ′
1 |Φ1 q(T2) = T ′

2 |Φ2

q((T1,k1)+(T2,k2)) = (T ′
1,k

′
1)+(T ′

2,k
′
2) |Φ1∪Φ2∪{qk1 = k′1,qk2 = k′2}

q(ty(k)) = ty(k′) |{qki = k′i : ∀i}

q(·) = · | /0

q(T ) = T ′ |Φ
q(x : T ) = x : T ′ |Φ q(k) = k′ |{qk = k′}

q(Γ1) = Γ′1 |Φ1 q(Γ2) = Γ′2 |Φ2

q(Γ1,Γ2) = Γ′1,Γ
′
2 |Φ1∪Φ2

q(Γ1) = Γ′1 |Φ1 q(Γ2) = Γ′2 |Φ2

q(Γ1;Γ2) = Γ′1;Γ′2 |Φ1∪Φ2

Figure 6.4: Rules for scaling annotations

tions, but we allow extra constraint variables in the form of a scaling factor q:

a1k1 + · · ·+ankn = an+1kn+1 + · · ·+amkm + c,

a1k1 + · · ·+ankn ≥ an+1kn+1 + · · ·+amkm + c, or

qk1 = k2,

where ai ∈ Q, c ∈ Q and q is a constraint variable for a rational value (constrained to

be in the range 0 to 1). We will discuss the need for these scaling variables shortly, and

then how to construct linear programs without them in Section 6.4.

The function rules D-FUN and D-FUNDEF, and the algebraic datatype rules D-

CONSTRUCT and D-CASE use the contexts from the signatures to form the typing

contexts used in the appropriate judgements, renaming the variables and annotations

as necessary. Note that the judgements for D-CASE use a context-with-a-hole Γ() so

that the variable’s contents are placed in the correct position of the resulting context.

The 〈′〉 notation means that the rule can be used for cases with and without a ′ — heap

deallocation makes no difference to the stack space available.

The D-LET rule uses some subcontext ∆ for the typing of e1, and replaces it with

x : T0,k0 in the typing of e2. This replacement relies upon the stack discipline for

soundness: the operational semantics guarantees that the stack memory available for

evaluating e2 is the same as for the entire let expression, and the potential for x : T0,k0 is

at most the potential of ∆ because no extra stack memory can be freed by the evaluation
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of e1. Thus if Γ(x : T0,k0) has enough potential for e2 then Γ(∆) has enough potential

for the entire let.

However, if we were considering heap allocation then there may not be enough free

memory after evaluating e1 for the potential of Γ(x : T0,k0) to be a lower bound on the

amount left. For example, if we have ∆ = a : intlist(1) and Γ(∆) = a : intlist(1); b :

intlist(1) then the initial potential is max{|a|, |b|}. Now suppose that e1 allocates |a|
units of space, leaving the resulting x : T0,k0 with zero units of potential. However,

Γ(x : T0,k0) still has max{0, |b|}= |b| units of potential, even though there may be no

free memory left. For a similar analysis to bound heap space we would need to change

Γ() to remove this excess potential when typing e2. We will briefly discuss this in

Section 9.2.3.

We move on to the four structural typing rules. The D-WEAKEN rule removes

unnecessary parts of the context and D-WEAKENA replaces any annotation in the

context with a lower one. The principle use of D-WEAKENA is to lower the potential

in one branch of computation so that it provides a result of the same type as other

branches. The D-≡ rule allows a number of bidirectional context transformations to

be used. These are given in Figure 6.3. The transformations provide commutativity

and contraction for both context forms, distribution, and the introduction and removal

of empty contexts and zero units of fixed potential. The intuitive idea behind these

transformations is that they all preserve the potential of the context.

Finally, D-SPLIT allows a maximum (;) context to be turned into a plus (,) context

by taking a fraction of the potential of each subcontext. Both D-≡ and D-SPLIT use

an auxiliary set of rules in Figure 6.4 to take a ‘fraction’ of the potential of a context.

Note that the plus-contraction form of D-≡, Γ ∼= Γq,Γ
′
q | . . . , is more constrained

than its counterpart in Hofmann-Jost, SHARE. The SHARE rule allows each annotation

in a type to be split up independently, whereas the plus-contraction here only allows

uniform splitting by some fraction, q. To understand this restriction, consider the tree

of unit lists from before:

[∗,∗,∗,∗]

[] [∗,∗]
�

�
@

@

Suppose we have a per-tree-node potential kt = 10 and a per-list-element potential of

kl = 1. The potential of the entire structure is the maximum potential path from tree

root to list end. Here that path goes to the right subtree and follows the list, with a total
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potential of 1×kt +2×kl = 12. If we were allowed to split the annotations separately

we could construct two variables with the following potential:

kt = 10, kl = 0

[∗,∗,∗,∗]

[] [∗,∗]
�

�
@

@

Total: kt +2× kl = 10.

kt = 0, kl = 1

[∗,∗,∗,∗]

[] [∗,∗]
�

�
@

@

Total: 0× kt +4× kl = 4.

Together, we would have an increased potential of 14, because splitting the annotations

independently has changed which parts of the data structure determine the potential.

In general, the best we can do while guaranteeing that the overall potential remains

unchanged is to scale the annotations uniformly. That is the approach we take here.

As with our previous type systems, we provide rules to define when an entire pro-

gram is well-typed. These are presented in Figure 6.5, and are essentially the same as

before.

Σ( f ) = Γ → T,k′1|Φ (x1, . . . ,xp) = names(Γ) Γ ` f ,true
Σ,F e f : T,k′1 |Φ′

`Σ,F f (x1, . . . ,xp) = e f ⇒{ f},Φ′

`Σ,F D ⇒ F ′,Φ′ `Σ,F B ⇒ F ′′,Φ′′

`Σ,F D and B ⇒ F ′∪F ′′,Φ′∪Φ′′

`Σ,F B ⇒ F ′,Φ′

∀ f ∈ F ′. Σ( f ) = . . . |Φ′

`Σ,F let B

`Σ,F B ⇒ F ′,Φ′ `Σ,F∪F ′ P
∀ f ∈ F ′. Σ( f ) = . . . |Φ′

`Σ,F let B P

Figure 6.5: Typing rules for function signatures in the depth analysis

6.3 Soundness

The main theorem will show that the bound on the stack memory requirements for

an expression predicted by the type system is sufficient for execution and that the

potential of the result is consistent with that amount of stack memory. The proof

proceeds by showing that potential reflects the available stack memory throughout the

execution. Before that we prove several lemmas to show that changes to contexts have

the expected effect on the potential, starting with subcontext replacement:
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Lemma 6.1. Suppose ∆ and ∆′ are the subcontexts in some Γ(∆) and Γ(∆′), and that

there is a store σ and environment S such that ϒc is well defined on ∆,∆′ and Γ(∆).

Then

1. if we have ϒc(σ,S,∆) = ϒc(σ,S,∆′) then ϒc(σ,S,Γ(∆′)) is well defined and

ϒc(σ,S,Γ(∆)) = ϒc(σ,S,Γ(∆′)), and

2. if we have ϒc(σ,S,∆) ≥ ϒc(σ,S,∆′) then ϒc(σ,S,Γ(∆′)) is well defined and

ϒc(σ,S,Γ(∆))≥ ϒc(σ,S,Γ(∆′)).

Proof. We use induction on the structure of Γ(). For the base case we use the premise

about ∆. The inductive step cases are formed using ‘,’ and ‘;’, which add and take the

maximum potential respectively. Both preserve equality and inequality, yielding the

result.

We give three lemmas on weakening, one for contexts, one for annotations and one

for unused variables:

Lemma 6.2. For any Γ(),∆,σ,S, if ϒc(σ,S,Γ(∆)) is defined then

ϒc(σ,S,Γ(∆))≥ ϒc(σ,S,∆).

Proof. By induction on Γ(), using the monotonicity of + and max.

Lemma 6.3. For any assignment of rationals to constraint variables, if ϒt(σ,v,T ) is

defined and k ≥ k1 then we have

ϒt(σ,v,T )≥ ϒt(σ,v,T [k1/k]).

Proof. Straightforward induction on the definition of ϒt(σ,v,T ). At each point the

subcases are combined by max or +, so replacing k by k′ cannot increase the overall

value.

Lemma 6.4. Given a derivation of

Γ `g,t
Σ,F e : T,k |Φ

then for any x 6∈ FV(e) there is also a derivation of

Γ
′ `g,t

Σ,F e : T,k |Φ′

for some Φ′ ⊆ Φ, where Γ′ is Γ with every occurrence of x replaced by the empty

context.
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Proof. By induction on the structure of the derivation. As x 6∈ FV(e) the only rules

which may directly involve a x : T subcontext are D-SPLIT, which will just leave the

empty context unchanged and so requires one less constraint, and D-≡’s contraction

equivalences, where the replacement of x by the empty context will merely remove the

relevant constraints.

Now we show that the scaling relation defined in Figure 6.4 has the desired effect

on the potential.

Lemma 6.5. If ϒc(σ,S,Γ) is defined for some σ, S and Γ and we have q(Γ) = Γq |Φ
then for any assignment satisfying Φ we have

qϒc(σ,S,Γ) = ϒc(σ,S,Γq).

Proof. Straightforward induction on the derivation of q(Γ)= Γq |Φ. Essentially, ϒc(σ,S,Γ)

is made up of annotations combined by + and max. In Γq all of the annotations are

scaled by q and so the q can be factored out.

The bidirectional transformations for the D-≡ preserve the potential of the context:

Lemma 6.6. If we have two contexts Γ and Γ′ with a store σ and environment S such

that ϒc(σ,S,Γ) is well-defined and Γ ∼= Γ′, then ϒc(σ,S,Γ) = ϒc(σ,S,Γ′).

Proof. We consider each case:

Γ,∆ ∼= ∆,Γ : From the definition of ϒc using the commutativity of +,

ϒc(σ,S,(Γ,∆)) = ϒc(σ,S,Γ)+ϒc(σ,S,∆)

= ϒc(σ,S,∆)+ϒc(σ,S,Γ) = ϒc(σ,S,(∆,Γ)).

Γ;∆ ∼= Γ;∆ : From the definition again, using the commutativity of max.

Γ,(∆;∆′)∼= (Γ,∆);(Γ,∆′) : From the definition of ϒc, using the distributivity of +

over max.

Γ ∼= Γ;Γ : From the idempotency of max.

Γ ∼= Γ, ·, Γ ∼= Γ; ·, Γ ∼= Γ,0, Γ ∼= Γ;0 : Follows immediately from the definition of ϒc

on each right hand side.

Γ ∼= Γq,Γ
′
q : Follows from Lemma 6.5.
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Γ ∼= ∆ ⇒ ∆ ∼= Γ : Follows by the relevant earlier case and the symmetry of =.

Now we can state the main theorem to show that the potential provides a bound on

the stack space used when evaluating an expression.

Theorem 6.7. Let size(c) = 0 for all constructors c. If an expression e in some well-

typed program has a typing

Γ `g,t
Σ,F e : T,k′ |Φ

with an assignment of nonnegative rationals to constraint variables which satisfies the

constraints in g’s signature, and an evaluation S,σ `g,t e v,σ′ satisfying the benign

sharing conditions, and ϒc(σ,S,Γ) is defined, then for any q ∈ Q+ and m ∈ N such

that

m ≥ ϒc(σ,S,Γ)+q

m will be a sufficient amount of stack space for the execution to succeed,

m,S,σ `g,t e v,σ′,m,

and

m ≥ ϒt(σ′,v,T )+ k′+q.

Proof. We proceed by simultaneous induction on the evaluation and the typing deriva-

tions. First, note that whenever we use a value from S or σ we can be sure that it has

the expected form for its type because otherwise ϒc(σ,S,Γ) would not be defined.

For the leaf evaluation rules, no extra stack memory is required so the execution

will always succeed. Note that all of the corresponding typing rules have some annota-

tion k in the context with the constraint that k ≥ k′. To obtain m ≥ ϒt(σ′,v,T )+ k′+q

it suffices to show that ϒc(σ,S,Γ)≥ ϒt(σ′,v,T )+ k′:

D-BOOL. Immediate from ϒt(σ,c,bool) = 0 and Γ = k.

D-VAR. The context has the form x : T,k, and by the definition of ϒc

ϒc(σ,S,(x : T,k))≥ ϒt(σ,S(x),T )+ k′.

D-PAIR. The context has the form x1 : T1,x2 : T2,k, and

ϒc(σ,S,(x1 : T1,x2 : T2,k)) = ϒt(σ,S(x1),T1)+ϒt(σ,S(x2),T2)+ k

≥ ϒt(σ,(S(x1),S(x2)),T1⊗T2)+ k′.
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D-INL. We have the context x : T1,k1,k, and

ϒc(σ,S,(x : T1,k1,k)) = ϒt(σ,S(x),T1)+ k1 + k

≥ ϒt(σ, inl(S(x)),(T1,k1)+(T2,k2))+ k′.

D-INR. Analogous to D-INL.

D-CONSTRUCT with E-CONSTRUCTN. The constructor is some nullary c∈ nullc

with a signature of the form Σ(c)[k] = ki → ty(k). Recall that such constructors

are unique for their type, ty. The context must have the form ki,k, and so the

result follows from the definition of ϒc:

ϒt(σ,null, ty(k)) = ki.

D-CONSTRUCT with E-CONSTRUCT. The context has the form Γ[x1/y1, . . . ,xp/yp],k

where (y1, . . . ,yp) = names(Γ), and the constructor c has a signature Σ(c)[k] =

Γ → ty(k). Now,

ϒc(σ,S,(Γ[x1/y1, . . . ,xp/yp],k)) = ϒc(σ, [y1 7→ S(x1), . . . ,yp 7→ S(xp)],Γ)+ k

≥ ϒt(σ[l 7→ s], l, ty(k))+ k′

as required, where s = (c,S(x1), . . . ,S(xp)).

The other rules need to use the induction hypothesis. The precondition on m can

be satisfied by showing that the original ϒc(σ,S,Γ) is larger than or equal to its coun-

terpart for the induction hypothesis. The result of the induction hypothesis is sufficient

for most of the rules, where the resulting value and type from the induction hypothesis

are also the value and type of the current expression. The D-FUN rule is a little differ-

ent due to the stack space used, and D-LET rule uses the induction hypothesis twice,

see below.

We start with the typing rules which have no operational effect.

D-WEAKEN. By Lemma 6.2, ϒc(σ,S,Γ′(∆)) ≥ ϒc(σ,S,∆) and then applying

Lemma 6.1 we obtain

ϒc(σ,S,Γ(Γ′(∆)))≥ ϒc(σ,S,Γ(∆)).

It is then sufficient to apply the induction hypothesis.
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D-WEAKENA. Combining Lemma 6.3 and Lemma 6.1 we have

ϒc(σ,S,Γ(x : T ))≥ ϒc(σ,S,Γ(x : T [k1/k]))

and so can apply the induction hypothesis to obtain the result.

D-≡. By Lemma 6.6, ϒc(σ,S,∆)= ϒc(σ,S,∆′), and so by Lemma 6.1, ϒc(σ,S,Γ(∆))=

ϒc(σ,S,Γ(∆′)). The result follows from the induction hypothesis.

D-SPLIT. As q ∈ [0,1],

max{ϒc(σ,S,∆),ϒc(σ,S,∆′)} ≥ qϒc(σ,S,∆)+(1−q)ϒc(σ,S,∆′).

From this and Lemma 6.5 we get

ϒc(σ,S,(∆;∆
′))≥ ϒc(σ,S,(q∆,(1−q)∆′))

and we can apply the induction hypothesis.

D-LET with E-LET-TAIL. First, consider the induction hypothesis on e1: for any

q∈Q+ and m1 ∈N such that m1 ≥ϒc(σ,S,∆)+q, we have m1 ≥ϒt(σ0,v0,T0)+

k0 +q. As ϒc(σ,S,Γ(∆))≥ ϒc(σ,S,∆) by Lemma 6.2, we can take m1 = m and

so the execution of e1 will succeed.

We can also use the induction hypothesis to deduce that the potential has not

increased. If we set m1 = dϒc(σ,S,∆)e and q = m1−ϒc(σ,S,∆) we can see that

m1−q = ϒc(σ,S,∆), and from the induction hypothesis we know that m1−q ≥
ϒt(σ0,v0,T0)+ k0. Thus,

ϒc(σ,S,∆)≥ ϒt(σ0,v0,T0)+ k0.

By Lemma 6.4 we can replace the variables in Γ() which are not used in e2 by the

empty context to yield some Γ′(), and still obtain a typing for e2 under the same

constraints. Now let d = ϒc(σ,S,∆). Thus, we can use Lemma 6.1 to replace ∆,

ϒc(σ,S,Γ(∆)) = ϒc(σ,S,Γ(d))

≥ ϒc(σ,S,Γ′(d))

= ϒc(σ0,S,Γ′(d))

≥ ϒc(σ0,S[x 7→ v0],Γ′(x : T0,k0)).
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where the change from σ to σ0 is justified by the restriction of Γ to free variables

and the benign sharing condition (from page 10)

σ � R (σ,Se2) = σ0 � R (σ,Se2), (2.2)

where Se2 = S � (FV(e2)\x). Finally, we apply the induction hypothesis to e2 to

obtain the result.

