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Previous work: spectral algorithm for L-PCFGs

Introduced in Cohen et al. (2012), based on learning for HMMs
(Hsu et al., 2009)

An algorithm for latent-variable PCFGs

Unlike EM, no local maxima problem

More efficient than EM

Experimentally, works as well as EM for parsing
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Problem with previous work (Cohen et al., 2012)

Parameters are masked by an unknown linear transformation

• Negative probabilities (due to sampling error)

• Parameters cannot be easily interpreted

• Cannot improve parameters using, for example, EM
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This talk in a nutshell

Like the spectral algorithm, has theoretical guarantees

Estimates are actual probabilities

More efficient than EM

Can be used to initialize EM, which converges in an iteration or two

Relies heavily on the idea of “pivot features”

I Features that uniquely identify a latent state

I A similar idea is used for topic modeling by Arora et al. (2013)
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L-PCFGs (Matsuzaki et al., 2005; Petrov et al., 2006)
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The probability of a tree
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p(tree, 1 3 1 2 2 4 1)

= π(S1)×
t(S1 → NP3 VP2|S1)×
t(NP3 → D1 N2|NP3)×
t(VP2 → V4 P1|VP2)×
q(D1 → the|D1)×
q(N2 → dog|N2)×
q(V4 → saw|V4)×
q(P1 → him|P1)

p(tree) =
∑
h1...h7

p(tree, h1 h2 h3 h4 h5 h6 h7)
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Inside and outside trees

At node VP:
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Conditionally independent given the label and the hidden state

p(o, t|VP, h) = p(o|VP, h)× p(t|VP, h)
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Designing feature functions

Design functions ψ and φ:

φ maps any inside tree to a binary vector of length d

ψ maps any outside tree to a binary vector of length d′
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Outside tree o⇒ Inside tree t⇒
ψ(o) = [0, 1, 0, 0, . . . , 0, 0] ∈ Rd′ φ(t) = [1, 0, 0, 0, . . . , 0, 0] ∈ Rd

ψ and φ as multinomials p(f) for f ∈ [d] and p(g) for g ∈ [d′].
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Latent state distributions

Think of f and g as representing a whole inside/outside tree

Say we had a way of getting:

I p(f |h,VP) for each h and f inside feature

I p(g|h,VP) for each h and g outside feature

Then we could run EM on a convex problem to find parameters.
How?
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Binary rule estimation
Take M samples of nodes with rule VP→ V NP.

At sample i

I g(i) = outside feature at VP

I f
(i)
2 = inside feature at V

I f
(i)
3 = inside feature at NP

{t̂(h1, h2, h3|VP→ V NP)|h1, h2, h3}

= argmax
t̂

M∑
i=1

log
∑

h1,h2,h3

(
t̂(h1, h2, h3|VP→ V NP)×

p(g(i)|h1,VP)p(f
(i)
2 |h2,V)p(f

(i)
3 |h3,NP)

)
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Binary rule estimation, cont’d

{t̂(h1, h2, h3|VP→ V NP)|h1, h2, h3}

= argmax
t̂

M∑
i=1

log
∑

h1,h2,h3

(
t̂(h1, h2, h3|VP→ V NP)×

p(g(i)|h1,VP)p(f
(i)
2 |h2,V)p(f

(i)
3 |h3,NP)

)
This objective represents the marginal probability of the corpus

It is a convex objective

Use Bayes’ rule to convert to parameters

Main question: how do we get the latent state distributions
p(h|f,VP) and p(h|g,VP)?
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Vector representation of inside and outside trees
Design functions Z and Y :

Y maps any inside feature value f ∈ [d′] to a vector of length m.

Z maps any outside feature value g ∈ [d] to a vector of length m.

