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Abstract

We describe an approach to create a di-
verse set of predictions with spectral learn-
ing of latent-variable PCFGs (L-PCFGs).
Our approach works by creating multiple
spectral models where noise is added to
the underlying features in the training set
before the estimation of each model. We
describe three ways to decode with mul-
tiple models. In addition, we describe a
simple variant of the spectral algorithm for
L-PCFGs that is fast and leads to compact
models. Our experiments for natural lan-
guage parsing, for English and German,
show that we get a significant improve-
ment over baselines comparable to state of
the art. For English, we achieve the F1

score of 90.18, and for German we achieve
the F1 score of 83.38.

1 Introduction

It has been long identified in NLP that a diverse set
of solutions from a decoder can be reranked or re-
combined in order to improve the accuracy in var-
ious problems (Henderson and Brill, 1999). Such
problems include machine translation (Macherey
and Och, 2007), syntactic parsing (Charniak and
Johnson, 2005; Sagae and Lavie, 2006; Fossum
and Knight, 2009; Zhang et al., 2009; Petrov,
2010; Choe et al., 2015) and others (Van Halteren
et al., 2001).

The main argument behind the use of such a di-
verse set of solutions (such as k-best list of parses
for a natural language sentence) is the hope that
each solution in the set is mostly correct. There-
fore, recombination or reranking of solutions in
that set will further optimize the choice of a solu-
tion, combining together the information from all
solutions.

In this paper, we explore another angle for the
use of a set of parse tree predictions, where all pre-

dictions are made for the same sentence. More
specifically, we describe techniques to exploit di-
versity with spectral learning algorithms for natu-
ral language parsing. Spectral techniques and the
method of moments have been recently used for
various problems in natural language processing,
including parsing, topic modeling and the deriva-
tion of word embeddings (Luque et al., 2012; Co-
hen et al., 2013; Stratos et al., 2014; Dhillon et al.,
2015; Rastogi et al., 2015; Nguyen et al., 2015; Lu
et al., 2015).

Cohen et al. (2013) showed how to estimate an
L-PCFG using spectral techniques, and showed
that such estimation outperforms the expectation-
maximization algorithm (Matsuzaki et al., 2005).
Their result still lags behind state of the art in natu-
ral language parsing, with methods such as coarse-
to-fine (Petrov et al., 2006).

We further advance the accuracy of natural lan-
guage parsing with spectral techniques and L-
PCFGs, yielding a result that outperforms the orig-
inal Berkeley parser from Petrov and Klein (2007).
Instead of exploiting diversity from a k-best list
from a single model, we estimate multiple models,
where the underlying features are perturbed with
several perturbation schemes. Each such model,
during test time, yields a single parse, and all
parses are then used together in several ways to
select a single best parse.

The main contributions of this paper are two-
fold. First, we present an algorithm for estimating
L-PCFGs, akin to the spectral algorithm of Cohen
et al. (2012), but simpler to understand and imple-
ment. This algorithm has value for readers who
are interested in learning more about spectral al-
gorithms – it demonstrates some of the core ideas
in spectral learning in a rather intuitive way. In
addition, this algorithm leads to sparse grammar
estimates and compact models.

Second, we describe how a diverse set of predic-
tors can be used with spectral learning techniques.



Our approach relies on adding noise to the feature
functions that help the spectral algorithm compute
the latent states. Our noise schemes are similar
to those described by Wang et al. (2013). We add
noise to the whole training data, then train a model
using our algorithm (or other spectral algorithms;
Cohen et al., 2013), and repeat this process mul-
tiple times. We then use the set of parses we get
from all models in a recombination step.

The rest of the paper is organized as follows.
In §2 we describe notation and background about
L-PCFG parsing. In §3 we describe our new spec-
tral algorithm for estimating L-PCFGs. It is based
on similar intuitions as older spectral algorithms
for L-PCFGs. In §4 we describe the various noise
schemes we use with our spectral algorithm and
the spectral algorithm of Cohen et al. (2013). In
§5 we describe how to decode with multiple mod-
els, each arising from a different noise setting. In
§6 we describe our experiments with natural lan-
guage parsing for English and German.

2 Background and Notation

We denote by [n] the set of integers {1, . . . , n}.
For a statement Γ, we denote by [[Γ]] its indicator
function, with values 0 when the assertion is false
and 1 when it is true.

