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Abstract

Neural language models are usually trained us-
ing Maximum-Likelihood Estimation (MLE).
The corresponding objective function for MLE
is derived from the Kullback-Leibler (KL) di-
vergence between the empirical probability
distribution representing the data and the para-
metric probability distribution output by the
model. However, the word frequency discrep-
ancies in natural language make performance
extremely uneven: while the perplexity is usu-
ally very low for frequent words, it is espe-
cially difficult to predict rare words. To ad-
dress that, we experiment with several fami-
lies (α, β and γ) of power divergences, gen-
eralized from the KL divergence, for learn-
ing language models with an objective differ-
ent than standard MLE. Intuitively, these di-
vergences should affect the way the proba-
bility mass is spread during learning, notably
by prioritizing performance on high or low-
frequency words. In addition, we implement
and experiment with various sampling-based
objectives, where the computation of the out-
put layer is only done on a small subset of the
vocabulary. They are derived as power gener-
alizations of a softmax approximated via Im-
portance Sampling, and Noise Contrastive Es-
timation, for accelerated learning. Our exper-
iments on the Penn Treebank and Wikitext-2
show that these power divergences can indeed
be used to prioritize learning on the frequent
or rare words, and lead to general performance
improvements in the case of sampling-based
learning.

1 Introduction

Language models are an important component
in many NLP tasks, where they provide prior
knowledge on the language used. They are con-
ditional models that aim to predict the next to-
ken in a sequence: they can be applied to ba-
sic units ranging from individual characters to full

words, each approach coming with its own bene-
fits and limitations (Merity et al., 2018a). Word-
level language models have traditionally been
based on n-gram counts, obtaining good perfor-
mance with smoothing techniques (Kneser and
Ney, 1995; Goodman, 2001). Recently, neural
networks have shown strong results in language
modeling (Bengio et al., 2001), especially recur-
rent neural networks (Mikolov et al., 2011b). As
previous approaches, like maximum entropy mod-
els (Berger et al., 1996), neural language models
are trained via Maximum Likelihood Estimation
(MLE). Thus, their training cost grows linearly
with the number of words in the vocabulary, of-
ten making it prohibitively slow. This motivated a
large amount of research work, bringing a variety
of solutions (Chen et al., 2016).

The large vocabulary sizes encountered in train-
ing corpora arguably stem from the fact that
the frequency distribution of words in a corpus
of natural language follows Zipf’s law (Pow-
ers, 1998). This also implies that the discrep-
ancy between counts of high-frequency and low-
frequency words increases with the size of the cor-
pus, as well as the number of those low-frequency
words. As a consequence, distributed word repre-
sentations of low-frequency words are difficult to
learn. Numerous approaches use decomposition
of words with various sub-word units (Sennrich
et al., 2016; Kim et al., 2016), but the same phe-
nomenon exists for low-frequency subwords. In
order to deal with this issue and to accelerate train-
ing, Grave et al. (2017a) implement a dependency
between embedding sizes and word frequencies in
the output layer, while Baevski and Auli (2019)
apply it to the input layer, comparing the possible
choices of which units to model. Using a different
approach, Gong et al. (2018) attempt to learn word
representations that are less affected by these large
discrepancies in word frequencies, with an adver-



sarial training method to force the model to make
frequent and rare word embeddings hard to differ-
entiate based on word frequency alone.

These improvements have been obtained by ex-
plicitly incorporating in the model different ways
of treating words according to their frequency.
However, learning is always made via (or approx-
imating) Maximum Likelihood Estimation, which
finds the distribution that maximizes entropy sub-
ject to the constraints given by training examples.
In this work, we explore the possibility of affect-
ing how words are learned depending on their fre-
quency by using alternative loss functions. We
specifically explore power divergences, obtained
through various generalizations of the Kullback-
Leibler divergence, which is traditionally used to
obtain the MLE objective function. This is moti-
vated by the intuition that a well-suited power fac-
tor may direct learning towards prioritizing high
or low-frequency words, instead of learning uni-
formally.

In this paper, we derive and experiment with
the objective functions obtained from three power-
divergences: the α, β and γ divergences. We
also derive objective functions for the correspond-
ing generalizations of two sampling-based meth-
ods: an Approximated Softmax obtained with im-
portance sampling, and Noise Contrastive Estima-
tion. We conduct a set of experiments comparing
these objectives and their effect of various parts of
the word frequency distribution, by training and
evaluating models on two corpora: the Penn Tree-
bank and Wikitext-2. Our experiments show that
depending on the vocabulary used and the choice
of power divergence, it is indeed possible to gear
learning to focus on the most frequent or infre-
quent words. We also observe that, while the
MLE gives the best overall performance for exact
objectives, derived from the KL-divergence, our
generalized objectives yield perplexity improve-
ments compared to baselines for both sampling-
based methods, up to 1 point in perplexity on both
corpora.