D-FUN. There must be a typing

Γ ` f ,true
Σ,F e f : T,k′1 |Φ′

where e f is the body of the function f , because the entire program is well typed.

We can apply the substitution of annotations, ρ, to its derivation to obtain

ρ(Γ) ` f ,true
Σ,F e f : ρ(T ),ρ(k′1) |ρ(Φ′).

Now,

m ≥ ϒc(σ,S,(ρ(Γ[x1/y1, . . . ,xp/yp],k))+q

= ϒc(σ, [y1 7→ S(x1), . . . ,yp 7→ S(xp)],ρ(Γ))+ k +q

= ϒc(σ, [y1 7→ S(x1), . . . ,yp 7→ S(xp)],ρ(Γ))+ stack′(g, f , t)+(q+ k− stack′(g, f , t)).

The constraint on k guarantees that q + k− stack′(g, f , t) ≥ 0 so we can apply

the induction hypothesis on e f with that as the constant (that is, the ‘q’ for e f ).

From the induction hypothesis we can conclude

m ≥ ϒt(σ′,v,ρ(T ))+ρ(k′1)+(q+ k− stack′(g, f , t))+ stack′(g, f , t)

≥ ϒt(σ′,v,ρ(T ))+ k′.

as required, using the constraint on k +ρ(k′1).

D-FUNDEF. As D-FUN with the identity in place of ρ. The constraints in Φ′ will

form part of the current function’s signature, and so will be satisfied.

D-IF with EIFTRUE or EIFFALSE. From the definition, ϒt(σ,c,bool)= 0 = ϒc(σ,S, ·),
and using Lemma 6.1, ϒc(σ,S,Γ(x : bool)) = ϒc(σ,S,Γ(·)). Hence we can use

the induction hypothesis for the appropriate branch.

D-PAIRELIM. By definition

ϒc(σ,S(x),x : T1⊗T2) = ϒt(σ,v1,T1)+ϒt(σ,v2,T2),

and so by Lemma 6.1 we can apply the induction hypothesis on e.
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D-SUMELIM with E-MATCHINL. From the definition

ϒt(σ,S(x),(T1,k1)+(T2,k2)) = ϒt(σ,v,T1)+ k1

= ϒc(σ,S[x1 7→ v],(x1 : T1,k1)),

where S(x) = inl(v) for some value v. We can apply the induction hypothesis to

e1 after using Lemma 6.1 to account for the rest of the context.

D-SUMELIM with E-MATCHINR. Analogous to the E-MATCHINL case.

D-MATCH and D-CASE with E-MATCHN. From the evaluation S(x) = null and

c ∈ nullc. Thus there is a signature of the form Σ(c)[k] = ki → ty(k) because c is

the unique constructor in nullc for ty. By the definition of ϒc,

ϒc(σ,S,x : ty(k)) = ϒt(σ,null, ty(k)) = ki = ϒc(σ,S,ki).

Lemma 6.1 and the induction hypothesis can now be used as usual.

D-MATCH and D-CASE with E-MATCH. From the evaluation S(x) = l for some

l ∈ loc and σ(l) = (c,v1, . . . ,vp). From the typing rules Σ(c)[k] = ∆ → ty(k).

Using the definition of ϒc,

ϒc(σ,S,x : ty(k)) = ϒt(σ, l, ty(k)) = ϒc(σ\ l, [x1 7→ v1, . . . ,xp 7→ vp],∆)

= ϒc(σ\ l, [y1 7→ v1, . . . ,xp 7→ vp],∆[y1/x1, . . . ,yp/xp]).

We must now show that the removal of l does not affect the potential of the rest

of the context, Γ(). By Lemma 6.4 we can remove any variables not in FV(ei)

from Γ() and still get a typing for ei. Thus the benign sharing condition (from

page 9)

l /∈ R (σ,S[x1 7→ v1, . . . ,xp 7→ vp] � FV(ei)) (2.1)

shows that the removal of l does not affect the potential of the (remaining) con-

text. We can then use Lemma 6.1 and the induction hypothesis as usual.

D-MATCH and D-CASE with E-MATCHN′ and E-MATCH′. As for the previous

two cases, because the only difference is that l is not deallocated. So we need

only note that l is not removed from σ, and thus the benign sharing argument is

not required.
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As usual, we can use the theorem to show that the stack usage of the whole program

respects the bounds obtained from a typing:

Corollary 6.8. Let size(c) = 0 for all constructors c. Suppose a well typed program

has an initial function f , and the arguments for f are given as values v1, . . . ,vp with

an initial store σ. If

Σ( f ) = Γ → T ′,k′1 |Φ′

where names(Γ) = (y1, . . . ,yp) then any execution of f (v1, . . . ,vp) will require at most

ϒc(σ, [y1 7→ v1, . . . ,yp 7→ vp],Γ)+ stack( f )

units of memory, for any assignment of nonnegative rationals to constraint variables

which satisfies Φ′.

Proof. The program is well typed, so from the function signature we have

Γ ` f ,true
Σ,F e f : T ′,k′1 |Φ′.

Applying D-FUN we have

Γ,stack( f ) `initial,false
Σ,F f (y1, . . . ,yp) : T ′,k′′ |Φ′∪{k′1 + stack( f )≥ k′′},

and so by Theorem 6.7 no evaluation of f (x1, . . . ,xp) requires more than

ϒc(σ, [y1 7→ v1, 7→ yp 7→ vp],Γ)+ stack( f )

units of stack space.

As in the previous chapter, we can extend the soundness theorem to cover non-

terminating programs using the partial evaluation extension to the operational seman-

tics:

Theorem 6.9. Let size(c) = 0 for all constructors c. If an expression e in some well-

typed program has a typing

Γ `g,t
Σ,F e : T,k′ |Φ

with an assignment of nonnegative rationals to constraint variables which satisfies the

constraints in g’s signature, and an evaluation in the extended operational semantics

of Section 2.1.3

S,σ `g,t e v,σ′
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satisfying the benign sharing conditions, and ϒc(σ,S,Γ) is defined, then for any q∈Q+

and m ∈ N such that

m ≥ ϒc(σ,S,Γ)+q

m will be a sufficient amount of stack space for the execution to succeed,

m,S,σ `g,t e v,σ′,m,

where either v = halted, or

m ≥ ϒt(σ′,v,T )+ k′+q.

Proof. By the proof of Theorem 6.7 combined with the extra cases for the partial eval-

uation semantics from the proof of Theorem 5.12 (which is the corresponding result

for the previous system, on page 87).

As a result, Corollary 6.8 for entire programs also holds for the partial evaluation

semantics. Thus regardless of how long a non-terminating program is allowed to run

for, it will never violate an inferred stack space bound.

6.4 Forming a linear program

We have shown that solving the constraint set generated by a typing of a program will

yield an upper bound on the stack memory usage, but the constraints generated are not

all linear. The D-SPLIT rule and the plus-contraction form of D-≡ both take fractions

of the annotations in a context, producing quadratic constraints of the form qk = k′.

For the type annotations we will fix q as part of the type inference process, so

that constraints such as qk = k′ are linear with q as a fixed coefficient. Our inference

process is detailed in the next chapter, but we note two useful conventions that we

will use there and in the examples. When the subcontexts involved are used in similar

ways, it makes sense to split the potential equally, and so we choose q appropriately.

For example, if we had a context x : T ; y : T and wanted an additive context using

D-SPLIT we would take q = 1
2 to get x : 1

2T, y : 1
2T .

The other common case is when we want all of the potential from one of the sub-

contexts and none from the rest, which can be realised with D-SPLIT using q = 1. We

will see examples below where we use this to separate the structure of a tree from its

contents.

Dealing with annotations for fixed amounts of potential which appear in the context

is easier. We can use the following derived rule for plus-contraction:
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Lemma 6.10. The rule

Γ(k1,k2) `g,t
Σ,F e : T,k′ |Φ

Γ(k) `g,t
Σ,F e : T,k′ |Φ∪{k = k1 + k2}

(D-CONTRACTA)

is derivable modulo equivalence of constraints.

Proof. We can derive the following:

Γ(k1,k2) `g,t
Σ,F e : T,k′ |Φ

qk = k1 |{qk = k1} (1−q)k = k2 |{(1−q)k = k2}

k ∼= k1,k2 |{0 ≤ q,q ≤ 1,qk = k1,(1−q)k = k2}
D-≡

Γ(k) `g,t
Σ,F e : T,k′ |Φ∪{0 ≤ q,q ≤ 1,qk = k1,(1−q)k = k2}

It remains to show that the constraints above are satisfied by any solution to k = k1 +k2.

For k = 0, we have k1 = k2 = 0 because all annotations are nonnegative by definition.

Otherwise, take q = k1/k, and the required constraint set becomes

Φ∪{0 ≤ k1,k1 ≤ k,k1 = k1,k− k1 = k2}.

This is equivalent to

Φ∪{k = k1 + k2},

as required.

We also have the reverse rule:

Lemma 6.11. The rule

Γ(k) `g,t
Σ,F e : T,k′ |Φ

Γ(k1,k2) `g,t
Σ,F e : T,k′ |Φ∪{k = k1 + k2}

(D-CONTRACTA′)

is derivable modulo equivalence of constraints.

Proof. As for Lemma 6.10, except that we use the symmetry form of D-≡ to swap k

and k1,k2.

We might hope for an analogous rule with linear constraints for D-SPLIT to trans-

form a context Γ(k1;k2) into one of the form Γ(k1,k2), but the corresponding constraint

is max{k1,k2} ≥ k′1 + k′2. This is not convex, as we can see from the following graph:
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Thus such constraints cannot be solved by linear programming.

If we fix the coefficients q for type annotations and use the derived rule for anno-

tations for fixed potential then our constraint set will be linear and can be solved by

normal linear programming techniques as before.

6.5 Examples

To make our examples more readable we use the derived rules above, plus the follow-

ing rule:

Lemma 6.12. The rule

Γ((∆1; . . . ;∆n),k) `g,t
Σ,F e : T,k′ |Φ

Γ((∆1,k1); . . . ;(∆n,kn)) `g,t
Σ,F e : T,k′ |Φ∪{ki ≥ k : ∀i ≤ n}

(D-FACTORA)

is derivable, up to equivalent constraints.

Proof. For each ∆i,ki subcontext we can use the D-CONTRACTA rule to obtain ∆i,k′i,k

with the constraint ki = k′i + k, and then use D-WEAKEN to remove the k′i. The k′i
annotation does not appear anywhere else, so the constraint can be replaced with ki ≥ k.

Finally, using D-≡ with the distribution equivalence, Γ,(∆;∆′) ∼= (Γ,∆);(Γ,∆′), the

whole subcontext becomes (∆1, . . . ,∆n),k.

In the example derivations we will also combine several uses of D-WEAKEN, and

combine weakening with the leaf rules where it is obvious which sections of the context

should be removed.

Our first example is a simple recursive function on boolean trees to demonstrate

how we can obtain a stack space bound in terms of the input’s depth.

Example 6.13. Consider the following function which computes the pointwise ‘and’

of two binary trees with boolean values at the nodes:
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let andtrees(t1,t2) =

match t1 with leaf -> leaf | node(l1,r1,v1) ->

match t2 with leaf -> leaf | node(l2,r2,v2) ->

let l = andtrees(l1,l2) in

let r = andtrees(r1,r2) in

let v = if v1 then v2 else false in

node(l,r,v)

Evaluating andtrees(t1,t2) according to the operational semantics requires stack

space proportional to the length of longest path from the root which is common to both

trees. The definition of the potential functions determines the form of the bounds the

analysis can produce. Hence, the bounds for andtrees will be either the sum of val-

ues proportional to each trees depth, or the maximum of values proportional to each

tree’s depth. Thus some reasonable bounds we expect to be able to obtain using the

new type system are stack(andtrees) times one of |t1|d, |t2|d or max{|t1|d, |t2|d},

where stack( f ) is our usual notation for the stack frame size of a function f . The max

bound is potentially worse than the other two, but is provided to illustrate how a sin-

gle function can have several signatures with different structures and different typing

derivations.

First, let us consider obtaining a bound with the signature

Σ(andtrees) = t1 : booltree(k1),t2 : booltree(k2)→ booltree(k3),k′.

A typing for the function body using this signature is presented in Figure 6.6, where

Ti = booltree(ki). We have used some structural rules between the D-MATCH and D-

LET rules to group the corresponding parts of the two trees together in the context,

along with the fixed potential. Thus at each use of D-LET we can confine our interest

to the subcontext containing precisely what we need to construct the new variable. Fi-

nally, to construct the new tree node we use two derived structural rules (D-FACTORA

and D-CONTRACTA) to move the fixed potential to the required parts of the context.
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The constraints generated by this typing are

Φ1 = {0 ≥ k′} from D-CONSTRUCT,

Φ2 = {k1 ≥ k′} from D-CONSTRUCT,

Φ3 = {k ≥ k4} from D-VAR and D-BOOL,

Φ4 = {k7 ≥ k′} from D-CONSTRUCT,

Φ5 = {k6 = k3 + k7} from D-CONTRACTA,

Φ6 = {k4 ≥ k6, k5 ≥ k6} from D-FACTORA,

Φ7 = {k ≥ stack′(andtrees,andtrees, false), k + k′ ≥ k5} from D-FUNDEF,

Φ8 = {k = k1 + k2} from D-CONTRACTA′.

and the following solution gives us the stack(andtrees)×|t1|d bound,

k1 = k = k4 = k5 = k6 = k3 = stack(andtrees),k2 = k7 = k′ = 0,

with the signature

t1 : booltree(stack(andtrees)),t2 : booltree(0)→ booltree(stack(andtrees)),0.

Another solution gives us the stack(andtrees)×|t2|d bound,

k2 = k = k4 = k5 = k6 = k3 = stack(andtrees),k1 = k7 = k′ = 0,

with the signature

t1 : booltree(0),t2 : booltree(stack(andtrees))→ booltree(stack(andtrees)),0.

The bound expressed as a maximum requires a different signature,

Σ(andtrees) = t1 : booltree(k1);t2 : booltree(k2)→ booltree(k3),k′.

and a different typing (Figure 6.7). The constraints generated by this typing are

Φ1 = {0 ≥ k′} from D-CONSTRUCT,

Φ2 = {k1 ≥ k′} from D-CONSTRUCT,

Φ3 = {k ≥ k4} from D-VAR and D-BOOL,

Φ4 = {k7 ≥ k′} from D-CONSTRUCT,

Φ5 = {k6 = k3 + k7} from D-CONTRACTA,

Φ6 = {k4 ≥ k6, k5 ≥ k6} from D-FACTORA,

Φ7 = {k ≥ stack′(andtrees,andtrees, false), k + k′ ≥ k5} from D-FUNDEF,

Φ8 = {k1 ≥ k, k2 ≥ k} from D-FACTORA.
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Only Φ8 has changed from the previous typing, but we now have the solution

k = k1 = k2 = k3 = k4 = k5 = k6 = stack(andtrees), k7 = k′ = 0,

and the signature

t1 : booltree(stack(andtrees));t2 : booltree(stack(andtrees))→ booltree(stack(andtrees)),0,

representing the bound

max{stack(andtrees)×|t1|d, stack(andtrees)×|t2|d}.

Our next example demonstrates how our new ‘maximum’ form of bounds can avoid

splitting potential between different appearances of a variable unnecessarily.

Example 6.14. Consider the following function

let maybetail(l,b) = match l with cons(h,t)’-> if b then t else l

which returns either the tail of the list, or the whole list.

It requires only a constant amount of stack space, which all of our analyses easily

handle. However, consider composing it with a function such as notlist, which uses

a linear amount of stack space:

let maybenot(l,b) = let l’ = maybetail(l,b) in notlist l’

The analysis of maybetail is responsible for turning the bound with respect to |l′|
into a bound with respect to |l|. The maybetail function’s signature has the form

maybetail : list(k1),bool,n1 → list(k2),n2,

The analysis will produce constraints forcing k2 × |l′| to provide the linear part of

the bound for notlist, stack(notlist)× |l′|. It also produces constraints when

analysing maybetail to ensure that k1 is large enough so that

k1×|l| ≥ k2×|l′|.

As we know that l and l’ differ by at most one element, we also know that k1 = k2 =

stack(notlist) is sufficient. We will see that the constraints produced by our new

type system allow this tight bound, but those produced by the previous analyses can

only give a larger bound, k1 = 2× k2 = 2× stack(notlist).



Chapter 6. Bounding in terms of depth 121

In the type systems for our previous analyses we must use the contraction rule

SHARE before the first use of l for MATCH, dividing the potential between it (including

t) and the second use of l. See Figure 6.8 for the typing in the direct adaption of the

Hofmann-Jost system of Chapter 4 (the give-back system is similar). However, only

one of t and l is used, so the remainder of the potential is ignored by the rest of the

analysis. Thus in a larger program where some memory requirement proportional to

the result of maybetail appears, such as maybenot, the bound expressed in terms of

the argument to maybetail will be overestimated by a factor of two because for any k

the best bound from Hofmann-Jost is

maybetail : list(2× k),bool,0 → list(k),0.

