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Abstract

Multi-view learning algorithms are powerful
representation learning tools, often exploited
in the context of multimodal problems. How-
ever, for problems requiring inference at the
token-level of a sequence (that is, a separate
prediction must be made for every time step),
it is often the case that single-view systems are
used, or that more than one views are fused in
a simple manner. We describe an incremental
neural architecture paired with a novel training
objective for incremental inference. The net-
work operates on multi-view data. We demon-
strate the effectiveness of our approach on the
problem of predicting perpetrators in crime
drama series, for which our model signifi-
cantly outperforms previous work and strong
baselines. Moreover, we introduce two tasks,
crime case and speaker type tagging, that con-
tribute to movie understanding and demon-
strate the effectiveness of our model on them. !

1 Introduction

While many natural language processing (NLP)
problems concern exclusively textual or speech
data, the integration of multimodal information
(such as images, video or audio) is beneficial for a
variety of problems. For example, visual informa-
tion has been used in affect analysis (Kahou et al.,
2016), sentiment analysis (Morency et al., 2011)
and machine translation (Calixto et al., 2017; Lala
and Specia, 2018). This is also the case for prob-
lems which are sequential in nature, such as video
summarization (Smith and Kanade, 1998), contin-

'0ur code is available at https://github.com/
papagandalf/multiview_csi.

uous prediction of affect (Nicolaou et al., 2011) or
engagement level prediction (Rehg et al., 2013).

Most existing multi-view representation learn-
ing approaches are tested in an unsupervised setup
where the multi-view representations are learned
separately from the task, and are designed to
accommodate the learning of representation for
monolithic (albeit multi-view) data points, not se-
quences (see Wang et al. 2015 for a survey). In
this paper, we propose a neural architecture cou-
pled with a novel training objective that integrates
multi-view information for sequence prediction
problems. Our model creates a multimodal em-
bedding for every element of a sequence by us-
ing the correlational Gated Recurrent Unit (cor-
rGRU; Yang et al. 2017) and makes token-level
predictions based on those embeddings. Our train-
ing objective combines a supervision-guided term
(cross-entropy) with a multi-view correlation ob-
jective on the available modalities.

We demonstrate the effectiveness of our model
in an incremental inference setup (Figure 1),
where it makes predictions on the fly without en-
coding the sequence in full, a more realistic sce-
nario of interacting with data. This is a critical fea-
ture for online applications such as simultaneous
translation (interpretation) and also a desirable be-
havior for movie processing models that mimic a
human viewer watching a movie for the first time.

We evaluate our architecture on three tasks per-
taining to movie understanding. Specifically, we
use the recently introduced dataset of Frermann
et al. (2018), which consists of episodes of the
Crime Series Investigation (CSI) television series,
segmented and aligned for three different modali-


https://github.com/papagandalf/multiview_csi
https://github.com/papagandalf/multiview_csi

Ul&] yz&] y[tg
hn X o T e T
hy ho hi—1 hy

Al

T sadad

Ll 2 .0 pl2..3
ToT5 e Ty Ty Ty

—w

Figure 1: General unfolded overview of our model for
a multimodal example = with three modalities: at each
time step t € {0, 1, ..., T}, representations =¥ for each
of three views are fed to a cell. The cell outputs a joint
representation h; for all the views which is fed to a soft-
max layer that generates a prediction y;, depending on
the task at hand. Training is performed with a correla-
tion objective between the representations of xf.

ties: image, audio and text. Originally, the dataset
was introduced to train models in perpetrator men-
tion identification, that is, viewing each episode as
a sequence of multimodal elements, predicting a
binary label indicating whether the perpetrator of
a crime case is mentioned in each element. Lever-
aging the annotations of the dataset, we model two
additional tasks: case segmentation (episodes can
alternate between more than one crime case) and
speaker type tagging (each utterance in the video
can come from one type of speaker: detective,
perpetrator, suspect, extra or none). Successfully
modeling those two tasks provides structural in-
formation about episodes and informs perpetrator
identification, a task solved on a per case and not
on a per episode basis. The three tasks can be re-
garded as a form of shallow movie understanding,
since they perform analysis on the structural level
(cases), the dialogue level (speaker type) and the
plot level (perpetrators).

We show that our multi-view model consis-
tently outperforms models that integrate multi-
modal information by concatenating the represen-
tations of available views, across all three tasks.
As a comparison, we also describe a non-multi-
view variant of our architecture, equipped with a
supervised multi-head attention module that can
take advantage of two levels of annotation (e.g.
token-level and sentence-level).