2 Background

Language modeling aims to learn a probability
distribution over a sequence of tokens from a fi-
nite target vocabulary Y . Such a distribution is
decomposed into a product of conditional distribu-
tions of tokens over Y given the previous tokens in
the sequence. Hence, we learn a parametric model

of the form pθ(y|x), where x ∈ X represents the
sequence of previous tokens, y is a target label be-
longing to Y , and θ is the set of model parameters.
They are obtained via maximum likelihood esti-
mation (MLE), which consists in minimizing the
negative likelihood objective function:

NLL(θ) = −
∑

(x,y)∈D

log pθ(y|x)

over examples (x, y) corresponding to sequences
of tokens drawn from the data D. This can be
seen as minimizing the Kullback-Leibler diver-
gence between the parametrized probability distri-
bution pθ that we are learning and the distribution
pD described by our training data:

DKL(pD||pθ) =
∑

(x,y)∈X×Y

pD(y|x) log
pD(y|x)
pθ(y|x)

,

since pD(y|x) = 1 if the sequence (x, y) ap-
pears in the training data, and equals 0 other-
wise. Hence, the set of parameters θ∗ minimizing
DKL(pD||pθ) is the maximum likelihood distribu-
tion on the training data D.

In this work, we will use several classes of di-
vergences. A measure of discrepancy D between
two probability densities p and q is a divergence if
D(p||q) ≥ 0 with equality if and only if p = q.1 In
the following, we will derive an objective function
from a divergence D with the data distribution as
first argument, and the second being the distribu-
tion of the parametric model:

Obj(θ) = D(pD||pθ).

3 Power Divergences

A large number of divergence measures has been
introduced for a variety of applications (Bas-
seville, 2013). Several families of divergences are
notably obtained from generalizing the Kullback-
Leibler divergence by using a generalized loga-
rithm function, which is a power function:

logα(x) =
1

1− α
(x1−α − 1), (1)

defined by a parameter α, and that converges to the
logarithm as α → 1. In this section, we will con-
sider three families of divergences that can be gen-
erated from this function; see Cichocki and Amari

1Divergences are not necessarily metrics: they are de-
fined only by non-negativity and positive definiteness.



(2010) for a review. For now, they are to be applied
only to normalized probability densities, implying
that

∑
y∈Y

pθ(y|x) = 1.

3.1 α-divergences

The notion of α-divergence was introduced by
Csiszar (1967). The full expression of Dα(p||q)
is shown in Table 1. It is a special case of f -
divergence (Ali and Silvey, 1966), derived from a
standardized version of the generalized logarithm2

(Eq. 1). Applying α-divergences to parameter es-
timation generalizes MLE, and can be shown to
have similar properties, as consistency and asymp-
totic normality of the estimation error (Keziou,
2003). Intuitively, the choice of α will impact the
importance of the likelihood ratio p/q: while the
limiting cases α→ 1 and α→ 0 are the Kullback-
Leibler DKL(p||q) and the reverse Kullback-
Leibler divergencesDKL(q||p), having α ≥ 1 will
make learning zero-avoiding3 for q, and α ≤ 0
zero-forcing4 (Minka, 2005). We should also note
that Dα(p||q) = D1−α(q||p). When working with
normalized densities, the α-divergence is linked
to the Rényi divergence (Rényi, 1961), which has
been used to measure domain similarity (Van Asch
and Daelemans, 2010). Given that we are trying to
learn from conditional distributions which are zero
everywhere except for one target token, we are in-
terested in experimenting with values of α > 1,
which should push the model towards generaliz-
ing, while having α ∈ (0.5, 1) should force the
model to concentrate probability mass on training
examples. Since we are here working with nor-
malized distribution, we obtain the following ob-
jective:

Objα(θ) =
1

α(α− 1)

∑
(x,y)∈D

(pθ(y|x))1−α .

3.2 β-divergences

The β-divergence, also called density power di-
vergence was introduced by Basu et al. (1998)
as a robust estimation method, which showed it
to be consistent for parameter estimation, with

2α and β-divergences are related to the Tsallis entropy,
which can be seen as a deformation of the Shannon entropy
using this same generalized logarithm: see Appendix A from
Cichocki and Amari (2010) . Recently, Blondel et al. (2018)
showed how to build Fenchel-Young Losses from the same
Tsallis entropies.

3Having pi > 0 will enforce qi > 0.
4Having pi = 0 will enforce qi = 0.

asymptotic normality of the estimation error (Basu
et al., 1998, Theorem 2). The full expression of
Dβ(p||q) is shown in Table 1.5 It can be seen as a
Bregman divergence (Bregman, 1967) also derived
using the generalized logarithm2 (Eq. 1). The mo-
tivation is to obtain divergences that are robust to
outliers, which is the case for values of β > 1;
choosing β = 2 gives us the L2-loss, while β → 1
gives the Kullback-Leibler divergence DKL(p||q)
as a limiting case. Hence, choosing a value close
to 1 while larger is supposed to provide a com-
promise between the efficiency of the Kullback-
Leibler divergence and the robustness of the L2-
loss. Similarly, we can expect to give more im-
portance to outliers (which we suppose to be the
low-frequency tokens) by choosing β < 1. The
objective becomes:

Objβ(θ) =
1

β(β − 1)
×

∑
(x,y)∈D

(β − 1)
∑
y′∈Y

(pθ(y
′|x))β − β(pθ(y|x))β−1

 .