However, in the depth type system we can use max-contraction to avoid splitting

up the potential. A typing for the body of maybetail in the depth system is presented

in Figure 6.9. Note that the potential of the result can now be as large as the potential

of the argument:

maybetail : l : list(k),b : bool→ list(k),0,

for any k. Thus the analysis of maybetail faithfully translates parts of the bound

expressed in terms of its result’s depth into a bound with respect to its argument’s

depth.

Finally, we consider an example which illustrates a limitation of the depth type

system.

Example 6.15. Consider the following function which swaps the root value with its

left child’s value in a tree:

let swapleft t = match t with node(l,r,v) ->

match l with node(ll,lr,lv) ->

let l’ = node (ll,lr,v) in

node(l’,r,lv)

That is, it performs this transformation:

v

lv r

ll lr

� @

� @

7→
lv

v r

ll lr

� @

� @



Chapter 6. Bounding in terms of depth 122

Dt =
VAR

h : bool,t : list(k′),l2 : list(k2),b : bool,n1 `Σ,F t : list(k′),n′ |Φ1
SHARE

h : bool,t : list(k1),l2 : list(k2),b : bool,n1 `Σ,F t : list(k′),n′ |Φ1,2

Dl =
VAR

h : bool,t : list(k1),l2 : list(k′),b : bool,n1 `Σ,F l2 : list(k′),n′ |Φ1
SHARE

h : bool,t : list(k1),l2 : list(k2),b : bool,n1 `Σ,F l2 : list(k′),n′ |Φ1,3

Dt Dl
IF

h : bool,t : list(k1),l2 : list(k2),b : bool,n1 `Σ,F if · · · : list(k′),n′ |Φ1,...,3
CASE

l2 : list(k2),b : bool,n p list(k1) `Σ,F cons · · · : list(k′),n′ |Φ1,...,4
MATCH

l1 : list(k1),l2 : list(k2),b : bool,n `Σ,F match · · · : list(k′),n′ |Φ1,...,4
SHARE

l : list(k),b : bool,n `Σ,F match · · · : list(k′),n′ |Φ1,...,5

Φ1 = {n1 ≥ n′}, Φ2 = {k1 ≥ k′}, Φ3 = {k2 ≥ k′}, Φ4 = {n1 = n+ k1}, Φ5 = {k = k1 + k2}

Figure 6.8: A plain Hofmann-Jost typing for maybetail

Dt =

D-VAR
t : list(k′),n `Σ,F t : list(k′),n′ |Φ1

D-WEAKENA
t : list(k),n `Σ,F t : list(k′),n′ |Φ1,2

D-WEAKEN
(((h : bool;t : list(k1)),k);l : list(k)),n `Σ,F t : list(k′),n′ |Φ1,2

Dl =

D-VAR
l : list(k′),n `Σ,F l : list(k′),n′ |Φ1

D-WEAKENA
l : list(k),n `Σ,F l : list(k′),n′ |Φ1,2

D-WEAKEN
(((h : bool;t : list(k1)),k);l : list(k)),n `Σ,F l : list(k′),n′ |Φ1,2

Dt Dl
D-IF

(((h : bool;t : list(k)),k);l : list(k)),b : bool,n `Σ,F if · · · : list(k′),n′ |Φ1,2
D-CASE

(();l : list(k)),b : bool,n p list(k) `Σ,F cons · · · : list(k′),n′ |Φ1,2
D-MATCH

(l : list(k);l : list(k)),b : bool,n `Σ,F match · · · : list(k′),n′ |Φ1,2
D-≡

l : list(k),b : bool,n `Σ,F match · · · : list(k′),n′ |Φ1,2

Φ1 = {n ≥ n′}, Φ2 = {k ≥ k′}

Figure 6.9: A ‘depth’ typing for maybetail
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Again, this function obviously runs in constant stack space (as any of the stack

analyses we have examined can determine), and so we are interested in how the anal-

ysis of swapleft affects the bounds of a larger program. It does not change the depth

of the tree, or its contents, but only the positions of the contents. Thus if swapleft t

produces the tree t ′, and we have a bound k×|t ′|d on some later part of the program,

does the analysis of swapleft give us the tight bound of k×|t|d?

If the values at the nodes are booleans then we can, and such a typing is presented

in Figure 6.10. However, it uses a trick: the values at the nodes have no potential

because they are booleans, and so we can use D-SPLIT to change the context

(l : tree(k);r : tree(k);v : bool),k

into

(l : tree(k);r : tree(k)),v : bool,k

with q = 1 for the l;r subcontext, and 1− q = 0 for v. Note that both contexts have

the same potential, and so no inflation of the overall bounds occurs.

If we consider richer tree types, such as the tree of lists introduced in Section 6.1,

then the situation is more complex. When the tree of lists was introduced we explained

that the form of the bounds was not merely an annotation times the depth of the tree, but

the maximum cost of following a path through the tree and one of the lists, weighted by

the annotations. If we know in advance that the lists’ annotation will be zero then the

form of the bounds degenerates to the depth of the tree, and we can use the D-SPLIT

trick again.

In general, however, we want to be able to express bounds which include the lists,

and thus must be able to assign potential to them. The best we can do at present is to

overestimate the cost of swapleft by k units of potential, inflating the overall bound

by at least k units for every use of swapleft. This is necessary and sufficient because

if v has enough potential then it will determine the potential of the entire tree. Thus

swapping v with lv will make the overall potential v’s potential plus k because v is one

step away from the root of the tree.

Ideally we would like to separate such data structures into layers by defining the

potential function so as to sum the maximum potential from the structural ‘layer’ and

the maximum potential of the content ‘layer’. We leave this to future work (see Sec-

tion 9.2.1).
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Chapter 7

Structural inference for the depth

analysis

The previous chapter presented most of our new stack space analysis that expresses

bounds using addition and maxima, and thus allows bounds on stack space in terms

of the depth of data structures. We have a type system which can produce a set of

arithmetic constraints as before, and solutions for the constraint system provide upper

bounds on the stack space usage. We have also provided some techniques to ensure

that we can construct typings where the constraint set forms a linear program, and

so can be solved with standard linear programming techniques, as with our previous

analyses.

In this chapter we investigate the remaining problem: how to obtain a typing by

choosing where to use the non-syntax-directed structural rules. With such a typing

we can proceed as above to obtain a stack memory bound. Note that the typings we

generate cannot be the ‘most general’ in any rigorous sense — we have already seen

in Example 6.13 that a single function can have two quite different typing derivations.

Therefore we will aim to construct an inference procedure which performs well in

general, without performing an expensive search for the absolutely optimal typing.

To make the problem more tractable and eliminate some of the choices like those

in Example 6.13 we assume that the structure of the function signatures is supplied by

the user of the analysis. We will discuss possible approaches to inferring the signatures

briefly in Section 9.2.4. We also assume that the constructor signatures are given by

the user, although it is easy to produce these automatically by defining them to yield

potential proportional to the depth. More precisely, for a constructor c of unannotated

125
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signature T1, . . . ,Tp → ty we would define

Σ(c) = ∀k.(x1 : T̂1; . . . ;xp : T̂p),k → ty(k),

where T̂i is Ti plus any annotations required, and k contains all of the annotations that

appear in a constructor for ty(k) including those in each T̂i.

We will define our inference algorithm as a translation from expressions in LFD to

expressions in LFD enriched by terms which describe the inferred changes in the typing

context’s structure, and by implication the typing rules required. The algorithm is

based on generating a ‘desired’ context for each expression, starting with the innermost

subexpressions. The major difficulty is to decide on the changes to the context structure

(and thus the terms to be added) to accommodate binding expressions, and to bridge

the gap between the ‘desired’ context for the function body and the given function

signature.

7.1 The enriched language

To make the typing entirely deterministic we add new terms as described above, and

add a little information to the existing binding terms. Thus an enriched expression

specifies the precise form of the typing derivation for the original expression in the

type system defined in Chapter 6.

In that chapter we took the two context formers, ‘,’ and ‘;’, to be implicitly asso-

ciative. Here we wish to remove all doubt as to which subcontexts we are manipulat-

ing and so we treat the formers as constructing lists of subcontexts (bunches), which

may be nested. We denote an additive bunch as (Γ1, . . . ,Γn), a maximal bunch as

{Γ1; . . . ;Γn}, and interpret an empty list, () or {}, as an empty context. This notation

is slightly different from the previous chapter, but makes the context manipulation in-

volved clearer. Thus two of our new terms will deal with grouping and ungrouping

contexts, even though associativity is implicit in the type system.

We also need to give the position of a subcontext, for which we use a sequence of

positions in successive nested contexts. For example, the position of y in

{(x : T1,k1,

3︷ ︸︸ ︷
{z : T2;y : T3})︸ ︷︷ ︸

1

;k2}

is (1,3,2). To give the position of the hole in a context-with-a-hole Γ() we define a
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function π:

π(()) = (),

π((Γ1, . . . ,Γi(), . . . ,Γn)) = (i) ·π(Γi()),

π({Γ1; . . . ;Γi(); . . . ;Γn}) = (i) ·π(Γi()).

We can now define our new terms, accompanied by a justification that the term

represents a derivation in the type system. For each term we give one or more pseudo-

typing rules similar to those in the previous chapter, omitting the Σ,F,g, t from `g,t
Σ,F

and the constraint set because they have no relevance to the soundness of the rules for

the new terms. The main purpose of our new rules is to present the precise context

transformation for each term.

The new terms and their justifications are:

Γ((Γ1, . . . ,(Γi, . . . ,Γi+m−1), . . . ,Γn)) ` e : T,k

Γ((Γ1, . . . ,Γi, . . . ,Γi+m−1, . . . ,Γn)) ` group(π(Γ()), i,m) in e : T,k

Γ({Γ1; . . . ;{Γi; . . . ;Γi+m−1}; . . . ;Γn}) ` e : T,k

Γ({Γ1; . . . ;Γi; . . . ;Γi+m−1; . . . ;Γn}) ` group(π(Γ()), i,m) in e : T,k

Γ((Γ1, . . . ,Γi, . . . ,Γi+m−1, . . . ,Γn)) ` e : T,k

Γ((Γ1, . . . ,(Γi, . . . ,Γi+m−1), . . . ,Γn)) ` ungroup(π(Γ()), i) in e : T,k

Γ({Γ1; . . . ;Γi; . . . ;Γi+m−1; . . . ;Γn}) ` e : T,k

Γ({Γ1; . . . ;{Γi; . . . ;Γi+m−1}; . . . ;Γn}) ` ungroup(π(Γ()), i) in e : T,k

The group and ungroup terms are justified by the implicit associativity of the context

formers in the depth system.

Γ((Γρ(1), . . . ,Γρ(n))) ` e : T,k ρ is a permutation on 1, . . . ,n

Γ((Γ1, . . . ,Γn)) ` rearrange(π(Γ()),ρ) in e : T,k

Γ({Γρ(1); . . . ;Γρ(n)}) ` e : T,k ρ is a permutation on 1, . . . ,n

Γ({Γ1; . . . ;Γn}) ` rearrange(π(Γ()),ρ) in e : T,k

The rearrange term is justified by repeated application of the plus-commutate and max-

commute cases of D-≡.

Γ({(Γ1, . . . ,Γi−1,∆1,Γi+1, . . . ,Γm); . . . ;(Γ1, . . . ,Γi−1,∆n,Γi+1, . . . ,Γm)}) ` e : T,k

Γ((Γ1, . . . ,Γi−1,{∆1; . . . ;∆n},Γi+1, . . . ,Γm)) ` distribute(π(Γ()), i) in e
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Γ((Γ1, . . . ,Γi,{(∆1,1, . . . ,∆1,m1); . . . ;(∆n,1, . . . ,∆n,mn)},Γ′1, . . . ,Γ′j)) ` e : T,k

Each ρi is a substitution on constraint variables

Γ



(

ρ1(Γ1), . . . ,ρ1(Γi),∆1,1, . . . ,∆1,m1,ρ1(Γ′1), . . . ,ρ1(Γ′j)
)

;

. . . ;(
ρn(Γ1), . . . ,ρn(Γi),∆n,1, . . . ,∆n,mn,ρn(Γ′1), . . . ,ρn(Γ′j)

)

 ` factor(π(Γ()), i, j) in e

These terms combine the bidirectional distribution case of D-≡ with associativity and

(in the case of factor) weakening of annotations using D-WEAKENA to make the com-

mon portions match.

Γ(∆) ` e : T,k

Γ(Γ′(∆)) ` weaken(π(Γ()),π(Γ′())) in e : T,k

Γ((∆ j1, . . . ,∆ jm−n)) ` e : T,k

{ j1, . . . , jm−n}= {1, . . . ,m}\{i1, . . . , in}

Γ((∆1, . . . ,∆m)) ` remove(π(Γ()),{i1, . . . , in}) in e : T,k

Γ({∆ j1; . . . ;∆ jm−n}) ` e : T,k

{ j1, . . . , jm−n}= {1, . . . ,m}\{i1, . . . , in}

Γ({∆1; . . . ;∆m}) ` remove(π(Γ()),{i1, . . . , in}) in e : T,k

Both of these terms come from D-WEAKEN. For the remove term associativity allows

us to group the subcontexts to be removed first.

Γ({
n times︷ ︸︸ ︷

∆; . . . ;∆}) ` e : T,k

Γ(∆) `maxcontract(π(Γ()),n) in e : T,k

This is justified by repeated use of the max-contract case of D-≡.

Γ((q1∆1, . . . ,qn∆n)) ` e : T,k ∑
n
i=1 qi ≤ 1

Γ({∆1; . . . ;∆n}) ` split(π(Γ()),(q1, . . . ,qn)) in e : T,k

Γ(∆) ` e : T,k ∑
n
i=1 qi ≤ 1

Γ((q1∆, . . . ,qn∆)) ` unsplit(π(Γ())) in e : T,k

The split term embodies the D-SPLIT rule. The scaling of contexts in the rule is infor-

mal — it is only the structure of the contexts and the limit on the sum of the qi that is

important to justify the term. The actual scaling is realised by the constraints generated
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in the resulting typing. The unsplit case is justified by the (reverse) plus-contract case

of D-≡.

Γ((∆1, . . . ,k′j1, . . .)) ` e : T,k

Γ((∆1, . . . ,ki1, . . .)) `mixfixed(π(Γ()),{i1, . . . , im},{ j1, . . . , jn}) in e : T,k

This term combines the derived rules D-CONTRACTA and D-CONTRACTA′ from Sec-

tion 6.4 to combine, split and rearrange the fixed amounts of potential in a additive

bunch. The resulting typing will produce constraints equivalent to

ki1 + · · ·+ kim = k′j1 + · · ·+ k′jn.

We can conclude from the new terms that

Lemma 7.1. Given structured contexts Γ and ∆ if we have

∆ ` e1 : T,k
···

Γ ` e2 : T,k

where e2 is e1 enriched by one or more of the terms above then there is a partial

derivation
∆ `g,t

Σ,F |e1| : T,k |Φ′

···
Γ `g,t

Σ,F |e2| : T,k |Φ
in the depth type system of Chapter 6, using the obvious erasure function | · | to remove

the new terms.

Proof. For each of the new terms, we have given the corresponding typing rules for

the corresponding partial derivation in the depth type system.

Our final enrichment to the language is to add positions to the terms where we need

to identify a particular subcontext. These are

e := . . .

| let x@P = e1 in e2

| match x@P with (x1,x2)→ e

| match x@P with inl(xl)→ el p inr(xr)→ er

| match x@P with p1 → e1 p · · · p pm → em

where P is a subcontext position as defined above. For let it gives the position of the

subcontext used to type e1 and which is replaced by its result, x. For the other terms, it

gives the position of the variable to match and replace.
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7.2 An overview of the inference algorithm

At the beginning of this chapter we assumed that the user provides the context struc-

ture of the function signatures and the constructor signatures. This ensures that we

know what we expect the structure of the context to look like for all of the innermost

expressions (constants, variables, function applications, pairs, sums and datatype con-

struction).

Thus the heart of the algorithm is to work outwards, deriving further ‘desirable’

typing contexts for compound expressions, until we have generated a desirable con-

text for the entire function body. During this process we also add suitable terms to

perform the required context transformations to recreate the desired context of each

subexpression.

The most difficult part is to deal with binding. Given a desired context for a subex-

pression we must isolate the bound variables so that we obtain a context where they

can be replaced according to the typing rule of the binding term. We also add terms to

recreate the desired typing context for the subexpression. To help do this we will in-

troduce a bidirectional context expansion transformation, which allows us to consider

contexts in a maximum-of-sums form:

{(x1,1 : T1,1, . . .);(x2,1 : T2,1,k2,1, . . .); . . .},

and which adds terms to perform the expansion or contraction in the typing.