An L-PCFG is a 5-tuple (N , I,P,m, n) where:

• N is the set of nonterminal symbols in the
grammar. I ⊂ N is a finite set of intermi-
nals. P ⊂ N is a finite set of preterminals.
We assume thatN = I ∪ P , and I ∩ P = ∅.
Hence we have partitioned the set of nonter-
minals into two subsets.

• [m] is the set of possible hidden states.

• [n] is the set of possible words.

• For all a ∈ I, b ∈ N , c ∈ N , h1, h2, h3 ∈
[m], we have a binary context-free rule
a(h1)→ b(h2) c(h3).

• For all a ∈ P , h ∈ [m], x ∈ [n], we have a
lexical context-free rule a(h)→ x.

Latent-variable PCFGs are essentially equiv-
alent to probabilistic regular tree grammars
(PRTGs; Knight and Graehl, 2005) where the
righthand side trees are of depth 1. With gen-
eral PRTGs, the righthand side can be of arbitrary
depth, where the leaf nodes of these trees corre-
spond to latent states in the L-PCFG formulation
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Figure 1: The inside tree (left) and outside
tree (right) for the nonterminal VP in the parse
tree (S (NP (D the) (N dog)) (VP (V
saw) (NP (D the) (N woman)))).

above and the internal nodes of these trees corre-
spond to interminal symbols in the L-PCFG for-
mulation.

Two important concepts that will be used
throughout of the paper are that of an “inside tree”
and an “outside tree.” Given a tree, the inside tree
for a node contains the entire subtree below that
node; the outside tree contains everything in the
tree excluding the inside tree. See Figure 1 for an
example. Given a grammar, we denote the space
of inside trees by T and the space of outside trees
by O.

3 Clustering Algorithm for Estimating
L-PCFGs

We assume two feature functions, φ : T → Rd

and ψ : O → Rd′ , mapping inside and outside
trees, respectively, to a real vector. Our training
data consist of examples (a(i), t(i), o(i), b(i)) for
i ∈ {1 . . .M}, where a(i) ∈ N ; t(i) is an inside
tree; o(i) is an outside tree; and b(i) = 1 if a(i) is
the root of tree, 0 otherwise. These are obtained
by splitting all trees in the training set into inside
and outside trees at each node in each tree. We
then define Ωa ∈ Rd×d′ :

Ωa =

∑M
i=1[[a

(i) = a]]φ(t(i))(ψ(o(i)))>∑M
i=1[[a

(i) = a]]
(1)

This matrix is an empirical estimate for the
cross-covariance matrix between the inside trees
and the outside trees of a given nonterminal a. An
inside tree and an outside tree are conditionally in-
dependent according to the L-PCFG model, when
the latent state at their connecting point is known.
This means that the latent state can be identified
by finding patterns that co-occur together in in-
side and outside trees – it is the only random vari-
able that can explain such correlations. As such,
if we reduce the dimensions of Ωa using singu-
lar value decomposition (SVD), we essentially get



Inputs: An input treebank with the following additional in-
formation: training examples (a(i), t(i), o(i), b(i)) for i ∈
{1 . . .M}, where a(i) ∈ N ; t(i) is an inside tree; o(i) is
an outside tree; and b(i) = 1 if the rule is at the root of tree,
0 otherwise. A function φ that maps inside trees t to feature-
vectors φ(t) ∈ Rd. A function ψ that maps outside trees o
to feature-vectors ψ(o) ∈ Rd′ . An integer k denoting the
thin-SVD rank. An integer m denoting the number of latent
states.

Algorithm:
(Step 1: Singular Value Decompositions)

• Calculate SVD on Ωa to get Ûa ∈ R(d×k) and V̂ a ∈
R(d′×k) for each a ∈ N .

(Step 1: Projection)

• For all i ∈ [M ], compute y(i) = (Ûai)>φ(t(i)) and
z(i) = (V̂ ai)>ψ(o(i)).

• For all i ∈ [M ], set x(i) to be the concatenation of y(i)

and z(i).

(Step 2: Cluster Projections)

• For all a ∈ N , cluster the set {x(i) | a(i) = a} to
get a clustering function γ : R2k → [m] that maps a
projected vector x(i) to a cluster in [m].