The contributions of this paper are the follow-
ing:

e We propose a multi-view sequential inference
neural architecture and use a novel training ob-
jective for training an RNN consisting of corre-
lational GRU cells.

e We highlight the importance of multi-view fu-
sion for multimodal applications, by compar-
ing our model with a non-multi-view variant
that employs multi-head supervised attention
to make use of both the sentence-level and
the token-level perpetrator annotations of the
dataset.

e We introduce two novel tasks pertaining to shal-
low movie understanding that can be tackled in
the context of television series data. We empir-
ically show the effectiveness of our architecture
and training objective on the perpetrator men-
tion identification and the two newly introduced
tasks, by using the Crime Scene Investigation
(CSI) television series dataset. Notably, for the
perpetrator identification task, our model signif-
icantly outperforms previous state of the art.

2 Background

Series Understanding® The abundance of se-
ries video data can benefit multimodal machine
learning research and applications. Series com-
monly span many episodes (organized in loosely
or tightly connected seasons), providing a large
amount of data that data-hungry models can take
advantage of. The sheer volume of data gives rise
to several practical problems that machine learn-
ing models can tackle, such as the segmentation of
continuous video streams to semantically coher-
ent fragments (Del Fabro and Boszormenyi, 2013)
and speaker diarization (Mir¢ et al., 2012; Bredin
etal., 2014).

Work on movie/series analysis can be classi-
fied in three broad categories. Deep semantic
understanding includes tasks that require thor-
ough content analysis and reasoning, for example
movie question answering (Tapaswi et al., 2016;
Kim et al., 2017) or movie description (Rohrbach
et al., 2016). External understanding refers to
tasks whose end goal is not the analysis of the
video content itself, but meta-information extrac-
tion relevant to preferences and recommendations
for consumers of the videos (Bennett et al., 2007,
Shi et al., 2013; Yang et al., 2012).

Shallow understanding refers to tasks that oper-
ate on the content level and extract content-related
information, albeit without requiring complex rea-
soning. Their output is more tailored to structured
prediction. Example tasks include speaker iden-

2We use the term “series” to refer to episodic shows,
broadcast via television or other channels.



tification (Knyazeva et al., 2015), movie segmen-
tation (Liu et al., 2013) and perpetrator mention
identification (Frermann et al., 2018). We choose
to tackle three problems of shallow understanding,
namely a crime case sequence tagging problem,
a speaker type sequence tagging problem and the
problem of perpetrator mention identification.

Multi-view Learning Conventional machine
learning algorithms treat all characteristics of
training examples as features describing the in-
put. When more than one modality or more than
one sources of data (for example, images taken
from different viewpoints) are available, view fu-
sion can be achieved by early, late or hybrid fusion
methods (Atrey et al., 2010). A simple concatena-
tion of representations at the feature level is re-
ferred to as early fusion, while the integration of
outputs of different modality-specific modules is
called late fusion. Concatenation may cause over-
fitting in the case of a small size training samples
and at the same time it is not intuitive, since the
statistical properties of each view can be lost in
the learning process. Multi-view learning algo-
rithms extend early fusion, as they create sophisti-
cated representations in which all available views
are fused.

Our work extends the set of multi-view coun-
terparts of popular sequence models. Rajagopalan
et al. (2016) propose a general architecture that
provides a degree of flexibility in designing dif-
ferent multi-view LSTM cells according to the
application at hand and experiment with behav-
ior recognition and image captioning. Ren et al.
(2016) propose a multi-modal variant of LSTM
and apply it to the task of speaker identification.
Zadeh et al. (2018a) use an attention module and
a multi-view gated memory to capture and sum-
marize inter-modality interactions. Our proposed
model enforces correlation between the represen-
tations of the available modalities; a technique that
has been studied also for non-sequential neural
models (Wang et al., 2015; Chang et al., 2018).

While the term multi-view does not always refer
to multimodal settings, ideas from multi-view rep-
resentation learning research are especially com-
pelling for multimodal applications. Our model
can be applied to sequential multi-view problems
which are not necessarily multimodal.