Thus when binding variables we only need to consider expanded contexts. For

example, suppose we have the desired context

{(l : tree(k),x : T,k1);({r : tree(k);v : bool;y : T ′},k2)}

for the subexpression e in match t with node(l,r,v) → e. We can expand the context

for e and the subcontext for the bound variables from the match, then decide how to

match up the two:

Context desired for e: {(l : tree(k),x : T,k1);({r : tree(k);v : bool;y : T ′},k2)}
expanded: {(l : tree(k),x : T,k1);(r : tree(k),k2);(v : bool,k2);(y : T ′,k2)}

no bound variables

expanded: {(l : tree(k),k);(r : tree(k),k);(v : bool,k)}
Subcontext provided by match: ({l : tree(k);r : tree(k);v : bool},k)
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This should be read in the same direction as a typing derivation — at the top is the

context desired for typing e, at the bottom the subcontext introduced by the match

containing the bound variables which will replace t. We are going to devise terms to

add around e which will form the top context from the context provided by the typing

of the match expression.

The above matching suggests that to construct the desired context for the match

expression we should start with the expanded context for e, then remove the bound

variables to construct a ‘remainder’ for each of these bunches consisting of the vari-

ables that were not bound and the fixed potential, add t to the context ‘in addition’ to

all the remainders, and leave the bunches with no bound variables alone:

{(t : tree(k),{(x : T,k′1);(k
′
2)});(y : T ′,k2)}.

For the fixed amounts of potential we adopt the convention that they follow the vari-

ables in the same bunch in the expanded context. In this example, k1 and two of the

k2 annotations are in bunches with bound variables. Thus we will add mixfixed terms

to allow the potential to be supplied from either the k in the context from the match,

or from their counterparts in the ‘remainders’, k′1 and k′2. If a bunch has no variables

at all, only fixed amounts of potential, then we attempt to find a fixed amount in the

binding context to supply some or all of the potential, and have a remainder context

with a fixed amount for the rest.

Finally, we need to match up the generated context for the entire function body

with the function signature. Fortunately, this is similar to the handling of binding

expressions, except that all variables are bound and there are no remainders.

Throughout the inference process every change in the desired contexts is mirrored

by the addition of a context manipulation term. These represent the corresponding

non-syntax-directed typing rules in the depth type system of Chapter 6 which perform

the context changes. Erasing these extra terms from each function body yields the

original expressions, and thus the inference process provides a typing of the original

program.

7.3 Details of the inference algorithm

We now describe the structural inference algorithm in detail, beginning with the back-

bone which transforms each expression, then the method for dealing with binding, and
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finally how to bridge the gap between the context generated by the inference and the

function signature.

We assume that D-WEAKENA will be used to allow the weakening of each an-

notation before its use. This means that we do not have to worry about whether two

annotations that must match in a typing should be the same constraint variable, and

during the examples of the inference will simply give each new annotation a fresh con-

straint variable. We expect the structure of the signatures for constructors and functions

to be supplied by the user. These take the same form as in Chapter 6, except that we

do not yet know the constraint set for each function signature.

The transformation for expressions is given in Figures 7.1 and 7.2. It consists of a

set of syntax-directed rules with judgements of the form

Γ `Σ e : T 7→ ∆,e′,

where Γ is the plain unannotated typing context, e is an LFD expression, T is an unan-

notated type, Σ is the supplied, structured, signatures, ∆ is the structured ‘desired’

context and e′ is the expression in the enriched language. We use T̂ to denote the

(unannotated) type T with fresh constraint variables inserted for the annotations. We

describe the rules in order of increasing complexity.

The I-VAR case produces a context containing the variable, plus a fixed amount of

potential k to accompany the result, and leaves the expression unchanged. This cor-

responds to the D-VAR typing rule. The function application case, I-FUN, is similar.

It uses the context from the function signature with a suitable substitution of the vari-

able names and also adds a fixed amount to pay for the stack space for the call and

accompany the result type. The other innermost expressions (constants, pairs, sums

and datatype construction) are treated in the same way.

Our first form of binding expression is let. The premises of I-LET use the auxiliary

function isolate to deal with the binding. We will define this more precisely shortly,

but informally

isolate(∆1,∆2,e) = (∆m,∆+,e′)

changes ∆2 to extract all of the variables bound in ∆1, producing two subcontexts, ∆m

and ∆+, such that {∆m;(∆1,∆
+)} will be transformed in the typing derivation into ∆2

by the extra terms in e′. In I-LET we extract the result of e1, (x : T0,k0), and replace it

by the context desired for e1. We also add the position of that context to the enriched

let expression. The pair-matching case is similar.
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Γ `Σ ∗ : 1 7→ k,∗
(I-UNIT)

c ∈ {true, false}
Γ `Σ c : bool 7→ k,c

(I-BOOL)

Γ,x : T `Σ x : T 7→ (x : T̂ ,k),x
(I-VAR)

Σ( f ) = ∆ → T̂ ,k′ |Φ names(∆) = (y1, . . . ,yp)
Γ `Σ f (x1, . . . ,xp) : T 7→ (∆[x1/y1, . . . ,xp/yp],k), f (x1, . . . ,xp)

(I-FUN)

Γ `Σ e1 : T0 7→ ∆1,e′1 Γ,x : T0 `Σ e2 : T 7→ ∆2,e′2
isolate((x : T̂0,k),∆2,e′2) = (∆m

2 ,∆+
2 ,e′′2)

Γ `Σ let x : T0 = e1 in e2 : T 7→ {∆m
2 ;(∆1,∆

+
2 )}, let x@(2,1) = e′1 in e′′2

(I-LET)

Γ `Σ e1 : T 7→ ∆1,e′1 Γ `Σ e2 : T 7→ ∆2,e′2
Γ `Σ if x then e′1 else e′2 : T

7→ {x : bool;∆1;∆2}, if x then weaken((),(2)) in e′1 else weaken((),(3)) in e′2
(I-IF)

Γ,x1 : T1,x2 : T2 `Σ (x1,x2) : T1⊗T2 7→ (x1 : T̂1,x2 : T̂2,k),(x1,x2)
(I-PAIR)

Γ(x) = T1⊗T2 Γ,x1 : T1,x2 : T2 `Σ e : T 7→ ∆,e′

isolate((x1 : T̂1,x2 : T̂2),∆,e′) = (∆m,∆+,e′′)
Γ `Σ match x@(2,1) with (x1,x2)→ e : T

7→ {∆m;(x : T̂1⊗ T̂2,∆
+)},match x with (x1,x2)→ e′′

(I-MATCHPAIR)

Γ,x : T1 `Σ inl(x) : (T1 +T2) 7→ (x : T1,k1,k), inl(x)
(I-INL)

Γ,x : T2 `Σ inr(x) : (T1 +T2) 7→ (x : T2,k2,k), inr(x)
(I-INR)

Γ(x) = T1 +T2

Γ,x1 : T1 `Σ e1 : T 7→ ∆1,e′1 isolate((x1 : T̂1,k1),∆1,e′1) = (∆m
1 ,∆+

1 ,e′′1)
Γ,x2 : T2 `Σ e2 : T 7→ ∆2,e′2 isolate((x2 : T̂2,k2),∆2,e′2) = (∆m

2 ,∆+
2 ,e′′2)

Γ `Σ match x with inl(x1)→ e1 p inr(x2)→ e2 : T
7→ {∆m

1 ;∆m
2 ;(x : T̂1 +T2,{∆

+
1 ;∆

+
2 })},

match x@(3,1) with inl(x1)→ weaken((3,2),(1)) in remove((),{2}) in e′′1
p inr(x2)→ weaken((3,2),(2)) in remove((),{1}) in e′′2

(I-MATCHSUM)

Figure 7.1: The skeleton of the structural inference algorithm
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Σ(c) = ∀k.∆ → ty(k) names(∆) = (y1, . . . ,yp)

Γ `Σ c(x1, . . . ,xp) : ty 7→ (∆[x1/y1, . . . ,xp/yp],k),c(x1, . . . ,xp)
(I-CONSTRUCT)

for all i,1 ≤ i ≤ n.


Σ(ci) = ∀k.∆i → ty(k) names(∆i) = (y1, . . . ,ypi)

|∆i|= Ti,1, . . . ,Ti,pi

Γ,xi,1 : Ti,1, . . . ,xi,pi : Ti,pi `Σ ei : T 7→ ∆′i,e
′
i

isolate(∆i[xi,1/yi,1, . . . ,xi,pi/yi,pi],∆
′
i,e

′
i) = (∆m

i ,∆+
i ,e′′i )

Γ `Σ match x with c1(x1,1, . . . ,x1,p1)〈′〉 → e1 p · · · p cn(xn,1, . . . ,xn,pn)〈′〉 → en : T

7→ {{∆m
1 ; . . . ;∆m

n };(x : ty(k),{∆
+
1 , . . . ,∆+

n })},
match x@(2,1) with

c1(x1,1, . . . ,x1,p1)〈′〉 → weaken((2,2),(1)) in weaken((1),(1)) in e′′1
p . . .
p cn(xn,1, . . . ,xn,pn)〈′〉 → weaken((2,2),(n)) in weaken((1),(n)) in e′′n

(I-MATCH)

Figure 7.2: The skeleton of the structural inference algorithm (continued)

The first form of conditional expression is if. The I-IF rule recursively treats each

branch, then combines the desired contexts into a maximum bunch alongside the con-

ditional variable, x. This reflects the potential requirements: we need enough potential

for the maximum of the required potential of each branch. We add weakening terms to

the branches to remove the other branch’s context.

The remaining cases are I-MATCHSUM and I-MATCH. The |∆| in the I-MATCH

rule is the typing context ∆ with the tree structure and annotations erased. These rules

combine binding and conditionals. Thus for each branch we recursively deal with the

subexpression and isolate the bound subcontext. We then combine all of the branches’

contexts in maximum bunches and give an enriched term which, for the typing of each

branch, removes all of the other branches’ contexts and then uses the terms added by

isolate to obtain the desired context for typing the subexpression.

7.3.1 Binding

We now move on to the definition of isolate. First, we define the bidirectional con-

text expansion transformation. Given a context we can either enrich an expression to

expand that context to a max-of-sums form, or enrich an expression to transform the
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expanded context into the original.

For the former direction we repeatedly apply the following two rules until neither

is applicable. If there is a subcontext which is an additive bunch containing a max

bunch we add a distribute term:

(Γ1, . . . ,{∆1; . . . ;∆m}, . . . ,Γn) 7→ {(Γ1, . . . ,∆1, . . . ,Γn); . . . ;(Γ1, . . . ,∆m, . . . ,Γn)}.

Moreover, where there is a nested bunch of the same sort we add ungroup to flatten it:

(Γ1, . . . ,(Γi, . . . ,Γ j), . . . ,Γn) 7→ (Γ1, . . . ,Γi, . . . ,Γ j, . . . ,Γn)

{Γ1; . . . ;{Γi; . . . ;Γ j}; . . . ;Γn} 7→ {Γ1; . . . ;Γi; . . . ;Γ j; . . . ;Γn}

The result of repeating these actions is that none of the additive bunches will contain

a maximum bunch, and there are no nested bunches of the same sort. Thus we have a

max-of-sums form.

In the opposite direction we still expand the context in the same way with two rules,

but add the factor and group terms instead of distribute and ungroup so that the enriched

expression performs the opposite translation in the typing, from the expanded context

to the original.

Note that simplifying the form of the context by using expansion comes at some

cost: the expansion may yield a context which is exponentially large in the number

of context former alterations (that is, the depth of alternate add/max bunch nesting).

However, contexts are usually small, so we leave the possibility of reducing the amount

of context expansion required to further work.

We can now define isolate(∆1,∆2,e) = (∆m,∆+,e′). Recall that the aim of this

function is to produce a ∆m and ∆+ for use in an expression’s desired context such that

{∆m;(∆1,∆
+)} can be transformed to ∆2 for typing the subcontext. First we consider

the expanded contexts for the binding context, ∆′1, and the desired context for the

subexpression, ∆′2. Thus ∆′2 is composed for a number of additive bunches in a max-

bunch:

∆
′
2 = {∆2,1; . . . ;∆2,n} where each ∆2,i is of the form ∆2,i = (xi,1 : Ti,1, . . . ,ki, j, . . .).

We check each ∆2,i to see if it has any of the bound variables from ∆1 or if it consists

solely of fixed amounts of potential and ∆1 provides some fixed amount. If neither of

these holds, we do not change it and add it to ∆m. Otherwise we wish to separate the

bound variables and produce a ‘remainder’ context to put in ∆+.
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We can form the remainder, ∆′2,i, as the variables and fixed potential from ∆2,i

except for the bound variables. Thus, together with the binding context, the remainder

is sufficient to recreate ∆2,i. The terms that we add will combine the fixed potential

in the remainder with any supplied by the relevant parts of the binding context. We

construct ∆+ as the max-bunch of all the remainders.

To add the terms which transform each remainder ∆′2,i into ∆2,i we need to decide

which parts of the expanded binding context ∆′1 are required. The expanded binding

context is of the form ∆′1 = {∆1,1; . . . ;∆1,m}, where each ∆1, j is an additive bunch.

Several of these ∆1, j may contain variables which the ∆2,i under consideration requires.

(If we only need a fixed amount of potential, then we pick one ∆1, j which has a fixed

amount.) Moreover, in some cases several ∆1, j may contain a single variable due to

the expansion. We thus choose a set { j1, . . . , jp} of ∆1, j which covers all of the bound

variables that appear in ∆2,i
1. The ∆2,i we wish to recreate is a additive bunch, so

we must split the chosen {∆1, j1; . . . ;∆1, jp}. As we have no local information about

how the potential will be used, we do not know the best way to split up the potential.

We thus choose to approximate it by splitting it up into equal proportions, yielding(
1
p∆1, j1, . . . ,

1
p∆1, jp

)
.

Now that we know ∆m and ∆+ and which parts of ∆′1 to use for each bunch, we can

form the enriched expression e′ which specifies all of the typing context manipulations

required to form ∆2. Recall that we start with {∆m;(∆1,∆
+)}. We proceed as follows:

1. First we have the terms which expand ∆1 using distribute and ungroup giving

{∆m;(∆′1,∆
+)} with ∆′1 = {∆1,1; . . . ;∆1,m};

2. now we distribute ∆′1 over the remainders in ∆+;

3. for each remainder ∆′2,i we need to transform (∆′1,∆
′
2,i) into ∆2,i:

(a) We remove the unnecessary ∆1, j bunches (those not in { j1, . . . , jp});

(b) we split the other ∆1, j bunches evenly as above and ungroup to give a single

flat additive bunch;

(c) we remove the unnecessary bound variables and unsplit any unnecessary

duplicates (so as to retain as much potential as possible);

1Finding a smallest set covering is NP-hard, but we can get a reasonable approximation by choosing
the ∆1, j bunches which provide the greatest number of bound variables first, see (Cormen et al., 1990,
Section 37.3) for more details on set covering.
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(d) we split any bound variables that need to be duplicated (again, distributing

potential evenly, as we have no way to tell locally which instances would

benefit from a greater share of the potential);

(e) we add mixfixed to add any fixed potential from the binding context to the

potential from the remainder;

(f) we rearrange the bunch to form ∆2,i.

4. We then use rearrange to place the unchanged bunches from ∆m into the correct

positions to form ∆′2;

5. and finally we use the reverse context expansion procedure above to form ∆2,

using factor and ungroup.

7.3.2 Function signature matching

The work we need to do to bridge the gap between the desired context generated for

the function body and the function signature is very similar to the process for isolate.

The difference is that we do not produce a ∆m or ∆+. Instead, all the variables are

bound, and we obtain all the fixed amounts of potential from the signature (or fix them

to zero if there is no suitable source).

Now let ∆1 be the context from the signature, and ∆2 be the desired context for the

function body. We enrich the expression to

1. expand the signature context ∆1 to ∆′1 as before;

2. use maxcontract to make a copy of ∆′1 to form each additive bunch of ∆′2 from;

3. create each ∆2,i as before (remember that we do not have remainder bunches ∆′2,i

because all of the variables are bound); if we need a fixed amount of potential

and have no source, use mixfixed with an empty ‘source’ set to fix it to zero;

4. use the reverse context expansion to form ∆2.

7.3.3 Completing the inference

We perform the above procedure for each function body in the program and then use

the type system to extract a linear program.
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Theorem 7.2. Given an unannotated typed program and the structured signatures for

the functions and constructors, the inference process provides a typing in the depth

type system of Chapter 6.

Proof. In each enriched function body the additional terms describe the context manip-

ulations required to make the desired context for the original expression. By Lemma 7.1

there exists a partial typing on the original program corresponding to these terms.

We can then move down through the original expression constructing a typing,

using the terms added in the enriched version to decide where to use the non-syntax-

directed rules in the same way, again by Lemma 7.1.

Taking the resulting typings for each function body, we obtain a typing of the entire

program.

Note that the inference process produces typings without quadratic constraints, as

per Section 6.4. Thus, we can use standard linear programming techniques to find a

bound on the stack memory usage, with the usual caveat that the linear program may

not have any solutions if the program uses super-linear stack memory, or the stack

memory usage is too subtle for the analysis to track.

This inference process has been implemented in Standard ML, along with a type

checker for the enriched language which generates the linear program and presents the

solutions. Separating the structural inference from the checker provides more confi-

dence in the resulting bounds — any flaws in the implementation of the inference do

not affect the soundness of any inferred bound, only our ability to obtain a bound and

the precision of any inferred bounds.

