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Viterbi EM

Let p(x , z | θ) be some parametrized statistical model

Viterbi EM identifies θ and z given x

Let x1, ..., xn be the observed data

Algorithm (Viterbi EM)
1 start with some θ
2 set zi ← argmax

zi

p(xi , zi | θ)⇐= “E-step”

3 set θ ← argmax
θ

n∏
i=1

p(xi , zi | θ)︸ ︷︷ ︸
likelihood

⇐= “M-step”

4 go to step 2 unless converged
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Viterbi EM

Simple and useful algorithm. Recent examples include:

Machine translation (Brown et al., 2003)

Language acquisition (Goldwater and Johnson, 2005)

Coreference resolution (Choi and Cardie, 2007)

Question answering (Wang et al., 2007)

Grammar induction (Spitkovsky et al., 2010)

We focus on Viterbi EM for PCFGs
zi - parse tree, xi - sentence, θ - rule probabilities



Viterbi training

Viterbi EM is coordinate ascent, and it greedily tries to find:

〈θ, z1, ..., zn〉 = argmax
θ,z1,...,zn

n∏
i=1

p(xi , zi | θ)

We call this maximization problem “Viterbi training”

Viterbi EM finds local maximum for Viterbi training

Main question: can we hope to optimize this objective
function and find the global maximum?

... computational complexity answers this kind of question
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Hardness of a problem

We usually show that a problem A is hard by showing that
another hard problem B can be solved if we could solve A

The type of problem we usually do this for is “decision
problems” (answer is 0 or 1)

“Hardness” in this paper refers to being able to solve all
problems in the NP class (“NP hardness”)

We convert every input x of B to an input x ′ of A such that

B(x) = 1 ⇐⇒ A(x ′) = 1



Optimization problem→ decision problem

Viterbi training optimizes an objective function. To convert to a
decision problem we define:

Problem (Viterbi Train)

Input: G context-free grammar, x1, . . . , xn sentences, α ∈ [0,1]
Output: 1 if there are θ and z1, . . . , zn derivation trees such that

n∏
i=1

p(xi , zi | θ) ≥ α

and 0 otherwise.

Note that knowing how to optimize the likelihood means we can
solve this decision problem.

Viterbi Train is in NP (witness: parse trees and parameters)



3-SAT

We show that Viterbi Train is NP hard by showing that there is a
reduction from 3-SAT (an NP hard problem) to Viterbi Train

Problem (3-SAT)

Input: A formula φ =
∧m

i=1 (ai ∨ bi ∨ ci) in conjunctive normal
form, such that each clause has 3 literals.
Output: 1 if there is a satisfying assignment for φ and 0

otherwise.

For example, if we have the formula

φ = (a ∨ b ∨ c) ∧ (¬a ∨ b ∨ c)

then a satisfying assignment is a = 0,b = 0, c = 1



3-SAT and reductions

We map every instance of 3-SAT (a formula φ) to a grammar G
and a string x such that

max
z,θ

p(x , z | θ) = 1

if and only if there is a satisfying assignment for the formula

The maximizing z and θ will contain a description of the
assignment

Since 3-SAT is NP hard, Viterbi Train is NP hard



The reduction (an example)

Let φ = (a ∨ ¬b ∨ c)︸ ︷︷ ︸
C1

∧ (¬a ∨ b ∨ c)︸ ︷︷ ︸
C2

∧ (d ∨ ¬c ∨ a)︸ ︷︷ ︸
C3

We create the following context-free grammar:
Σ = {0,1} ⇐= Terminal symbols

For the variables, a,b, c,d we create the rules:

Va → 0 Va → 1 V¬a → 0 V¬a → 1

⇐= Assignment rules
Vb → 0 Vb → 1 V¬b → 0 V¬b → 1
Vc → 0 Vc → 1 V¬c → 0 V¬c → 1
Vd → 0 Vd → 1 V¬d → 0 V¬d → 1
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The reduction (an example)
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We have so far: assignment rules and U•,1 → V•V¬• and
U•,0 → V¬•V• (consistency rules)

For the clauses C1, C2 and C3 we create the rules:

S1 → C1

⇐= Clause rules
S2 → S1 C2
S3 → S2 C3
S → S3

S is the start symbol of the grammar



The reduction (an example)

φ = (a ∨ ¬b ∨ c)︸ ︷︷ ︸
C1

∧ (¬a ∨ b ∨ c)︸ ︷︷ ︸
C2

∧ (d ∨ ¬c ∨ a)︸ ︷︷ ︸
C3

We have so far: assignment rules, consistency rules and
clause rules

For the clause C1, for example, we create the rules:

