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Probabilistic CFGs with Latent States (Matsuzaki et al., 2005;

Prescher 2005)
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Latent states play the role of nonterminal subcategorization,
e.g., NP→ {NP1, NP2, . . . , NP24}

I analogous to syntactic heads as in lexicalization (Charniak
1997) ?

They are not part of the observed data in the treebank
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Estimating PCFGs with Latent States (L-PCFGs)

EM Algorithm (Matsuzaki et al., 2005; Petrov et al., 2006)

⇓ Problems with local maxima; it fails to provide certain
type of theoretical guarantees as it doesn’t find global
maximum of the log-likelihood

Spectral Algorithm (Cohen et al., 2012, 2014)

⇑ Statistically consistent algorithms that make use of spectral
decomposition

⇑ Much faster training than the EM algorithm

⇓ Lagged behind in their empirical results
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Overview

Builds on the work on the spectral algorithm for Latent-state
PCFGs (L-PCFGs) for parsing (Cohen et al., 2012, 2014, Cohen and
Collins, 2014, Narayan and Cohen 2015)

Conventional approach: Number of latent states for each
nonterminal in an L-PCFG can be decided in isolation

Contributions:
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PCFGs (L-PCFGs) for parsing (Cohen et al., 2012, 2014, Cohen and
Collins, 2014, Narayan and Cohen 2015)

Conventional approach: Number of latent states for each
nonterminal in an L-PCFG can be decided in isolation

Contributions:

A. Parsing results significantly improve if the number of
latent states for each nonterminal is globally optimized

I Petrov et al. (2006) demonstrated that coarse-to-fine
techniques that carefully select the number of latent states
improve accuracy.
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Overview

Builds on the work on the spectral algorithm for Latent-state
PCFGs (L-PCFGs) for parsing (Cohen et al., 2012, 2014, Cohen and
Collins, 2014, Narayan and Cohen 2015)

Conventional approach: Number of latent states for each
nonterminal in an L-PCFG can be decided in isolation

Contributions:

B. Optimized spectral method beats coarse-to-fine
expectation-maximization techniques on 6 (Basque,
Hebrew, Hungarian, Korean, Polish and Swedish) out of
8 SPMRL datasets
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Intuition behind the Spectral Algorithm
Inside and outside trees
At node VP:
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Conditionally independent given the label and the hidden state

p(o, t |VP,h) = p(o|VP,h)× p(t |VP,h)
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Recent Advances in Spectral Estimation

=

Singular value decomposition (SVD) of cross-covariance
matrix for each nonterminal
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Recent Advances in Spectral Estimation

=

SVD Step

Method of moments (Cohen et al., 2012, 2014)

I Averaging with SVD parameters⇒ Dense estimates

Clustering variants (Narayan and Cohen 2015)
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Standard Spectral Estimation and Number of Latent
States

=

⇑ A natural way to choose the number of latent states based
on the number of non-zero singular values

⇑ Number of latent states for each nonterminal in an L-PCFG
can be decided in isolation

⇓ Conventional approach fails to take into account
interactions between different nonterminals
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Optimizing Latent States for Various Nonterminals

Input:

I An input treebank divided into training and development
set

I A basic spectral estimation algorithm S mapping each
nonterminal to a fixed number of latent states

I fdef : {S→ 24, NNP→ 24, VP→ 24, DT→ 24, . . .}

Output:

I fopt : {S→ 40, NNP→ 81, VP→ 35, DT→ 4, . . .}
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Optimizing Latent States for Various Nonterminals

Algorithm in a nutshell
I Iterate through the nonterminals, changing the number of

latent states,
I estimate the grammar on the training set and
I optimize the accuracy on the dev set

A beam search algorithm for the traversal of multidimensional
vectors of latent states: Optimizing their global interaction
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Optimizing Latent States for Various Nonterminals
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Optimizing Latent States for Various Nonterminals
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Clustering variant of spectral estimation leads to compact
models and is relatively fast
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Experiments