3.3 γ-divergences

Eguchi and Kato (2010) introduced the γ-
divergence as a modification of the β-divergence,
with the specific goal of obtaining a scale-
invariant version of the robust β-divergence,6 also
showing it to be consistent for parameter esti-
mation, with asymptotic normality of the estima-
tion error (Eguchi and Kato, 2010, Section 3).
This divergence has notably been used for the es-
timation of parameters without normalizing the
output probability distribution (Takenouchi and
Kanamori, 2015).7 The general expression of the
γ-divergence is shown in Table 1. While the use of
the log non-linearity makes this divergence non-
separable, which at first glance could be thought
to complicate computation in practice, our moti-
vation for using it is its scale-invariance, which we
will discuss in Section 4.3. Applied to our prob-

5For readability, we keep the notation and values used in
Cichocki and Amari (2010) instead of Basu et al. (1998).

6‘Scale-invariance’ here means that the divergence
should remain unchanged when one or both of the measures
it is applied to are multiplied by scalars.

7However, this particular method is not suitable in our
case because of the sparsity of our data.



lem, the objective becomes:

Objγ(θ) =
∑

(x,y)∈D

log pθ(y|x)− 1

γ
log

∑
y′∈Y

(pθ(y
′|x))γ

 .
(2)

4 Accelerating Learning

In order to use the previously defined objec-
tives, we need to compute the model probabilities
pθ(y|x), which are usually obtained using a soft-
max function:

pθ(y|x) =
exp (sθ(x, y))∑

y′∈Y exp (sθ(x, y
′))

applied on scores (or logits) sθ(x, y′) output by
the model for every possible target token y′ ∈
Y . However, as explained earlier, Y can be very
large, hence computing all the scores and sum-
ming them is extremely slow. We choose to fol-
low the strategies employed by Jozefowicz et al.
(2016): approximating the softmax using impor-
tance sampling (Bengio and Sénécal, 2003, 2008),
and Noise Contrastive Estimation (NCE; Gutmann
and Hyvärinen 2010; Mnih and Teh 2012). Be-
sides, the divergences presented in Section 3 can
be applied to positive measures. Hence, a possible
third direction is to instead approximate the ob-
jectives to the un-normalized model distributions.
All the objectives presented in this section are ex-
plained in Appendix A.4.

4.1 Approximated softmax

Plugging the first solution into our objectives is
straightforward: using self-importance sampling
to approximate directly the multinomial classifi-
cation probability, we compute pθ via an approxi-
mated softmax:8

pθ(y|x) ≈
exp (sθ(x,y))

pn(y)

exp (sθ(x,y))
pn(y)

+
k∑
i=1
ŷi∼pn

exp (sθ(x,ŷi))
pn(ŷi)

where pn is an auxiliary distribution chosen to re-
flect the training data while still being easy to sam-
ple from, and k � |Y| is the number of samples
drawn.

8The same objective is called ‘Ranking NCE’ by Ma and
Collins (2018).

4.2 Adapting Noise-Contrastive Estimation
Noise-Contrastive Estimation consists of training
the model for a surrogate binary classification task
where, given examples from the mixture:

1

k + 1
pD +

k

k + 1
pn

we learn to discriminate between examples com-
ing from data and samples coming from the auxil-
iary noise distribution pn. Minimizing the NCE
loss function has been shown to be equivalent
to minimizing a Bregman divergence (Gutmann
and Hirayama, 2011); however, the transformation
that we need to apply to the associated generating
function (Pihlaja et al., 2012) in order to obtain a
power divergence is not straigthforward. Instead,
with the posterior classification probability:

pθ(C = True|y, x) = pθ(y|x)
pθ(y|x) + kpn(y)

(3)

Noting pCθ the positive measure on X × Y:

pCθ : (x, y)→ pθ(C = True|y, x)

we can show that the NCE objective function can
be derived from the following expression:9

DKL(p
C
D||pCθ ) +DKL(1− pCD||1− pCθ )

Knowing this, we simply need to replace DKL by
the other divergences to derive the α, β and γ ob-
jective functions associated to this surrogate clas-
sification task. It is interesting to note that the
power transformations will here be applied on the
posterior classification probabilities pCθ instead of
categorical probabilities pθ.

4.3 Working With Positive Measures
The three divergences presentend in Section 3 are
defined on positive measures: in theory, we can
simply use the exp function on the scores sθ and
do not need to normalize them:

Obj(θ) = D(pD|| exp (sθ))

However, neither the α and β divergences are scale
invariant (see right column of Table 1 and Ci-
chocki and Amari 2010). We can show that work-
ing with an un-normalized model distribution will,
in both those cases, give an objective proportional
to the scale of the model, allowing the divergence

9The full derivation is given in Appendix A.2.