Attention Models Attention mechanisms (Bah-
danau et al., 2015) in various forms have been

used in several multimodal applications, such as
sentiment analysis, speaker trait recognition and
emotion recognition (Zadeh et al., 2018b), ma-
chine translation (Caglayan et al., 2016), image
(Xu et al., 2015) and video description (Hori et al.,
2017). Broadly, an attention mechanism modifies
the output of a sequence representation, based on
the coherence of each of the elements of the se-
quence to a specific “query”. Information learned
by the attention mechanism may have a distinct
conceptual importance (e.g. alignments in ma-
chine translation) or simply indicate which ele-
ments of the input contribute more to the final out-
put representation.

Attention mechanisms can be learned along
with the rest of the network in an end-to-end fash-
ion, or can be explicitly supervised by provid-
ing the model with pre-calculated attention scores.
Supervised attention has been shown to boost the
performance of models for machine translation
(Mi et al., 2016), constituency parsing (Kamigaito
et al., 2017), event detection (Liu et al., 2017b)
and aspect-based sentiment analysis (Cheng et al.,
2017). Furthermore, image attention mechanisms
guided by weak or direct supervision have been
proposed for the tasks of image (Liu et al., 2017a)
and video captioning (Yu et al., 2017).

Multi-head attention mechanisms (Vaswani
et al., 2017) employ more than one, independent,
attention mechanisms, boasting multiple areas of
focus on the input sequence. The main idea be-
hind them is that a single attention head may not
prove adequate to capture all the different types
and positions of information that are important to
the end task. Our attentive model variant uses su-
pervised multi-head attention to take advantage of
annotations in two levels of granularity.

3 Multi-view Sequential Inference

Taking together the idea of multi-view learning
with incremental sequence labeling, we formulate
our problem as follows.

We assume a set X of M examples. Every
X; e X,je{l,..., M}, consists of T" elements,
which form a sequence X; = [zj1 xj2 ... z;7).
Sequences with less than 7' elements are padded
to be of length T". Each of the elements in the se-
quence is paired with a label from a set ) (binary
or multi-class), which is the desired output. Lastly,
for every x ;;, information from a set V' of different
views is available.



More specifically, we consider a dataset where
each X; is a video and distinguish and model
three different views/modalities: image, audio and
text (from aligned script or subtitles, if available).
Each video X is represented as a sequence of
short, semantically coherent snippets x;; (for in-
stance, snippets may correspond to subtitle sen-
tences). For each sequence element and for each
of the views V = {image, audio, text} we have a
feature vector (z;;)* where k € {1,2,3} (index-
ing the different modalities). In addition, we have
labels y;;. The problem is to infer the correct label
y;¢ for each x;; at the time it presents itself: data
points appear sequentially in a time series and the
label prediction should be done using information
from the past and the present elements only.

We use a sequence model for incremental mod-
eling of sequential multi-view data. The overall
architecture of such a system is that of a Recurrent
Neural Network (RNN). A general time-unfolded
overview of the architecture for a single example
x € X is shown in Figure 1. Input segments 2} of
different views are fed to a cell at every time step,
and a single vector h; combining information from
all views is generated. This embedding is fed to an
output layer, which in turn outputs a prediction.

View Fusion One of the most important and dis-
tinguishing features of multi-view models is the
framework it uses for the fusion of the different
views. We use a multimodal GRU cell (Yang et al.,
2017) as a base for experimentation. The cell
takes embeddings 2} for each view k and time
step ¢ and after passing each view from a desig-
nated GRU cell, it calculates a multi-view embed-
ding for the time step by passing information of all
views through the gates of a separate GRU. The
output of the view-specific GRUs is used to calcu-
late the Pearson correlation between the different
views; a calculation whose output is added as a
separate term to be maximized in the total loss.

Since correlation can be calculated only for a
pair of variables, we calculate the total correlation
loss as the sum of the correlation losses between
all pairs of elements of V. Formally, in each step
t, the correlation between views is calculated as

L —(k 0 =
S (h) —H)n ~H)

where ¢ spans over the L elements of each mini-

batch, hgf ) is the hidden state calculated by the
view-specific GRU for the example ¢, view k, at

_ L
timestep t. Moreover, H §k) =13 hgf ),
i=1

The correlation term is

ﬁcorr = T

that is the average of the loss calculated for every
time step £. In order to maximize correlation, the
negative sum is used.

In conclusion, view fusion is achieved not only
by the design of the multimodal GRU cell itself
(weighted sum of view representations and one
common hidden representation), but also by the
maximization of correlation between the views.