(Step 3: Compute Final Parameters)

• Annotate each node in the treebank with γ(x(i)).

• Compute the probability of a rule p(a[h1] →
b[h2] c[h3] | a[h1]) as the relative frequency of its ap-
pearance in the cluster-annotated treebank.

• Similarly, compute the root probabilities π(a[h]) and
preterminal rules p(a[h]→ x | a[h]).

Figure 2: The clustering estimation algorithm for
L-PCFGs.

representations for the inside trees and the outside
trees that correspond to the latent states.

This intuition leads to the algorithm that appears
in Figure 2. The algorithm we describe takes as in-
put training data, in the form of a treebank, decom-
posed into inside and outside trees at each node in
each tree in the training set.

The algorithm first performs SVD for each of
the set of inside and outside trees for all nontermi-
nals.1 This step is akin to CCA, which has been
used in various contexts in NLP, mostly to derive
representations for words (Dhillon et al., 2015;
Rastogi et al., 2015). The algorithm then takes
the representations induced by the SVD step, and

1We normalize features by their variance.

clusters them – we use k-means to do the clus-
tering. Finally, it maps each SVD representation
to a cluster, and as a result, gets a cluster identi-
fier for each node in each tree in the training data.
These clusters are now treated as latent states that
are “observed.” We subsequently follow up with
frequency count maximum likelihood estimate to
estimate the probabilities of each parameter in the
L-PCFG.

Consider for example the estimation of rules of
the form a→ x. Following the clustering step we
obtain for each nonterminal a and latent state h a
set of rules of the form a[h] → x. Each such in-
stance comes from a single training example of a
lexical rule. Next, we compute the probability of
the rule a[h] → x by counting how many times
that rule appears in the training instances, and nor-
malize by the total count of a[h] in the training
instances. Similarly, we compute probabilities for
binary rules of the form a→ b c.

The features that we use for φ and ψ are sim-
ilar to those used in Cohen et al. (2013). These
features look at the local neighborhood surround-
ing a given node. More specifically, we indicate
the following information with the inside features
(throughout these definitions assume that a → b c
is at the root of the inside tree t):

• The pair of nonterminals (a, b). E.g., for the
inside tree in Figure 1 this would be the pair
(VP, V).
• The pair (a, c). E.g., (VP, NP).
• The rule a→ b c. E.g., VP→ V NP.
• The rule a → b c paired with the rule at the

node b. E.g., for the inside tree in Figure 1
this would correspond to the tree fragment
(VP (V saw) NP).
• The rule a → b c paired with the rule at the

node c. E.g., the tree fragment (VP V (NP D
N)).
• The head part-of-speech of t paired with a.

E.g., the pair (VP, V).
• The number of words dominated by t paired

with a. E.g., the pair (VP, 3).

In the case of an inside tree consisting of a sin-
gle rule a→ x the feature vector simply indicates
the identity of that rule.

For the outside features, we use:

• The rule above the foot node. E.g., for the
outside tree in Figure 1 this would be the rule



S→ NP VP∗ (the foot nonterminal is marked
with ∗).
• The two-level and three-level rule fragments

above the foot node. These features are ab-
sent in the outside tree in Figure 1.
• The label of the foot node, together with the

label of its parent. E.g., the pair (VP, S).
• The label of the foot node, together with the

label of its parent and grandparent.
• The part-of-speech of the first head word

along the path from the foot of the outside
tree to the root of the tree which is different
from the head node of the foot node.
• The width of the spans to the left and to the

right of the foot node, paired with the label of
the foot node.

Other Spectral Algorithms The SVD step on
the Ωa matrix is pivotal to many algorithms, and
has been used in the past for other L-PCFG esti-
mation algorithms. Cohen et al. (2012) used it for
developing a spectral algorithm that identifies the
parameters of the L-PCFG up to a linear transfor-
mation. Their algorithm generalizes the work of
Hsu et al. (2009) and Bailly et al. (2010).

Cohen and Collins (2014) also developed an al-
gorithm that makes use of an SVD step on the
inside-outside. It relies on the idea of “pivot
features” – features that uniquely identify latent
states.

