
Spectral Learning of Latent-Variable PCFGs

Shay B. Cohen1, Karl Stratos1, Michael Collins1, Dean P. Foster2, and Lyle Ungar3
1Dept. of Computer Science, Columbia University

2Dept. of Statistics/3Dept. of Computer and Information Science, University of Pennsylvania
{scohen,stratos,mcollins}@cs.columbia.edu, foster@wharton.upenn.edu, ungar@cis.upenn.edu

Abstract

We introduce a spectral learning algorithm for
latent-variable PCFGs (Petrov et al., 2006).
Under a separability (singular value) condi-
tion, we prove that the method provides con-
sistent parameter estimates.

1 Introduction
Statistical models with hidden or latent variables are
of great importance in natural language processing,
speech, and many other fields. The EM algorithm is
a remarkably successful method for parameter esti-
mation within these models: it is simple, it is often
relatively efficient, and it has well understood formal
properties. It does, however, have a major limitation:
it has no guarantee of finding the global optimum of
the likelihood function. From a theoretical perspec-
tive, this means that the EM algorithm is not guar-
anteed to give consistent parameter estimates. From
a practical perspective, problems with local optima
can be difficult to deal with.

Recent work has introduced polynomial-time
learning algorithms (and consistent estimation meth-
ods) for two important cases of hidden-variable
models: Gaussian mixture models (Dasgupta, 1999;
Vempala and Wang, 2004) and hidden Markov mod-
els (Hsu et al., 2009). These algorithms use spec-
tral methods: that is, algorithms based on eigen-
vector decompositions of linear systems, in particu-
lar singular value decomposition (SVD). In the gen-
eral case, learning of HMMs or GMMs is intractable
(e.g., see Terwijn, 2002). Spectral methods finesse
the problem of intractibility by assuming separabil-
ity conditions. For example, the algorithm of Hsu
et al. (2009) has a sample complexity that is polyno-
mial in 1/σ, whereσ is the minimum singular value
of an underlying decomposition. These methods are
not susceptible to problems with local maxima, and
give consistent parameter estimates.

In this paper we derive a spectral algorithm
for learning of latent-variable PCFGs (L-PCFGs)
(Petrov et al., 2006; Matsuzaki et al., 2005). Our

method involves a significant extension of the tech-
niques from Hsu et al. (2009). L-PCFGs have been
shown to be a very effective model for natural lan-
guage parsing. Under a separation (singular value)
condition, our algorithm provides consistent param-
eter estimates; this is in contrast with previous work,
which has used the EM algorithm for parameter es-
timation, with the usual problems of local optima.

The parameter estimation algorithm (see figure 4)
is simple and efficient. The first step is to take
an SVD of the training examples, followed by a
projection of the training examples down to a low-
dimensional space. In a second step, empirical av-
erages are calculated on the training example, fol-
lowed by standard matrix operations. On test ex-
amples, simple (tensor-based) variants of the inside-
outside algorithm (figures 2 and 3) can be used to
calculate probabilities and marginals of interest.

Our method depends on the following results:
• Tensor form of the inside-outside algorithm.

Section 5 shows that the inside-outside algorithm for
L-PCFGs can be written using tensors. Theorem 1
gives conditions under which the tensor form calcu-
lates inside and outside terms correctly.

• Observable representations.Section 6 shows
that under a singular-value condition, there is anob-
servable formfor the tensors required by the inside-
outside algorithm. By an observable form, we fol-
low the terminology of Hsu et al. (2009) in referring
to quantities that can be estimated directly from data
where values for latent variables are unobserved.
Theorem 2 shows that tensors derived from the ob-
servable form satisfy the conditions of theorem 1.

• Estimating the model.Section 7 gives an al-
gorithm for estimating parameters of the observable
representation from training data. Theorem 3 gives a
sample complexity result, showing that the estimates
converge to the true distribution at a rate of1/

√
M

whereM is the number of training examples.
The algorithm is strikingly different from the EM

algorithm for L-PCFGs, both in its basic form, and
in its consistency guarantees. The techniques de-

veloped in this paper are quite general, and should
be relevant to the development of spectral methods
for estimation in other models in NLP, for exam-
ple alignment models for translation, synchronous
PCFGs, and so on. The tensor form of the inside-
outside algorithm gives a new view of basic calcula-
tions in PCFGs, and may itself lead to new models.

2 Related Work
For work on L-PCFGs using the EM algorithm, see
Petrov et al. (2006), Matsuzaki et al. (2005), Pereira
and Schabes (1992). Our work builds on meth-
ods for learning of HMMs (Hsu et al., 2009; Fos-
ter et al., 2012; Jaeger, 2000), but involves sev-
eral extensions: in particular in the tensor form of
the inside-outside algorithm, and observable repre-
sentations for the tensor form. Balle et al. (2011)
consider spectral learning of finite-state transducers;
Lugue et al. (2012) considers spectral learning of
head automata for dependency parsing. Parikh et al.
(2011) consider spectral learning algorithms of tree-
structured directed bayes nets.