Learning The network is trained by jointly min-
imizing the following objective

L= [fCE + )\Lcorr)

where Lcg stands for cross-entropy loss, Leorr 1S
the correlation loss term defined in Section 3 and A
weights the contribution of L., to the total loss.

This compound objective function is one of the
distinctive features of our approach. It enables
the model to take advantage of the labels available
from the dataset, and at the same time optimize for
the correlation between the available views. The
underlying idea is that the constraint of the corre-
lation will push the model to create more informa-
tive embeddings than those it would create if only
the cross-entropy loss was used.

Multi-head Attention Each of the videos of the
dataset is assumed to be divided to snippets, with
the sequence model operating and making pre-
dictions on the snippet level. For each snippet,
the text modality may contain a different number
of tokens and a fixed-length text representation is
generated by a text encoder. We use an RNN as
text encoder and the encoded text representation
for each snippet is weighted by attention scores
calculated over its tokens. Both “query” and
“token” representations come from the same se-
quence (self-attention; Yang et al. 2016). In cases
where the dataset contains, apart from snippet-
level, also token-level annotations, the attention
module can be directly supervised: we add a term
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Figure 2: Hierarchical multi-view recurrent model with
multi-head attention. Each sentence is encoded with an
RNN and three attention heads (a, b and ¢) calculate
attention scores for each of the tokens wy; of the ¢-th
sentence of the script.

to the model’s loss that minimizes the error of the
attention scores, with respect to token-level anno-
tations. Specifically, we consider a case where the
token-level annotations are of three different types
and we create a supervised attention head for each
type, averaging their outputs. A schematic depic-
tion of this model can be seen in Figure 2.

4 Experiments

We describe in this section experiments with our
proposed architecture. We use the CSI dataset
(Frermann et al., 2018), which consists of 39
episodes of the television series CSI: Crime Scene
Investigation. In each episode, a team of detec-
tives undertake the solution of one (in 51% of
the episodes) or two (49%) crime cases. The
three modalities included are text scripts (dialogue
subtitles and background scene descriptions), im-
age snapshots from the video and audio segments.
Each sentence of the script is aligned with image
and audio® excerpts. Also, sentences are annotated
with the case they belong to (binary label), perpe-
trator mention labels (binary) and the name of the
speaker that uttered them (“None” for scene de-
scriptions). Each speaker belongs to one of the
types detective, perpetrator, suspect, extra (none
for scene descriptions). An annotated example ex-

3Speech has been stripped from the audio track, leaving it
only with audio effects and music (so that the text modality
will not be deemed redundant and the dataset does not contain
overlapping information).

cerpt is shown in Figure 3.

4.1 Experimental Setup

For all experiments, we adopted an experimental
setup similar to that of Frermann et al. (2018). For
text, we use 50-dimensional GloVe vectors (Pen-
nington et al., 2014) and a convolutional text en-
coder with maxpooling (filters of sizes 3, 4 and
5, each returning a 75-dimension output). Image
features are generated by the final hidden layer
of the inception-v4 Szegedy et al., 2017 model
(dimensionality of 1,546). Audio features are
constructed by concatenating five 13-dimensional
Mel-Frequency Cepstral Coefficient (MFCC) fea-
ture vectors for each interval. For perpetrator men-
tion identification, we use the case level splits,
whereas the speaker and case tasks are performed
on the episode level. All LSTM and GRU variants
have one layer of length 128 and a dropout proba-
bility of 0.5 is used. We set the value of A to 0.001
and train for 150 epochs with the Adam optimizer
(Kingma and Ba, 2014), setting the initial learning
rate at 0.001.

4.2 Perpetrator Mention Identification

In order to investigate the effectiveness of our
model in the sequential multimodal inference
setup, we conduct the following set of experiments
on the task of perpetrator mention identification.

Multi-view Model The effectiveness of differ-
ent architectures is shown in the first section of
Table 1. The multi-view model (using corrGRU)
is compared to early fusion models (using LSTM
and GRU cells ), for which the input is the concate-
nation of the feature vectors of the three modal-
ities, passed through a ReLU activation. It can
be seen that the multi-view model outperforms all
other models.

Incremental Inference Incremental sequence
labeling refers to making predictions on an incom-
ing sequence when “streamed” in an online fash-
ion. For example, if the sequence is a sentence, we
are not allowed to encode the whole sentence first,
but instead have to output a relevant label for each
word as it arrives in the sequence. Incremental-
ity underlies fundamental human cognition and is
essential for scaling systems to large datasets and
real-time inference, necessary, for example, in si-
multaneous translation (interpretation; Bangalore
et al., 2012; Yarmohammadi et al., 2013; Cho and
Esipova, 2016).



