
English-to-Chinese Transliteration with a Phonetic Auxiliary Task

Yuan He∗
Department of Computer Science

University of Oxford
yuan.he@cs.ox.ac.uk

Shay B. Cohen
School of Informatics

University of Edinburgh
scohen@inf.ed.ac.uk

Abstract

Approaching named entities transliteration as
a Neural Machine Translation (NMT) prob-
lem is common practice. While many have
applied various NMT techniques to enhance
machine transliteration models, few focus on
the linguistic features particular to the relevant
languages. In this paper, we investigate the
effect of incorporating phonetic features for
English-to-Chinese transliteration under the
multi-task learning (MTL) setting—where we
define a phonetic auxiliary task aimed to im-
prove the generalization performance of the
main transliteration task. In addition to our
system, we also release a new English-to-
Chinese dataset and propose a novel evalua-
tion metric which considers multiple possible
transliterations given a source name. Our re-
sults show that the multi-task model achieves
similar performance as the previous state of
the art with a model of a much smaller size.1

1 Introduction

Transliteration, the act of mapping a name from the
orthographic system of one language to another,
is directed by the pronunciation in the source and
target languages, and often by historical reasons or
conventions. It plays an important role in tasks like
information retrieval and machine translation (Mar-
ton and Zitouni, 2014; Hermjakob et al., 2008).

Over the recent years, many have ad-
dressed transliteration using sequence-to-sequence
(seq2seq) deep learning models (Rosca and Breuel,
2016; Merhav and Ash, 2018; Grundkiewicz and
Heafield, 2018), enhanced with several NMT tech-
niques (Grundkiewicz and Heafield, 2018). How-
ever, this recent work neglects the most crucial
feature for transliteration, i.e. pronunciation. To

*Work done at The University of Edinburgh.
1Our code and data are available at https://github.

com/Lawhy/Multi-task-NMTransliteration.

English IPA Chinese Pinyin

A /"eI./ 艾 ài
my /mi/ 米 mı̌

Table 1: An example of English-to-Chinese transliter-
ation, from Amy to 艾米. Each row presents a group
of corresponding subsequences in different representa-
tions.

bridge this gap, we define a phonetic auxiliary task
that shares the sound information with the main
transliteration task under the multi-task learning
(MTL) setting.

Depending on the specific language, the written
form of a word reveals its pronunciation to various
extents. For alphabetical languages such as English
and French, a letter, or a sequence of letters, usually
reflects the word pronunciation. For example, the
word Amy (in the International Phonetic Alphabet,
IPA, /"eI.mi/) has the sub-word A corresponding to
/"eI./ and my corresponding to /mi/. In contrast,
characters in a logographic2 writing system for lan-
guages like Chinese or Japanese do not explicitly
indicate sound (Xing et al., 2006).

In this paper, we give a treatment to the problem
of transliteration from English (alphabet) to Chi-
nese3 (logogram) using an RNN-based MTL model
with a phonetic auxiliary task. We transform each
Chinese character to the alphabetical representation
of its pronunciation via the official phonetic writing
system, Pinyin,4 which uses Latin letters with four
diacritics denoting tones to represent the sounds.

2A logogram is an individual character that represents a
whole word or phrase.

3The Chinese language we mention in this paper refers ex-
plicitly to Mandarin, which is the official language originated
from the northern dialect in China.

4Pinyin is the official romanization system for Standard
Chinese (Mandarin) in mainland China and to some extent in
Taiwan. It does not apply to other Chinese dialects.

https://github.com/Lawhy/Multi-task-NMTransliteration
https://github.com/Lawhy/Multi-task-NMTransliteration


For example, the Chinese transliteration for Amy is
艾米 and the associated Pinyin representation is ài
mı̌. We summarize the correspondences occurring
in this example in Table 1.

