A Coactive Learning View of Online Structured Prediction in SMT

Artem Sokolov*, Stefan Riezler*, Shay B. Cohen†
*Heidelberg University, †University of Edinburgh
Online learning protocol

1. observe input structure x_t
2. predict output structure y_t
3. receive feedback (gold-standard or post-edit)
4. update parameters

A tool of choice in SMT

- memory & runtime efficiency
- interactive scenarios with user feedback
Usual assumptions
- convexity (for regret bounds)
- reachable feedbacks (for gradients)

Reality
- SMT has latent variables (non-convex)
- most references live outside the search space (nonreachable)
- references/full-edits are expensive (= professional translation)

Intuition
- light post-edits are cheaper
- have better chance to be reachable

Question
Should editors put much effort into correcting SMT outputs anyway?
Goals

- demonstrate feasibility of learning from weak feedback for SMT
- propose a new perspective on learning from surrogate translations
- note: the goal is not to improve over any full-information model

Contributions

Theory
- extension of the coactive learning model to latent structure
- improvements by a derivation-dependent update scaling
- straight-forward generalization bounds

Practice
- learning from weak post-edits does translate to improved MT quality
- surrogate references work better if they admit an underlying linear model
[Shivaswami & Joachims, ICML’12]

- rational user: feedback \bar{y}_t improves some utility over prediction y_t

 $$U(x_t, \bar{y}_t) \geq U(x_t, y_t)$$

- regret: how much the learner is ‘sorry’ for not using optimal y_t^*

 $$\text{REG}_T = \frac{1}{T} \sum_{t=1}^{T} U(x_t, y_t^*) - U(x_t, y_t) \rightarrow \min$$

- feedback is α-informative if

 $$U(x_t, \bar{y}_t) - U(x_t, y_t) \geq \alpha(U(x_t, y_t^*) - U(x_t, y_t))$$

- no latent variables
Feedback-based Structured Perceptron

1: Initialize $w \leftarrow 0$
2: for $t = 1, \ldots, T$ do
3: Observe x_t
4: $y_t \leftarrow \arg \max_y w_t^T \phi(x_t, y)$
5: Obtain weak feedback \bar{y}_t
6: if $y_t \neq \bar{y}_t$ then
7: $w_{t+1} \leftarrow w_t + (\phi(x_t, \bar{y}_t) - \phi(x_t, y_t))$
Feedback-based Latent Structured Perceptron

1: Initialize \(w \leftarrow 0 \)
2: \textbf{for} \(t = 1, \ldots, T \) \textbf{do}
3: \hspace{1em} Observe \(x_t \)
4: \hspace{1em} \((y_t, h_t) \leftarrow \arg \max_{(y, h)} w_t^\top \phi(x_t, y, h_t)\)
5: \hspace{1em} Obtain weak feedback \(\bar{y}_t \)
6: \hspace{1em} \textbf{if} \(y_t \neq \bar{y}_t \) \textbf{then}
7: \hspace{2em} \(\bar{h}_t \leftarrow \arg \max_h w_t^\top \phi(x_t, \bar{y}_t, h) \)
8: \hspace{1em} \hspace{1em} \(w_{t+1} \leftarrow w_t + \Delta_{\bar{h}_t, h_t}(\phi(x_t, \bar{y}_t, \bar{h}_t) - \phi(x_t, y_t, h_t)) \)
Under the same assumptions as in [Shivaswami & Joachims’12]:

- linear utility: \(U(x_t, y_t) = w_*^\top \phi(x_t, y_t) \)
- \(w_* \) is the optimal parameter, known only to the user
- \(\|\phi(x_t, y_t, h_t)\| \leq R \)
- some violations of \(\alpha \)-informativeness are allowed

\[
U(x_t, \bar{y}_t) - U(x_t, y_t) \geq \alpha(U(x_t, y^*_t) - U(x_t, y_t)) - \xi_t
\]