3 Notation
Given a matrixA or a vectorv, we writeA⊤ or v⊤

for the associated transpose. For any integern ≥ 1,
we use[n] to denote the set{1, 2, . . . n}. For any
row or column vectory ∈ R

m, we usediag(y) to
refer to the(m×m) matrix with diagonal elements
equal toyh for h = 1 . . . m, and off-diagonal ele-
ments equal to0. For any statementΓ, we use[[Γ]]
to refer to the indicator function that is1 if Γ is true,
and0 if Γ is false. For a random variableX, we use
E[X] to denote its expected value.

We will make (quite limited) use of tensors:

Definition 1 A tensorC ∈ R
(m×m×m) is a set of

m3 parametersCi,j,k for i, j, k ∈ [m]. Given a ten-
sorC, and a vectory ∈ R

m, we defineC(y) to be
the (m × m) matrix with components[C(y)]i,j =
∑

k∈[m]Ci,j,kyk. HenceC can be interpreted as a

functionC : R
m → R

(m×m) that maps a vector
y ∈ R

m to a matrixC(y) of dimension(m×m).
In addition, we define the tensorC∗ ∈ R

(m×m×m)

for any tensorC ∈ R
(m×m×m) to have values

[C∗]i,j,k = Ck,j,i

Finally, for vectorsx, y, z ∈ R
m, xy⊤z⊤ is the

tensorD ∈ R
m×m×m whereDj,k,l = xjykzl (this

is analogous to the outer product:[xy⊤]j,k = xjyk).

4 L-PCFGs: Basic Definitions
This section gives a definition of the L-PCFG for-
malism used in this paper. An L-PCFG is a 5-tuple
(N ,I,P,m, n) where:

• N is the set of non-terminal symbols in the
grammar. I ⊂ N is a finite set ofin-terminals.
P ⊂ N is a finite set ofpre-terminals. We assume
thatN = I ∪ P, andI ∩ P = ∅. Hence we have
partitioned the set of non-terminals into two subsets.

• [m] is the set of possible hidden states.
• [n] is the set of possible words.
• For alla ∈ I, b ∈ N , c ∈ N , h1, h2, h3 ∈ [m],

we have a context-free rulea(h1) → b(h2) c(h3).
• For all a ∈ P, h ∈ [m], x ∈ [n], we have a

context-free rulea(h) → x.
Hence each in-terminala ∈ I is always the left-

hand-side of a binary rulea → b c; and each pre-
terminal a ∈ P is always the left-hand-side of a
rule a → x. Assuming that the non-terminals in
the grammar can be partitioned this way is relatively
benign, and makes the estimation problem cleaner.

We define the set of possible “skeletal rules” as
R = {a → b c : a ∈ I, b ∈ N , c ∈ N}. The
parameters of the model are as follows:

• For eacha→ b c ∈ R, andh ∈ [m], we have
a parameterq(a → b c|h, a). For eacha ∈ P,
x ∈ [n], and h ∈ [m], we have a parameter
q(a → x|h, a). For eacha → b c ∈ R, and
h, h′ ∈ [m], we have parameterss(h′|h, a → b c)
andt(h′|h, a→ b c).

These definitions give a PCFG, with rule proba-
bilities

p(a(h1) → b(h2) c(h3)|a(h1)) =
q(a→ b c|h1, a)× s(h2|h1, a→ b c)× t(h3|h1, a→ b c)

andp(a(h) → x|a(h)) = q(a→ x|h, a).
In addition, for eacha ∈ I, for eachh ∈ [m], we

have a parameterπ(a, h) which is the probability of
non-terminala paired with hidden variableh being
at the root of the tree.

An L-PCFG defines a distribution over parse trees
as follows. Askeletal tree(s-tree) is a sequence of
rules r1 . . . rN where eachri is either of the form
a → b c or a → x. The rule sequence forms
a top-down, left-most derivation under a CFG with
skeletal rules. See figure 1 for an example.

A full treeconsists of an s-treer1 . . . rN , together
with valuesh1 . . . hN . Eachhi is the value for

S1

NP2

D3

the

N4

dog

VP5

V6

saw

P7

him

r1 = S→ NP VP
r2 = NP→ D N
r3 = D → the
r4 = N → dog
r5 = VP→ V P
r6 = V → saw
r7 = P→ him

Figure 1: An s-tree, and its sequence of rules. (For con-
venience we have numbered the nodes in the tree.)

the hidden variable for the left-hand-side of ruleri.
Eachhi can take any value in[m].

Defineai to be the non-terminal on the left-hand-
side of ruleri. For anyi ∈ {2 . . . N} definepa(i)
to be the index of the rule above nodei in the tree.
DefineL ⊂ [N] to be the set of nodes in the tree
which are the left-child of some parent, andR ⊂
[N] to be the set of nodes which are the right-child of
some parent. The probability mass function (PMF)
over full trees is then

p(r1 . . . rN , h1 . . . hN) = π(a1, h1)

×
N
∏

i=1

q(ri|hi, ai)×
∏

i∈L

s(hi|hpa(i), rpa(i))

×
∏

i∈R

t(hi|hpa(i), rpa(i)) (1)

The PMF over s-trees isp(r1 . . . rN) =
∑

h1...hN
p(r1 . . . rN , h1 . . . hN).