Louis and Cohen (2015) used a clustering al-
gorithm that resembles ours but does not sepa-
rate inside trees from outside trees or follows up
with a singular value decomposition step. Their
algorithm was applied to both L-PCFGs and lin-
ear context-free rewriting systems. Their applica-
tion was the analysis of hierarchical structure of
conversations in online forums.

In our preliminary experiments, we found out
that the clustering algorithm by itself performs
worse than the spectral algorithm of Cohen et al.
(2013). We believe that the reason is two-fold: (a)
k-means finds a local maximum during clustering;
(b) we do hard clustering instead of soft cluster-
ing. However, we detected that the clustering algo-
rithm gives a more diverse set of solutions, when
the features are perturbed. As such, in the next
sections, we explain how to perturb the models we
get from the clustering algorithm (and the spectral
algorithm) in order to improve the accuracy of the
clustering and spectral algorithms.

4 Spectral Estimation with Noise

It has been shown that a diverse set of predictions
can be used to help improve decoder accuracy for
various problems in NLP (Henderson and Brill,
1999). Usually a k-best list from a single model
is used to exploit model diversity. Instead, we es-
timate multiple models, where the underlying fea-
tures are filtered with various noising schemes.

We try three different types of noise schemes for
the algorithm in Figure 2:

Dropout noise: Let σ ∈ [0, 1]. We set each ele-
ment in the feature vectors φ(t) and ψ(o) to
0 with probability σ.

Gaussian (additive): Let σ > 0. For each x(i),
we draw a vector ε ∈ R2k of Gaussians with
mean 0 and variance σ2, and then set x(i) ←
x(i) + ε.

Gaussian (multiplicative): Let σ > 0. For each
x(i), we draw a vector ε ∈ R2k of Gaussians
with mean 0 and variance σ2, and then set
x(i) ← x(i)⊗ (1 + ε), where⊗ is coordinate-
wise multiplication.

Note the distinction between the dropout noise
and the Gaussian noise schemes: the first is per-
formed on the feature vectors before the SVD step,
and the second is performed after the SVD step. It
is not feasible to add Gaussian noise prior to the
SVD step, since the matrix Ωa will no longer be
sparse, and its SVD computation will be computa-
tionally demanding.

Our use of dropout noise here is inspired by
“dropout” as is used in neural network training,
where various connections between units in the
neural network are dropped during training in or-
der to avoid overfitting of these units to the data
(Srivastava et al., 2014).

The three schemes we described were also used
by Wang et al. (2013) to train log-linear models.
Wang et al.’s goal was to prevent overfitting by
introducing this noise schemes as additional reg-
ularizer terms, but without explicitly changing the
training data. We do filter the data through these
noise schemes, and show in §6 that all of these
noise schemes do not improve the performance of
our estimation on their own. However, when mul-
tiple models are created with these noise schemes,
and then combined together, we get an improved
performance. As such, our approach is related to



the one of Petrov (2010), who builds a commit-
tee of latent-variable PCFGs in order to improve a
natural language parser.

We also use these perturbation schemes to cre-
ate multiple models for the algorithm of Cohen et
al. (2012). The dropout scheme stays the same,
but for the Gaussian noising schemes, we follow a
slightly different procedure. After noising the pro-
jections of the inside and outside feature functions
we get from the SVD step, we use these projected
noised features as a new set of inside and outside
feature functions, and re-run the spectral algorithm
of Cohen et al. (2012) on them.

We are required to add this extra SVD step be-
cause the spectral algorithm of Cohen et al. as-
sumes the existence of linearly transformed pa-
rameter estimates, where the parameters of each
nonterminal a is linearly transformed by unknown
invertible matrices. These matrices cancel out
when the inside-outside algorithm is run with the
spectral estimate output. In order to ensure that
these matrices still exactly cancel out, we have to
follow with another SVD step as described above.
The latter SVD step is performed on a dense Ωa ∈
Rm×m but this is not an issue considering m (the
number of latent states) is much smaller than d or
d′.

5 Decoding with Multiple Models

Let G1, . . . , Gp be a set of L-PCFG grammars. In
§6, we create such models using the noising tech-
niques described above. The question that remains
is how to combine these models together to get a
single best output parse tree given an input sen-
tence.