Convergence

Let \(D_T = \sum_t^T \Delta^2_{\bar{h}_t, h_t} \). Then

\[
\text{REG}_T \leq \frac{1}{\alpha T} \sum_{t=1}^T \xi_t + \frac{2R \|w_*\|}{\alpha} \sqrt{\frac{D_T}{T}}
\]

- standard perceptron proof [Novikoff’62]
- better than \(O(1/\sqrt{T}) \) if \(D_T \) doesn’t grow too fast
- [Shivaswami & Joachims’12] is a special case of \(\Delta_{\bar{h}_t, h_t} = 1 \)
Generalization

Let $0 < \delta < 1$, and let x_1, \ldots, x_T be a sequence of observed inputs. Then with probability at least $1 - \delta$,

$$\mathbb{E}_{x_1,..,x_T}[\text{REG}_T] \leq \text{REG}_T + 2||w_*||R\sqrt{\frac{2}{T} \ln \frac{1}{\delta}}.$$

- how far the expected regret is from the empirical regret we observe
- proof uses the results of [Cesa-Bianchi’04]
- see the paper for more
- **LIG corpus [Potet et al.'10]**
 - news domain, FR→EN
 - (FR input, MT output, EN post-edit, EN reference), 11k in total
 - split
 - train 7k
 - dev 2k
 - test 2k
 - online input data to get w_* for simulation/checking convergence testing

- Moses, 1000-best lists

- cyclic order
User simulation:

- scan the n-best list for derivations that are α-informative
- return the first $\bar{y}_t \neq y_t$ that satisfies

$$U(x_t, \bar{y}_t) - U(x_t, y_t) \geq \alpha(U(x_t, \bar{y}_t^*) - U(x_t, y_t)) - \xi_t$$

(with minimal ξ_t, if no $\xi_t = 0$ found for a given α)
convergence in regret when learning from weak feedback of differing strength

simultaneous improvement TER (on test)

stronger feedback leads to faster improvements of regret/TER

setting $\Delta_{\bar{h}_t,h_t}$ to Euclidean distance between feature vectors leads to even faster regret/TER improvements
so far the feedback was simulated
what about real post-edits?
main question: how do the practices for extracting surrogates from user post-edits for discriminative SMT match with the coactive learning?
Standard heuristics for surrogates

1. **oracle** – closest to the post-edit in the full search graph

\[
\bar{y} = \arg \min_{y' \in \mathcal{Y}(x_t; w_t)} \text{TER}(y', y)
\]

2. **local** – closest to the post-edit from the \(n\)-best list [Liang et al.’06]

\[
\bar{y} = \arg \min_{y' \in \text{n-best}(x_t; w_t)} \text{TER}(y', y)
\]

3. **filtered** – first hyp in the \(n\)-best list w/ better TER than the 1-best

\[
\text{TER}(\bar{y}, y) < \text{TER}(y_t, y)
\]

4. **hope** – hyp that maximizes model score and negative TER [Chiang’12]

\[
\bar{y} = \arg \max_{y' \in \text{n-best}(x_t; w_t)} \left(-\text{TER}(y', y) + w_t^\top \phi(x_t, y', h) \right)
\]

Degrees of model-awareness

- **oracle** – model-agnostic
- **local** – constrained to the \(n\)-best list, but ignores the ordering
- **filtered & hope** – letting the model score/ordering influence the surrogate
- regret diverges when learning with model-unaware surrogates
- convergence in regret when learning with model-aware surrogates

<table>
<thead>
<tr>
<th>% strictly α-informative</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
</tr>
<tr>
<td>filtered</td>
</tr>
<tr>
<td>hope</td>
</tr>
</tbody>
</table>
Conclusions

- regret & generalization bounds
 - latent variables
 - changing feedback
- concept of weak feedback in online learning in SMT
 - still can learn without observing references
 - surrogate references should admit an underlying linear model
Conclusions

- regret & generalization bounds
 - latent variables
 - changing feedback
- concept of weak feedback in online learning in SMT
 - still can learn without observing references
 - surrogate references should admit an underlying linear model

Thank you!