GRISSOM

NONE

Grissom doesn’t look
worried. He takes his You ever been to the
gloves off and puts theater, Peter?

them on the table.

CASE: 1 CASE: 1
PERP: 0 PERP: 1
CASE TAG: B-1 CASE TAG: I-1

SP. TAG: O Sp. TAG: B-D

Figure 3: An excerpt of the CSI dataset, where the
image and text modalities are present. The case and
speaker tags use the BIOU (Beginning, Inside, Outside,
Unit) format (see 4.3 for details). In this case, “Peter”
is the name of the perpetrator (Perp: 1). Both snapshots
belong to the first case. The first snapshot does not have
a speaker (screenplay description; speaker “None”’and
speaker type tag “O”) and starts a chunk of utterances
belonging to the first case (B-1). The second snapshot
continues in the first case (I-1) and starts a chunk where
the speaker is a detective (B-D).

In order to assess the effectiveness of the in-
cremental inference capabilities of our model,
we contrast the output of incremental models
(forward-pass unidirectional) to that of similar
models that do not perform incremental inference
(bidirectional), in Table 1. Both multi-view and
non-multi-view bidirectional models look ahead
in the sequence, gathering information that is po-
tentially useful for temporal inference. The bidi-
rectional correlational model was trained with an
extra correlation loss term, calculated exactly as
Leorr, With data from the backward pass. The
bidirectional multi-view model does not score as
high as the unidirectional multi-view one, though
it balances better between precision and recall.
Interestingly, results suggest that the incremental
multi-view model outperforms early fusion bidi-
rectional models (biLSTM and biGRU). Across
experiments, there is a trend of higher recall. This
can be justified by the fact that is the dataset is not
balanced: positive examples of perpetrator men-
tions are significantly fewer than negative exam-
ples. This trend is consistent with the findings
of Frermann et al. (2018), where an early fusion
LSTM is used.

MODEL pr re f1
% [ EF (LSTM) 428 [ 512 | 46.6
2 | EF (GRU) 39.4 | 60.4 | 47.7
5 | MV (corrGRU) | 41.3 | 634 | 50.0
~ | EF (biLSTM) 40.0 | 62.7 | 4838
2 | EF (biGRU) 43.6 | 58.1 | 49.8
@ | MV (biCorrGRU) | 49.6 | 49.4 | 49.5

Table 1: Precision (pr), recall (re) and F1 scores for
detecting the minority class (perpetrator mentioned)
on the held-out dataset. EF stands for early-fusion,
while MV for multi-view. The first section of the ta-
ble reports scores for unidirectional (incremental) mod-
els and the second for bidirectional (non-incremental)
models. The result for the simple unidirectional LSTM
model is the one reported by Frermann et al. (2018).

MODALITY
TTI1 Al P re f1
THREE | v | vV | vV | 413 | 634 | 50.0
v IV 41.4 | 49.6 | 45.1
Two v v 1396 | 504 | 443
vV | v | 387 ] 5.1 9.0
ONE v 419 | 473 | 444
v 284 | 6.7 | 10.8

Table 2: Ablation experiment assessing the contribu-
tion of each modality for our multi-view model. Pre-
cision (pr), recall (re) and F1 scores for detecting the
minority class (perpetrator mentioned) on the held-out
part of the dataset are reported. The modalities are de-
noted by T (text), I (image) and A (audio).

Contribution of the different modalities We
conduct an ablation experiment assessing the con-
tribution of each modality to the final prediction.
The results of this experiment can be found in Ta-
ble 2. Evidently, all three modalities contribute
to the good performance of the multi-view model.
We note that the fext modality is the most in-
formative; models taking text into account score
consistently better, in both multi-view and sin-
gle view setups. Results of the single-view video
model suggest that the image modality alone pro-
vides very little information about the perpetra-
tor’s identity. Results on audio only are not re-
ported, since the audio modality contains only mu-
sic and audio effects and is not expected to gener-
ate useful representations by itself.