C1 → Ua,1 Ub,1 Uc,1

⇐= Satisfaction rules for C1

C1 → Ua,0 Ub,1 Uc,1
C1 → Ua,1 Ub,0 Uc,1
C1 → Ua,1 Ub,1 Uc,0
C1 → Ua,0 Ub,0 Uc,1
C1 → Ua,1 Ub,0 Uc,0
C1 → Ua,0 Ub,0 Uc,0



The reduction (an example)
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C1

∧ (¬a ∨ b ∨ c)︸ ︷︷ ︸
C2

∧ (d ∨ ¬c ∨ a)︸ ︷︷ ︸
C3

We have so far: assignment rules, consistency rules, clause
rules and satisfaction rules – that’s the complete grammar!

We need to decide on the string to parse, x

Set x = 101010︸ ︷︷ ︸
C1

101010︸ ︷︷ ︸
C2

101010︸ ︷︷ ︸
C3



The reduction (an example)

φ = (a ∨ ¬b ∨ c)︸ ︷︷ ︸
C1

∧ (¬a ∨ b ∨ c)︸ ︷︷ ︸
C2
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x = 101010︸ ︷︷ ︸
C1

101010︸ ︷︷ ︸
C2

101010︸ ︷︷ ︸
C3

We can use a parse for x to extract an assignment for the
variables



Extracting an assignment

φ = (a ∨ ¬b ∨ c)︸ ︷︷ ︸
C1

∧ (¬a ∨ b ∨ c)︸ ︷︷ ︸
C2

∧ (d ∨ ¬c ∨ a)︸ ︷︷ ︸
C3

S3
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rest of tree C3
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Ud ,0

qqqqqqq
MMMMMMM Uc,0

qqqqqqq
MMMMMMM Ua,1

qqqqqqq
MMMMMMM

V¬d Vd V¬c Vc Va V¬a

1 0 1 0 1 0

If we use the rule Va → 0 set the variable a to 0
If we use the rule Va → 1 set the variable a to 1
Same for other variables
Note that we use Va → • and V¬a → • together



Consistent assignments

φ = (a ∨ ¬b ∨ c)︸ ︷︷ ︸
C1

∧ (¬a ∨ b ∨ c)︸ ︷︷ ︸
C2

∧ (d ∨ ¬c ∨ a)︸ ︷︷ ︸
C3

But! What if we use both Va → 0 and Va → 1?

Lemma
Let θ be weights for the grammar we constructed. If the
(multiplicative) weight of the Viterbi parse of
101010︸ ︷︷ ︸

C1

101010︸ ︷︷ ︸
C2

101010︸ ︷︷ ︸
C3

is 1, then the assignment extracted

from the parse tree is consistent
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Finding a satisfying assignment

φ = (a ∨ ¬b ∨ c)︸ ︷︷ ︸
C1

∧ (¬a ∨ b ∨ c)︸ ︷︷ ︸
C2

∧ (d ∨ ¬c ∨ a)︸ ︷︷ ︸
C3

Lemma
There exists θ such that the Viterbi parse of
101010︸ ︷︷ ︸

C1

101010︸ ︷︷ ︸
C2

101010︸ ︷︷ ︸
C3

is 1 if and only if φ is satisfiable. The

satisfying assignment is the one extracted from the parse tree
with weight 1



NP hardness result

Problem (Viterbi Train)

Input: G context-free grammar, x1, . . . , xn sentences, α ∈ [0,1]
Output: 1 if there are θ and z1, . . . , zn derivation trees such that

n∏
i=1

p(xi , zi | θ) ≥ α

and 0 otherwise.

Corollary
Viterbi Train is NP hard

In fact, we have NP completeness (Viterbi Train is in NP)



Approximate solutions

Reminder, Viterbi Train tries to maximize:

max
θ,z1,...,zn

n∏
i=1

p(xi , zi | θ)

We know it is hard to find the exact maximum. Can we
hope to approximate the maximal solution?