With L-PCFGs, decoding a single sentence re-
quires marginalizing out the latent states to find
the best skeletal tree2 for a given string. Let s be a
sentence. We define t(Gi, s) to be the output tree
according to minimum Bayes risk decoding. This
means we follow Goodman (1996), who uses dy-
namic programming to compute the tree that maxi-
mizes the sum of all marginals of all nonterminals
in the output tree. Each marginal, for each span
〈a, i, j〉 (where a is a nonterminal and i and j are
endpoints in the sentence), is computed by using
the inside-outside algorithm.

In addition, let µ(a, i, j|Gk, s) be the marginal,
as computed by the inside-outside algorithm, for

2A skeletal tree is a derivation tree without latent states
decorating the nonterminals.

the span 〈a, i, j〉 with grammar Gk for string s.
We use the notation 〈a, i, j〉 ∈ t to denote that a
span 〈a, i, j〉 is in a tree t.

We suggest the following three ways for decod-
ing with multiple models G1, . . . , Gp:

Maximal tree coverage: Using dynamic pro-
gramming, we return the tree that is the
solution to:

t∗ = arg max
t

∑
〈a,i,j〉∈t

p∑
k=1

[[〈a, i, j〉 ∈ t(Gk, s)]].

This implies that we find the tree that max-
imizes its coverage with respect to all other
trees that are decoded using G1, . . . , Gp.

Maximal marginal coverage: Using dynamic
programming, we return the tree that is the
solution to:

t∗ = arg max
t

∑
〈a,i,j〉∈t

p∑
k=1

µ(a, i, j|Gk, s).

This is similar to maximal tree coverage, only
instead of considering just the single decoded
tree for each model among G1, . . . , Gp, we
make our decoding “softer,” and rely on the
marginals that each model gives.

MaxEnt reranking: We train a MaxEnt reranker
on a training set that includes outputs from
multiple models, and then, during testing
time, decode with each of the models, and
use the trained reranker to select one of the
parses. We use the reranker of Charniak and
Johnson (2005).3

As we see later in §6, it is sometimes possible to
extract more information from the training data by
using a network, or a hierarchy of the above tree
combination methods. For example, we get our
best result for parsing by first using MaxEnt with
several subsets of the models, and then combining
the output of these MaxEnt models using maximal
tree coverage.

3Implementation: https://github.com/BLLIP/
bllip-parser. More specifically, we used the
programs extract-spfeatures, cvlm-lbfgs and
best-indices. cvlm-lbfgs was used with the default
hyperparameters from the Makefile.



Clustering Spectral (smoothing) Spectral (no smoothing)
MaxTre MaxMrg MaxEnt MaxTre MaxMrg MaxEnt MaxTre MaxMrg MaxEnt

Add 88.68 88.64 89.50 88.20 88.28 88.59 86.72 86.85 87.94
Mul 88.74 88.66 89.89 88.48 88.70 89.46 86.97 86.53 89.04

Dropout 88.68 88.56 89.80 88.64 88.71 89.47 88.37 88.06 89.52
All 88.84 88.75 89.95 88.38 88.75 89.45 87.49 87.00 89.85

No noise 86.48 88.53 (Cohen et al., 2013) 86.47 (Cohen et al., 2013)

Table 1: Results on section 22 (WSJ). MaxTre denotes decoding using maximal tree coverage, MaxMrg denotes decoding
using maximal marginal coverage, and MaxEnt denotes the use of a discriminative reranker. Add, Mul and Dropout denote
the use of additive Gaussian noise, multiplicative Gaussian noise and dropout noise, respectively. The number of models used
in the first three rows for the clustering algorithm is 80: 20 for each σ ∈ {0.05, 0.1, 0.15, 0.2}. For the spectral algorithm,
it is 20, 5 for each σ (see footnotes). The number of latent states is m = 24. For All, we use all models combined from the
first three rows. The “No noise” baseline for the spectral algorithm is taken from Cohen et al. (2013). The best figure in each
algorithm block is in boldface.

6 Experiments

In this section, we describe parsing experiments
with two languages: English and German.

6.1 Results for English
For our English parsing experiments, we use a
standard setup. More specifically, we use the Penn
WSJ treebank (Marcus et al., 1993) for our experi-
ments, with sections 2–21 as the training data, and
section 22 used as the development data. Section
23 is used as the final test set. We binarize the
trees in training data, but transform them back be-
fore evaluating them.