In the remainder of this paper, we make use of ma-
trix form of parameters of an L-PCFG, as follows:

• For eacha→ b c ∈ R, we defineQa→b c ∈
R
m×m to be the matrix with valuesq(a → b c|h, a)

for h = 1, 2, . . . m on its diagonal, and0 values for
its off-diagonal elements. Similarly, for eacha ∈ P,
x ∈ [n], we defineQa→x ∈ R

m×m to be the matrix
with valuesq(a → x|h, a) for h = 1, 2, . . . m on its
diagonal, and0 values for its off-diagonal elements.

• For eacha → b c ∈ R, we defineSa→b c ∈
R
m×m where[Sa→b c]h′,h = s(h′|h, a→ b c).
• For eacha → b c ∈ R, we defineT a→b c ∈

R
m×m where[T a→b c]h′,h = t(h′|h, a→ b c).
• For eacha ∈ I, we define the vectorπa ∈ R

m

where[πa]h = π(a, h).

5 Tensor Form of the Inside-Outside
Algorithm

Given an L-PCFG, two calculations are central:

Inputs: s-treer1 . . . rN , L-PCFG(N , I,P ,m, n), parameters

• Ca→b c ∈ R
(m×m×m) for all a→ b c ∈ R

• c∞a→x ∈ R
(1×m) for all a ∈ P , x ∈ [n]

• c1a ∈ R
(m×1) for all a ∈ I.

Algorithm: (calculate thef i terms bottom-up in the tree)

• For all i ∈ [N] such thatai ∈ P , f i = c∞ri

• For all i ∈ [N] such thatai ∈ I, f i = fγCri(fβ) where
β is the index of the left child of nodei in the tree, andγ
is the index of the right child.

Return: f1c1a1
= p(r1 . . . rN)

Figure 2: The tensor form for calculation ofp(r1 . . . rN).

1. For a given s-tree r1 . . . rN , calculate
p(r1 . . . rN).

2. For a given input sentencex = x1 . . . xN , cal-
culate the marginal probabilities

µ(a, i, j) =
∑

τ∈T (x):(a,i,j)∈τ

p(τ)

for each non-terminala ∈ N , for each(i, j)
such that1 ≤ i ≤ j ≤ N .

HereT (x) denotes the set of all possible s-trees for
the sentencex, and we write(a, i, j) ∈ τ if non-
terminala spans wordsxi . . . xj in the parse treeτ .

The marginal probabilities have a number of uses.
Perhaps most importantly, for a given sentencex =
x1 . . . xN , the parsing algorithm of Goodman (1996)
can be used to find

arg max
τ∈T (x)

∑

(a,i,j)∈τ

µ(a, i, j)

This is the parsing algorithm used by Petrov et al.
(2006), for example. In addition, we can calcu-
late the probability for an input sentence,p(x) =
∑

τ∈T (x) p(τ), asp(x) =
∑

a∈I µ(a, 1, N).
Variants of the inside-outside algorithm can be

used for problems 1 and 2. This section introduces a
novel form of these algorithms, using tensors. This
is the first step in deriving the spectral estimation
method.

The algorithms are shown in figures 2 and 3. Each
algorithm takes the following inputs:

1. A tensorCa→b c ∈ R
(m×m×m) for each rule

a→ b c.

2. A vectorc∞a→x ∈ R
(1×m) for each rulea→ x.

3. A vectorc1a ∈ R
(m×1) for eacha ∈ I.

The following theorem gives conditions under
which the algorithms are correct:

Theorem 1 Assume that we have an L-PCFG with
parametersQa→x, Qa→b c, T a→b c, Sa→b c, πa, and
that there exist matricesGa ∈ R

(m×m) for all a ∈
N such that eachGa is invertible, and such that:

1. For all rules a→ b c, Ca→b c(y) =
GcT a→b cdiag(yGbSa→b c)Qa→b c(Ga)−1

2. For all rulesa→ x, c∞a→x = 1⊤Qa→x(Ga)−1

3. For all a ∈ I, c1a = Gaπa

Then: 1) The algorithm in figure 2 correctly com-
putesp(r1 . . . rN) under the L-PCFG. 2) The algo-
rithm in figure 3 correctly computes the marginals
µ(a, i, j) under the L-PCFG.

Proof: See section 9.1.

6 Estimating the Tensor Model
A crucial result is that it is possible to directly esti-
mate parametersCa→b c, c∞a→x andc1a that satisfy the
conditions in theorem 1, from a training sample con-
sisting of s-trees (i.e., trees where hidden variables
are unobserved). We first describe random variables
underlying the approach, then describe observable
representations based on these random variables.

6.1 Random Variables Underlying the Approach

Each s-tree withN rulesr1 . . . rN hasN nodes. We
will use the s-tree in figure 1 as a running example.

Each node has an associated rule: for example,
node2 in the tree in figure 1 has the ruleNP→ D N.
If the rule at a node is of the forma→ b c, then there
are left and rightinside treesbelow the left child and
right child of the rule. For example, for node2 we
have a left inside tree rooted at node3, and a right
inside tree rooted at node4 (in this case the left and
right inside trees both contain only a single rule pro-
duction, of the forma → x; however in the general
case they might be arbitrary subtrees).