The SPMRL Dataset

8 morphologically rich languages: Basque, French, German,
Hebrew, Hungarian, Korean, Polish and Swedish

Treebanks of varying sizes from 5,000 sentences (Hebrew and
Swedish) to 40,472 sentences (German)
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Results on the Swedish dataset

Results on the dev set
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Results on the Swedish dataset

Final results on the test set
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Final Results on the SPMRL Dataset
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I Berkeley results are taken from Björkelund et al, 2013.
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Conclusion

Spectral parsing results significantly improve if the number of
latent states for each nonterminal is globally optimized

Optimized spectral algorithm beats coarse-to-fine EM algorithm
for 6 (Basque, Hebrew, Hungarian, Korean, Polish and
Swedish) out of 8 SPMRL datasets

The Rainbow parser and multilingual models:
http://cohort.inf.ed.ac.uk/lpcfg/

Acknowledgments: Thanks to David McClosky, Eugene
Charniak, DK Choe, Geoff Gordon, Djamé Seddah, Thomas
Müller, Anders Björkelund and anonymous reviewers
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Inside Features used

Consider the VP node in the following tree:
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The inside features consist of:
I The pairs (VP, V) and (VP, NP)

I The rule VP → V NP

I The tree fragment (VP (V saw) NP)

I The tree fragment (VP V (NP D N))

I The pair of head part-of-speech tag with VP: (VP, V)
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Outside Features used

Consider the D node in the following tree:
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The outside features consist of:
I The pairs (D, NP) and (D, NP, VP)
I The pair of head part-of-speech tag with D: (D, N)
I The tree fragments NP
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Variants of Spectral Estimation

I SVD variants: singular value decomposition of empirical
count matrices (cross-covariance matrices) to estimate
grammar parameters (Cohen et. al. 2012, 2014)

I Convex EM variant: “anchor method” that identifies
features that uniquely identify latent states (Cohen and
Collins, 2014)

I Clustering variant: a simplified version of the SVD variant
that clusters low-dimensional representations to latent
states (Narayan and Cohen, 2015)

Intuitive-to-understand and very (computationally)
efficient
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Optimizing Latent States for Various Nonterminals

I Initialization: (n0, fdef ,Fdef )→ Q
I n0 : First nonterminal
I fdef : {S→ 24, NNP→ 24, VP→ 24, DT→ 24, . . .}
I Fdef is the F1 score on the development set

I Iteration: (ni , fi ,Fi)← Q

I For each number of latent state l ∈ {1, ...,m},
I f ′i : f ′i (ni) = l and for others n, f ′i (n) = fi(n),
I Estimate a new F ′

i score on the development set, and
I Push (ni+1, f ′i ,F

′
i )

I Termination: (nfin+1, fopt ,Ffin)← Q

I fopt : {S→ 40, NNP→ 81, VP→ 35, DT→ 4, . . .}
We need a training algorithm which is relatively fast and
leads to compact models
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Final Results on the SPMRL Dataset

lang. Berkeley
Spectral

Cluster SVD
Basque 74.7 81.4 80.5
French 80.4 75.6 79.1

German 78.3 76.0 78.2
Hebrew 87.0 87.2 89.0

Hungarian 85.2 88.4 89.2
Korean 78.6 78.4 80.0
Polish 86.8 91.2 91.8

Swedish 80.6 79.4 80.9
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Spectral Algorithm Vs Treebank Size

We break the common belief that more data is needed with
spectral algorithm

lang.
Training data

Sent. tokens
Basque 7,577 96,565
French 14,759 443,113

German 40,472 719,532
Hebrew 5,000 128,065

Hungarian 8,146 170,221
Korean 23,010 301,800
Polish 6,578 66,814

Swedish 5,000 76,332
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Effect of Optimization on the Model Size

lang.
∑

nt lsnt #nt
Before After

Basque 402 646 200
French 1984 1994 222

German 2288 2213 762
Hebrew 603 986 375

Hungarian 643 676 112
Korean 1295 1200 352
Polish 384 491 198

Swedish 276 629 148
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	Conclusion

