Dialect Translation: Integrating Bayesian Co-segmentation Models with Pivot-based SMT

M. Paul, A. Finch, P. R. Dixon, and E. Sumita

Presented by Wael Salloum Course: Bayesian Analysis for NLP Instructor: Shay Cohen, Ph.D. Columbia University May 6th 2013

Problem Definition

Task: Translate Dialects into Foreign (Target) Languages.

- Source Japanese dialects: (Kumamoto, Kyoto, Okinawa, Osaka)
- Target Languages:
 - Indo-European languages (English, German, Russian, Hindi)
 - ✤ Asian languages (Chinese, Korean)
- Problems:
 - Dialects are resource-poor languages:
 - Limited parallel data to train Statistical Machine Translation (SMT)
 - Limited NLP tools (e.g., word segmentation)

Approaches

- Direct Translation
- Pivot-based Translation:
 - SMT-based Pivot Translation: Dialect-to-Standard
 SMT followed by Standard-to-Target SMT
 - BCS-based Pivot Translation: Dialect-to-Standard
 Transduction followed by Standard-to-Target SMT

Statistical Machine Translation

✤ A maximization problem:

 $argmax_{trg} p(src|trg) * p(trg)$

Dialect-to-Standard Transduction

Bayesian co-segmentation (BCS) model

Joint-source channel model (*n*-gram transliteration model)

Dialect-to-Standard Transduction

- Transliteration: character-to-character mapping to transfer *Dialect* sentences to *Standard* word segments.
- The paper uses a Generative Bayesian Model:
 - Avoids over-fitting.
 - Constructs *compact* models that have only a small number of *well-chosen* parameters.
 - ✤ Is based on *joint source channel model*.
 - Is *symmetric* w.r.t. source and target languages.

Joint-Source Channel Model

- * A Dialect sentence: $\sigma = l_1, l_2, ..., l_L$ (*l* is a character)
- * A Standard sentence: $\omega = s_1, s_2, ..., s_s$ (s is a word token)

There exists an alignment

$$\gamma = < l_1 \dots l_q, s_1 >, \dots, < l_r \dots l_L, s_S >$$

of K transliteration units.

The n-gram model: the transliteration probability of a transliteration pair $< l, s >_k$ depending on its immediate *n* preceding transliteration pairs:

$$P(\sigma, \omega, \gamma) = \prod_{k=1}^{K} P(\langle l, s \rangle_k | \langle l, s \rangle_{k-n+1}^{k-1})$$

Bayesian co-segmentation (BCS)

Two Models:

- A model for *generating* an outcome that has already been generated at least once before
- A model for *assigning* a probability to an outcome that has not yet been produced
- The co-segmentation process is driven by a Dirichlet process. The underlying stochastic process for the generation of a corpus of bilingual phrase pairs (s_k,t_k):

 $egin{array}{rcl} G|_{lpha,G_0} &\sim & DP(lpha,G_0) \ (\mathbf{s}_k,\mathbf{t}_k)|G &\sim & G \end{array}$

Bayesian co-segmentation (BCS)

The base measure G₀ controls the generation of novel sequence pairs: A joint spelling model to assign probabilities to them:

$$G_0((\mathbf{s}, \mathbf{t})) = p(|\mathbf{s}|)p(\mathbf{s}||\mathbf{s}|) \times p(|\mathbf{t}|)p(\mathbf{t}||\mathbf{t}|)$$

= $\frac{\lambda_s^{|\mathbf{s}|}}{|\mathbf{s}|!}e^{-\lambda_s}v_s^{-|\mathbf{s}|} \times \frac{\lambda_t^{|\mathbf{t}|}}{|\mathbf{t}|!}e^{-\lambda_t}v_t^{-|\mathbf{t}|}$

The generative model:

$$p((\mathbf{s}_k,\mathbf{t}_k))|(\mathbf{s}_{-k},\mathbf{t}_{-k})) \ = rac{N((\mathbf{s}_k,\mathbf{t}_k))+lpha G_0((\mathbf{s}_k,\mathbf{t}_k))}{N+lpha}$$

Bayesian co-segmentation (BCS)

- Sampling: Blocked Gibbs sampler
- Extended the forward filtering / backward sampling DP algorithm to deal with bilingual segmentation.