Due to the similarity between the source name
and the Pinyin representation, Jiang et al. (2009)
proposed a sequential transliteration model that
uses Pinyin as an intermediate representation be-
fore transliterating a Chinese name to English. In
contrast, our idea is to build a model with a shared
encoder and dual decoders, that can learn the map-
ping from English to Chinese and Pinyin simulta-
neously. By jointly learning source-to-target and
source-to-sound mappings, the encoder is expected
to generalize better (Ruder, 2017) and pass more
refined information to the decoders.

Transliteration datasets are often extracted from
dictionaries, or aligned corpus generated from ap-
plying named entity recognition (NER) system to
parallel newspaper articles in different languages
(Sproat et al., 2006). We use two datasets for
our experiments, one taken from NEWS Machine
Transliteration Shared Task (Chen et al., 2018) and
the other extracted from a large dictionary. We
evaluate the transliteration system using both the
conventional word accuracy and a novel metric de-
signed for English-to-Chinese transliteration (see
Section 5). Our contributions are as follows:

1. We make available a new English-to-Chinese
named entities dataset (“DICT”) particular to
names of people. This dataset is based on the dic-
tionary A Comprehensive Dictionary of Names in
Roman-Chinese (Xinhua News Agency, 2007).

2. We propose a substitution-based metric called
Accuracy with Alternating Character Table
(ACC-ACT), which gives a better estimation of
the system’s quality than the traditional word
accuracy (ACC).

3. We propose a multi-task learning transliteration
model with a phonetic auxiliary task, and run
experiments to demonstrate that it attains better
scores than single-main-task or single-auxiliary-
task models.

We report accuracy and F-score of 0.299 and
0.6799, respectively, on the NEWS dataset, with a
model of size 22M parameters, compared to the pre-
vious state of the art (Grundkiewicz and Heafield,
2018), which achieves accuracy and F-score of
0.304 and 0.6791, respectively, with a model of
size 133M parameters. On the DICT dataset, for

Source (x) Target (y) Pinyin (p)

Caleigh 凯莉 kai li

Table 2: An example data point under our multi-task
learning setting.

the same model sizes, we report accuracy of 0.729
as compared to their 0.732.

2 Problem Formulation

We use the word vocabulary to describe the set of
characters for the purpose of our task specification.
Let Vsrc and Vtgt denote the source and target vo-
cabularies, respectively. For a source word x of
length I and a target word y of length J , we have:

x = (x1, x2, ..., xI) ∈ V I
src,

y = (y1, y2, ..., yJ) ∈ V J
tgt.

where the kth element in the vector denotes a char-
acter at position k.

We formulate the task of transliteration as a su-
pervised learning problem: given a collection of n
training examples, {(x(i),y(i))}ni=0, the objective
is to learn a predictor function, f : x → y, of
which the parameter space maximizes the follow-
ing conditional probability:

P (y|x) Chain Rule
=

J∏
j=1

P (yj |y1, ..., yj−1,x).

For our multi-task transliteration model, the pre-
dictor becomes fMTL : x → (y,p), where p de-
notes the written representation of the pronuncia-
tion of the target word y. For decoding, we maxi-
mize the conditional probabilities, P (p|x, ỹ) and
P (y|x, p̃), where ỹ and p̃ refers to the implicit
information channeled by one task to the other.

The phonetic information we use for our task
refers to the Pinyin version of the name in Chi-
nese, without tone marks,5 because they are often
removed for spelling Chinese names in an alpha-
betical language. We present an example data point
in the form of (x,y,p) in Table 2.

3 Dataset Preparation

We experiment with two different English-to-
Chinese datasets. For simplicity, we denote the one

5For example, the Pinyins, chı̄, chı́, chı̌ and chı̀, are all
transformed to chi. Note that this process will decrease the
vocabulary size.



taken from NEWS Machine Transliteration Shared
Task (Chen et al., 2018) as “NEWS,” and the
one extracted from the dictionary (Xinhua News
Agency, 2007) as “DICT.”