7.4 Examples

We now revisit two of the examples from the previous chapter.

Example 7.3. Recall the andtrees function from Example 6.13 on page 115:

let andtrees(t1,t2) =

match t1 with leaf -> leaf | node(l1,r1,v1) ->

match t2 with leaf -> leaf | node(l2,r2,v2) ->

let l = andtrees(l1,l2) in

let r = andtrees(r1,r2) in

let v = if v1 then v2 else false in

node(l,r,v)
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We illustrate the inference using the signature

Σ(andtrees) = (t1 : booltree(k),t2 : booltree(k′))→ booltree(k′′),k′′′.

For each expression we give the original expression itself ei, the desired context gen-

erated for it ∆i, and the enriched expression e′i, see Figure 7.3.

Five cases involve binding (e5, e7, e9, e11 and e13). The let expressions are straight-

forward. For instance, for e5 (let v =) the context for the second subexpression (∆1)

expands to

{(l : T1,k1,k2);(r : T1,k1,k2);(v : bool,k1,k2)}

and then we isolate the binding context (v : bool,k5), which only affects the third

bunch,

isolate((v : bool,k5),∆1,e′1) = ({(l : T1,k1,k2);(r : T1,k1,k2)},{(k6)},e′′1)

where e′′1 = distribute(π(2),2) in mixfixed(π(2,1),{2,3},{2,3}) in

ungroup((),2) in ungroup((),1) in e′1

and replace it by the context from the first subexpression, ∆4 to give ∆5. Note the

mixfixed term, for which the corresponding typing will produce a constraint equivalent

to

k5 + k6 = k1 + k2.

The other two let expressions (e7 and e9 are similar).

Each of the match expressions (e11 and e13) has two cases, although both leaf cases

are trivial. We trace the inference for e11; first we expand the context from the node

case, ∆9, to get

{(r1 : T2,r2 : T3,k7,k11);(v1 : bool);(v2 : bool,k9);(k10);(l1 : T4,l2 : T5,k12,k13)}.

We also expand the context from the constructor signature (substituting the correct

variable names)

Σ(node) = ∀k.({l : Tk;r : Tk;v : bool},k)→ Tk

to get

∆node = {(l2 : Tk,k);(r2 : Tk,k);(v2 : bool,k)}.

We pick out which bunches go into ∆m
9 and ∆

+
9 by comparison with the expanded

binding context. Only one involves no bound variables and is not entirely composed

of fixed amounts of potential,

∆
m
9 = {(v1 : bool)},
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and for the rest we remove the bound variables and give fresh constraint variables for

the fixed amounts (because they may be combined with the k from the binding context):

∆
+
9 = {(r1 : T2,k16);(k17);(k18);(l1 : T2,k19)}.

The final context uses these, and the corresponding trivial contexts for the leaf case:

∆11 =

{
{{};{(v1 : bool)}};

(t2 : T6,{{(k20)};{(r1 : T2,k16);(k17);(k18);(l1 : T2,k19)}})

}

The corresponding enriched expression first discards the unused cases, then recreates

the desired contexts as described above:

e′11 = match t2@(2,1) with

leaf → weaken((2,2),(1),weaken((1),(1),distribute((2),2,

ungroup((2,1),1,ungroup((),2,ungroup((),1, leaf))))))

p node(l2,l2,v2)→

[remove subcontexts for leaf case]

weaken((2,2),(2)) in weaken((1),(2)) in

[expand binding context and distribute across ∆
+
9 ]

distribute((2,1),1) in distribute((2),2) in

[first subcontext]

remove((2,1,1),{1,3}) in ungroup((2,1),1) in

mixfixed((2,1),{2,4},{3,4}) in rearrange((2,1),(1 2)) in

[second subcontext]

remove((2,2,1),{1,2}) in ungroup((2,2),1) in

mixfixed((2,2),{2,3},{2}) in

[third subcontext]

remove((2,3,1),{1,3}) in ungroup((2,3),1) in

remove((2,3),{1}) in mixfixed((2,3),{1,2},{1}) in

[fourth subcontext]

remove((2,4,1),{2,3}) in ungroup((2,4),1) in

mixfixed((2,4),{2,4},{3,4}) in rearrange((2,4),(1 2)) in

[flatten and rearrange context to get ∆
′
9]

ungroup((),2) in ungroup((),1) in rearrange((),(1 2)) in
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[reverse expansion of ∆9]

group((),1,4) in group((),2,1) in

factor((2),3,0) in group((2),1,3) in e′9

Note that no bunch in the expanded version of ∆9 contains more than one bound vari-

ables, so we do not need to split any contexts.

The other match expression, e13, is similar.

Finally, we need to add terms to construct ∆13 from the function signature. We

expand ∆13, generating terms to recreate it from its expansion:

∆
′
13 =

{
(t2 : T6,k20);(t2 : T6,k17);(t2 : T6,k18);(t1 : T7,k22);

(t1 : T7);(t1 : T7,t2 : T6,k21);(t1 : T7,t2 : T6,k23)

}

e′′13 = group((),1,3) in group((1),1,0) in group((1),2,3) in

group((),2,4) in factor((2),1,0) in

group((2,2),1,1) in group((2,2),2,3) in e′13

The inference process then produces a term for constructing the expanded context from

the signature by making a copy of the signature for each bunch, then removing the

unnecessary parts and making the correct number of fixed amounts for each bunch:

e′andtrees = maxcontract((),7) in

remove((1),{1}) in mixfixed((1),{},{2,3}) in

remove((2),{1}) in mixfixed((2),{},{2,3}) in

remove((3),{1}) in mixfixed((3),{},{2,3}) in

remove((4),{2}) in mixfixed((4),{},{2,3}) in

remove((5),{2}) in mixfixed((5),{},{2}) in

mixfixed((6),{},{2,4}) in

mixfixed((7),{},{2,4}) in e′′13

We can then use the typing our enriched function body gives to generate a linear pro-

gram. The solutions of the linear program then give us the same signatures as our

manually-produced derivation:

andtrees : t1 : booltree(stack(andtrees)),t2 : booltree(0)→ booltree(stack(andtrees)),0,

andtrees : t1 : booltree(0),t2 : booltree(stack(andtrees))→ booltree(stack(andtrees)),0.

The inference can also infer the maximum signature form of andtrees shown in

Example 6.13.
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The maybetail example is simpler:

Example 7.4. Recall the maybetail function from Example 6.14:

let maybetail(l,b) = match l with cons(h,t)’-> if b then t else l

The inference takes the form

i ei ∆i e′i
1 l (l : list(k1),k2) l

2 t (t : list(k3),k4) t

3 if b . . . {b : bool;(t : list(k3),k4);(l : list(k1),k2)} if b then weaken((),2) in e′2
else weaken((),3) in e′1

4 match l . . .

{
{{b : bool;(l : list(k1),k2)}};

(l : list(k5),{{(k4)}})

}
e′4

where

e′4 = match l@(2,1) with cons(h,t)→ weaken((2,2),(1)) in weaken((1),(1)) in

distribute((2),2) in remove((2,1,1),{1}) in

ungroup((2,1),1) in mixfixed((2,1),{2,3},{2}) in

ungroup((1),2) in rearrange((),(2 3)) in e′3

which removes the extra grouping, removes h (which is never used), adds the potential

from the list element to k4 to get k2 and flattens and rearranges the context to form ∆3.

To get the function signature

Σ(maybetail) = (l : list(k),b : bool,n)→ list(k′),n′

into the form of ∆4 we first expand ∆4,

{b : bool;(l : list(k1),k2);(l : list(k5),k4)},

then make three copies of the signature, remove the unnecessary parts to form each

additive bunch above, and add the terms to reverse the expansion:

e′maybetail = maxcontract((),3) in

remove((1),{1,3}) in remove((2),{1}) in remove((3),{1}) in

[reverse the expansion to form ∆4]

group((),{1,2},1) in group((),{2},2) in

factor((2),1,0) in group((2),2,2) in group((),1,1) in e′4
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Type checking and constraint solving then yields the family of signatures from the

previous chapter,

maybetail : l : list(k),b : bool→ list(k),0,

for any k ∈Q+.

7.5 Rearranging tree contents

In Example 6.15 we saw the swapleft function which swaps the value at the top node

of a binary tree with the value at its left child. Our concern was not the stack space

usage of the function itself, but the relationship between the potential assigned to the

argument and the result. This affects the overall bound because the relationship is used

to translate the part of the bound expressed in terms of the size of swapleft’s result

into one using the size of swapleft’s argument.

Recall that in the general case we needed to add an extra fixed amount of potential

for every use of swapleft (that is, increase the overall bound) due to the form of the

potential functions. We left dealing with the general case to future work, but gave a

solution using D-SPLIT when the contents of the tree is not assigned any potential. We

now extend the inference to use this trick.

First, let us recall the swapleft function itself:

let swapleft t = match t with node(l,r,v) ->

match l with node(ll,lr,lv) ->

let l’ = node (ll,lr,v) in

node(l’,r,lv)

When we apply the existing inference to the function it expands the desired context for

the subexpression at match l and we find the two bunches

(v : bool,k1) and (lv : bool,k2).

The fixed amount k2 must be at least as large as the per-node amount of potential for

the result, because it is placed at the top of the tree. Similarly, k1 must be at least twice

that, because it is in the second level of the tree. As they are swapped over from the

original argument, we need to supply an extra fixed amount of potential for k1 to be

large enough.
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The idea of the extended inference is to split variables such as v and lv away from

the rest of the context so that swapping them does not affect the potential required.

We first note that if we have some expression e typable in a context

Γ((∆,x : T )),

for a type T which cannot be assigned any potential, such as bool, then we can enrich

e with split(π(Γ()),(1,0)) and type it in the context

Γ({∆;x : T}).

Dually, for the context Γ({∆;x : T}) we can add maxcontract and weaken to type the

enriched expression with the context

Γ((∆,x : T )).

Repeating this transformation and adding group terms to remove the nesting we

can push x : T up to the top of the context. That is, given e typed with Γ(x : T ) we can

enrich e to type it in the context {Γ(·);x : T}.

We thus define the extended inference to be the process defined in Section 7.3

except that it applies the above transformation at each point in the process where a

variable of a type that cannot be assigned potential may be introduced into the middle

of a desired context. That is, after I-VAR (to yield {x : T ;k} instead of (x : T,k)),

I-CONSTRUCT, I-PAIR and I-LET.

Now we can infer the desired signature for swapleft:

Example 7.5. The extended inference procedure now produces an expanded context

containing the variables for the contents of the nodes on their own,

(v : bool) and (lv : bool),

with the fixed amounts only present in bunches containing the tree structure (the vari-

ables l,r,ll,lr and l’). Thus v and lv can be swapped without requiring extra poten-

tial, yielding the overall signature of

swapleft : booltree(k)→ booltree(k),0 for any k ∈Q+.

We can also continue our heap sort example:
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Example 7.6. The core function in our functional heap sort (introduced on page 29

and detailed in Appendix A) is siftdown. It takes two trees and an integer value as

arguments and returns a single tree containing all three, maintaining the heap property.

Checking usage requirements by hand we can see that this function requires stack

space in proportion to the maximum depth of its arguments, and we would expect the

analysis to be able to show this. Moreover, for the purposes of the analysis of the whole

program it must also preserve the potential assigned to the trees, by requiring a fixed

amount of potential to account for the possibility of an extra layer in the result.

Thus we start with the signature

Σ(siftdown) = ({t1 : inttree(k1);t2 : inttree(k2);v : int},k3)→ inttree(k4),k5.

Any overestimate of the potential required for this function will inflate the overall

bound considerably, or may even make the generated constraints unsolvable, due to

the repeated use of this function in the heap sort. Indeed, the analysis gives

siftdown : ({t1 : inttree(7);t2 : inttree(7);v : int},14)→ inttree(7),0,

requiring max{7×|t1|d,7×|t2|d}+ 14 units of potential. This is too large to give a

bound on the whole sorting algorithm — the resulting linear program is infeasible. By

simplifying the function, we can trace the problem to the base cases:

let siftdown(t1, t2, w) =

let l = Leaf in

match t1 with

Leaf -> Node(l,l,w)

| Node(t11,t12,v) ->

(match t2 with

Leaf ->

if v < w then let a = Node(l,l,v) in Node(a,l,w)

else let a = Node(l,l,w) in Node(a,l,v)

...

The latter two cases require the extra 14 units of potential to construct the two nodes.

The matching of t1 should supply 7 of those. However, these cases use l to supply the

leaf value because the program must be in let-normal form (that is, we cannot put Leaf

directly into the Node expressions). We construct l once at the top of the function to

avoid code duplication. The inference assumes that the potential required to construct
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the nodes will be available at the point at which l is bound, but this is too early to use

the potential from t1.

If we move the binding of l inwards then the inference will use the potential from

matching t1:

let siftdown(t1, t2, w) =

match t1 with

Leaf -> let l = Leaf in Node(l,l,w)

| Node(t11,t12,v) ->

let l = Leaf in

(match t2 with

Leaf ->

if v < w then let a = Node(l,l,v) in Node(a,l,w)

else let a = Node(l,l,w) in Node(a,l,v)

...

Note that this is closer to what a compiler’s translation to let-normal form would pro-

duce, and so would be unlikely to be a problem when using a real programming lan-

guage.

Thus we obtain the signature

siftdown : ({t1 : inttree(7);t2 : inttree(7);v : int},7)→ inttree(7),0,

which is sufficient to go on to analyse the rest of the sorting algorithm. See Appendix A

for details.
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Related work

Perhaps unsurprisingly, work specifically focused on inferring stack space bounds is

rare. Heap space and execution time make more appealing targets, and only recently

has the use of mobile code from untrustworthy sources become common enough to

inspire interest in controlling all abusable resources. Thus our study of related work

considers analyses of other resources — mostly heap space and execution time — and

also of related techniques used for other purposes, such as optimisation.

In Section 4.3 we saw that heap space usage patterns tend to differ from stack

space usage, which motivated the development of our later analyses. Similarly, when

examining an analysis of execution time we must be aware that it differs considerably

in behaviour from heap and stack space usage: it is monotonic and often super-linear.

We start by considering work closely related to Hofmann and Jost’s heap space

analysis, and then move on to work from further afield.

8.1 Hofmann-Jost based work

The Hofmann-Jost heap space analysis (Hofmann and Jost, 2003) and Jost’s imple-

mentation (Jost, 2004b) formed the basis for our work, and we covered them in detail

in Chapter 2.

Recent research on the Hofmann-Jost analysis has sought to provide bounds for

programs written in richer languages. The ARTHUR analysis (Jost, 2004a; Jost, 2008)

adds higher-order functions, where the major difficulty is that if a function is used

several times, then the captured variables from its definition could be used several times

(with the same type) and therefore so will the potential assigned to them. Multiple uses

of the same potential could lead to an underestimate of the memory used. Thus Jost

148
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adds constraints preventing the assignment of potential to captured variables. Inference

is otherwise similar to before.

The RAJA type system (Hofmann and Jost, 2006) targets a language with assign-

ment and object-oriented programming features based on Featherweight Java with up-

dates. The types are now annotated by views, where each view maps classes to potential

for that particular reference, and assigns a view to each of the fields of the object. The

total potential is thus the sum of the potential from these views for each reference over

every access path (chain of references) to it. To safely allow updates to references,

views are given two kinds of annotations: the first gives the assignment of potential

to the variable as usual; the second annotation describes an upper bound on the poten-

tial for all aliases of the data structure. Thus on examining a data structure we may

use the first amount of potential, but on changing it we supply the second. For the

object-oriented features conditions are imposed on subtyping so that inheritance and

downcasting do not violate the given bounds.

The operational semantics in this work differ slightly from their earlier work, and

the semantics presented in Chapter 2. Instead of using the benign sharing conditions,

they avoid the problem by marking deallocated cells as invalid when they are no longer

required.

However, only a type system and its soundness are presented for RAJA. The extra

complexity would require more involved inference, especially for the object oriented

features. Thus we can use the system to prove a bound, but not to produce one. It

seems likely that a version of the system with assignment but not object-orientation

could be significantly easier to develop an inference procedure for.

The Hofmann-Jost analysis has also been adapted to the Hume programming lan-

guage as part of the Embounded project (Jost et al., 2007a). The project aims to cer-

tify the resource usage of real-time embedded programs written in Hume. The heap

analysis incorporates the higher-order functions extension from ARTHUR and the re-

searchers are experimenting with improvements to allow potential to be assigned to

captured variables where a bound on the number of uses of the function can be estab-

lished, and to assign potential to floating point values in proportion to their magnitude

with the aim of obtaining more precise bounds on image processing algorithms (Jost,

2007).

Their implementation has also been extended to provide analyses of linear bounds

on worst case execution time and stack space (Jost et al., 2007b). The stack space

extension is roughly equivalent to the direct adaption we presented in Chapter 4, and
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we anticipate that there would be little difficulty in using the more precise analyses

from this thesis in their setting.