Expression Scaling properties

α ∈ R \ {0, 1} 1
α(α−1)

n∑
i=1

[
pαi q

1−α
i − αpi + (α− 1)qi

]
Dα(c× p||c× q) = c×Dα(p||q)

β ∈ R \ {0, 1} 1
β(β−1)

n∑
i=1

[
pβi + (β − 1)qβi − βpiq

β−1
i

]
Dα(c× p||c× q) = cβ ×Dα(p||q)

γ ∈ R \ {0, 1} 1
γ(γ−1) log

n∑
i=1
pγi +

1
γ log

n∑
i=1
qγi −

1
γ−1 log

n∑
i=1
piq

γ−1
i Dγ(c1 × p||c2 × q) = Dγ(p||q)

Table 1: Complete expressions of α, β, and γ divergences between two positive measures p = (pi)
n
i=1 and

q = (qi)
n
i=1 on Rn+, as well as their scaling properties. Note that the α-divergence simplifies if we restrict them to

the set of normalized probability densities (if
∑n
i=1 pi =

∑n
i=1 qi = 1).

9.0

9.5

10.0

10.5

11.0

11.5

Lo
w

 fr
eq

ue
nc

y 
bi

n

=0.9
KL

=1.1

9.0

9.5

10.0

10.5

11.0

11.5 =0.9
KL

=1.1

9.0

9.5

10.0

10.5

11.0

11.5 =0.9
KL

=1.1

0 20 40 60 80 100

4.4

4.6

4.8

5.0

5.2

C
om

pl
et

e 
vo

ca
bu

la
ry

0 20 40 60 80 100

4.4

4.6

4.8

5.0

5.2

0 20 40 60 80 100

4.4

4.6

4.8

5.0

5.2

V
al

id
at

io
n 

C
ro

ss
-e

nt
ro

py

Training epochs

Figure 1: Validation cross-entropy values obtained during the beginning of training models with Objα (left), Objβ
(center) and Objγ (right) on the PTB with a full vocabulary. Words are grouped into 5 buckets of equal size,
following their frequencies. On the top is shown the cross-entropy obtained on the bucket of lowest frequency
words, while the global cross-entropy is displayed on the bottom.

to be minimized by minimizing the scale alone,
with no actual learning.10 This is not an issue
for the γ-divergence, since Dγ(pD|| exp (sθ)) =
Dγ(pD||pθ). Hence, the objective of Eq. 2 may be
simplified as following:

Objγ(θ) =
∑

(x,y)∈D

sθ(x, y)− 1

γ
log

∑
y′∈Y

exp (γsθ(x, y
′))

 .

We can further accelerate learning by using impor-
tance sampling on the second term, and because
of the logarithm applied to the sum, we obtain an
objective that is equivalent to composing the ap-
proximated softmax with γ-divergence, as can be
seen in Appendix A.4.

10The proof is given in Appendix A.1.

5 Experiments

Our goal is to compare the effect of the various ob-
jective functions we proposed in Sections 3 and 4,
and especially study how the values of α, β and
γ affect learning and performance, overall as well
as on low-frequency words. Since each model
is trained with a different objective function, the
training scores are not comparable. Hence, we use
the validation cross-entropy and perplexity at each
epoch as a way to track progress during training.

5.1 Datasets

We perform our experiments on two widely used,
reasonably sized datasets: the Penn Treebank
(PTB; Mikolov et al. 2011a) and WikiText-2
(WT2; Merity et al. 2017). The PTB, heavily pre-
processed, retains the 10k most frequent words
in its vocabulary, while the others tokens are re-
placed by a common <unk> token. The WT2,



about two times larger, retains words that appear
at least three times in the training data in its vo-
cabulary, which makes it 33, 278 words. To study
the impact of our various objective functions on
a vocabulary containing very rare words, we also
experiment with a version on the PTB to which
we only apply limited preprocessing, allowing us
to keep its full training vocabulary, which contains
39030 words.

5.2 Experimental setup

We based our setup on the ASGD weight-dropped
LSTM (AWD-LSTM) models of Merity et al.
(2018b), since to the best of our knowledge they
give state-of-the-art results on the PTB and WT2
for models that are build with a softmax output
layer and do not use any adaptative method (as
the pointer sentinel LSTM (Merity et al., 2017),
the neural cache (Grave et al., 2017b) and the dy-
namic evaluation (Krause et al., 2018)). Our mod-
els11, replications of their 3-layer LSTMs with tied
input and output representations, were built using
their implementation.12 For each dataset, we fol-
low their choice of hyperparameters, only modify-
ing the objective functions.

For our sampling-based objectives, we use k =
1024 samples, and the unigram distribution as
pn. In the case of objectives derived from bi-
nary NCE, to avoid issues with the phenomenon
of self-normalization and consistency issues (Ma
and Collins, 2018) we chose to use blackout (Ji
et al., 2015). Indeed, this method amounts to using
a noise distribution which depends on the model
probabilities, making the normalization term dis-
appear from the posterior classification probabili-
ties of Eq. 3. Hence, we have an objective func-
tion that is fast to compute without any supple-
mentary assumption, and the negative samples are
still drawn from the unigram distribution. For both
AS and NCE, in our setting, the computation time
is reduced to about 40% of the time taken by MLE
on the WT2, and 50% on the PTB.