3.1 NEWS Dataset
We use the preprocessing script6 created by Grund-
kiewicz and Heafield (2018) to construct the
NEWS dataset from raw data provided in the
Shared Task (Chen et al., 2018). This script merges
the raw English-to-Chinese and Chinese-to-English
datasets into a single one, then transforms it to up-
percase7 and tokenizes all names into sequences of
characters (words are treated as sentences, charac-
ters are treated as words). In addition, it takes 513
examples from the training data to form the internal
development set and uses the official development
set as the internal test set.

To make the final comparison, we download the
source-side data of the official test set from the
Shared Task’s website,8 and submit the translitera-
tion results (see Section 6.4).

3.2 DICT Dataset
The source dictionary contains approximately
680K name pairs for transliteration from other lan-
guages than Chinese. We extracted 58,456 pairs
that originated in English and performed the fol-
lowing preprocessing steps:

1. For the source side (English), we remove the
inverted commas and white spaces from names
that contain them (e.g. A’Court, Le Gresley).

2. For both sides, we lowercase9 all the words and
tokenize them into sequences of characters.

3. Name pairs with multiple target transliterations
are removed from the dataset and saved in a sep-
arate file for the construction of the ACT (see
next paragraph). As such, every name pair be-
comes unique in our preprocessed dataset. We
randomly divide the rest into the ratio of 8 : 1 : 1,
to form training, development and test sets.

We report the final partitions of both datasets in
Table 3.

6Available at https://github.com/snukky/
news-translit-nmt.

7We lowercase all the words in both NEWS and DICT
datasets as evaluating transliteration is case-insensitive.

8The official test set with task ID T-EnCh is available
at: http://workshop.colips.org/news2018/
dataset.html.

9Lowercasing does not affect Chinese characters as they
are not alphabetical.

Source Train Dev Test

NEWS 81,252 513 1,000
DICT 46,620 5,828 5,828

Table 3: Numbers of data points in training, develop-
ment and test sets of NEWS and DICT datasets. Dev
and Test for the NEWS dataset (first row) refer to the
internal development and test set, respectively.

3.3 Alternating Character Table

Chinese characters10 that sound alike can often re-
place each other in the transliteration of a name
from other languages. Unlike an alphabetical lan-
guage where a similar pronunciation is bounded
to sub-words of various lengths, characters in Chi-
nese have concrete and independent pronunciations.
Thus, we can conveniently build the Alternating
Character Table (ACT) with each row storing a list
of interchangeable characters.

We construct the ACT based on the DICT dataset
because it contains less noise after applying signif-
icant data cleansing. In total, 449 English names
from the DICT dataset have more than one translit-
erations in Chinese. We purposely removed all
these names from the DICT data during the pre-
processing so as to ensure that we are not using
any knowledge from the test set. The final ACT
contains 29 rows (see Appendix) and we use it with
our adaptive evaluation metric (see Section 5).

3.4 Pinyin Conversion

In transliteration, the pronunciations of the Chinese
characters are often unique (even for a polyphonic
character, e.g. 什, that has more than one Pinyins,
shı́ and shén, only shı́ is commonly used in translit-
eration). Therefore, we can directly transform each
Chinese character into a unique Pinyin, thus form-
ing the target data for the auxiliary task. The proce-
dure is as follows: for each character yt in the target
name y, we use the Python package pypinyin11

to map yt to the corresponding Pinyin (without the
tone mark). The tool will generate the most fre-
quently used Pinyin for each yt based on dictionary
data. We then apply further manual correction on
the Pinyins because the most frequent Pinyin is not
necessarily the one used in transliteration.

10Limited to the set of characters (with size ≈1K out of
80K) commonly used in transliteration.