For efficiency, we use a base PCFG without
latent states to prune marginals which receive
a value less than 0.00005 in the dynamic pro-
gramming chart. The parser takes part-of-speech
tagged sentences as input. We tag all datasets us-
ing Turbo Tagger (Martins et al., 2010), trained on
sections 2–21. We use the F1 measure according
to the PARSEVAL metric (Black et al., 1991) for
the evaluation.

Preliminary experiments We first experiment
with the number of latent states for the clustering
algorithm without perturbations. We use k = 100
for the SVD step. Whenever we need to cluster
a set of points, we run the k-means algorithm 10
times with random restarts and choose the clus-
tering result with the lowest objective value. On
section 22, the clustering algorithm achieves the
following results (F1 measure): m = 8: 84.30%,
m = 16: 85.98%, m = 24: 86.48%, m = 32:
85.84%, m = 36: 86.05%, m = 40: 85.43%.
As we increase the number of states, performance
improves, but plateaus at m = 24. For the rest of
our experiments, both with the spectral algorithm
of Cohen et al. (2012) and the clustering algorithm
presented in this paper, we use m = 24.

Figure 3: F1 scores of noisy models. Each data
point gives the F1 accuracy of a single model on
the development set, based on the legend. The x-
axis enumerates the models (80 in total for each
noise scheme).

Compact models One of the advantage of the
clustering algorithm is that it leads to much more
compact models. The number of nonzero param-
eters with m = 24 for the clustering algorithm is
approximately 97K, while the spectral algorithms
lead to a significantly larger number of nonzero
parameters with the same number of latent states:
approximately 54 million.

Oracle experiments To what extent do we get
a diverse set of solutions from the different mod-
els we estimate? This question can be answered by
testing the oracle accuracy in the different settings.
For each type of noising scheme, we generated 80



Method F1

B
es

t Spectral (unsmoothed) 89.21
Spectral (smoothed) 88.87
Clustering 89.25

H
ie

r Spectral (unsmoothed) 89.09
Spectral (smoothed) 89.06
Clustering 90.18

Table 2: Results on section 23 (English). The first
three results (Best) are taken with the best model
in each corresponding block in Table 1. The last
three results (Hier) use a hierarchy of the above
tree combination methods in each block. It com-
bines all MaxEnt results using the maximal tree
coverage (see text).

models, 20 for each σ ∈ {0.05, 0.1, 0.15, 0.2}.
Each noisy model by itself lags behind the best
model (see Figure 3). However, when choosing
the best tree among these models, the additively-
noised models get an oracle accuracy of 95.91%
on section 22; the multiplicatively-noised models
get an oracle accuracy of 95.81%; and the dropout-
noised models get an oracle accuracy of 96.03%.
Finally all models combined get an oracle accu-
racy of 96.67%. We found out that these oracle
scores are comparable to the one Charniak and
Johnson (2005) report.

We also tested our oracle results, comparing
the spectral algorithm of Cohen et al. (2013) to
the clustering algorithm. We generated 20 mod-
els for each type of noising scheme, 5 for each
σ ∈ {0.05, 0.1, 0.15, 0.2}) for the spectral al-
gorithm.4 Surprisingly, even though the spectral
models were smoothed, their oracle accuracy was
lower than the accuracy of the clustering algo-
rithm: 92.81% vs. 95.73%.5 This reinforces two
ideas: (i) that noising acts as a regularizer, and has
a similar role to backoff smoothing, as we see be-
low; and (ii) the noisy estimation for the clustering
algorithm produces a more diverse set of parses
than that produced with the spectral algorithm.

It is also important to note that the high ora-
cle accuracy is not just the result of k-means not

4There are two reasons we use a smaller number of mod-
els with the spectral algorithm: (a) models are not compact
(see text) and (b) as such, parsing takes comparatively longer.
However, in the above comparison, we use 20 models for the
clustering algorithm as well.

5Oracle scores for the clustering algorithm: 95.73% (20
models for each noising scheme) and 96.67% (80 models for
each noising scheme).

finding the global maximum for the clustering ob-
jective. If we just run the clustering algorithms
with 80 models as before, without perturbing the
features, the oracle accuracy is 95.82%, which is
lower than the oracle accuracy with the additive
and dropout perturbed models. To add to this, we
see below that perturbing the training set with the
spectral algorithm of Cohen et al. improves the ac-
curacy of the spectral algorithm. Since the spectral
algorithm of Cohen et al. does not maximize any
objective locally, it shows that the role of the per-
turbations we use is important.