In addition, each node has anoutsidetree. For
node 2, the outside tree is

S

NP VP

V

saw

P

him

Inputs: Sentencex1 . . . xN , L-PCFG(N , I,P ,m, n), param-
etersCa→b c ∈ R

(m×m×m) for all a→ b c ∈ R, c∞a→x ∈
R

(1×m) for all a ∈ P , x ∈ [n], c1a ∈ R
(m×1) for all a ∈ I.

Data structures:

• Eachαa,i,j ∈ R
1×m for a ∈ N , 1 ≤ i ≤ j ≤ N is a

row vector of inside terms.

• Eachβa,i,j ∈ R
m×1 for a ∈ N , 1 ≤ i ≤ j ≤ N is a

column vector of outside terms.

• Eachµ(a, i, j) ∈ R for a ∈ N , 1 ≤ i ≤ j ≤ N is a
marginal probability.

Algorithm:
(Inside base case)∀a ∈ P , i ∈ [N], αa,i,i = c∞a→xi

(Inside recursion)∀a ∈ I, 1 ≤ i < j ≤ N,

αa,i,j =

j−1∑

k=i

∑

a→b c

αc,k+1,jCa→b c(αb,i,k)

(Outside base case)∀a ∈ I, βa,1,n = c1a
(Outside recursion)∀a ∈ N , 1 ≤ i ≤ j ≤ N,

βa,i,j =
i−1∑

k=1

∑

b→c a

Cb→c a(αc,k,i−1)βb,k,j

+
N∑

k=j+1

∑

b→a c

Cb→a c
∗ (αc,j+1,k)βb,i,k

(Marginals)∀a ∈ N , 1 ≤ i ≤ j ≤ N,

µ(a, i, j) = αa,i,jβa,i,j =
∑

h∈[m]

αa,i,j
h βa,i,j

h

Figure 3: The tensor form of the inside-outside algorithm,
for calculation of marginal termsµ(a, i, j).

The outside tree contains everything in the s-tree
r1 . . . rN , excluding the subtree below nodei.

Our random variables are defined as follows.
First, we select a random internal node, from a ran-
dom tree, as follows:

• Sample an s-treer1 . . . rN from the PMF
p(r1 . . . rN). Choose a nodei uniformly at ran-
dom from[N].

If the ruleri for the nodei is of the forma→ b c,
we define random variables as follows:

• R1 is equal to the ruleri (e.g.,NP → D N).
• T1 is the inside tree rooted at nodei. T2 is the

inside tree rooted at the left child of nodei, andT3
is the inside tree rooted at the right child of nodei.

• H1,H2,H3 are the hidden variables associated
with nodei, the left child of nodei, and the right
child of nodei respectively.

• A1, A2, A3 are the labels for nodei, the left
child of nodei, and the right child of nodei respec-
tively. (E.g.,A1 = NP,A2 = D,A3 = N.)

• O is the outside tree at nodei.
• B is equal to1 if nodei is at the root of the tree

(i.e., i = 1), 0 otherwise.
If the rule ri for the selected nodei is of

the form a → x, we have random vari-
ablesR1, T1,H1, A1, O,B as defined above, but
H2,H3, T2, T3, A2, andA3 are not defined.

We assume a functionψ that maps outside treeso
to feature vectorsψ(o) ∈ R

d′ . For example, the fea-
ture vector might track the rule directly above the
node in question, the word following the node in
question, and so on. We also assume a functionφ
that maps inside treest to feature vectorsφ(t) ∈ R

d.
As one example, the functionφ might be an indica-
tor function tracking the rule production at the root
of the inside tree. Later we give formal criteria for
what makes good definitions ofψ(o) of φ(t). One
requirement is thatd′ ≥ m andd ≥ m.

In tandem with these definitions, we assume pro-
jection maticesUa ∈ R

(d×m) andV a ∈ R
(d′×m)

for all a ∈ N . We then define additional random
variablesY1, Y2, Y3, Z as

Y1 = (Ua1)⊤φ(T1) Z = (V a1)⊤ψ(O)

Y2 = (Ua2)⊤φ(T2) Y3 = (Ua3)⊤φ(T3)

whereai is the value of the random variableAi.
Note thatY1, Y2, Y3, Z are all inRm.

6.2 Observable Representations

Given the definitions in the previous section, our
representation is based on the following matrix, ten-
sor and vector quantities, defined for alla ∈ N , for
all rules of the forma→ b c, and for all rules of the
form a→ x respectively:

Σa = E[Y1Z
⊤|A1 = a]

Da→b c = E

[

[[R1 = a→ b c]]Y3Z
⊤Y ⊤

2 |A1 = a
]

d∞a→x = E

[

[[R1 = a→ x]]Z⊤|A1 = a
]

Assuming access to functionsφ andψ, and projec-
tion matricesUa andV a, these quantities can be es-
timated directly from training data consisting of a
set of s-trees (see section 7).