6 Results and discussion

We turn to describe the results of our experiments.

11https://github.com/MatthieuLabeau/
power-divergences-LM

12https://github.com/salesforce/
awd-lstm-lm.

6.1 Qualitative results on the full vocabulary
PTB

To observe the behavior of the proposed objectives
for various choices of α, β and γ, we plot the val-
idation cross-entropy at the beginning of learning
of models on PTB equipped with a full training
vocabulary. We choose values of 0.9 and 1.1 for
the power parameters, to experiment with an ob-
jective on each side of the baseline MLE objec-
tive. We split the words according to frequency
into 5 buckets, in order for the buckets to represent
have equal size based on word counts, and dis-
play both the global cross-entropy and the cross-
entropy on the lowest frequency bin in Figure 1.
A value of α > 1 seems to initially behave bet-
ter, especially for rare words. This could be ex-
pected: intuitively, these values of α should make
the model ‘stretch’ the probability mass. However,
as learning progresses, this phenomenon lessens,
and the performance on rare words gets worse. A
value of β < 1, supposed to make the model less
robust to outliers, seems to make learning faster
initially, particularly on rare words, but again im-
provements lessen. Choosing α < 1 or β > 1
gives a worse cross-entropy overall. This ‘in-
verted’ similarity between the behaviors induced
by choices of α and β, and the links between the
two divergences, have been explored by Patra et al.
(2013). Finally, choosing γ > 1 gives very inter-
esting results, allowing for a better cross-entropy
on rare words while retaining the same overall per-
formance than MLE.

6.2 Penn Treebank and WikiText-2
In this section, we present the results of ex-
ploratory experiments. We fully train models with
the proposed objectives, for a variety of power pa-
rameters. For the PTB, the final validation per-
plexities are presented in Table 2, while we present
the final validation cross-entropies for the objec-
tives derived from MLE, on 5 frequency buckets,
in Figure 2. For the WT2, they are shown in Ta-
ble 3 and Figure 3.

With exact objectives: for both corpora, the re-
sults for the high and low-frequency buckets seem
to confirm that values of α, γ that are smaller and
larger than 1 can help prioritizing learning towards
the frequent and rare words. The effect of β de-
pending on frequency seems lighter, especially on
the PTB: we hypothesize that this is due to the vo-
cabulary being cut short, and containing no very

https://github.com/MatthieuLabeau/power-divergences-LM
https://github.com/MatthieuLabeau/power-divergences-LM
https://github.com/salesforce/awd-lstm-lm
https://github.com/salesforce/awd-lstm-lm
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Figure 2: Validation cross-entropy values for the best epoch obtained
for models trained with Objα (top), Objβ (middle) and Objγ (bot-
tom) on the PTB. Words are grouped into 5 buckets of equal size,
following their frequencies. We display values for each bucket from
the most frequent words (left) to less frequent ones (right).

Objective Objα Objβ Objγ

MLE

0.9 65.8 63.3 62.3
0.99 60.7 61.0 60.6

1.0 60.1

1.01 60.8 61.1 61.0
1.1 63.0 63.9 63.3

AS

0.5 147.0 87.1 113.8
0.9 61.3 62.8 61.0
0.99 61.7 61.7 61.6

1.0 61.7

1.01 61.8 61.6 62.0
1.1 65.6 61.6 64.1
1.5 97.7 127.6 81.7

NCE

0.5 1407.5 88.0 117.2
0.9 61.4 62.6 61.8
0.99 61.1 61.4 61.7

1.0 61.2

1.01 61.3 61.1 61.8
1.1 64.4 61.0 64.4
1.5 97.9 123.7 81.2

Table 2: Best validation perplexities
obtained on the PTB withObjα, Objβ ,
and Objγ , derived from MLE, and ap-
proximated objectives AS and NCE,
on single models with the same intial-
ization.

Objective Objα Objβ Objγ

Dataset PTB WT2 PTB WT2 PTB WT2

0.9
65.8 75.8 63.3 68.3 63.2 70.1
39.7 42.4 107.9 130.0 62.4 69.0

0.99
60.7 66.5 61.0 65.6 60.6 65.9
57.9 63.0 64.0 69.3 60.6 65.9

1.0 60.1 64.9 60.1 64.9 60.1 64.9

1.01
60.8 65.6 61.1 65.4 61.0 66.0
63.8 69.3 58.3 61.8 61.0 66.0

1.1
63.0 66.7 63.9 68.3 63.3 68.1
99.8 114.3 40.7 45.2 62.5 67.0

Table 4: Final validation results obtained on the PTB
and WT2, with the exact objectives Objα, Objβ , and
Objγ , derived from MLE. In each cell we give on top
the validation perplexity, and below, the ‘counterpart’
to perplexity corresponding to the training objective —
which is the value being optimized. Each color corre-
sponds to a different objective: values cannot be com-
pared for varying α, β and γ.

rare words, which reduces the discrepancies be-
tween higher and lower scoring examples. How-
ever, no objective seems to be able to improve on
MLE for overall performance.