Results Results on the development set are
given in Table 1 with our three decoding methods.
We present the results from three algorithms: the
clustering algorithm and the spectral algorithms
(smoothed and unsmoothed).6

It seems that dropout noise for the spectral algo-
rithm acts as a regularizer, similarly to the back-
off smoothing techniques that are used in Cohen
et al. (2013). This is evident from the two spectral
algorithm blocks in Table 1, where dropout noise
does not substantially improve the smoothed spec-
tral model (Cohen et al. report accuracy of 88.53%
with smoothed spectral model form = 24 without
noise) – the accuracy is 88.64%–88.71%–89.47%,
but the accuracy substantially improves for the un-
smoothed spectral model, where dropout brings an
accuracy of 86.47% up to 89.52%.

All three blocks in Table 1 demonstrate that
decoding with the MaxEnt reranker performs the
best. Also it is interesting to note that our results
continue to improve when combining the output of
previous combination steps further. The best re-
sult on section 22 is achieved when we combine,
using maximal tree coverage, all MaxEnt outputs
of the clustering algorithm (the first block in Ta-
ble 1). This yields a 90.68% F1 accuracy. This is
also the best result we get on the test set (section
23), 90.18%. See Table 2 for results on section 23.

Our results are comparable to state-of-the-art
results for parsing. For example, Sagae and Lavie
(2006), Fossum and Knight (2009) and Zhang et
al. (2009) report an accuracy of 93.2%-93.3% us-

6Cohen et al. (2013) propose two variants of spectral
estimation for L-PCFGs: smoothed and unsmoothed. The
smoothed model uses a simple backedoff smoothing method
which leads to significant improvements over the unsmoothed
one. Here we compare our clustering algorithm against both
of these models. However unless specified otherwise, the
spectral algorithm of Cohen et al. (2013) refers to their best
model, i.e. the smoothed model.



Clustering Spectral (smoothing) Spectral (no smoothing)
MaxTre MaxMrg MaxEnt MaxTre MaxMrg MaxEnt MaxTre MaxMrg MaxEnt

Add 77.34 76.87 80.01 77.76 77.85 78.09 77.44 77.56 77.91
Mul 77.80 77.80 80.34 77.80 77.76 78.89 77.62 77.85 78.94

Dropout 77.37 77.17 80.94 77.94 78.06 79.02 77.97 78.17 79.18
All 77.71 77.51 80.86 78.04 77.89 79.46 77.73 77.91 79.66

No noise 75.04 77.71 77.07

Table 3: Results on the development set for German. See Table 1 for interpretation of MaxTre, MaxMrg, MaxEnt and
Add, Mul and Dropout. The number of models used in the first three rows for the clustering algorithm is 80: 20 for each
σ ∈ {0.05, 0.1, 0.15, 0.2}. For the spectral algorithm, it is 20, 5 for each σ. The number of latent states is m = 8. For All, we
use all models combined from the first three rows. The best figure in each algorithm block is in boldface.

ing parsing recombination; Shindo et al. (2012)
report an accuracy of 92.4 F1 using a Bayesian
tree substitution grammar; Petrov (2010) reports
an accuracy of 92.0% using product of L-PCFGs;
Charniak and Johnson (2005) report accuracy of
91.4 using a discriminative reranking model; Car-
reras et al. (2008) report 91.1 F1 accuracy for a
discriminative, perceptron-trained model; Petrov
and Klein (2007) report an accuracy of 90.1 F1.
Collins (2003) reports an accuracy of 88.2 F1.

6.2 Results for German

For the German experiments, we used the NEGRA
corpus (Skut et al., 1997). We use the same setup
as in Petrov (2010), and use the first 18,602 sen-
tences as a training set, the next 1,000 sentences as
a development set and the last 1,000 sentences as
a test set. This corresponds to an 80%-10%-10%
split of the treebank.

Our German experiments follow the same set-
ting as in our English experiments. For the clus-
tering algorithm we generated 80 models, 20 for
each σ ∈ {0.05, 0.1, 0.15, 0.2}. For the spectral
algorithm, we generate 20 models, 5 for each σ.