Our observable representation then consists of:

Ca→b c(y) = Da→b c(y)(Σa)−1 (2)

c∞a→x = d∞a→x(Σ
a)−1 (3)

c1a = E [[[A1 = a]]Y1|B = 1] (4)

We next introduce conditions under which these
quantities satisfy the conditions in theorem 1.

The following definition will be important:

Definition 2 For all a ∈ N , we define the matrices
Ia ∈ R

(d×m) andJa ∈ R
(d′×m) as

[Ia]i,h = E[φi(T1) | H1 = h,A1 = a]

[Ja]i,h = E[ψi(O) | H1 = h,A1 = a]

In addition, for anya ∈ N , we useγa ∈ R
m to

denote the vector withγah = P (H1 = h|A1 = a).

The correctness of the representation will rely on
the following conditions being satisfied (these are
parallel to conditions 1 and 2 in Hsu et al. (2009)):

Condition 1 ∀a ∈ N , the matricesIa and Ja are
of full rank (i.e., they have rankm). For all a ∈ N ,
for all h ∈ [m], γah > 0.

Condition 2 ∀a ∈ N , the matricesUa ∈ R
(d×m)

andV a ∈ R
(d′×m) are such that the matricesGa =

(Ua)⊤Ia andKa = (V a)⊤Ja are invertible.

The following lemma justifies the use of an SVD
calculation as one method for finding values forUa

andV a that satisfy condition 2:

Lemma 1 Assume that condition 1 holds, and for
all a ∈ N define

Ωa = E[φ(T1) (ψ(O))⊤ |A1 = a] (5)

Then ifUa is a matrix of them left singular vec-
tors ofΩa corresponding to non-zero singular val-
ues, andV a is a matrix of them right singular vec-
tors ofΩa corresponding to non-zero singular val-
ues, then condition 2 is satisfied.

Proof sketch: It can be shown thatΩa =
Iadiag(γa)(Ja)⊤. The remainder is similar to the
proof of lemma 2 in Hsu et al. (2009).

The matricesΩa can be estimated directly from a
training set consisting of s-trees, assuming that we
have access to the functionsφ andψ.

We can now state the following theorem:

Theorem 2 Assume conditions 1 and 2 are satisfied.
For all a ∈ N , defineGa = (Ua)⊤Ia. Then under
the definitions in Eqs. 2-4:

1. For all rules a→ b c, Ca→b c(y) =
GcT a→b cdiag(yGbSa→b c)Qa→b c(Ga)−1

2. For all rulesa→ x, c∞a→x = 1⊤Qa→x(Ga)−1.

3. For all a ∈ N , c1a = Gaπa

Proof: The following identities hold (see sec-
tion 9.2):

Da→b c(y) = (6)

GcT a→b cdiag(yGbSa→b c)Qa→b cdiag(γa)(Ka)⊤

d∞a→x = 1⊤Qa→xdiag(γa)(Ka)⊤ (7)

Σa = Gadiag(γa)(Ka)⊤ (8)

c1a = Gaπa (9)

Under conditions 1 and 2,Σa is invertible, and
(Σa)−1 = ((Ka)⊤)−1(diag(γa))−1(Ga)−1. The
identities in the theorem follow immediately.

7 Deriving Empirical Estimates
Figure 4 shows an algorithm that derives esti-
mates of the quantities in Eqs 2, 3, and 4. As
input, the algorithm takes a sequence of tuples
(r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i)) for i ∈ [M].

These tuples can be derived from a training set
consisting of s-treesτ1 . . . τM as follows:

• ∀i ∈ [M], choose a single nodeji uniformly at
random from the nodes inτi. Definer(i,1) to be the
rule at nodeji. t(i,1) is the inside tree rooted at node
ji. If r(i,1) is of the forma→ b c, thent(i,2) is the
inside tree under the left child of nodeji, andt(i,3)

is the inside tree under the right child of nodeji. If
r(i,1) is of the forma → x, thent(i,2) = t(i,3) =
NULL. o(i) is the outside tree at nodeji. b(i) is 1 if
nodeji is at the root of the tree,0 otherwise.

Under this process, assuming that the s-trees
τ1 . . . τM are i.i.d. draws from the distribution
p(τ) over s-trees under an L-PCFG, the tuples
(r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i)) are i.i.d. draws
from the joint distribution over the random variables
R1, T1, T2, T3, O,B defined in the previous section.

The algorithm first computes estimates of the pro-
jection matricesUa and V a: following lemma 1,
this is done by first deriving estimates ofΩa,
and then taking SVDs of eachΩa. The matrices
are then used to project inside and outside trees

t(i,1), t(i,2), t(i,3), o(i) down tom-dimensional vec-
torsy(i,1), y(i,2), y(i,3), z(i); these vectors are used to
derive the estimates ofCa→b c, c∞a→x, andc1a.

We now state a PAC-style theorem for the learning
algorithm. First, for a given L-PCFG, we need a
couple of definitions:

• Λ is the minimum absolute value of any element
of the vectors/matrices/tensorsc1a, d∞a→x, Da→b c,
(Σa)−1. (Note thatΛ is a function of the projec-
tion matricesUa andV a as well as the underlying
L-PCFG.)