Approximate solutions

The question we ask is: “is there a ρ ∈ (0,1] such that
there is an efficient algorithm which returns z ′1, ..., z

′
n and θ′

such that

n∏
i=1

p(xi , z ′i | θ′) ≥ ρ

(
max
θ,z1,..,zn

n∏
i=1

p(xi , zi | θ)

)

for any input sentences x1, ..., xn and a grammar G ? ”

Under the P 6= NP assumption, the answer is negative for
any ρ ∈ (1

2 ,1].
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Approximate solutions

The main argument for this negative result relies on:

Lemma

max
θ,z1,..,zn

n∏
i=1

p(xi , zi | θ) < 1 =⇒ max
θ,z1,..,zn

n∏
i=1

p(xi , zi | θ) ≤ 1
2



Approximate solutions

Lemma

max
θ,z1,..,zn

n∏
i=1

p(xi , zi | θ) < 1 =⇒ max
θ,z1,..,zn

n∏
i=1

p(xi , zi | θ) ≤ 1
2

Maximal value is less than 1⇒ we have a nonterminal
which is used with more than one rule in the derivations

Let A→ α be one of these rules
Say A→ α appears k times and A appears r times in
z1, ..., zn

We know r ≥ k + 1
MLE term in the objective for A→ α:(

k
r

)k

≤
(

k
k + 1

)k

≤ 1
2

Therefore, the whole objective, which multiplies in
( k

r

)k
,

must be smaller than 1/2
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Simple interpretation

There is experimental evidence that Viterbi EM converges fast

True or false? Viterbi EM converges in a polynomial number of
iterations

If it is true, we cannot hope for Viterbi EM to even get us
approximately close to the maximum likelihood (in the general
case)

However, Viterbi EM can do quite well! (see Spitkovsky et al. at
CoNLL later this week)



Simple interpretation

There is experimental evidence that Viterbi EM converges fast

True or false? Viterbi EM converges in a polynomial number of
iterations

If it is true, we cannot hope for Viterbi EM to even get us
approximately close to the maximum likelihood (in the general
case)

However, Viterbi EM can do quite well! (see Spitkovsky et al. at
CoNLL later this week)



Simple interpretation

There is experimental evidence that Viterbi EM converges fast

True or false? Viterbi EM converges in a polynomial number of
iterations

If it is true, we cannot hope for Viterbi EM to even get us
approximately close to the maximum likelihood (in the general
case)

However, Viterbi EM can do quite well! (see Spitkovsky et al. at
CoNLL later this week)



Simple interpretation

There is experimental evidence that Viterbi EM converges fast

True or false? Viterbi EM converges in a polynomial number of
iterations

If it is true, we cannot hope for Viterbi EM to even get us
approximately close to the maximum likelihood (in the general
case)

However, Viterbi EM can do quite well! (see Spitkovsky et al. at
CoNLL later this week)



Other results

A variant of Viterbi EM, called conditional Viterbi EM,
maximizes the conditional likelihood p(z | x , θ) in the M-step

Theorem
The decision problem of conditional Viterbi EM (for PCFGs) is
NP hard

? ? ?

What about just EM (marginalized likelihood)?

Theorem
The decision problem of EM (for PCFGs) is NP hard

Complements well-known results (Abe and Warmuth, 1992)

See paper!
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Open problems

Note that our grammar is not recursive – the results can be
strengthened to HMMs

The grammar grows linearly with the size of the formula

Does the problem become more tractable if we limit the size of
the grammar?

Constant size - maybe polynomial in length of input?

Constant number of rules not rewriting to terminals (use
recursive power) - maybe
Universal grammar for all formulas? yes, size depends on
number of variables

See paper for relationship to k -means clustering
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Conclusion

We described hardness results for Viterbi training

We described evidence that Viterbi EM is not an
approximation algorithm in the traditional sense

This does not mean that Viterbi EM cannot get good
performance (likelihood vs. evaluation metric)

Read paper for more: some motivation for using uniform
initialization with Viterbi EM



Thanks!

Questions?



Global maximization vs. initialization bias

Initialization gives bias, could be better than global
optimization
Global optimization can lead to degenerate solutions
Problem should disappear if we have more data
The same way we want to maximize marginalized
likelihood globally (but use EM instead), we want to
maximize the likelihood with respect to the elements as
well



Likelihood vs. log-likelihood

We could imagine switching to (negative) log-likelihood –
the core hardness result stays the same, we would just
change the range of α to [0,∞)

The multiplicative approximation result for the log-likelihood
becomes an additive approximation result for the negated
log-likelihood
A multiplicative approximation result for the log-likelihood
becomes rather vacuous (but should still hold) – because
our reduction makes sure that the minimal negated
log-likelihood is going to be 0 if there is a satisfying formula


