

Semi-Supervised Learning of Sequence Models via Method of Moments

EMNLP - Empirical Methods for Natural Language Processing November 1-6, 2016 Austin, Texas

Zita Marinho

André F. T. Martins IST, University of Lisbon IT, IST, University of Lisbon **Robotics Institute, CMU** Unbabel

Shay B. Cohen School of Informatics University of Edinburgh

Noah A. Smith Computer Science & Eng. University of Washington

zmarinho@cmu.edu

andre.martins@unbabel.com

scohen@inf.ed.ac.uk

nasmith@cs.washington.edu

observed data $\{w_1, w_2, w_3, ..., w_6\}$ labels $\{y_1, y_2, y_3, ..., y_6\}$

observed data $\{w_1, w_2, w_3, ..., w_6\}$ labels $\{y_1, y_2, y_3, ..., y_6\}$

observed data $\{w_1, w_2, w_3, ..., w_6\}$ labels $\{y_1, y_2, y_3, ..., y_6\}$

K⁶ possible assignments

observed data $\{w_1, w_2, w_3, ..., w_6\}$ labels $\{y_1, y_2, y_3, ..., y_6\}$

Hidden Markov Model

Learn parameters?

- supervised learning
- unsupervised/semi-supervised (this talk)

Hidden Markov Model

Learn parameters?

- supervised learning
- unsupervised/semi-supervised (this talk)
- model can be extended to include features

Berg-Kirkpatrick, et al, Painless unsupervised learning with features. NAACL HLT, 2010.

Maximum Likelihood estimation Method of Moments estimation (MLE)

(MoM)

- exact inference is hard _____ computationally efficient
- EM sensitive to local optima no local optima (depends on initialization)
- EM expensive in large datasets ____ one pass over data (several inference passes)

Hidden Markov Model

via	via Maximum Likelihood Estimation		via Method of Moments	
	MLE	MLE	MoM	MoM
	HMM	feature HMM	HMM	feature HMM
semi-supervised learning	\checkmark	\checkmark	?	?
unsupervised learning	\checkmark	\checkmark	\checkmark	?

Shay B. Cohen, Karl Stratos, Michael Collins, Dean P. Foster and Lyle Ungar, *Spectral Learning of Latent-Variable PCFGs: Algorithms and Sample Complexity*, JMLR 2014

Arora et al., A Practical Algorithm for Topic Modeling with Provable Guarantees, ICML 2013

Learning sequence models via MoM

Outline

- 1. Learn HMM models via MoM
- 2. Solve a QP
- 3. Extend to feature-based model
- 4. Experiments

Key insight:

1. Conditional Independence: infer label by looking at context

2. Anchor Trick: learn a proxy for labels with anchors

EMNLP 16 | Semi-supervised sequence labeling with MoM |

Anchor Learning

"You shall know a word by the company it keeps." Firth, 1957

word *L* context | label

2. Anchor Trick

Arora et al., A Practical Algorithm for Topic Modeling with Provable Guarantees, ICML 2013

EMNLP 16 | Semi-supervised sequence labeling with MoM |

Anchor Learning

More anchors per label

2. Anchor Trick

more than 1 anchor word — less biased context estimates

EMNLP 16 | Semi-supervised sequence labeling with MoM |

Anchor Learning

How to find **anchors**?

2. Anchor Trick

- small labeled corpus
- small lexicon

unlabeled

Method of moments

co-occurrences in data

Wt-1 Wt Wt+1 Wt+2 context

Andrew fights <u>like</u> Jet Li. Ann sings <u>like</u> me.

eat Fruit like cherry.

Children like ice-cream.

1. Conditional Independence word \perp context | label

labels

 $p(\text{context I word}) = \sum p(\text{label I word}) p(\text{context I label})$

Learning sequence models via MoM

Outline

- 1. Learn HMM models via MoM
- 2. Solve a QP
- 3. Extend to feature-based model
- 4. Experiments

$$\mathbf{y} = \operatorname{argmin} \| \mathbf{q} - \mathbf{R} \mathbf{y} \|^2$$

 $0 \le \mathbf{y} \le 1$
 $\sum_{\text{labels}} \mathbf{y} = 1$

$$\begin{split} \mathbf{\gamma} &= \arg\min \|\|\mathbf{q} - \mathbf{R} \,\mathbf{\gamma} \,\|^2 &+ \lambda \,\|\, \mathbf{\gamma}_{\sup} - \mathbf{\gamma} \,\|^2 \\ &0 \leq \mathbf{\gamma} \leq 1 \\ &\sum_{\text{labels}} \mathbf{\gamma} = 1 \end{split}$$

HMM Learning

words

HMM Learning

Learn parameters ?

Observation Matrix

Transition Matrix

• estimate from labeled data only

Learning sequence models via MoM

Outline

- 1. Learn HMM models via MoM
- 2. Relax the notion of anchors
- 3. Solve a QP
- 4. Experiments

Semi-supervised Twitter POS tagging

2.7 M unlabeled tweets1000-100 labeled tweets12 Universal POS

pprox 200k words

x prt verb verb det adj noun hehe its gonna b a good day

Slav Petrov et al., A Universal Part-of-Speech Tagset, 2011

Owoputi et al., Improved part-of-speech tagging for online conversational text with word clusters. 2013

EMNLP 16 | Semi-supervised sequence labeling with MoM |

Experiments

150 training labeled sequences

1000 training labeled sequences

Learning sequence models via MoM

Outline

- 1. Learn HMM models via MoM
- 2. Relax the notion of anchors
- 3. Extend to feature HMM
- 4. Experiments

- is upper
- is title

ϕ (word)

- is digitis url
- starts #
- \cdot is emoticon

Log-linear model

T. Berg-Kirkpatrick, *Painless unsupervised learning with features*, ACL 2010.

EMNLP 16 | Semi-supervised sequence labeling with MoM |

Extend to features

word *L* context I label

label

Log-linear model

Log-linear model

• solve per feature dimension Φ_j

$$\mathbf{y} = \operatorname{argmin} \| \mathbf{q} - \mathbf{R} \mathbf{y} \|^2 + \lambda \| \mathbf{y}_{sup} - \mathbf{y} \|^2$$

$$\sum_{labels} \mathbf{y} = 1$$

Log-linear model

mean parameters

$$\mu = E[\Phi(word) | label] = \gamma \frac{E[\Phi(word)]}{\rho(label)}$$

Algorithm

Learning sequence models via MoM

Outline

- 1. Learn HMM models via MoM
- 2. Relax the notion of anchors
- 3. Solve a QP
- 4. Experiments

150 training labeled sequences

1000 training labeled sequences

Tagging accuracy vs. labeled training size

1000 training sequences

Conclusions

Y MoM algorithm for semi-supervised learning

flexible method (easy to add supervision)

fast to train (only one pass over the data)

Y particularly good with little supervision

Thank you !

zmarinho@cmu.edu

Support for this research was provided by the Portuguese Science and Technology Foundation (FCT) and CMU Portugal Program, grant SFRH/BD/ 52015/2012. This work has also been partially supported by the European Union under H2020 project SUMMA, grant 688139, and by FCT, through contracts UID/EEA/50008/2013, through the LearnBig project (PTDC/EEISII/7092/2014), and the GoLocal project (grant CMUPERI/TIC/0046/2014).

EMNLP 16 | Semi-supervised sequence labeling with MoM |

zmarinho@cmu.edu