Convention: m is the number of hidden states under the L-PCFG.
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Outside tree o⇒ Inside tree t⇒
Z(g) = [1, 0.4,−5.3, . . . , 72] ∈ Rm Y (f) = [−3, 17, 2, . . . , 3.5] ∈ Rm

Z and Y reduce the dimensionality of φ and ψ using CCA
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Identifying latent state distributions

• For each f ∈ [d], define: v(f) = E[Z(g)|f,VP]

• v(f) ∈ Rm is “the expected value of an outside tree
(representation) given an inside tree (feature)”

• By conditional independence:

v(f) =

m∑
h=1

p(h|f,VP)w(h)

where w(h) ∈ Rm and

w(h) =
∑d′

g=1 p(g|h,VP)Z(g) = E[Z(g)|h,VP].

• w(h) is “the expected value of an outside tree
(representation) given a latent state”
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Pivot assumption

Reminder: v(f) =
∑m

h=1 p(h|f,VP)w(h) = E[Z(g)|f,VP]

Need to solve with respect to p(h|f,VP)

v(f) can be estimated from data

w(h) consist of information about latent states – not observable

Pivot assumption: each h has f such that p(h|f,VP) = 1
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Outside representation as convex combination
Reminder: v(f) =

∑m
h=1 p(h|f,VP)w(h) = E[Z(g)|f,VP]

v(101) = w(1)

v(25) = w(2)

v(102) =
5X

h=1

↵hw(i)

v(72) = w(3) v(28) = w(4)

v(33) = w(5)

Pivot assumption: each h has f such that p(h|f,VP) = 1

Features 101, 25, 72, 28, 33 are “pivot” features for 5 states

α are the latent state distributions!
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Summary of algorithm

Calculate v(f) for all f

Identify w(h) for all h by finding the corners of
ConvexHull(v(1), . . . , v(d))

Identify the distribution of latent states by solving

v(f) =

m∑
h=1

p(h|f,VP)w(h) = E[Z(g)|f,VP]

Repeat the above for outside features g

Solve a convex marginal log-likelihood problem
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Experiments: language modeling

• Saul and Pereira (1997):

p(w2|w1) =
∑
h

p(w2|h)p(h|w1).

h

w1 w2

This model is a specific case of L-PCFG

• Experimented with bi-gram modeling for two corpora: Brown
corpus and Gigaword corpus
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Results: perplexity

Brown NYT
m 128 256 test 128 256 test

bigram Kneser-Ney 408 415 271 279

trigram Kneser-Ney 386 394 150 158

EM
iterations

388
9

365
8

364
284
35

265
32

267

pivot 426 597 560 782 886 715
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Results: perplexity

Brown NYT
m 128 256 test 128 256 test

bigram Kneser-Ney 408 415 271 279

trigram Kneser-Ney 386 394 150 158

EM
iterations

388
9

365
8

364
284
35

265
32

267

pivot 426 597 560 782 886 715

pivot+EM
iterations

310
1

327
1

357
279
19

292
12

281

• Initialize EM with pivot algorithm output

• EM converges in much fewer iterations

• Still consistent - called “two-step estimation” (Lehmann and
Casella, 1998)
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Inside features used
Consider the VP node in the following tree:
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The inside features consist of:

I The pairs (VP, V) and (VP, NP)

I The rule VP → V NP

I The tree fragment (VP (V saw) NP)

I The tree fragment (VP V (NP D N))

I The pair of head part-of-speech tag with VP: (VP, V)
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Outside features used
Consider the D node in
the following tree:
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The outside features consist of:

I The fragments NP

D∗ N

, VP

V NP

D∗ N

and S

NP VP

V NP

D∗ N

I The pair (D, NP) and triplet (D, NP, VP)

I The pair of head part-of-speech tag with D: (D, N)
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Results

sec. 22 sec. 23
m 8 16 24 32

EM
iterations

86.69
40

88.32
30

88.35
30

88.56
20

87.76

Spectral
(Cohen et al., 2013)

85.60 87.77 88.53 88.82 88.05

Pivot 83.56 86.00 86.87 86.40 85.83

Pivot+EM
iterations

86.83
2

88.14
6

88.64
2

88.55
2

88.03

Again, EM converges in very few iterations
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Conclusion

Formal guarantees:

I Statistical consistency

I No problem of local maxima

Advantages over traditional spectral methods:

I No negative probabilities

I More intuitive to understand
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