Approaches

- Direct Translation
- Pivot-based Translation:
 - SMT-based Pivot Translation: Dialect-to-Standard
 SMT followed by Standard-to-Target SMT
 - BCS-based Pivot Translation: Dialect-to-Standard
 Transduction followed by Standard-to-Target SMT

Direct Translation

Table 2: SMT-based Direct Translation Quality BLEU (%)

SRC	ja		ja _{ku}	ja _{ky}	ja _{ok}	ja _{os}
TRG	(160k)	(20k)		(20	Ok)	
en	56.51	32.84	32.27	31.81	30.99	31.97
de	51.73	26.24	25.06	25.71	24.37	25.18
ru	50.34	23.67	23.12	23.19	22.30	22.07
hi	49.99	21.10	20.46	20.40	19.72	20.96
zh	48.59	33.80	32.72	33.15	32.66	32.96
ko	64.52	53.31	52.93	51.24	49.40	51.57

SMT-based Pivot Translation

Table 3: SMT-based Pivot Translation Quality BLEU (%)

SRC	ja _{ku}	ja _{ky}	ja _{ok}	ja _{os}	
TRG	$(SMT_{SRC \rightarrow ja} + SMT_{ja \rightarrow TRG})$				
en	52.10	50.66	45.54	49.50	
de	47.51	46.33	39.42	44.82	
ru	44.59	43.83	38.25	42.87	
hi	45.89	44.01	36.87	42.95	
zh	45.14	44.26	40.96	44.20	
ko	60.76	59.67	55.59	58.62	

Dialect-to-Standard Transduction

Table 4: Dialect to Standard Language Transduction
BLEU (%)

	SRC	ja _{ku}	ja _{ky}	ja _{ok}	ja _{os}
Engine	(decoding)		(SRC)	$(\rightarrow ja)$	
BCS	(monotone)	91.55	86.74	80.36	85.04
SMT	(monotone)	88.39	84.87	74.27	82.86
	(reordering)	88.39	84.73	74.26	82.66

BCS-based Pivot Translation

Table 5: BCS-based Pivot Translation Quality BLEU (%)

SRC	ja _{ku}	ja_{ky}	ja _{ok}	ja _{os}	
TRG	$(BCS_{SRC \rightarrow ja} + SMT_{ja \rightarrow TRG})$				
en	52.42	50.68	45.58	50.22	
de	47.52	46.74	39.93	45.60	
ru	45.29	44.08	38.39	43.53	
hi	45.72	44.71	37.60	43.56	
zh	45.15	43.92	40.15	44.06	
ko	60.26	59.14	55.33	58.13	

Comparison of Approaches

Table 6: Gains of BCS-based Pivot Translation BLEU (%)

SRC	ja _{ku}	ja _{ky}	ja _{ok}	ja _{os}	
TRG	on SMT-based Pivot (Direct) Translation				
en	+0.32	+0.02	+0.04	+0.72	
	(+20.15)	(+18.87)	(+14.59)	(+18.25)	
de	+0.01	+0.41	+0.51	+0.78	
	(+22.46)	(+21.03)	(+15.56)	(+20.50)	
ru	+0.70	+0.25	+0.14	+0.66	
	(+22.17)	(+20.89)	(+16.09)	(+21.46)	
hi	-0.17	+0.70	+0.73	+0.61	
	(+25.26)	(+24.31)	(+17.88)	(+22.60)	
zh	+0.01	-0.34	-0.81	-0.14	
	(+12.43)	(+10.77)	(+7.49)	(+11.10)	
ko	-0.50	-0.53	-0.26	-0.49	
	(+7.33)	(+7.90)	(+5.93)	(+6.56)	

Thank You

Questions?