11Available at: https://github.com/mozillazg/
python-pinyin. We use the lazy pinyin feature to
generate Pinyins without tone marks.

https://github.com/snukky/news-translit-nmt
https://github.com/snukky/news-translit-nmt
http://workshop.colips.org/news2018/dataset.html
http://workshop.colips.org/news2018/dataset.html
https://github.com/mozillazg/python-pinyin
https://github.com/mozillazg/python-pinyin


Figure 1: Visualization of the Seq2MultiSeq model.
The left half illustrates the components involved in the
main task and the right half is for the auxiliary task.
The shared part is the encoder that consists of a source
embedding layer and a stacked biRNN (top middle).

4 Model

Our model is intent on solving English-to-Chinese
transliteration through joint supervised learning of
source-to-target (main) and source-to-Pinyin (aux-
iliary) tasks. Training closely related tasks together
can help the model to learn information that is
often ignored in single-task learning, thus obtain-
ing a better representation in the shared layers (in
our case, encoder). Moreover, the auxiliary task
implicitly provides the phonetic information that
is not easily learned through the single main task
given the characteristics of Chinese (see Section 1).
Our model has a sequence-to-multiple-sequence
(Seq2MultiSeq) architecture that contains a shared
encoder and dual decoders. Between the encoder
and decoder is a bridge layer12 that transforms the

12We call it “bridge” because it connects the shared encoder
to each decoder. It allows flexible choices of the hidden sizes
of the encoder and decoder and serves as the intermediate
“buffer” before passing the encoder final state to each decoder.

encoder’s final state into the decoder’s initial state
(see Figure 1).

The encoder has an embedding layer with
dropout (Hinton et al., 2012), followed by a 2-
layer biLSTM (Schuster and Paliwal, 1997). The
bridge layer consists of a linear layer followed by
tanh activation. The shared encoder passes its final
state to the main-task decoder and the auxiliary-
task decoder via separate bridge layers. In each
decoder, we use additive attention (Bahdanau et al.,
2015) to compute the context vector (weighted sum
of the encoder outputs according to the attention
scores), then concatenate it with the target embed-
ding to form the input of the subsequent 2-layer
feed-forward LSTM. The prediction is made by
feeding the concatenation of the LSTM’s output,
the context vector and the target embedding into a
linear layer followed by log-softmax.

Our model is expected to simultaneously max-
imize the conditional probabilities mentioned in
Section 2. To achieve this goal, we use the lin-
ear combination of the main-task decoder’s loss13

(negative log likelihood; ly) and the auxiliary-task
decoder’s loss (lp) as the model’s objective func-
tion:

lMTL = λ · ly + (1− λ) · lp,

where the subscript MTL stands for multi-task
learning and 0 < λ < 1. Note that for λ = 0
and λ = 1, it is equivalent to train on a single aux-
iliary task and a single main task, respectively. The
whole system is implemented using the deep learn-
ing framework PyTorch (Paszke et al., 2019).14

5 Adaptive Evaluation Metrics

We evaluate the transliteration system using word
accuracy (ACC) and its variants on the 1-best out-
put:

ACC =
1

N

∑
(y,ŷ)

Icriterion(ŷ,y),

where N is the total number of test-set samples,
Icriterion(ŷ,y) is an indicator function with value 1 if
the prediction (top candidate) ŷ matches the refer-
ence y under certain criterion. The simplest crite-
rion is exact string match between ŷ and y. If the
test set contains multiple target words for a single
source word, we let indicator be 1 if the prediction
matches one of the references (Chen et al., 2018).

13We use nn.NLLLoss() from the PyTorch library.
14Available at https://pytorch.org/.

https://pytorch.org/


Source Target (F) Target (M) MED

Mona 莫娜 莫纳 1
Colina 科莉娜 科利纳 2

Table 4: Examples of a single source name with more
than one target transliterations, with (F) and (M) indi-
cating female and male, respectively.

We use ACC and ACC+ to denote the original ac-
curacy and its variant with multiple references.