Recently work has begun in Nijmegen on the AHA project to develop a Hofmann-

Jost-like amortized analysis which targets a lazy programming language and can infer

some super-linear bounds (van Eekelen et al., 2007). They intend to investigate com-

bining an amortized analysis with sized types (which we describe in detail below), but

the work is at an early stage at the time of writing, and so it is unclear what form the

results will take.

8.2 Sized types

The amortized analyses presented in this thesis produce bounds given in terms of the

sizes of the input arguments, but the inference of these bounds never deals explicitly

with data structure sizes, only the per-element (or per-layer in the case of the depth

analysis) amounts of potential. We now consider the body of work based around the

notion of sized types, where types are annotated with constraint variables or expres-

sions which represent the size of the data structure or an upper bound on the size.

Resource bounds can then be expressed in terms of these sizes and they are also useful

for other purposes, such as optimisation.

An early use of a form of sized types is Reistad and Gifford’s system to obtain

execution time bounds and to facilitate dynamic parallelisation (Reistad and Gifford,

1994). The time bound is compared to the cost of spawning a new thread to decide

whether parallel computation would present an overall improvement. There is a trade

off between using an upper bound and unnecessarily spawning threads, and a lower

bound where parallelisation opportunities may be missed. They use upper bounds.

They avoid the difficult task of inferring precise sizes and costs involved in recur-

sively defined functions by providing some primitive functions with known size effects

and cost, such as list map and fold. For other functions with non-trivial costs or size

effects there is a special unbounded size, long, which is used when no more precise

value can be inferred by the constraint solving.

Providing known primitives rather than using a more complex method ensures that

sufficiently precise analyses can be made to allow dynamic parallelisation of a useful

range of programs with an analysis of modest complexity (the constraints produced are

solved by a quadratic fixed-point algorithm). Moreover, in some situations where no

static information is available about the size of a data structure, the analysis may still
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be able to obtain an execution time bound relative to the unknown size, and we can

thus add runtime parallelisation based on the actual size observed.

Pareto et al. have studied the use of sized types to provide safety properties. They

first considered showing productivity and evaluation in finite space of ‘reactive sys-

tems’ written in a functional programming language with unbounded streams for input

and output (Hughes et al., 1996). One interesting aspect of dealing with streams is that

the usual meaning of a sized type is reversed — a size annotation on a stream is a lower

bound on its size.

Hughes and Pareto went on to study enforcing space bounds in a first-order ‘em-

bedded ML’ language with region memory management (Hughes and Pareto, 1999).

Effects are used to track changes in stack and region allocation, as well as to enforce

memory safety. In both systems function signatures must be provided; there is no full

type inference. Type checking for both systems relies on producing constraints in the

form of Presburger formulae, which can be solved with the Omega calculator. More

details about these two systems can be found in Pareto’s thesis (Pareto, 2000).

Another strand of work begins with Chin and Khoo’s paper on inferring sized

types (Chin and Khoo, 2001). Again, the type system uses constraints expressed as

Presburger formulae, but there is also a procedure to attempt to infer sizes where re-

cursively defined functions are involved. First, a Presburger formula relating the size

of the original parameters to the size of the arguments to the recursive calls is generated

from the typing rules, then the transitive closure operation from the Omega calculator

is used to attempt to find a fixed-point. Additional approximation heuristics are used

to simplify the formula if a fixed-point cannot be found at the first attempt, for ex-

ample because an accurate solution would not be expressible as a Presburger formula.

At worst, this may also fail and yield no information about the sizes other than their

existence (the resulting formula is just true).

The results of Chin and Khoo’s analysis can be quite precise. For instance, consider

this example from the paper which appends xs to itself iff b is true,

f b xs = case b of False -> xs

| True -> append xs xs

where append is the usual list append function. In this type system booleans are given

a ‘size’ of 0 for False and 1 for True. Together with disjunction the type system can

infer a constraint giving an exact size expression for the result of f by reproducing the
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case split in the formula:

f : Booli → list j → listk,(i = 0∧ j ≥ 0∧ k = j)∨ (i = 1∧ j ≥ 0∧ k = j + j).

(Note that constraints using disjunctions in this way can also be used to provide max-

ima.) Thus another view of the sized types in Chin and Khoo’s work is as an inference

for a ‘lightweight’ form of dependent types — such as Xi’s DML (Xi, 1998). DML

also restricted the constraints to Presburger formulae to allow the checking of pro-

grammer supplied types for verification and optimisation purposes. Chin and Khoo

infer suitable types instead of verifying ones supplied by the user.

Later work in this vein covers properties of the contents of collections (Chin et al.,

2003), a type system for sized types for a language with references (Chin et al., 2005a)

and a system for checking that specified memory bounds are met in an object-oriented

language with explicit deallocation (Chin et al., 2005b). In the latter heap memory

is tracked by a set of class name and size expression pairs, denoting how many of

each is sufficient to evaluate an expression (when it appears in the assumptions of a

judgement), or a lower bound on the number free afterwards (as part of the result’s

type information).

Vasconcelos has considered applying a size-types analysis in the style of Chin and

Khoo to programs written in the Hume programming language (Vasconcelos, 2008).

He addresses some problems in the soundness proof of the size types system, and then

uses the information from the sized-types analysis in constructing a cost analysis for

heap and stack space.

At this point we pause to consider how our notion of assigning potential via type

annotations compares to sized types when extra features are added to the language. We

noted while considering Jost’s higher-order function extension that we must take care

to either not assign potential to captured variables, or we must split it between all the

uses of the function. With sized types the size of a captured variable does not depend

on how many times the function is used, and no special effort is required. (The size

may still appear in constraints or memory bounds obtained for evaluating the function,

however.)

For references and assignment the situation is reversed: with potential, Jost’s RAJA

allows as many aliases as you like, and just keeps track of the total potential required

for any assignment; whereas (Chin et al., 2005a) requires that the reference used for

the assignment must be the only one which we attach size information to, because an

update may invalidate the sizes of all the other references.
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There are also differences in the form of bounds that can be expressed. In particular,

for a nested structure such as a list of lists our analyses can assign potential (and hence

infer bounds) in terms of the total number of elements in all of the inner lists. In a

straightforward sized types system we can only express a single upper bound on the

sizes of all the inner lists. That is, the type has the form

(α listn) listm,

where m is a bound on the outer list and n the bound on the size of every inner list.

Thus the best bound on the total number of elements is m× n, even if only one inner

list has n elements and the rest are empty. To express bounds on the total number of

elements in a sized types system the user needs to be able to define a new size function

for the list of lists. (Note that the depth system of Chapter 6 has a limited form of

user-defined size function in the structure of the constructor’s signature. For example,

we can define trees with potential proportional to their total size, or proportional to

their depth.)

On a related note, recent work by Chin et al. studies automated verification using

sized types and separation logic, where user defined predicates can be asserted about

data structures (Chin et al., 2007). Specifications for functions can use these predi-

cates, which combine the size and separation information. This is powerful enough to

specify invariants such as sorted lists and balanced trees. Techniques similar to those

of their previous type systems are used to verify the specifications given to functions.

The newly introduced separation conditions are transformed into arithmetic formulae

which soundly approximate the desired conditions.

A rather different approach to calculating costs from sized types is via recurrence

relations. Grobauer has used recurrence relation solving for computing execution time

bounds for a DML program (Grobauer, 2001). Of course, starting from a DML pro-

gram means that the sizes have already been computed, and must be linear because

they are expressed in DML.

This leads us on to Vasconcelos and Hammond’s analysis, which also uses recur-

rence relations to deal with recursive functions combined with an algorithm based on

Reistad and Gifford, and which computes sizes as well as execution time (Vasconcelos

and Hammond, 2004). The class of costs that can be inferred and the complexity of

the analysis is dependent upon the recurrence relation solver. Thus to characterise the

programs that these analyses would work well on we could start by examining which

classes of recurrence relations have efficient algorithms to compute solutions (or close
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approximations to solutions). Later work considers adding intersection types to the

type system to allow functions to take multiple types (Simões et al., 2007). This is par-

ticularly important for higher-order functions where the supplied function argument

may determine the size relationship of other arguments to the result.

8.3 Crary and Weirich

In (Crary and Weirich, 2000), the authors present a type system for checking execution

time specified using a form of dependent typing. Rather than using a fixed notion

of size, the programmer can explicitly define an abstract structure for a datatype and

write a cost function for that structure. For instance, the paper describes representing

binary trees by giving the tree structure alone without the contents, and a (type-level)

function which computes a cost proportional to the size of the tree. Then term-level

functions can be given types which assert, for instance, that the structure of the result

is the same as that of the argument and the function has the cost given by the type-level

cost function.

Type checking for this system is decidable, and includes verifying the bounds.

Inference of the dependent types and bounds is not provided. One interesting aspect

of this work is that they have constructed a compiler which produces code in a variant

of their Typed Assembly Language (TAL) with a virtual register acting as a clock —

the compiler transforms the type information about time bounds when producing TAL

code, certifying the runtime cost of the assembler code.

8.4 Resource bounds for logic programs

Debray and Lin have studied the analysis of execution time for logic programs (Debray

and Lin, 1993). In contrast to the previous analyses the language is untyped, but the

basic notions are the same: some size measure is chosen for variables in the program

(in fact, they even suggest determining the types to decide which size measure to use),

relationships between the sizes of variables are derived from the program structure,

and recursion is dealt with by solving recurrence relations. However, we also need

some way to deal with backtracking. Thus the analysis also features techniques for

bounding the number of solutions of each clause, and combines this with the size

analysis to bound the evaluation time.
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These techniques can be adapted to find lower bounds on execution time (Debray

et al., 1997). As with Reistad and Gifford, this has applications in automated par-

allelisation. This size inference, along with other static analyses used to facilitate

it, has been integrated into the CiaoPP abstract interpretation static analysis system;

moreover, the abstractions produced using it have been suggested as certification of

execution time for a Proof Carrying Code system (Hermenegildo et al., 2005).

We note two further pieces of follow on work; (Navas et al., 2007) considers bound-

ing the usage of user specified resources such as open files and network messages sent.

(Our amortized analyses could be adapted similarly, see Section 9.1.5.)

Finally, their techniques have been applied directly to Java bytecode (Albert et al.,

2007). The idea is to reconstruct enough program structure to perform the usual anal-

ysis. Dynamic dispatch is handled by considering all of the methods which could be

invoked (as if it were some non-deterministic choice) and alias handling appears to

be delegated to a separate analysis. Of course, the number of solutions analysis is no

longer necessary.

8.5 Quasi-interpretations

As we discussed in Section 2.2, our amortized analyses have their roots in the study of

languages which capture particular complexity classes. Similarly, quasi-interpretations

were initially used to provide complexity results, but are now also used in more practi-

cal situations. A quasi-interpretation is an assignment to each constructor and function

(and by extension all terms) of a mapping from argument sizes to a bound on the size

of the result produced. It must also satisfy a monotonicity property.

Our starting point for considering quasi-interpretations is Amadio’s work on max-

plus quasi-interpretations (Amadio, 2005). It is particularly interesting for two rea-

sons: the form of quasi-interpretations used, and the results on the synthesis of such

interpretations (which amounts to finding bounds on the sizes of values in the pro-

gram). The form involved is max-plus polynomials, where max takes the role of the

additive operator in the polynomial, and plus the multiplicative operator. They arose

in the examination of discrete event systems, where the maximum time is taken when-

ever part of a system waits for several concurrent events, and times are added whenever

several events must happen sequentially. Amadio uses such max-plus polynomials to

form quasi-interpretations.

Amadio proves that the synthesis problem for max-plus quasi-interpretations is
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NP-hard, but also shows that if we restrict ourselves further to multilinear max-plus

polynomials, which are those of the form

max
I⊆{1,...,n}

(
∑
i∈I

xi +aI

)
,

for argument sizes xi and constants aI , then synthesis is NP-complete and gives a suit-

able algorithm. For comparison, the depth type system of Chapter 6 gives bounds

equivalent to

max
I⊆{1,...,n}

(
∑
i∈I

aI,ixi +aI

)
,

but does not directly bound the size of values, only the memory usage.

An interesting result from the paper is that programs in a simplified version of

Hofmann’s non-size-increasing language, LFPL, (briefly introduced on page 13 and

which uses the � types and values to control allocation) can be given max-plus quasi-

interpretations derived from the positions of � types.

Further work on quasi-interpretations applies the technique in a simple language

with cooperative multithreading to bound the amount of heap memory used in each

thread between yields (Amadio and Dal Zilio, 2006). This is combined with a termi-

nation analysis to ensure liveness, and as a result can also provide what they describe

as ‘rather rough’ stack bounds because the termination analysis bounds the stack depth

and the quasi-interpretations bound the frame size.

Recent work in the area concentrates on generalising quasi-interpretations to sup-

interpretations (Marion and Péchoux, 2006), which can be applied to a wider range of

programs. However, no results on the synthesis of these has been published at the time

of writing.

8.6 Profiling and Symbolic Evaluation

A quite different approach for investigating resource usage is to collect information

about the behaviour of the program during execution. There is a long tradition of

using profiling tools to find the sections of programs responsible for excessive exe-

cution times. An excellent example is Knuth’s description of a study of Fortran pro-

grams (Knuth, 1971). The technique was so successful (after profiling the profiler they

were able to double its speed with less than an hour’s work) that Knuth coined the term

profile and strongly advocated the use of profiling.
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Tools for memory profiling are also common, and have been exceptionally useful

in two functional programming settings. First, it can be difficult for programmers to

predict the memory usage of their code in the presence of lazy evaluation. Runciman et

al. have investigated the use of profiling on programs written in Lazy ML (Runciman

and Wakeling, 1993) and subsequently Haskell (Röjemo and Runciman, 1996), show-

ing that it can reveal parts of programs where refactoring the code to make it lazier can

streamline memory usage, and parts where making it more eager can dispose of a large

data structure earlier. They also found profiling useful for finding bugs and potential

improvements in the compiler as well as the program being examined.

The second setting is described in the retrospective on region memory manage-

ment in the ML Kit (Tofte et al., 2004). Experimentation with their profiler led to the

conclusion that a slightly different style of programming from normal would help to

reduce memory usage with regions, and advocate this style and the use of profiling in

the development process to support it in the Kit’s user manual (Tofte et al., 2006).

In comparison to static analysis of resource usage, profiling yields more precise

information, but only for the range of test cases used. Thus they can be used in a com-

plementary fashion to investigate and debug actual program behaviour on test cases,

while using a static analysis to obtain worst-case bounds.

A compromise between profiling and static analysis is the symbolic evaluation ap-

proach of Liu et al. (Unnikrishnan et al., 2000) which follows on from their time anal-

ysis, (Liu and Gòmez, 2001), which in turn is based on (Rosendahl, 1989). They add

profiling code to the original program, then further transform it to handle ‘partially

known’ input—for example, a list consisting of some number of special ‘unknown’

values. This new program attempts to compute all branches of a conditional where it

depends upon an unknown value, and so also handles values which are the combination

of several results from different branches.

While this approach can also yield some precise bounds, it presents several diffi-

culties: the transformed program must be rerun on partial data structures of every size

we are interested in; it may not terminate, even if the original program would; and

the runtime of the transformed program often substantially exceeds the runtime of the

original.
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Further work

We split our consideration of further work that could be undertaken on our analyses

into two sections. First, we discuss the areas that would be applicable to any of the

analyses. We follow this by a section on future work specifically for the depth analysis,

because it is quite different from our other systems, and presents more opportunities

for improvement.

9.1 General topics

9.1.1 Language features

It is natural to wish the analyses to cope with richer programming languages, and we

have already mentioned the work that Jost et al. have been pursuing in Section 8.1. We

conjecture that their mechanisms for higher-order functions and assignment could be

adapted to our stack space analyses without difficulty.

We might also wish to avoid the requirement for programs to be presented in let-

normal form (see page 4). While this can be easily achieved by a source code transfor-

mation it would also be possible to treat the other syntactic forms as derived expres-

sions. For example,

if e1 then e2 else e3 := let x = e1 in if x then e2 else e3,

or use such derived forms to produced derived typing rules. Another direction might be

to model the unspecified evaluation order present in many language specifications by

requiring any order to be valid. For instance, we might allow for the order of evaluating

the two subexpressions in a pair to be unspecified by adding constraints to allow either

to be evaluated first (using a system like plain Hofmann-Jost for illustrative purposes):
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Γ1,n1 `Σ,F e1 : T1,n′1 |Φ1 Γ2,n2 `Σ,F e2 : T2,n′2 |Φ2

Φ = Φ1∪Φ2∪

{
n ≥ n1, n−n1 +n′1 ≥ n2,

n ≥ n2, n−n2 +n′2 ≥ n1, n−n1 +n′1−n2 +n′2 ≥ n′

}
Γ1,Γ2,n `Σ,F (e1,e2) : T1⊗T2,n′ |Φ

(PAIR′)

Polymorphism is also desirable, but presents more difficulties. For the simpler

case of a first-order language, the only way to use a variable of an unknown type is

by contraction. We might thus assign a ‘symbolic’ constraint variable to each type

variable and then when instantiating the function at a particular type replace these

variables and the constraints on them produced by contraction by a copy for each set

of concrete annotations. For example, if we have the pairing function with signature

α(k1),n → α(k2)⊗α(k3),n′ |{k1 = k2 + k3, n ≥ n′},

for some type variable α, then use it with a sum type (bool,kb)+(int,ki), we get

(bool,kb)+(int,ki),n → ((bool,kb,1)+(int,ki,1))⊗ ((bool,kb,2)+(int,ki,2)),n′ |

{kb = kb,1 + kb,2, ki = ki,1 + ki,2, n ≥ n′},

copying the k1 constraint once for each of the annotations, kb and ki.