For the reranking experiment, we had to modify
the BLLIP parser (Charniak and Johnson, 2005)
to use the head features from the German tree-
bank. We based our modifications on the docu-
mentation for the NEGRA corpus (our modifica-
tions are based mostly on mapping of nontermi-
nals to coarse syntactic categories).

Preliminary experiments For German, we also
experiment with the number of latent states. On
the development set, we observe that the F1 mea-
sure is: 75.04% for m = 8, 73.44% for m = 16
and 70.84% form = 24. For the rest of our experi-
ments, we fix the number of latent states atm = 8.

Oracle experiments The additively-noised
models get an oracle accuracy of 90.58% on
the development set; the multiplicatively-noised

Method F1

B
es

t Spectral (unsmoothed) 80.88
Spectral (smoothed) 80.31
Clustering 81.94

H
ie

r Spectral (unsmoothed) 80.64
Spectral (smoothed) 79.96
Clustering 83.38

Table 4: Results on the test set for the German
data. The first three results (Best) are taken with
the best model in each corresponding block in Ta-
ble 3. The last three results (Hier) use a hierarchy
of the above tree combination methods.

models get an oracle accuracy of 90.47%; and
the dropout-noised models get an oracle accuracy
of 90.69%. Finally all models combined get an
oracle accuracy of 92.38%.

We compared our oracle results to those given
by the spectral algorithm of Cohen et al. (2013).
With 20 models for each type of noising scheme,
all spectral models combined achieve an oracle ac-
curacy of 83.45%. The clustering algorithm gets
the oracle score of 90.12% when using the same
number of models.

Results Results on the development set and on
the test set are given in Table 3 and Table 4 re-
spectively.

Like English, in all three blocks in Table 3, de-
coding with the MaxEnt reranking performs the
best. Our results continue to improve when fur-
ther combining the output of previous combina-
tion steps. The best result of 82.04% on the devel-
opment set is achieved when we combine, using
maximal tree coverage, all MaxEnt outputs of the
clustering algorithm (the first block in Table 3).
This also leads to the best result of 83.38% on the
test set. See Table 4 for results on the test set.

Our results are comparable to state-of-the-art
results for German parsing. For example, Petrov
(2010) reports an accuracy of 84.5% using prod-



uct of L-PCFGs; Petrov and Klein (2007) report
an accuracy of 80.1 F1; and Dubey (2005) reports
an accuracy of 76.3 F1.

7 Discussion

From a theoretical point of view, one of the
great advantages of spectral learning techniques
for latent-variable models is that they yield consis-
tent parameter estimates. Our clustering algorithm
for L-PCFG estimation breaks this, but there is a
work-around to obtain an algorithm which would
be statistically consistent.

The main reason that our algorithm is not a con-
sistent estimator is that it relies on k-means clus-
tering, which maximizes a non-convex objective
using hard clustering steps. The k-means algo-
rithm can be viewed as “hard EM” for a Gaussian
mixture model (GMM), where each latent state is
associated with one of the mixture components in
the GMM. This means that instead of following up
with k-means, we could have identified the param-
eters and the posteriors for a GMM, where the ob-
servations correspond to the vectors that we clus-
ter. There are now algorithms, some of which are
spectral, that aim to solve this estimation problem
with theoretical guarantees (Vempala and Wang,
2004; Kannan et al., 2005; Moitra and Valiant,
2010).

With theoretical guarantees on the correctness
of the posteriors from this step, the subsequent
use of maximum likelihood estimation step could
yield consistent parameter estimates. The con-
sistency guarantees will largely depend on the
amount of information that exists in the base fea-
ture functions about the latent states according to
the L-PCFG model.

8 Conclusion

We presented a novel estimation algorithm for
latent-variable PCFGs. This algorithm is based
on clustering of continuous tree representations,
and it also leads to sparse grammar estimates and
compact models. We also showed how to get a
diverse set of parse tree predictions with this algo-
rithm and also older spectral algorithms. Each pre-
diction in the set is made by training an L-PCFG
model after perturbing the underlying features that
estimation algorithm uses from the training data.
We showed that such a diverse set of predictions
can be used to improve the parsing accuracy of En-
glish and German.
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