The drawback of ACC is that it may underesti-
mate the quality of the system because it neglects
the possibility of having more than one transliter-
ation for a given source name, as is the case for
English-to-Chinese transliteration. For example in
Table 4, if the test set only includes Target (F) for a
Source while the model predicts Target (M), ACC
will mistakenly count it as wrong. Although ACC+
considers the alternatives appearing in the dataset,
it is unrealistic to expect the dataset to contain all
possible references. To resolve this issue, we pro-
pose a new variant of word accuracy specific to
English-to-Chinese transliteration.

Based on the knowledge of a native Chinese
speaker, we analyze the English-to-Chinese dataset
and summarize the key observations for source
names with multiple target transliterations as fol-
lows: the minimum edit distance (MED) between
any two target names ≤ 2, and the lengths are the
same; for any two such target names, distinct char-
acters occur in the same position, and they often
indicate the gender of the name (see Table 4).

To use ACT in accord with the above obser-
vations, we propose the following criterion for
the accuracy indicator function (we refer to it as
ACC-ACT). Let subscript t denote the position
of a character, then Icriterion(ŷ,y) = 1 if either
MED(ŷ, y) = 0 (which covers all the cases for
ACC) or the following conditions are met in or-
der:

1. ŷ and y are of the same length, L;
2. MED(ŷ, y) ≤ 2 and distinct characters of ŷ and
y must occur in the same position(s);

3. If ŷt 6= yt for 1 ≤ t ≤ L, replace ŷt by looking
up the ACT and this condition will be satisfied if
any of the modified ŷ(s) can match y exactly.

There is no guarantee that characters that are
interchangeable according to ACT can replace each
other in every scenario. But since we only apply

Enc Dec-M Dec-A

Emb.
h 256 256 128
δ 0.1 0.1 0.1

RNN
h 512 512 128
δ 0.2 0.2 0.1

Table 5: Illustration of the model settings, where Emb.
and RNN stand for the embedding layers and RNN
units in each part (column) of the model, h and δ are
the hidden size and dropout value, respectively. The
column names (from left to right) stand for encoder,
main-task decoder and auxiliary-task decoder.

substitution on the output predictions rather than
the references, we are not manipulating the test
set by creating any new instance. This new metric
(ACC-ACT) will ensure cases like in Table 4 are
captured without requiring extra data in the test
set, thus giving a more reasonable estimate of the
system’s quality than both ACC and ACC+.

6 Experimental Setup

Recall from Section 4 that we use λ to denote the
weighting of the two tasks we train. We set the
single-main-task (λ = 1) and the single-auxiliary-
task (λ = 0) models as the baselines, and com-
pare the multi-task models of different weightings
(λ ∈ {16 ,

1
4 ,

1
2 ,

2
3 ,

5
6 ,

8
9}) against them. We conduct

experiments on both the NEWS and DICT datasets
and select the best model for each of them to com-
pare to the previous state of the art.

6.1 Model and Training Settings
The configurations of hidden sizes and dropout
values of embedding layers and RNN units are
presented in Table 5. The type of all RNN units is
LSTM and the number of layers is set to 2. Besides
the bridge layer that transforms the encoder’s final
hidden state to the decoder’s initial hidden state,
we add another one to carry the final cell state for
using LSTM (in total, we have 4 “bridges”).

We use the Adam optimizer (Kingma and Ba,
2015) with the batch size set to 64. Evaluation of
the development set is carried out on every 500
batches. We record the validation score (ACC) and
decrease the learning rate (initially set to 0.003) by
90% if the score does not surpass the previous best.
We pick the final model that attains the highest
validation score within 100 training epochs.