• For eacha ∈ N , σa is the value of them’th
largest singular value ofΩa. Defineσ = mina σ

a.
We then have the following theorem:

Theorem 3 Assume that the inputs to the algorithm
in figure 4 are i.i.d. draws from the joint distribution
over the random variablesR1, T1, T2, T3, O,B, un-
der an L-PCFG with distributionp(r1 . . . rN) over
s-trees. Definem to be the number of latent states
in the L-PCFG. Assume that the algorithm in fig-
ure 4 has projection matriceŝUa andV̂ a derived as
left and right singular vectors ofΩa, as defined in
Eq. 5. Assume that the L-PCFG, together withÛa

and V̂ a, has coefficientsΛ > 0 andσ > 0. In addi-
tion, assume that all elements inc1a, d∞a→x, Da→b c,
andΣa are in [−1,+1]. For any s-treer1 . . . rN de-
fine p̂(r1 . . . rN) to be the value calculated by the
algorithm in figure 3 with inputŝc1a, ĉ∞a→x, Ĉ

a→b c

derived from the algorithm in figure 4. DefineR to
be the total number of rules in the grammar of the
form a→ b c or a → x. DefineMa to be the num-
ber of training examples in the input to the algorithm
in figure 4 whereri,1 has non-terminala on its left-
hand-side. Under these assumptions, if for alla

Ma ≥ 128m2

(

2N+1
√
1 + ǫ− 1

)2
Λ2σ4

log

(

2mR

δ

)

Then
1− ǫ ≤

∣

∣

∣

∣

p̂(r1 . . . rN)

p(r1 . . . rN)

∣

∣

∣

∣

≤ 1 + ǫ

A similar theorem (omitted for space) states that

1− ǫ ≤
∣

∣

∣

µ̂(a,i,j)
µ(a,i,j)

∣

∣

∣
≤ 1 + ǫ for the marginals.

The condition thatÛa and V̂ a are derived from
Ωa, as opposed to the sample estimateΩ̂a, follows
Foster et al. (2012). As these authors note, similar
techniques to those of Hsu et al. (2009) should be

applicable in deriving results for the case whereΩ̂a

is used in place ofΩa.
Proof sketch:The proof is similar to that of Foster

et al. (2012). The basic idea is to first show that
under the assumptions of the theorem, the estimates
ĉ1a, d̂∞a→x, D̂

a→b c, Σ̂a are all close to the underlying
values being estimated. The second step is to show
that this ensures thatp̂(r1...rN′)

p(r1...rN′)
is close to1.

The method described of selecting a single tuple
(r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i)) for each s-tree en-
sures that the samples are i.i.d., and simplifies the
analysis underlying theorem 3. In practice, an im-
plementation should most likely use all nodes in all
trees in training data; by Rao-Blackwellization we
know such an algorithm would be better than the
one presented, but the analysis of how much better
would be challenging. It would almost certainly lead
to a faster rate of convergence ofp̂ to p.

8 Discussion
There are several potential applications of the
method. The most obvious is parsing with L-
PCFGs.1 The approach should be applicable in other
cases where EM has traditionally been used, for ex-
ample in semi-supervised learning. Latent-variable
HMMs for sequence labeling can be derived as spe-
cial case of our approach, by converting tagged se-
quences to right-branching skeletal trees.

The sample complexity of the method depends on
the minimum singular values ofΩa; these singular
values are a measure of how well correlatedψ and
φ are with the unobserved hidden variableH1. Ex-
perimental work is required to find a good choice of
values forψ andφ for parsing.

9 Proofs
This section gives proofs of theorems 1 and 2. Due
to space limitations we cannot give full proofs; in-
stead we provide proofs of some key lemmas. A
long version of this paper will give the full proofs.

9.1 Proof of Theorem 1

First, the following lemma leads directly to the cor-
rectness of the algorithm in figure 2:

1Parameters can be estimated using the algorithm in
figure 4; for a test sentencex1 . . . xN we can first
use the algorithm in figure 3 to calculate marginals
µ(a, i, j), then use the algorithm of Goodman (1996) to find
argmaxτ∈T (x)

∑
(a,i,j)∈τ

µ(a, i, j).

Inputs: Training examples(r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i))
for i ∈ {1 . . .M}, wherer(i,1) is a context free rule;t(i,1),
t(i,2) and t(i,3) are inside trees;o(i) is an outside tree; and
b(i) = 1 if the rule is at the root of tree,0 otherwise. A function
φ that maps inside treest to feature-vectorsφ(t) ∈ R

d. A func-

tionψ that maps outside treeso to feature-vectorsψ(o) ∈ R
d′ .

Algorithm:
Defineai to be the non-terminal on the left-hand side of rule
r(i,1). If r(i,1) is of the forma→ b c, definebi to be the non-
terminal for the left-child ofr(i,1), andci to be the non-terminal
for the right-child.
(Step 0: Singular Value Decompositions)

• Use the algorithm in figure 5 to calculate matricesÛa ∈

R
(d×m) andV̂ a ∈ R

(d′×m) for eacha ∈ N .

(Step 1: Projection)

• For all i ∈ [M], computey(i,1) = (Ûai)⊤φ(t(i,1)).