For higher-order types it is not clear how to deal with applying functions which

have unknown constraints relating the potential of its arguments to its result. One alter-

native would be to follow the sized types work in (Simões et al., 2007) and investigate

using intersection types.

9.1.2 Integration with safety analyses

We have presumed throughout the presence of some memory safety analysis, although

we have largely ignored it. However, the use of the separation information provided

by such an analysis in the system of Chapter 5 suggests that greater integration may

be beneficial. Indeed, it is likely that a weaker condition about data flow from the

safety analysis could replace the separation condition in that system, which may im-

prove some of the bounds produced. Also, the layering proposal we will discuss in

Section 9.2.1 is reminiscent of Konečný’s DEEL safety analysis (Konečný, 2003), so

it may be useful to combine the two.
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9.1.3 Accumulating parameters

We noted in Section 4.3 that accumulating parameters could be a source of imprecision,

albeit an uncommon one due to tail call optimisation. Nevertheless, such parameters

are certain to appear in some non-tail-recursive functions (for example, because it hap-

pens to produce a list in the desired order), and it would be preferable to deal with

the problem. We suggest that it may be possible to ‘borrow’ potential that we wish

to assign to a newly allocated cell, and thus both assign it to the accumulator and to

a subsequent function call. To make such borrowing sound, we conjecture that we

could make further use of information from the memory safety analysis to show that

the accumulator will not examined until after the recursion terminates.

9.1.4 Using information from the linear programs

It is possible to extract some additional information from the constraints generated by

the analyses. An existing example features in Jost’s implementation of the original

heap space analysis (Jost, 2004b): it checks the solutions against the constraints to

detect points in the program where the analysis ‘leaks’ potential — that is, where it

may overestimate because it loses track of some free memory. Some of these may

correspond to memory leaks in the program. This could be applied to our analyses,

although the system with max in Chapter 6 may produce too many false positives to be

useful.

Another avenue for investigation would to be present better information when the

linear program is infeasible and so no bound can be obtained. Some initial exper-

imentation suggests that if we add extra ‘slack’ potential to every function call and

minimise this slack, then the locations where some slack remains are likely to be the

parts preventing the analysis from finding a bound (for instance, because they require

super-linear amounts of memory). This process is similar to the initial phases of linear

programming using the Simplex method.

Finally, we might seek to simplify the generated linear programs so as to present

them as part of the feedback to the user, or perhaps to speed up the analysis of a large

program, particularly where resource polymorphism is involved.
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9.1.5 Other resources

It would be desirable to extend our techniques to analyse other resources which are

likely to have linear bounds. This should be straightforward in our amortized analy-

ses by setting size(c) = stack( f ) = 0 for all c, f and instead putting requirements for

potential on the functions which open and close files, send messages and so on. Note

that the depth analysis would require the resources to obey a stack discipline, or be

modified as suggested in Section 9.2.3.

9.1.6 Region memory management

Tofte and Talpin’s region memory management system (Tofte and Talpin, 1997) allows

memory to be efficiently allocated and deallocated by placing data in lexically scoped

regions. While these regions are introduced and destroyed according to a stack disci-

pline, their maximum size is not known in advance and so large regions are usually

made up of several non-contiguous sections of memory, resulting in some wastage. If

a Hofmann-Jost style system could bound the size of each region at its point of intro-

duction (in terms of the sizes of the live variables at that point), then we could allocate

the regions in a single stack throughout, possibly reducing some of this wastage and

simplifying allocation. Additionally, it should be possible to then develop an analysis

to give bounds on the whole program, for which techniques from our stack analyses

are likely to provide some assistance.

9.2 Further work for the depth analysis

9.2.1 Layering to separate contents from container structure

In Section 6.1 we noted that the potential functions we define for nested datatypes cal-

culate the highest cost path from root of the structure to the innermost parts, weighted

by the annotations. However, this had an adverse effect on some of the examples —

even just swapping two values in different levels of a binary tree can require extra po-

tential and so inflate the memory bounds (see Example 6.15). It also part of the reason

why the plus-contraction scales all of the annotations in a type uniformly rather than

independently, as in our previous systems (see the discussion on page 103 for details).

Instead we would like to calculate the potential as the sum of the depth of the tree and

the maximum potential assigned to an element of the contents — essentially slicing



Chapter 9. Further work 162

the data structure into layers, whose potential is summed. We choose this informal

definition because it corresponds to typical stack usage: we recursively process the

data structure, dealing with one element of contents at a time, and expect to be able to

rearrange the contents within the structure.

The difficulty with realising this is that we can no longer unfold a ‘layered’ data

structure locally in our structured contexts. The structure and contents should collect

in different parts of the context so that we obtain the correct potential. As an alterna-

tive, we conjecture that we can solve this problem by introducing a contents marker

context former, Γ†, to show that Γ should be counted separately from the ‘structure’

surrounding it, and another context former, [Γ] to delineate the extent of the unfolded

data structure. Marked ‘contents’ would thus be counted as if it were in a single max

bunch at the enclosing [·]. The type system would have extra rules to allow the contents

to move around the unfolded structure as we like.

Some preliminary work have been done on a similar (but simpler) construct which

sums the potential from all of the contents. Thus we expect that a sound type system

can be built on this basis. However, it is not clear how to adapt the inference process

because we can no longer expand every context to an equivalent max-of-sums form.

Nevertheless, we would hope that the extras user input would be at most marking the

‘contents’ in constructor and function signatures.

9.2.2 Reducing expansion

It would be useful to reduce the amount of expansion required in the inference process

of Chapter 7, for three reasons: it may give us insight as to an inference process for a

layered system; it could remove the potential for exponential blow-up; and the resulting

typings would be easier for users to follow. A possible approach to this would be to

look for the variables currently of interest in the context, and perform a local expansion

only for those parts.

9.2.3 Heap space bounds with maxima

The analysis from Chapters 6 and 7 could provide some benefits for heap space bounds.

We have already seen in Example 6.14 that we can obtain some bounds that Hofmann-

Jost does not allow, and that we can obtain total space bounds by making the construc-

tor signatures entirely additive. One point to investigate is whether requiring entirely

additive constructor signatures would allow a more relaxed version of plus-contraction,
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bridging the gap between the depth system and Hofmann-Jost. The major obstacle to

a heap analysis, however, is that the ‘local’ context change in the D-LET rule is only

sound under a stack discipline, as we described on page 103.

A method for tackling this would be to try replacing the D-LET rule with one which

requires the first subexpression’s context to be separate from the rest, ensuring that no

maxima are broken by allocation:

Γ `g,false
Σ,F e1 : T0,k0 |Φ1 ∆,x : T0,k0 `g,t

Σ,F e2 : T,k′ |Φ2

Γ,∆ `g,t
Σ,F let x = e1 in e2 : T,k′ |Φ1∪Φ2

(D-LET′)

(In the usual rule, Γ may appear in the middle of ∆’s structure, see page 100.) However,

this may go too far, especially when e1 does not perform any allocation, and the effect

on inference is currently unknown.

9.2.4 Inference of function signature structure

We assumed that the user supplies the function signature structures to simplify the

construction of our inference process in Chapter 7. While this only requires a small

amount of user input, it would be preferable to make the inference entirely automatic.

We could attempt this by introducing placeholders consisting of a set of variable

name and type pairs in the ‘desired’ contexts of the inference process, which would

mark a place where some subcontext is required for a function call, but the precise

structure is not known. Then as the inference progresses we can attempt to fill in some

of the structure once we know how the variables in the placeholder are bound. Again,

this may prevent us fully expanding contexts during the inference process, so work on

reducing expansion may help.

9.2.5 Logarithmic bounds and invariants

We have given an analysis which is capable of giving stack space bounds with respect

to the depth of data structures, and tree structures with logarithmic depth are often used

for efficient data structures. Most of the functions used for processing these will thus

use at most logarithmic stack space with respect to the data’s total size.

However, the tree structures are usually built from flat input, either in the form of a

single list, or by accumulating elements one at a time. While we can infer stack space

bounds proportional to the resulting tree’s depth, our analysis cannot show that this is

equivalent to a logarithmic bound in terms of the input’s size.
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Inferring logarithmic bounds presents three challenges: representing logarithmic

amounts of potential assigned to the input (especially where the input is added to the

tree incrementally); relating the logarithmic potential to the depth of the tree; and

showing any invariants required for that relationship.

The heap sort program in Appendix A gives a special case where this is relatively

easy. We could assign a logarithmic amount of potential to the input list as a whole,

transfer it to the list length when that is computed, then ‘release’ constant amounts of

potential each time the list length is halved. This could work because the code halves

the list length every time it adds a layer to the tree. This trick does not generalise,

however. For example, a simpler version of heap sort adds the elements to the tree

incrementally, so there is no explicit list length that could be used.



Chapter 10

Conclusions

The core thesis of this work was that we could construct good type-based amortized

analyses of programs’ stack space usage where that usage is linear in terms of the

input’s size. We have presented several such analyses, and in particular have tailored

the two in Chapter 5 and Chapters 6 and 7 specifically for the behaviour of stack space

allocation, achieving good bounds.

In more detail, this work has presented the following contributions:

• a Continuation Passing Style transformation which replaces stack space usage

by heap space usage, and thus allows us to apply a heap space analysis to get a

bound on the transformed program, and also to get a bound on the total mem-

ory or stack memory usage of the original program; but we then showed that

the transformation introduces a requirement for certain types to be equal which

severely limits such type based analyses on CPS transformed programs (Chap-

ter 3);

• we showed that directly adapting the Hofmann-Jost heap space analysis to in-

clude stack space yields a usable stack space analysis for bounds in terms of

total data structure size (Chapter 4), and that extending the form of the post-

evaluation bounds to include the sizes of arguments as well as the size of the

result provides us with a better analysis that is well-suited to producing stack

space bounds (Chapter 5);

• we showed that stack space bounds expressed with respect to the depth of the

input is practical using these techniques, by a novel use of extra structure in the

typing contexts to represent the form of the bounds, and presented a inference

algorithm for this extra structure (Chapters 6 and 7).
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We have supported these contributions by providing correctness and resource simula-

tion proofs for the Continuation Passing Style transformation, and soundness proofs

for the type systems which show that the predicted stack usage is a strict upper bound

on the real usage. We have also extended the soundness results to non-terminating

programs. All of the analyses in this thesis have been implemented and tested on ex-

amples. Sample results are shown in Appendix A.



Appendix A

Functional Heap Sort Example

We demonstrate the implementations of our analyses on a functional heap sort pro-

gram. The heap sort program is based on the Standard ML example from (Paulson,

1996, Section 4.16), rewritten in LFD. We first present the code itself with a few com-

ments, and then proceed to examine the results of each analysis in turn.

The program begins with unannotated type definitions and function signatures. The

size and stack measures are defined here by the numbers in (*n*). Here we estimate

the size measure by counting the number of values involved in each declaration — a

reasonable amount if each value is represented by one machine word. Similarly, we

estimate the stack measure by counting the maximum number of simultaneously live

variables in the function body.

type intlist = Nil(*0*) | Cons(*2*) of int, intlist
type inttree = Leaf(*0*) | Node(*3*) of inttree, inttree, int

val siftdown(*7*): inttree, inttree, int -> inttree
val heapify(*4*): int, intlist -> inttree * intlist
val addlength(*2*): intlist, int -> int
val length(*1*): intlist -> int
val fromList(*2*): intlist -> inttree

val leftrem(*4*): inttree -> int * inttree
val delmin(*3*): inttree -> inttree
val toList(*2*): inttree, intlist -> intlist

val sort(*2*): intlist -> intlist

167
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The code follows, written in the explicit let-normal form LFD requires (see Section 2.1):

let siftdown(t1, t2, w) =
let l = Leaf in
match t1 with

Leaf -> Node(l,l,w)
| Node(t11,t12,v) ->

(match t2 with
Leaf ->

if v < w then let a = Node(l,l,v) in Node(a,l,w)
else let a = Node(l,l,w) in Node(a,l,v)

| Node(t21,t22,u) ->
if u < w & v < w then

let a = Node(t11,t12,v) in
let b = Node(t21,t22,u) in

Node(a,b,w)
else if w < u & v < u then

let a = Node(t11,t12,v) in
let b = siftdown(t21,t22,w) in

Node(a,b,u)
else

let a = siftdown(t11,t12,w) in
let b = Node(t21,t22,u) in

Node(a,b,v)
)

let heapify(i, l) =
if i = 0 then let lf = Leaf in (lf, l)
else

match l with
Cons(v,vs) ->

let tl1 = heapify(i/2, vs) in
match tl1 with (t1, vs1) ->

let tl2 = heapify((i-1)/2, vs1) in
match tl2 with (t2, vs2) ->

let t3 = siftdown(t1, t2, v) in
(t3, vs2)

let addlength(l, n) =
match l with

Nil -> n
| Cons(_,vs)’ -> let n’ = n+1 in addlength(vs, n’)

let length l = addlength(l, 0)
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let fromList vs =
let len = length vs in
let tl = heapify(len, vs) in
match tl with (t, _) -> t

let leftrem t =
match t with

Node(t1,t2,v) ->
(match t1 with Leaf ->

(* t2 must be Leaf too *)
let lf = Leaf in (v,lf)

| Node(_,_,_)’ ->
let wt’ = leftrem t1 in
match wt’ with (w,t’) ->

let t’’ = Node(t2,t’,v) in
(w,t’’)

)

The delmin function illustrates the need for inexhaustive pattern matching; callers

are responsible for ensuring that the tree is not empty. While the program could be

rewritten to eliminate the inexhaustive match, it is more convenient to analyse pro-

grams as they were written. In particular, the practice of adding ‘dummy’ cases must

be avoided because they can affect the precision of the analysis. For example, if we

were to add a dummy Leaf -> Leaf pattern here then our analyses would be unable

to show that the heap space for the destroyed node is returned because no deallocation

takes place in the dummy case.

let delmin t =
match t with

Node(t1,t2,_) ->
(match t1 with

Leaf -> Leaf
| Node(_,_,_)’ ->

let wt = leftrem t1 in
match wt with (w,t’) ->

siftdown(t2, t’, w)
)

let toList (t, a) =
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match t with
Leaf -> a

| Node(_,_,v)’ -> let t’ = delmin t in
let a’ = Cons(v,a) in
toList (t’, a’)

let sort l =
let t = fromList l in
let n = Nil in
toList (t, n)

If we determine the stack usage of sort on a list l by examining the code by hand

we find that it is determined by the following chain of calls:

stack(sort)+stack(fromList)+stack(heapify)+stack(siftdown)×(log2(|l|+1)+1),

which is equal to 15+7× (log2(|l|+1)). If we measure the total space usage then the

deallocated list elements can be used to offset some of the stack space required before

the corresponding tree node is created, giving a bound of 15+5× (log2(|l|+1)).

A.1 The Hofmann-Jost heap analysis

Applying the version of the Hofmann-Jost heap space analysis presented in Chapter 2

yields the following type signatures:

siftdown : 3, inttree[0|#,#,int,0], inttree[0|#,#,int,0], int
-> inttree[0|#,#,int,0], 0;

siftdown : 3, inttree[0|#,#,int,0], inttree[0|#,#,int,0], int
-> inttree[0|#,#,int,0], 0;

heapify : 0, int, intlist[0|int,#,1]
-> inttree[0|#,#,int,0] * intlist[0|int,#,1], 0;

addlength : 0, intlist[0|int,#,0], int -> int, 0;
length : 0, intlist[0|int,#,0] -> int, 0;
fromList : 0, intlist[0|int,#,1] -> inttree[0|#,#,int,0], 0;
leftrem : 0, inttree[0|#,#,int,0] -> int * inttree[0|#,#,int,0], 3;
delmin : 0, inttree[0|#,#,int,0] -> inttree[0|#,#,int,0], 3;
toList : 0, inttree[0|#,#,int,0], intlist[0|int,#,1]

-> intlist[0|int,#,1], 0;
sort : 0, intlist[0|int,#,1] -> intlist[0|int,#,1], 0;

The types in the signatures are given as a type name followed by a list of constructor

signatures and annotations, separated by |s. For instance, intlist[0|int,#,1] is a
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list of integers, where each nil has 0 units of potential and each cons has 1 unit of

potential. The # in a signature represents a recursive appearance of the data type.

The siftdown function appears twice because of resource polymorphism; the anal-

ysis finds a solution for each of the uses of siftdown outside of its definition (in

heapify and delmin). In this case, the best signature for both uses is the same.