For decoding in the training phase, we apply
teacher forcing (Williams and Zipser, 1989) with



NEWS DICT

Main Auxiliary Main Auxiliary

λ ACC ACC+ ACC-ACT ACC ACC ACC-ACT ACC

1 0.723 0.731 0.746 NA 0.725 0.748 NA

1/6 0.666 0.672 0.688 0.698 0.728 0.750 0.744
1/4 0.734 0.743 0.751 0.755 0.725 0.747 0.746
1/2 0.724 0.733 0.740 0.738 0.723 0.748 0.739
2/3 0.698 0.707 0.715 0.705 0.722 0.746 0.739
5/6 0.739 0.749 0.760 0.757 0.729 0.752 0.746
8/9 0.670 0.679 0.686 0.705 0.722 0.746 0.734

0 NA NA NA 0.743 NA NA 0.743

Table 6: Experiment results on NEWS internal test set and DICT development set, where λ = 1 and λ = 0 are
baselines of main task and auxiliary task, respectively. Maximum score in each metric is is bold.

Figure 2: The plots of main-task ACC against auxiliary-task ACC on the NEWS (left) and DICT (right) develop-
ment sets. Colors indicate which multi-task model (by λ value) the evaluation points belong to. To highlight the
dense regions, we set the minimum of the x-axis to 0.5 and 0.6 for NEWS and DICT datasets, respectively.

the following empirical decay function:

tfr = max

(
1− 10 + epoch× 1.5

50
, 0.2

)
,

where tfr refers to the teacher forcing ratio, i.e. the
probability of feeding the true reference instead of
the predicted token. We use beam search decoding
with beam size 10 and length normalization (Wu
et al., 2016) for evaluation.

6.2 Evaluation

We use ACC and ACC-ACT to evaluate the perfor-
mance on the main task and ACC on the auxiliary
task. Note that since the only data portion we have
that contains multiple references given a source
word is the internal test set of NEWS data, we
apply ACC+ on this particular set exclusively.

6.3 Model Selection

In the experiments in this section, we tune λ on the
NEWS internal test set and DICT development set,
and select the model with the highest ACC on the
main task.

The experiment results in Table 6 show that
λ = 5

6 yields the best models on both datasets. We
observe a significant improvement against the base-
lines on NEWS while a less noticeable increase on
DICT. Besides, the models are more sensitive to
λ on NEWS than DICT (with standard deviation
0.03 and 0.003 on ACC, respectively).

Furthermore, we investigate the relationship be-
tween the main and the auxiliary tasks based on the
evaluation points of the development set. In Figure
2, we observe a nearly-total positive linear correla-
tion between the main-task ACC and auxiliary-task
ACC, and this is further evident in the Pearson cor-



Internal Test Official Test

Main Auxiliary Main

System ACC ACC+ ACC-ACT ACC ACC+

Baseline 0.724 0.733 0.742 0.736 NA
Multi-task 0.739 0.749 0.760 0.757 0.299
BiDeep 0.731 0.739 0.746 0.740 NA
BiDeep+ NA 0.765 NA NA 0.304

Table 7: Experiment results on the NEWS internal test (official development) set and official test set, where
“Baseline” refers to the single-task model and “BiDeep+” refers to the best system Grundkiewicz and Heafield
(2018) submitted to the NEWS workshop, and the corresponding scores are taken from their paper.

Main Auxiliary

System ACC ACC-ACT ACC

Baseline 0.726 0.748 0.738
Multi-task 0.729 0.751 0.749
BiDeep 0.732 0.755 0.760

Table 8: Experiment results on the DICT test set, where
Baseline refers to the single-task model.

User ACC+ F-score

romang 0.3040 (1) 0.6791 (2)
Ours 0.2990 (2) 0.6799 (1)

saeednajafi 0.2820 (3) 0.6680 (3)
soumyadeep 0.2610 (4) 0.6603 (4)

Table 9: Table of the NEWS leaderboard (avail-
able at https://competitions.codalab.org/

competitions/18905#results, accessed 19 June
2020). User “romang” refers to Grundkiewicz and
Heafield (2018).

relation coefficients15, which are 0.982 and 0.992
for NEWS and DICT, respectively. This means
the multi-task model improves the performance on
both tasks simultaneously.