To explain these results, we may argue that per-

plexity is a biased measure as MLE directly opti-
mizes it. Hence, we compute the ‘counterparts’ to
perplexity corresponding to each objective. Equiv-
alently to perplexity for MLE, they are directly op-
timized by their respective objectives, and should
decrease to 1 as the model distribution gets closer
to the data distribution. Again, since they vary for
each objective, they are not comparable between
themselves and with perplexity. We display these
values for our models trained with exact objectives
in Table 4. As α, β and γ are closer to 1, these val-
ues get closer to the perplexity of the model. Be-
sides, they are especially close across all values of
γ: we can assume that this indicates that the corre-
sponding Objγ are ‘closer’ to the MLE objective.
However, tracking these values during training13

shows that they all behave very similarly to per-
plexity.

With approximated objectives: for objectives
derived from AS and NCE, we observe far less
impact of the choice of the power parameter on
frequent or rare words,14 which is probably due
to the fact that only a small subset of the vocab-

13See Appendix A.3.
14See figures in Appendix A.5.
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Figure 3: Validation cross-entropy values for the best epoch obtained
for models trained with Objα (top), Objβ (middle) and Objγ (bot-
tom) on the WT2. Words are grouped into 5 buckets of equal size,
following their frequencies. We display values for each bucket from
the most frequent words (left) to less frequent ones (right).

Objective Objα Objβ Objγ

MLE

0.9 75.8 68.3 70.1
0.99 66.5 65.6 65.9

1.0 64.9

1.01 65.6 65.4 66.0
1.1 66.7 68.3 68.1

AS

0.5 203.6 82.1 191.6
0.9 69.9 65.6 68.0
0.99 67.4 65.0 65.1

1.0 65.3

1.01 67.5 65.1 65.0
1.1 69.8 67.8 64.8
1.5 100.7 211.1 78.1

NCE

0.5 2401.2 84.1 193.1
0.9 70.6 66.6 69.7
0.99 66.8 65.7 67.5

1.0 65.8

1.01 65.8 65.9 65.8
1.1 64.7 68.3 65.4
1.5 83.8 196.4 77.3

Table 3: Best validation perplexi-
ties obtained on the WT2 with Objα,
Objβ , and Objγ , derived from MLE,
and approximated objectives AS and
NCE, on single models with the same
initialization.
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Figure 4: Validation and test perplexities obtained for particular values of α, β or γ with sampling-based objectives
in 4 possible pairings of AS and NCE-based objectives trained on the PTB and WT2, on single models with the
same initialization.

ulary is updated during learning — and this sub-
set is drawn according to word frequency. How-
ever, some objectives provide modest improve-
ments over the corresponding KL-based baseline.

6.3 Searching for the Optimal Power
Parameter

In order to verify the potential benefits of our gen-
eralization of sampling-based objectives, we use
these preliminary results to search for the ‘best’
power parameter, and check that improvements
are consistent for several versions of the model,



Objective Validation Test

PTB

MLE 60.7 58.6

AS
KL 62.2 59.8
α = 0.95 61.2 58.9

NCE
KL 61.5 59.2
β = 1.1 61.2 59.0

WT2

MLE 65.5 62.8

AS
KL 65.1 62.6
γ = 1.075 64.8 62.1

NCE
KL 65.8 63.4
α = 1.1 64.7 62.0

Table 5: Best validation and test perplexities obtained
on the best performing configurations of power param-
eter for both corpora and each category of objectives,
averaged over 5 models with different initializations.

initialized with different seeds. This search is
shown in Figure 4 for 4 different configurations
chosen using the preliminary results presented ear-
lier. In each case, we can see that the perplexity
seems to decrease, reach a minimum, and then in-
crease monotonously. While verifying this would
require a deeper investigation, we can make the
hypothesis that the sampling procedure induces
noise that some of our proposed objectives can
be better suited for. In Table 5, we present per-
plexity results averaged for different seeds, in or-
der to check that model initialization does not dis-
cernibly affect these improvements. They show
gains of up to 1 point in perplexity, and a slight im-
provement over the MLE baseline for WT2, con-
firming the results obtained on a single model.
However, it is tedious to find the optimal power
parameter for a given configuration, and we can
expect it to shift sensibly when hyper-parameters
are modified. The size of the vocabulary and the
distribution of word frequencies should intuitively
have the biggest influence, as we can see that the
behavior of α, β and γ is quite different on the
PTB and WT2. In general, finding the optimal di-
vergence with the optimal parameter for a given
problem is very difficult. Methods for doing so
have only been recently explored; for example,
Dikmen et al. (2015) use the Tweedie Likelihood
to find the optimal β, which can lead to the optimal
α and γ.

