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Probabilistic context-free grammars (PCFGs)

Probability Rule

1.0 S→NP VP
1.0 NP→Det N
1.0 VP→V NP
0.7 Det→ the
0.3 Det→ a
0.4 N→ cat
0.6 N→ dog
0.2 V→ chased
0.8 V→ liked

Parse tree

S

NP VP

Det N

the cat

V NP

chased Det N

the dog

Tree probability = 1.0×1.0×0.7×0.4×1.0×0.2×1.0×0.7×0.6 = 0.02352
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PCFGs and tightness

• p ∈ [0, 1]|R| is a vector of rule probabilities indexed by rules R
• A PCFG associates each tree t with a measure mp(t):

mp(t) =
∏

A→α∈R
p
nA→α(t)
A→α , where:

nA→α(t) is the number of times rule A→α is used in the derivation of
t

• The partition function Z of a PCFG is:

Zp =
∑
t∈T

mp(t)

• PCFGs require the rule probabilities expanding a non-terminal to be
normalised, but this does not guarantee that Zp = 1

• When Zp < 1, we say the PCFG is “non-tight.”
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Catalan grammar: an example of a non-tight PCFG

• PCFG has two rules: S→S S and S→ x

• It generates strings of x of arbitrary length
• It generates all possible finite binary trees

I or equivalently, all possible well-formed brackettings
I called the Catalan grammar because the number of parses of xn is

Catalan number Cn−1

• The PCFG is non-tight when pS→SS > 0.5
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Why can the Catalan grammar be non-tight?

• Every binary tree over n terminals has n − 1 non-terminals

⇒ probability of a tree decreases exponentially with length

• The number of different binary trees with n terminals is Cn−1
⇒ number of trees grammar grows exponentially with length

• When pS→ SS ≥ 0.5, the PCFG puts non-zero mass on non-terminating
derivations

I this grammar defines a branching processes
I At each step, pS→ S S is probability of reproducing, pS→ x is probability

of dying
I pS→ S S < 0.5 ⇒ population dies out (subcritical)
I pS→ S S > 0.5 ⇒ population grows unboundedly (supercritical)

• Mini-theorem: every linear PCFG is tight (except on cases of measure
zero under continuous priors)

I CFG is linear ⇔ RHS of every rule contains at most one non-terminal
I HMMs are linear PCFGs ⇒ always tight
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Bayesian inference of PCFGs

• Bayesian inference uses Bayes rule to compute a posterior over rule
probability vectors p

P(p |D)︸ ︷︷ ︸
Posterior

∝ P(D | p)︸ ︷︷ ︸
Likelihood

P(p)︸︷︷︸
Prior

where D = (D1, . . . ,Dn) is the training data (trees or strings)

• Bayesians prefer the full posterior distribution P(p |D) to a point
estimate p̂

• If the prior assigns non-zero mass to non-tight grammars, in general
the posterior will too

• As the number of independent observations n in the training data
grows, the posterior concentrates around the MLE

I MLE is always a tight PCFG (Chi and Geman 1998)
I As n→∞ the posterior concentrates on tight PCFGs
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3 approaches to non-tightness in the Bayesian setting

• If the grammar is linear, then all continuous priors lead to tight PCFGs

• Three different approaches to Bayesian inference with non-tight
grammars:

1. “Sink element”: assign mass of “infinite trees” to a sink element,
implicitly assumed by Johnson et al (2007)

2. “Only tight”: redefine prior so it only places mass onto tight grammars
3. “Renormalisation”: divide by partition function to ensure normalisation

Assume for now that trees and strings are observed in D (supervised
learning)
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“Only tight” approach

Let I(p) be 1 if p is tight and 0 otherwise.

Given a “non-tight prior” P(p), define a new prior P ′ as:

P ′(p) ∝ P(p) I(p)

If P(p) is conjugate family of priors with respect to PCFG likelihood, then
P ′(p) is also conjugate

We can draw samples from P ′(p |D) using rejection sampling:

• Draw PCFG parameters p from P(p |D) until p is tight
I P(p |D) is a product of Dirichlets
⇒ can use textbook algorithms for sampling from Dirichlets
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Renormalisation approach

Renormalise the measure µp(t) over finite trees (Chi, 1999)

If P(p | α) is a product of Dirichlets, posterior is:

P(p | D) =
n∏

i=1

µp(ti )

Zp
P(p | α) ∝ 1

Zn
p

P(p | α + n(D)).

where n(D) is the count vector over all rules for the data D

• Use a Metropolis-Hastings sampler to sample from P(p |D)
I proposal distribution is product of Dirichlets

Samplers for each approach can be used within a component-wise Gibbs
sampler for the unsupervised case where only strings are observed.
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Toy example
Consider the grammar S → S S S |S S |a

Let w = a a a

t1 = S

S

a

S

a

S

a

t2 = S

S

a

S

S

a

S

a

t3 = S

S

S

a

S

a

S

a

• Uniform prior (α = 1)

• Sink-element approach: P(t1 | w) = 7
11 ≈ 0.636364.

• Only-tight approach: P(t1 | w) = 11179
17221 ≈ 0.649149.

• Renormalisation approach: P(t1 | w) ≈ 0.619893.

⇒ All three approaches induce different posteriors from uniform prior
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Experiments on WSJ10
• Task: unsupervised estimation of Smith et al (2006)’s PCFG version of

the DMV (Klein et al 2004) from WSJ10
• 100 runs of each sampler for 1,000 MCMC sweeps
• Computed average F1 score on every 10th sweep for last 100 sweeps
• Kolmogorov-Smirnov tests did not show a statistically significant

difference
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Conclusion

• Linear CFGs are tight regardless of the prior

• For non-linear CFGs, three approaches are suggested for handling
non-tightness

• The three approaches are not mathematically equivalent, but
experiments on WSJ Penn treebank showed that they behave similarly
empirically

Open problem: are the approaches reducible in the following sense?

Given a prior P for one of the approaches, is there a prior P ′ for
another approach such that for all data D, the posteriors under
both approaches are the same.

12 / 12