6.4 Test-set Results and System Comparison

We submit our 1-best transliteration results on the
NEWS official test set through the CodaLab link
provided by the Shared Task’s Committee and we
present the leaderboard partially in Table 9. Note
that in addition to ACC+, the leaderboard also

15Computed by pearsonr() from Scipy library, which
is available at: https://docs.scipy.org/doc/
scipy-0.14.0/reference/generated/scipy.
stats.pearsonr.html.

records mean F-score16 on which we rank first.
We report the test-set performance of our best

multi-task model on NEWS in Table 7 and DICT
in Table 8, in comparison to the system built by
Grundkiewicz and Heafield (2018). The base-
line model of their work employs the RNN-based
BiDeep17 architecture (Miceli Barone et al., 2017)
which consists of 4 bidirectional alternating stacked
encoder, each with a 2-layer transition RNN cell,
and 4 stacked decoders with base RNN of depth 2
and higher RNN of depth 4 (Zhou et al., 2016; Pas-
canu et al., 2014; Wu et al., 2016). Besides, they
strengthen the model by applying layer normal-
ization (Ba et al., 2016), skip connections (Zhang
et al., 2016) and parameter tying (Press and Wolf,
2017). We reproduce their model without changing
any configurations in their paper (Grundkiewicz
and Heafield, 2018), and train it on both tasks sep-
arately.

In Table 7, we can see that the multi-task model
performs significantly better than both the single-
task baseline and the BiDeep model in all met-
rics on NEWS. Note that the BiDeep model we
reproduce achieves the same ACC+ as reported
in the work of Grundkiewicz and Heafield (2018)
and ACC+ is the only evaluation metric used in
their paper. “BiDeep+” in the third row refers
to the final system they submitted to the Shared
Task, on which they adopted additional NMT tech-
niques including ensemble modeling for re-ranking
and synthetic data generated from back transla-
tion (Sennrich et al., 2017). Our ACC+ score on

16The F-score metric measures the similarity between the
target prediction and reference. Precision and Recall in this
particular F-score are computed based on the length of the
Longest Common Subsequence. See details in the NEWS
whitepaper (Chen et al., 2018).

17Implemented with the Marian toolkit available at https:
//marian-nmt.github.io/docs/.

https://competitions.codalab.org/competitions/18905#results
https://competitions.codalab.org/competitions/18905#results
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.html
https://marian-nmt.github.io/docs/
https://marian-nmt.github.io/docs/


Source Output (ST) Output (MT)

ocallaghan 奥卡拉根 奥卡拉汉 X
holleran 霍尔伦 霍勒伦X
ajemian 阿赫米安 阿杰米安

Table 10: Example outputs and the corresponding
source words of our systems, where “ST” and “MT” re-
fer to “single-task” and “multi-task” models. The tick
symbols indicate which outputs match the references.

the anonymized official test set is 0.299 which is
slightly worse than their 0.304. However, we at-
tain a better F-score (0.6799) than them (0.6791)
as shown in Table 9. Moreover, our model is of
size 22M parameters, which is much smaller than
their baseline BiDeep of size 133M parameters,18

and we do not apply as many NMT techniques as
they did. Nevertheless, on the DICT test set, there
is no prominent difference among the single-task
baseline, multi-task and BiDeep model, possibly
because the noise pattern in the DICT dataset is not
complex enough to reflect the learning ability of
these models.

7 Discussion

In our experiments, a system has ACC-
ACT>ACC+>ACC because both ACC-ACT and
ACC+ consider the cases of ACC but ACC-ACT
can capture more acceptable transliterations.
Despite a consistent ranking given by the three
metrics, ACC-ACT reveals different information
from ACC and ACC+. For example, in Table
6, the model of λ = 5

6 outperforms λ = 1
2 by

0.015 and 0.016 in ACC and ACC+, respectively,
but the difference is 0.020 in ACC-ACT, on the
NEWS dataset. This suggests a more prominent
gap between these two models. In contrast, by
looking at the same two rows but on the DICT
dataset, ACC-ACT indicates a smaller gap (0.004)
than ACC (0.006). If we conduct experiments
on another dataset, the disagreement among the
metrics might be significant enough to render an
inconsistent ranking.