7 Conclusion

We explore the use of generalizations of KL-
divergence into power (α, β and γ) divergences

for training language models. We derive exact
but also approximated objectives, based on an ap-
proximated softmax using importance sampling,
and noise contrastive estimation. We show that
in the case of exact objectives, a well-chosen γ-
divergence can be used to prioritize learning low
or high-frequency words. In the case of approxi-
mated objective, we show that our proposed objec-
tives can improve on perplexity, and demonstrate
it is the case for several configurations. Further
research should investigate the potential gains of
using γ-divergences for appropriate downstream
tasks.
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MichèLe Basseville. 2013. Review: Divergence mea-
sures for statistical data processing-an annotated
bibliography. Signal Process., 93(4):621–633.

Ayanendranath Basu, Ian R. Harris, Nils L. Hjort,
and M. C. Jones. 1998. Robust and efficient esti-
mation by minimising a density power divergence.
Biometrika, 85(3):549–559.
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A Supplemental Material

A.1 Scaling properties of power objectives

The scaling properties of both α and β-divergence,
shown in Table 1, imply that if we do not enforce
the scale of the model to be 1 by normalizing it,
the model will be unable to learn. Indeed, we can
rewrite Dα(pD||exp (sθ)) as:

Dα(pD||exp (sθ))
= Dα(pD||pθ × Zθ)

=
1

α(α− 1)

∑
(x,y)∈D

(Zθ(x))
1−α (pθ(y|x))1−α

That makes the objective possible to minimize by
simply minimizing Zθ(x)∀x ∈ X — which does
not imply any learning from the data. It is also the
case with Dβ(pD||exp (sθ)):

Dβ(pD||exp (sθ))
= Dβ(pD||pθ × Zθ)

=
1

β(β − 1)

∑
(x,y)∈D

[
−β (Zθ(x))β−1 (pθ(y|x))β−1

+ (Zθ(x))
β
∑
y′∈Y

(pθ(y
′|x))β


=

1

β(β − 1)

∑
(x,y)∈D

(Zθ(x))
β−1×

−β(pθ(y|x))β−1 + Zθ(x)
∑
y′∈Y

(pθ(y
′|x))β


However, it is easy to derive that it is not the case
for the γ-divergence:

Dγ(pD||pθ)

=
∑

(x,y)∈D

log pθ(y|x)− 1

γ
log

∑
y′∈Y

(
pθ(y

′|x)
)γ

=
∑

(x,y)∈D

[
sθ(x, y)− logZθ(x)

−1

γ
log

1

(Zθ(x))
γ

∑
y′∈Y

exp (γsθ(x, y
′))


=

∑
(x,y)∈D

sθ(x, y)− 1

γ
log

∑
y′∈Y

exp (γsθ(x, y
′))


= Dγ(pD||exp (sθ))

A.2 NCE as a binary divergence
The divergence DKL(p

C
D||pCθ ) can be written as:

DKL(p
C
D||pCθ ) =

∑
(x,y)∈X×Y

pCD(x, y) log
pCD(x, y)

pCθ (x, y)

=
∑

(x,y)∈X×Y

pD(y|x)
pD(y|x) + kpn(y)

×

[
log

pD(y|x)
pD(y|x) + kpn(y)

− log
pθ(y|x)

pθ(y|x) + kpn(y)

]
We can remove the first term, which is not depen-
dent on θ, and will not intervene in the objective
function. If we do the same with the divergence
DKL(1 − pCD||1 − pCθ ) and add them, we obtain
the following:

−
∑

(x,y)∈X×Y

(
pD(y|x)

pD(y|x) + kpn(y)
log

pθ(y|x)
pθ(y|x) + kpn(y)

+
kpn(y)

pD(y|x) + kpn(y)
log

kpn(y)

pθ(y|x) + kpn(y)

)
With NCE, we consider that examples are coming
from the mixture 1

k+1pD+
k
k+1pn, instead of being

uniformly spread, which transforms the objective
into:

−
∑

(x,y)∈X×Y

(
pD(y|x) log

pθ(y|x)
pθ(y|x) + kpn(y)

+kpn(y) log
kpn(y)

pθ(y|x) + kpn(y)

)
We can then rewrite it as a sum of expectations:

−
∑
x∈X

(
Ey∼pD(.|x)

[
log

pθ(y|x)
pθ(y|x) + kpn(y)

]
+kEŷ∼pn

[
log

kpn(ŷ)

pθ(ŷ|x) + kpn(ŷ)

])
That becomes the NCE objective once we approx-
imate the second expectation over k samples:

−
∑

(x,y)∈D

[
log

pθ(y|x)
pθ(y|x) + kpn(y)

+

k∑
i=1

log
kpn(ŷi)

pθ(ŷi|x) + kpn(ŷi)

]
We should note that minimizing the NCE ob-

jective is then equivalent to minimizing both a f -
divergence and a Bregman divergence. For exam-
ple, by making a variable change between pCθ and



pθ, we can circle back to writing the NCE objec-
tive as a Bregman divergence Dφ(pD||pθ), with
φ(x) = x log x − (1 + x) log(1 + x), as shown
in Gutmann and Hirayama (2011).