Supervised Multi-head Attention The CSI
dataset includes token-level perpetrator mention
annotations: every token of the script sentences



is tagged as being a mention of the perpetrator
or not. An example can be found in Figure 3
(right), where “Peter” is tagged as being a refer-
ence to the perpetrator (boldface). The two levels
of annotation in the dataset follow a compositional
structure: the presence of at least one token anno-
tated with 1, results in the whole sentence anno-
tated with 1. The sentence-level annotations used
throughout the previous experimental section and
throughout the work of Frermann et al. (2018) are
generated by aggregating token-level annotations.

We distinguish three types of perpetrator token
mentions in the dataset: first person pronoun to-
kens (the perpetrator is the speaker and speaks in
first person), pronoun tokens (other characters re-
fer to the perpetrator by using pronouns) and other
type of tokens (perpetrator is mentioned by their
name or other attributes). We replace the original
binary token-level annotation with three binary an-
notation streams reflecting the three different types
(first person pronoun mention, other person pro-
noun, other type of mention).

We replace the convolutional encoder of the
previous experimental setup with an LSTM and
three attention heads and run experiments compar-
ing attentive architectures with non-attentive ones.
The results can be found in Table 3. Unsurpris-
ingly, models that make use of the extra informa-
tion in the form of attention supervision score bet-
ter than their counterpart that does not take token-
level annotations into account. Interestingly, the
complexity and diversity of token-level annota-
tions is reflected in the results of single-head at-
tention models: the supervised single-head model
scores lower than the one that is free to learn any
attention scores. Ultimately, the choice to split the
annotations to three streams and use more than one
attention heads, each focusing on different types of
mentions, leads to better performance.

However, even the multi-head supervised atten-
tive model, does not score as well as the multi-
view (non-attentive) model. This result highlights
the, sometimes disregarded, importance of modal-
ity fusion: creating a fused representation out of
the available modalities led to a model that out-
performs one with significantly more information
in its disposal.

4.3 Episode Structure Tagging

Extracting knowledge about a movie by relying
on simplified tasks can be challenging and may

MODEL pr re f1

EF 42.8 | 51.2 | 46.6
MV 41.3 | 634 | 50.0
EF+ATT 39.95 | 58.70 | 47.32
EF+SUPATT 40.72 | 56.11 | 47.15
EF+MULTIHEAD | 40.25 | 59.19 | 47.88

Table 3: Comparing the performance of early fusion
(EF) and multi-view (MV) models with attentive early
fusion models. Three different attention schemes are
compared: simple attention (ATT), supervised attention
(SUPATT) where the network’s loss includes an error
term for the attention scores with respect to the token-
level annotations, and multi-head supervised attention
(MULTIHEAD) where the token-level annotations are
divided conceptually into three groups and each head
is supervised by the scores of one of the groups.

require assumptions about the input. Specifi-
cally, casting the task of perpetrator identifica-
tion as a binary classification task, is based on
the premise that there is, at most, one perpetrator.
This assumption does not always hold, since, some
episodes contain two cases and consequently, two
perpetrators. Moreover, new perpetrators are in-
troduced in every episode and data sparsity makes
multi-class classification difficult. For the experi-
ments described in the previous sections, we alle-
viate this obstacle by performing binary inference
on the case level, using the annotated case splits of
the dataset.

In order to enable more robust movie under-
standing, we investigate the automatic segmen-
tation of episodes to coherent chunks by experi-
menting with tagging utterances with tags of two
levels of granularity: case and speaker type. The
former refers to associating each utterance with
the crime case it belongs to, while the latter to la-
beling each utterance as coming from one type of
speaker (detectives, perpetrators, suspects, extras)
or none (scene descriptions).

The two tagging tasks are closely related, since
a shift from a speaker type (e.g. a conversation
between detectives) to another (a conversation be-
tween extras) may indicate a shift in the focus of
the episode, hinting a case change. The presence
of more than one related tasks makes our setup
ideal for testing our model in a multi-task setting.
Sharing representations between tasks is justified
by the notion that information from similar tasks
can aid in solving the task at hand faster and more
accurately (Caruana, 1998).