Furthermore, we present some typical examples
in which the multi-task model generates better pre-
dictions than the single-task in Table 10. In the first

18We compute the size of our multi-task model by count-
ing the number of trainable parameters extracted from
model.parameters(); For the BiDeep model, we use
the numpy package to load the model in .npz format and
calculate the number of parameters via a simple for-loop.

example, the single-task model wrongly maps the
sub-word ghan to根 (emphasizing on the character
g) while the multi-task model correctly maps han
to汉. The erroneous grouping of the English char-
acters also occurs in the second example where the
single-task model maps er to尔 instead of more
reasonably ler to 勒. Even in the third example
where both outputs are mismatched, the multi-task
model predicts the character杰, which is closer to
the source sub-word je than the single-task model’s
赫 in terms of pronunciation. Overall, it seems that
the multi-task model can capture the source-word
pronunciation better than the single-task one.

Still, the multi-task model does not consistently
handle all names better than the single-task model–
especially for exceptional names that do not have
a regular transliteration. For instance, the name
Fyleman is transliterated into 法伊尔曼, but the
character伊 does not have any source-word corre-
spondence if we consider the pronunciation of the
source name.

Finally, our model can be generalized to other
transliteration tasks by replacing Pinyin with other
phonetic representations such as IPA for English
and rōmaji for Japanese. In addition, ACC-ACT
can be extended to alphabetical languages by, for
instance, constructing the Alternating Sub-word
Table which stores lists of interchangeable subse-
quences. Another possible future work is to re-
design the objective function by treating λ as a
trainable parameter or including the correlation in-
formation (Papasarantopoulos et al., 2019).

8 Related Work

Previous work has demonstrated the effectiveness
of using MTL on models through joint learning
of various NLP tasks such as machine translation,
syntactic and dependency parsing (Luong et al.,
2016; Dong et al., 2015; Li et al., 2014). In most of
this work, underlies a similar idea to create a uni-
fied training setting for several tasks by sharing the
core parameters. Besides, machine transliteration
has a long history of using phonetic information,
for example, by mapping a phrase to its pronun-
ciation in the source language and then convert
the sound to the target word (Knight and Graehl,
1997). There is also relevant work that uses both
graphemes and phonemes to various extents for
transliteration, such as the correspondence-based
(Oh et al., 2006) and G2P-based (Le and Sadat,
2018) approaches. Our work is inspired by the intu-



itive understanding that pronunciation is essential
for transliteration, and the success of incorporating
phonetic information such as Pinyin (Jiang et al.,
2009) and IPA (Salam et al., 2011), in the model
design.

9 Conclusion

We argue in this paper that language-specific fea-
tures should be used when solving transliteration in
a neural setting, and we exemplify a way of using
phonetic information as the transferred knowledge
to improve a neural machine transliteration system.
Our results demonstrate that the main translitera-
tion task and the auxiliary phonetic task are indeed
mutually beneficial in English-to-Chinese translit-
eration, and we discuss the possibility of applying
this idea on other language pairs.
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A Alternating Character Table in Full

Alternating Characters
莉,利,里,丽
弗,夫,芙
思,斯,丝
妮,内,娜,纳,尼
萨,沙,莎
亚,娅
玛,马,穆
琳,林
芭,巴
茜,西,锡
萝,罗
滕,坦
莱,来,勒
代,黛,戴
瓦,沃,娃
吉,姬,基
雷,蕾
薇,维,威
鲁,卢,露
塔,特
尤,于
安,阿
菲,费
纽,努
范,文
蒙,莫
查,恰
保,葆
柯,科

Table 11: The Alternating Character Table in full.