A.3 Objective-specific ‘perplexity’
See Figure 5. We can observe that the behavior
of the objective-specific counterparts to perplexity
closely mirrors it, even when the values are quite
distant.
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Figure 5: Validation results by epoch obtained on the PTB with the exact objectives , derived from MLE, during
training. We give the validation perplexity (dotted gray) and the ‘counterpart’ to perplexity corresponding to the
training objective (in color). Each color corresponds to a different objective, and we use different shades to indicate
that changing the value of the power parameter makes the tracked values different.

A.4 Complete sampling-based objectives
See Table 6.

A.5 Detailed performance of sampling
based-objectives

See Figures 6,7,8 and 9.



Objective

Approximated Softmax −
∑

(x,y)∈D

[
sθ(x, y)− log pn(y)− log

k∑
i=1

exp (sθ(x, ŷi)− log pn(ŷi))

]

α ∈ R \ {0, 1} 1
α(α−1)

∑
(x,y)∈D

 exp (sθ(x,y)−log pn(y))
k∑
i=1

exp (sθ(x,ŷi)−log pn(ŷi))

1−α

β ∈ R \ {0, 1} 1
β(β−1)

∑
(x,y)∈D


k∑
i=1

exp (β(sθ(x,ŷi)−log pn(ŷi)))(
k∑
i=1

exp (sθ(x,ŷi)−log pn(ŷi))
)β − β exp ((β−1)(sθ(x,y)−log pn(y)))(

k∑
i=1

exp (sθ(x,ŷi)−log pn(ŷi))
)β−1



γ ∈ R \ {0, 1} −
∑

(x,y)∈D

[
sθ(x, y)− log pn(y)− 1

γ log
k∑
i=1

exp (γ(sθ(x, ŷi)− log pn(ŷi)))

]

Noise Contrastive Estimation −
∑

(x,y)∈D

[
log exp (sθ(x,y))

exp (sθ(x,y))+kpn(y)
+

k∑
i=1

log kpn(ŷi)
exp (sθ(x,ŷi))+kpn(ŷi)

]

α ∈ R \ {0, 1} 1
α(α−1)

∑
(x,y)∈D

[(
exp (sθ(x,y))

exp (sθ(x,y))+kpn(y)

)1−α
+

k∑
i=1

(
kpn(ŷi)

exp (sθ(x,ŷi))+kpn(ŷi)

)1−α]

β ∈ R \ {0, 1}

∑
(x,y)∈D

[
− 1
β−1

((
exp (sθ(x,y))

exp (sθ(x,y)+kpn(y))

)β−1
+

k∑
i=1

(
kpn(ŷi)

exp (sθ(x,ŷi))+kpn(ŷi)

)β−1)

+ 1
β

(
exp (βsθ(x,y))+(kpn(y))β

(exp (sθ(x,y)+kpn(y)))
β +

k∑
i=1

exp (βsθ(x,ŷi))+(kpn(ŷi))
β

(exp (sθ(x,ŷi))+kpn(ŷi))
β

)]

γ ∈ R \ {0, 1}

∑
(x,y)∈D

[
− log exp (sθ(x,y))

exp (sθ(x,y)+kpn(y))
− 1

γ−1 log
k∑
i=1

(
kpn(ŷi)

exp (sθ(x,ŷi))+kpn(ŷi)

)γ−1

+ 1
γ log

(
exp (γsθ(x,y))+(kpn(y))γ

(exp (sθ(x,y)+kpn(y)))
γ +

k∑
i=1

exp (γsθ(x,ŷi))+(kpn(ŷi))
γ

(exp (sθ(x,ŷi))+kpn(ŷi))
γ

)]

Table 6: Complete objectives of power generalizations of the Approximated Softmax and Noise Contrastive Esti-
mation objective functions, based on α, β, and γ divergences. All the samples (ŷi)ki=1 are drawn from the auxiliary
distribution pn.



2

4

6

8

10

7.79
7.89

7.90
7.91

8.06
=0.9
=0.99

KL
=1.01
=1.1

2

4

6

8

10
8.01

7.91
7.90

7.89
7.82

=0.9
=0.99

KL
=1.01
=1.1

2

4

6

8

10
7.87

7.91
7.90

7.91
7.96

=0.9
=0.99

KL
=1.01
=1.1

V
al

id
at

io
n 

C
ro

ss
-e

nt
ro

py

Frequency bins

Figure 6: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the AS objective with α-divergences (top), β-divergences (middle) and γ-divergences (bottom) on the PTB.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).
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Figure 7: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the NCE objective with α-divergences (top), β-divergences (middle) and γ-divergences (bottom) on the PTB.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).
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Figure 8: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the AS objective with α-divergences (top), β-divergences (middle) and γ-divergences (bottom) on the WT2.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).
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Figure 9: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the NCE objective with α-divergences (top), β-divergences (middle) and γ-divergences (bottom) on the WT2.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).