• For all i ∈ [M] such that r(i,1) is of the form
a→ b c, computey(i,2) = (Ûbi)⊤φ(t(i,2)) andy(i,3) =
(Ûci)⊤φ(t(i,3)).

• For all i ∈ [M], computez(i) = (V̂ ai)⊤ψ(o(i)).

(Step 2: Calculate Correlations)

• For eacha ∈ N , defineδa = 1/
∑M

i=1[[ai = a]]

• For each rulea→ b c, compute D̂a→b c = δa ×∑M

i=1[[r
(i,1) = a→ b c]]y(i,3)(z(i))⊤(y(i,2))⊤

• For each rulea → x, compute d̂∞a→x = δa ×∑M

i=1[[r
(i,1) = a→ x]](z(i))⊤

• For each a ∈ N , compute Σ̂a = δa ×∑M

i=1[[ai = a]]y(i,1)(z(i))⊤

(Step 3: Compute Final Parameters)

• For alla→ b c, Ĉa→b c(y) = D̂a→b c(y)(Σ̂a)−1

• For alla→ x, ĉ∞a→x = d̂∞a→x(Σ̂
a)−1

• For alla ∈ I, ĉ1a =
∑M

i=1[[ai=a andb(i)=1]]y(i,1)

∑
M
i=1[[b

(i)=1]]

Figure 4: The spectral learning algorithm.

Inputs: Identical to algorithm in figure 4.
Algorithm:
• For eacha ∈ N , computeΩ̂a ∈ R

(d′×d) as

Ω̂a =

∑M

i=1[[ai = a]]φ(t(i,1))(ψ(o(i)))⊤
∑M

i=1[[ai = a]]

and calculate a singular value decomposition ofΩ̂a.
• For eacha ∈ N , defineÛa ∈ R

m×d to be a matrix of the left
singular vectors of̂Ωa corresponding to them largest singular

values. DefinêV a ∈ R
m×d′ to be a matrix of the right singular

vectors ofΩ̂a corresponding to them largest singular values.

Figure 5: Singular value decompositions.

Lemma 2 Assume that conditions 1-3 of theorem 1
are satisfied, and that the input to the algorithm in
figure 2 is an s-treer1 . . . rN . Defineai for i ∈ [N]
to be the non-terminal on the left-hand-side of rule
ri, and ti for i ∈ [N] to be the s-tree with ruleri
at its root. Finally, for all i ∈ [N], define the row
vectorbi ∈ R

(1×m) to have components

bih = P (Ti = ti|Hi = h,Ai = ai)

for h ∈ [m]. Then for alli ∈ [N], f i = bi(G(ai))−1.
It follows immediately that

f1c1a1 = b1(G(a1))−1Ga1πa1 = p(r1 . . . rN)

This lemma shows a direct link between the vec-
torsf i calculated in the algorithm, and the termsbih,
which are terms calculated by the conventional in-
side algorithm: eachf i is a linear transformation
(throughGai) of the corresponding vectorbi.
Proof: The proof is by induction.

First consider the base case. For any leaf—i.e., for
any i such thatai ∈ P—we havebih = q(ri|h, ai),
and it is easily verified thatf i = bi(G(ai))−1.

The inductive case is as follows. For alli ∈ [N]
such thatai ∈ I, by the definition in the algorithm,

f i = fγCri(fβ)

= fγGaγT ridiag(fβGaβSri)Qri(Gai)−1

Assuming by induction thatfγ = bγ(G(aγ))−1 and
fβ = bβ(G(aβ))−1, this simplifies to

f i = κrdiag(κl)Qri(Gai)−1 (10)

whereκr = bγT ri , andκl = bβSri . κr is a row
vector with componentsκrh =

∑

h′∈[m] b
γ
h′T

ri
h′,h =

∑

h′∈[m] b
γ
h′t(h′|h, ri). Similarly, κl is a row vector

with components equal toκlh =
∑

h′∈[m] b
β
h′S

ri
h′,h =

∑

h′∈[m] b
β
h′s(h′|h, ri). It can then be verified that

κrdiag(κl)Qri is a row vector with components
equal toκrhκ

l
hq(ri|h, ai).

But bih = q(ri|h, ai)×
(

∑

h′∈[m] b
γ
h′t(h′|h, ri)

)

×
(

∑

h′∈[m] b
β
h′s(h′|h, ri)

)

= q(ri|h, ai)κrhκlh, hence

κrdiag(κl)Qri = bi and the inductive case follows
immediately from Eq. 10.