These bounds agree with the general result given in Example 2.9, that sort l

requires

|l|× |size(node)− size(cons)|

units of free heap space. Then, if we fix the size of the list elements to be the size of

the heap nodes,

type intlist = Nil(*0*) | Cons(*3*) of int,intlist

we get an in-place sort:

siftdown : 3, inttree[0|#,#,int,0], inttree[0|#,#,int,0], int
-> inttree[0|#,#,int,0], 0;

siftdown : 3, inttree[0|#,#,int,0], inttree[0|#,#,int,0], int
-> inttree[0|#,#,int,0], 0;

heapify : 0, int, intlist[0|int,#,0]
-> inttree[0|#,#,int,0] * intlist[0|int,#,0], 0;

addlength : 0, intlist[0|int,#,0], int -> int, 0;
length : 0, intlist[0|int,#,0] -> int, 0;
fromList : 0, intlist[0|int,#,0] -> inttree[0|#,#,int,0], 0;
leftrem : 0, inttree[0|#,#,int,0] -> int * inttree[0|#,#,int,0], 3;
delmin : 0, inttree[0|#,#,int,0] -> inttree[0|#,#,int,0], 3;
toList : 0, inttree[0|#,#,int,0], intlist[0|int,#,0]

-> intlist[0|int,#,0], 0;
sort : 0, intlist[0|int,#,0] -> intlist[0|int,#,0], 0;

A.2 The CPS transformation

We now apply an implementation of the CPS transformation described in Chapter 3

before using the Hofmann-Jost heap analysis. Recall that this technique bounds the

total memory usage except for the largest stack frame.

We present a sample of the resulting typing signatures:

c%2 : 12, inttree[0|#,#,int,1], int, inttree[0|#,#,int,1],
inttree[0|#,#,int,1], int,
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c%stack[inttree[0|#,#,int,1],#,0|
intlist[0|int,#,2],int,#,2|#,0|0|
int,inttree[0|#,#,int,1],inttree[0|#,#,int,1],int,#,2|
int,inttree[0|#,#,int,1],#,0|intlist[0|int,#,2],#,0|
int,inttree[0|#,#,int,1],#,0|int,int,#,0|#,0|
intlist[0|int,#,0],#,0|int,inttree[0|#,#,int,1],#,0]

-> intlist[0|int,#,2], 6;
c%unwind intlist: 0, intlist[0|int,#,2],

c%stack[inttree[0|#,#,int,0],#,0|
intlist[0|int,#,0],int,#,0|#,0|0|
int,inttree[0|#,#,int,0],inttree[0|#,#,int,0],int,#,0|
int,inttree[0|#,#,int,0],#,0|intlist[0|int,#,0],#,0|
int,inttree[0|#,#,int,0],#,0|int,int,#,0|#,0|
intlist[0|int,#,0],#,0|int,inttree[0|#,#,int,0],#,0]

-> intlist[0|int,#,2], 0;
sort : 11, intlist[0|int,#,2],

c%stack[inttree[0|#,#,int,1],#,0|
intlist[0|int,#,2],int,#,2|#,0|0|
int,inttree[0|#,#,int,1],inttree[0|#,#,int,1],int,#,2|
int,inttree[0|#,#,int,1],#,0|intlist[0|int,#,2],#,0|
int,inttree[0|#,#,int,1],#,0|int,int,#,0|#,0|
intlist[0|int,#,2],#,0|int,inttree[0|#,#,int,1],#,0]

-> intlist[0|int,#,2], 6;
c%main : 11, intlist[0|int,#,2] -> intlist[0|int,#,2], 6;

These show the four kinds of function in the transformed program: c%2 is a closure

generated while transforming the siftdown function; c%unwind intlist is the stack

unwinding function which is called when a function returns a value of type intlist

and we need to determine which continuation to call; sort is the transformed version

of the original function; and c%main is a wrapper function for sort introduced by the

implementation which eliminates the stack. We can easily read the before and after

free memory bounds from the type of the wrapper function, whereas the after bounds

for most functions is obscured by the stack type. The interpretation of the bounds was

presented in Example 3.13 on page 49.

By setting the original heap structure sizes to zero we can obtain a stack only

bound, as described in the main text:

c%2 : 12, inttree[0|#,#,int,4], inttree[0|#,#,int,4], int,
inttree[0|#,#,int,4], int, c%stack[...]

-> intlist[0|int,#,4], 6;
c%unwind intlist: 0, intlist[0|int,#,4], c%stack[...]

-> intlist[0|int,#,4], 0;
sort : 11, intlist[0|int,#,4], c%stack[...]
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-> intlist[0|int,#,4], 6;
c%main : 11, intlist[0|int,#,4] -> intlist[0|int,#,4], 6;

In Section 3.3 we showed that the CPS transformed program can be used to bound

the original program’s memory usage if the stack frame sizes are used in place of the

real closure sizes. This yields slightly different results to the actual CPS program:

c%main : 14, intlist[0|int,#,5] -> intlist[0|int,#,5], 8;

The linear increase in the space bound is because our naı̈ve estimates for the stack

frame sizes above include variables which are only required for a call to another func-

tion. The CPS transform does not place these variables in the closures and can thus

execute in less space. If a compiler implementation made a similar optimisation, then

we could also justify reducing the stack frame size and obtain a tighter bound.

A.3 Direct adaption and the give-back analysis

We now come to the direct stack adaption of Hofmann-Jost presented in Chapter 4 and

the subsequent give-back version of Chapter 5. Considering first the combined heap

and stack bounds with the direct adaption we obtain the signatures:

siftdown : 7, inttree[0|#,#,int,4], inttree[0|#,#,int,4], int
-> inttree[0|#,#,int,4], 0;

siftdown : 15, inttree[0|#,#,int,4], inttree[0|#,#,int,4], int
-> inttree[0|#,#,int,4], 8;

heapify : 7, int, intlist[0|int,#,5]
-> inttree[0|#,#,int,4] * intlist[0|int,#,5], 7;

addlength : 0, intlist[0|int,#,0], int -> int, 0;
length : 2, intlist[0|int,#,0] -> int, 2;
fromList : 11, intlist[0|int,#,5] -> inttree[0|#,#,int,4], 11;
leftrem : 0, inttree[0|#,#,int,4] -> int * inttree[0|#,#,int,4], 7;
delmin : 8, inttree[0|#,#,int,4] -> inttree[0|#,#,int,4], 15;
toList : 11, inttree[0|#,#,int,4], intlist[0|int,#,5]

-> intlist[0|int,#,5], 11;
sort : 13, intlist[0|int,#,5] -> intlist[0|int,#,5], 13;

Adding the 2 units of space for the initial stack frame for sort, for a list l this gives us

the bound 15+5×|l|, the best we can expect from a linear analysis of total space.

As with the CPS transformation’s results, the combined bounds can be misleading

when heap and stack memory are not interchangeable, and so we give a stack bound

alone:
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siftdown : 7, inttree[0|#,#,int,7], inttree[0|#,#,int,7], int
-> inttree[0|#,#,int,7], 0;

siftdown : 15, inttree[0|#,#,int,7], inttree[0|#,#,int,7], int
-> inttree[0|#,#,int,7], 8;

heapify : 7, int, intlist[0|int,#,7]
-> inttree[0|#,#,int,7] * intlist[0|int,#,7], 7;

addlength : 0, intlist[0|int,#,0], int -> int, 0;
length : 2, intlist[0|int,#,0] -> int, 2;
fromList : 11, intlist[0|int,#,7] -> inttree[0|#,#,int,7], 11;
leftrem : 0, inttree[0|#,#,int,7] -> int * inttree[0|#,#,int,7], 7;
delmin : 8, inttree[0|#,#,int,7] -> inttree[0|#,#,int,7], 15;
toList : 11, inttree[0|#,#,int,7], intlist[0|int,#,7]

-> intlist[0|int,#,7], 11;
sort : 13, intlist[0|int,#,7] -> intlist[0|int,#,7], 13;

The length function used above is tail recursive and so uses a constant amount of

stack space. Replacing it with the linear function

let length l =
match l with

Nil -> 0
| Cons(_,vs)’ -> let l’ = length vs in (1 + l’)

produces the overestimate noted in Example 4.7:

siftdown : 7, inttree[0|#,#,int,7], inttree[0|#,#,int,7], int
-> inttree[0|#,#,int,7], 0;

siftdown : 15, inttree[0|#,#,int,7], inttree[0|#,#,int,7], int
-> inttree[0|#,#,int,7], 8;

heapify : 7, int, intlist[0|int,#,7]
-> inttree[0|#,#,int,7] * intlist[0|int,#,7], 7;

length : 0, intlist[0|int,#,1] -> int, 0;
fromList : 11, intlist[0|int,#,8] -> inttree[0|#,#,int,7], 11;
leftrem : 0, inttree[0|#,#,int,7] -> int * inttree[0|#,#,int,7], 7;
delmin : 8, inttree[0|#,#,int,7] -> inttree[0|#,#,int,7], 15;
toList : 11, inttree[0|#,#,int,7], intlist[0|int,#,7]

-> intlist[0|int,#,7], 11;
sort : 13, intlist[0|int,#,8] -> intlist[0|int,#,7], 13;

The give-back analysis solves this by reassigning the potential of the list argument

back to the next use of the list (which is the call to heapify):

siftdown : 7, inttree[0>0|#,#,int,7>0], inttree[0>0|#,#,int,7>0], int
-> inttree[0>0|#,#,int,7>0], 0;
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siftdown : 15, inttree[0>0|#,#,int,7>0], inttree[0>0|#,#,int,7>0], int
-> inttree[0>0|#,#,int,7>0], 8;

heapify : 7, int, intlist[0>0|int,#,7>0]
-> inttree[0>0|#,#,int,7>0] * intlist[0>0|int,#,7>0], 7;

length : 0, intlist[0>0|int,#,1>1] -> int, 0;
fromList : 11, intlist[0>0|int,#,7>0] -> inttree[0>0|#,#,int,7>0], 11;
leftrem : 0, inttree[0>0|#,#,int,7>0] -> int * inttree[0>0|#,#,int,7>0], 7;
delmin : 8, inttree[0>0|#,#,int,7>0] -> inttree[0>0|#,#,int,7>0], 15;
toList : 11, inttree[0>0|#,#,int,7>0], intlist[0>0|int,#,7>0]

-> intlist[0>0|int,#,7>0], 11;
sort : 13, intlist[0>0|int,#,7>0] -> intlist[0>0|int,#,7>0], 13;

A.4 The depth type system

We now turn to the type system of Chapter 6 and accompanying inference in Chapter 7.

Note that we adopt the change to siftdown discussed in Example 7.6 on page 147.

Before we obtain stack space bounds with respect to depth, we first note that they can

provide bounds on the stack space with respect to the total size of the arguments, too.

To do this, we provide the inference with entirely additive signatures:

Σ =



Nil 7→ ∀k.()→ intlist(k)

Cons 7→ ∀k.(int,intlist(k),k)→ intlist(k)

Leaf 7→ ∀k.()→ inttree(k)

Node 7→ ∀k.(inttree(k),inttree(k),int,k)→ inttree(k)

siftdown 7→ (inttree(k1),inttree(k2),int(k3),k4)→ inttree(k5),k6

heapify 7→ (intlist(k1),k2)→ inttree(k3)⊗intlist(k4),k5

length 7→ (intlist(k1),k2)→ int,k3

fromList 7→ (intlist(k1),k2)→ inttree(k3),k4

leftrem 7→ (inttree(k1),k2)→ int⊗inttree(k3),k4

delmin 7→ (inttree(k1),k2)→ inttree(k3),k4

toList 7→ (inttree(k1),intlist(k2),k3)→ inttree(k4),k5

sort 7→ (intlist(k1),k2)→ intlist(k3),k4


Note that the notation for the implementation of this analysis follows Chapter 7. Using

these signatures, the implementation of the analysis yields the overall bound that we

expect from the previous analyses:

siftdown: (t1:inttree(7),t2:inttree(7),w:int,7) -> inttree(7), 0

siftdown: (t1:inttree(7),t2:inttree(7),w:int,7) -> inttree(7), 0
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heapify: (i:int,l:intlist(7),7) -> inttree(7)*intlist(7), 7

length: l:intlist(1) -> int, 0

fromList: (vs:intlist(7),11) -> inttree(7), 11

leftrem: (t:inttree(7),0) -> int*inttree(7), 7

delmin: (t:inttree(7),0) -> inttree(7), 7

toList: (t:inttree(7),a:intlist(7),13) -> intlist(7), 13

sort: (l:intlist(7),13) -> intlist(7), 13

Thus, once we add the initial stack frame for sort, we see that sort l can run in

7×|l|+15 units of stack space.

For the analysis with respect to depth we use signatures that take the maximum

potential where appropriate:

Σ =



Nil 7→ ∀k.()→ intlist(k)

Cons 7→ ∀k.({int;intlist(k)},k)→ intlist(k)

Leaf 7→ ∀k.()→ inttree(k)

Node 7→ ∀k.({inttree(k);inttree(k);int},k)→ inttree(k)

siftdown 7→ ({inttree(k1);inttree(k2);int(k3)},k4)→ inttree(k5),k6

heapify 7→ (intlist(k1),k2)→ inttree(k3)⊗intlist(k4),k5

length 7→ (intlist(k1),k2)→ int,k3

fromList 7→ (intlist(k1),k2)→ inttree(k3),k4

leftrem 7→ (inttree(k1),k2)→ int⊗inttree(k3),k4

delmin 7→ (inttree(k1),k2)→ inttree(k3),k4

toList 7→ (inttree(k1),intlist(k2),k3)→ inttree(k4),k5

sort 7→ (intlist(k1),k2)→ intlist(k3),k4


Note that the depth of a list is exactly its total size. Thus the overall bound is not likely

to improve, but we do gain more precise bounds for the tree manipulations involved.

The analyses produces the following results:

siftdown: ({t1:inttree(7);t2:inttree(7);w:int},7) -> inttree(7), 0

siftdown: ({t1:inttree(7);t2:inttree(7);w:int},7) -> inttree(7), 0

heapify: (i:int,l:intlist(7),7) -> inttree(7)*intlist(7), 7

length: l:intlist(1) -> int, 0

fromList: (vs:intlist(7),11) -> inttree(7), 11

leftrem: (t:inttree(7),0) -> int*inttree(7), 0

delmin: (t:inttree(7),0) -> inttree(7), 0



Appendix A. Functional Heap Sort Example 177

toList: (t:inttree(7),a:intlist(0),13) -> intlist(0), 13

sort: (l:intlist(7),13) -> intlist(0), 13

We can see that the overall bound for sort is unchanged from the previous analyses,

but that where trees are involved we only need space proportional to their depth. In the

heap sort, the tree depth will be the logarithm of the supplied list’s size. However, this

makes these results problematic for use in larger programs — the potential assigned to

the trees is logarithmic with respect to the size of the both argument and result lists.

Thus not enough potential is assigned to the trees to allow us to assign any potential to

the result (the zero in the signature of sort). We can reuse the potential on the original

unsorted list, though.

The impact of this on the overall bounds of a larger program is that where a program

uses the sorted list, and requires stack space proportional to it, the analysis will fail.

However, we can still use the original list in such a way and obtain a bound.
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Implementation Benchmarks

Below we present a table showing the performance of the implementations on various

examples. Note that they were not designed with efficiency in mind, but to test and

experiment with the type systems. Thus the figures below should only be taken as a

rough indication of the performance of the analyses.

The analysis column contains

basic for the simple adaption of Chapter 4,

give-back for the analysis from Chapter 5 or

depth for the depth analysis presented in Chapters 6 and 7.

The constraints column presents the number of constraints generated for the linear

programming stage, the inference time column is the time in milliseconds required to

perform the type inference and produce the linear program, and the solver time is the

time in milliseconds taken to solve the linear program.

The tests were performed on a 2.6GHz Pentium 4 PC with 512MB of main mem-

ory, using ocamlopt 3.09.3 for the basic and give-back analyses and SML/NJ version

110.67 for the depth analysis. The linear program solver used throughout was lpsolve

5.5.

Recall that Example 2.11 demonstrates the exponential behaviour due to resource

polymorphism. Thus the large number of constraints and long execution time is ex-

pected. The number in the leftmost column refers to the number of functions involved,

see page 32.

The Huffman tree generation example is an adapted version of the one described

in (Jost, 2004b).

178
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Example Analysis Constraints Inference time (ms) Solver time (ms)
notlist (Ex 2.1) basic 20 2 2

give-back 24 1 3
depth 41 2 5

andlists2 (Ex 5.2) basic 97 5 5
give-back 117 6 6

depth 165 4 8
quicksort basic 101 8 4

give-back 143 11 5
depth 239 12 12

Red black basic 619 43 25
tree insertion give-back 880 80 38

depth 948 38 27
Huffman basic 527 47 44

give-back 710 76 61
depth 882 37 49

heapsort basic 482 36 29
give-back 662 65 44

depth 1035 62 92
Ex 2.11 — 6 basic 906 93 38

8 basic 3690 1201 335
10 basic 14826 39173 7323
6 give-back 1156 175 50
8 give-back 4708 2533 506
10 give-back 18916 64123 9694
6 depth 406 14 31
8 depth 1654 162 395
10 depth 6646 3859 7918

Table B.1: Benchmarking results
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