SPEAKER TYPE CASE
MODEL
acc pr re f1 acc pr re f1
EF 50.55 | 20.28 | 24.18 | 20.66 | 61.00 | 0.01 | 0.01 | 0.01
MV 57.66 | 19.87 | 35.95 | 25.29 | 61.65 | 0.03 | 2.86 | 0.05
EF+CRF | 49.70 | 15.70 | 14.22 | 1448 | 62.75 | 3.10 | 15.21 | 497
MV+CRF | 51.27 | 14.89 | 16.71 | 1496 | 73.53 | 11.72 | 27.75 | 11.24
MULTI-TASK (SPEAKER+CASE)

EF 45.07 | 19.83 | 27.53 | 21.82 | 61.75 | 0.00 | 0.00 | 0.00
MV 46.11 | 18.17 | 22.36 | 19.09 | 61.02 | 0.06 | 0.08 | 0.06
EF+CRF | 47.04 | 22.02 | 17.42 | 18.60 | 73.95 | 1.09 | 1.52 | 1.11
MV+CRF | 60.07 | 21.36 | 39.25 | 27.61 | 79.49 | 8.29 | 44.17 | 13.72

Table 4: Macro-average scores for accuracy (acc), precision (pr), recall (re) and F1 scores for early fusion (EF)
and multi-view (MV) models on speaker type and case tagging. The top section of the table refers to single-task
setup, while the bottom on multi-task setup (training jointly on speaker type and case tagging).

To facilitate tagging, we convert the case and
speaker annotations of the dataset to annotations
employing the BIOU (Beginning, Inside, Out-
side, Unit) format, derived from the BIO scheme
proposed for text chunking (Ramshaw and Mar-
cus, 1999) and heavily used in the CoNLL shared
tasks* for sentence tagging. An example of the
labels on which the model operates can be found
in Figure 3. We modify the architecture of our
model, so that the output of the sequence model
cell is fed to different output layers, one for each
task. Training proceeds by summing the loss
terms for both tasks. In the case of our multi-
view model, the loss consists of two cross-entropy
terms and one correlation term. Moreover, we ex-
periment with adding a Conditional Random Field
(CRF) on top of the sequence models, based on
recent work that achieves state-of-the-art perfor-
mance in tagging tasks, such as Named Entity
Recognition (Lample et al., 2016).

The results for speaker type and case tagging
can be found in Table 4, where our model (MV) is
compared with an LSTM early fusion model. We
use a variant of the evaluation script used for the
CoNLL shared tasks®> and report average scores.
Our multi-view model consistently outperforms
early fusion models. Interestingly, the multi-task
MV+CRF model trained exhibits the best perfor-
mance, suggesting that jointly solving the two
tasks improves the capabilities of the model.

4http: //www.conll.org/previous—tasks
Shttps://github.com/spyysalo/
conlleval.py

5 Related Work

Inference on multimodal sequences can take the
form of inferring a label for a whole sequence, or
a label for each of the parts of it. The multimodal
LSTM of Ren et al. (2016) is applied in a sequen-
tial inference setting, however, it does not pro-
duce a joint representation for all modalities, but
rather, different (albeit informed about each other)
modality representations are used for inference.
Our approach is more related to that of Yang
et al. (2017), where a multimodal encoder-decoder
model for representation learning of temporal data
is described. Our method uses their corrGRU cell
with a distinct architecture and loss function: first,
their network is used as an unsupervised sequence
representation learning tool trained to generate an
embedding for a whole sequence, which in turn
is used for classification tasks, while our model
outputs embeddings and makes predictions at the
token-level (for every element of a sequence).
Secondly, they use a decoder which reconstructs
the original representations of each view, while
our model does not include autoencoding.
Casting correlation maximization between three
or more variables as the maximization of the sum
of the correlation between all pairs of available
variables has been previously used in extensions
of CCA for more than two views (Benton et al.,
2019), or other multi-view learning works (Kumar
etal., 2011). Yang et al. (2017) mention it in their
paper, although they do not experiment with it.
The multi-head attention component of our
model bears similarities in spirit to the recent work
of Strubell et al. (2018), where an attention head
is replaced by a model trained to predict syntac-


http://www.conll.org/previous-tasks
https://github.com/spyysalo/conlleval.py
https://github.com/spyysalo/conlleval.py

tic dependencies (Dozat and Manning, 2017). In
contrast, our model uses explicit supervision for
all self-attention heads and is trained to predict the
correct attention scores in a multi-task fashion.

6 Conclusions

We describe a neural multi-view sequential archi-
tecture, paired with a novel objective that takes ad-
vantage of supervision, while at the same time,
maximizes the correlation between views. We
test our approach on the task of perpetrator men-
tion identification of the CSI dataset, on which we
show that it outperforms state of the art. Also, we
introduce two shallow movie understanding tasks,
crime case and speaker type tagging, and show
that our model yields consistently better results
than early fusion models, highlighting the impor-
tance of careful fusion of modalities in sequential
inference.
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