Next, we give a similar lemma, which implies the
correctness of the algorithm in figure 3:

Lemma 3 Assume that conditions 1-3 of theorem 1
are satisfied, and that the input to the algorithm in
figure 3 is a sentencex1 . . . xN . For anya ∈ N , for
any1 ≤ i ≤ j ≤ N , defineᾱa,i,j ∈ R

(1×m) to have
components̄αa,i,j

h = p(xi . . . xj|h, a) for h ∈ [m].
In addition, defineβ̄a,i,j ∈ R

(m×1) to have compo-
nentsβ̄a,i,jh = p(x1 . . . xi−1, a(h), xj+1 . . . xN) for
h ∈ [m]. Then for alli ∈ [N],αa,i,j = ᾱa,i,j(Ga)−1

andβa,i,j = Gaβ̄a,i,j. It follows that for all(a, i, j),

µ(a, i, j) = ᾱa,i,j(Ga)−1Gaβ̄a,i,j = ᾱa,i,j β̄a,i,j

=
∑

h

ᾱa,i,j
h β̄a,i,jh =

∑

τ∈T (x):(a,i,j)∈τ

p(τ)

Thus the vectorsαa,i,j andβa,i,j are linearly re-
lated to the vectors̄αa,i,j and β̄a,i,j, which are the
inside and outside terms calculated by the conven-
tional form of the inside-outside algorithm.

The proof is by induction, and is similar to the
proof of lemma 2; for reasons of space it is omitted.

9.2 Proof of the Identity in Eq. 6

We now prove the identity in Eq. 6, used in the proof
of theorem 2. For reasons of space, we do not give
the proofs of identities 7-9: the proofs are similar.

The following identities can be verified:

P (R1 = a→ b c|H1 = h,A1 = a) = q(a→ b c|h, a)
E [Y3,j|H1 = h,R1 = a→ b c] = Ea→b c

j,h

E [Zk|H1 = h,R1 = a→ b c] = Ka
k,h

E [Y2,l|H1 = h,R1 = a→ b c] = F a→b c
l,h

whereEa→b c = GcT a→b c, F a→b c = GbSa→b c.
Y3, Z andY2 are independent when conditioned

onH1, R1 (this follows from the independence as-
sumptions in the L-PCFG), hence

E [[[R1 = a→ b c]]Y3,jZkY2,l | H1 = h,A1 = a]

= q(a→ b c|h, a)Ea→b c
j,h Ka

k,hF
a→b c
l,h

Hence (recall thatγah = P (H1 = h|A1 = a)),

Da→b c
j,k,l = E [[[R1 = a→ b c]]Y3,jZkY2,l | A1 = a]

=
∑

h

γahE [[[R1 = a→ b c]]Y3,jZkY2,l | H1 = h,A1 = a]

=
∑

h

γahq(a→ b c|h, a)Ea→b c
j,h Ka

k,hF
a→b c
l,h (11)

from which Eq. 6 follows.

Acknowledgements:Columbia University gratefully ac-
knowledges the support of the Defense Advanced Re-
search Projects Agency (DARPA) Machine Reading Pro-
gram under Air Force Research Laboratory (AFRL)
prime contract no. FA8750-09-C-0181. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not nec-
essarily reflect the view of DARPA, AFRL, or the US
government. Shay Cohen was supported by the National
Science Foundation under Grant #1136996 to the Com-
puting Research Association for the CIFellows Project.
Dean Foster was supported by National Science Founda-
tion grant 1106743.

References

B. Balle, A. Quattoni, and X. Carreras. 2011. A spec-
tral learning algorithm for finite state transducers. In
Proceedings of ECML.

S. Dasgupta. 1999. Learning mixtures of Gaussians. In
Proceedings of FOCS.

Dean P. Foster, Jordan Rodu, and Lyle H. Ungar.
2012. Spectral dimensionality reduction for hmms.
arXiv:1203.6130v1.

J. Goodman. 1996. Parsing algorithms and metrics. In
Proceedings of the 34th annual meeting on Associ-
ation for Computational Linguistics, pages 177–183.
Association for Computational Linguistics.

D. Hsu, S. M. Kakade, and T. Zhang. 2009. A spec-
tral algorithm for learning hidden Markov models. In
Proceedings of COLT.

H. Jaeger. 2000. Observable operator models for discrete
stochastic time series.Neural Computation, 12(6).

F. M. Lugue, A. Quattoni, B. Balle, and X. Carreras.
2012. Spectral learning for non-deterministic depen-
dency parsing. InProceedings of EACL.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Proba-
bilistic CFG with latent annotations. InProceedings
of the 43rd Annual Meeting on Association for Com-
putational Linguistics, pages 75–82. Association for
Computational Linguistics.

A. Parikh, L. Song, and E. P. Xing. 2011. A spectral al-
gorithm for latent tree graphical models. InProceed-
ings of The 28th International Conference on Machine
Learningy (ICML 2011).

F. Pereira and Y. Schabes. 1992. Inside-outside reesti-
mation from partially bracketed corpora. InProceed-
ings of the 30th Annual Meeting of the Association for
Computational Linguistics, pages 128–135, Newark,
Delaware, USA, June. Association for Computational
Linguistics.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree an-
notation. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics, pages 433–440, Sydney, Australia, July.
Association for Computational Linguistics.

S. A. Terwijn. 2002. On the learnability of hidden
markov models. InGrammatical Inference: Algo-
rithms and Applications (Amsterdam, 2002), volume
2484 ofLecture Notes in Artificial Intelligence, pages
261–268, Berlin. Springer.

S. Vempala and G. Wang. 2004. A spectral algorithm for
learning mixtures of distributions.Journal of Com-
puter and System Sciences, 68(4):841–860.

