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We present and study the contribution-selection algorithm (CSA), a novel
algorithm for feature selection. The algorithm is based on the multiper-
turbation shapley analysis (MSA), a framework that relies on game theory
to estimate usefulness. The algorithm iteratively estimates the usefulness
of features and selects them accordingly, using either forward selection
or backward elimination. It can optimize various performance measures
over unseen data such as accuracy, balanced error rate, and area under
receiver-operator-characteristic curve. Empirical comparison with several
other existing feature selection methods shows that the backward elimi-
nation variant of CSA leads to the most accurate classification results on
an array of data sets.

1 Introduction

Feature selection refers to the problem of selecting input variables, other-
wise called features, that are relevant to predicting a target value for each
instance in a data set. Feature selection can be used to rank all potentially
relevant input variables or to build a good classifier, and each task may
lead to a different methodological approach (Blum & Langley, 1997; Kohavi
& John, 1997). Feature selection has several potential benefits: defying the
curse of dimensionality to enhance the prediction performance, reducing
measurement and storage requirements, reducing training and prediction
times, providing better understanding of the process that generated the
data, and allowing data visualization. This letter focuses on the first issue:
selecting input variables in an attempt to maximize the performance of a
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classifier on previously unseen data. Clearly, this would not necessarily
produce the most compact set of features.

Feature selection is a search problem, where each state in the search
space corresponds to a subset of features. Exhaustive search is usually
intractable, and methods to explore the search space efficiently must be
employed. These methods are often divided into two main categories: filter
methods and subset selection methods. The algorithms in the first category
rank each feature according to some measure of association with the target,
such as mutual information, Pearson correlation or χ2 statistic, and fea-
tures with high-ranking values are selected. A major disadvantage of filter
methods is that they are performed independent of the classifier, and it is
not guaranteed that the same set of features is optimal for all classifiers. In
addition, most filter methods disregard the dependencies between features,
as each feature is considered in isolation.

The second category, the subset selection methods, has two types of al-
gorithms. Embedded algorithms select the features through the process of
generating the classifier, such as regularization methods such as grafting
(Perkins, Lacker, & Theiler, 2003), Gram-Schmidt methods (e.g., Stoppiglia,
Dreyfus, Dubois, & Oussar, 2003; Rivals & Personnaz, 2003), or methods
specific for support vector machines (e.g., Weston et al., 2000; Guyon, We-
ston, Barnhill, & Vapnik, 2002). Wrapper algorithms treat the induction
algorithm as a black box and interact with it in order to perform a search for
an appropriate features set using search algorithms such as genetic algo-
rithms or hill climbing (Kohavi & John, 1997). Although wrapper methods
are successful in feature selection, they may be computationally expensive,
because they require retraining a classifier on data with a large number
of features. (For a survey of the current methods in feature selection, see
Guyon & Elisseeff, 2003.)

In this letter, we recast the problem of feature selection in the context
of coalitional games, a notion from game theory. This perspective yields
an iterative algorithm for feature selection, the contribution-selection al-
gorithm (CSA), intent on optimizing the performance of the classifier on
unseen data. The algorithm combines the filter and wrapper approaches,
where the features are reranked on each step by using the classifier as a
black box. The ranking is based on the Shapley value (Shapley, 1953), a
well-known concept from game theory, to estimate the importance of each
feature for the task at hand, specifically taking into account interactions be-
tween features. Due to combinatorial constraints, the Shapley value cannot
be calculated precisely and is estimated by the multiperturbation Shapley
analysis (MSA) (Keinan, Sandbank, Hilgetag, Meilijson, and Ruppin, 2004,
2006). Furthermore, since the classifier is trained and tested extensively, the
classifier used by CSA must be fast in both training and testing phases. This
requirement can be moderated by parallel processing.

Throughout the letter, we use the following notations. Three disjoint
sets containing independently and identically distributed (i.i.d.) sampled
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instances of the form (xk, yk) are denoted by T, V, and S, representing the
training set, validation set, and test set, respectively, where xk ∈ Rn denotes
the kth instance and yk is the target class value associated with it. Given an
induction algorithm and a set of features S ⊆ {1, . . . , n}, fS(x) stands for a
classifier constructed from the training set using the induction algorithm,
after its input variables were narrowed down to the ones in S. Namely,
fS(x) labels each instance of the form (xi1 , . . . xi|S| ), i j ∈ S, 1 ≤ j ≤ |S| with
an appropriate class value. The task of feature selection is to choose a subset
S of the input variables that maximizes the performance of the classifier on
the test set. In what follows, we focus on optimizing classifier accuracy,
although we could as easily optimize other performance measures such as
the area under the receiver operator chracteristic or balanced error rate.

The rest of this letter is organized as follows. Section 2 introduces the
necessary background from game theory and justifies the use of game the-
ory concepts for the task of feature selection. It also provides a detailed
description of the CSA algorithm. Section 3 provides an empirical compar-
ison of CSA with several other feature selection methods on artificial and
real-world data sets, accompanied by an analysis of the results, showing
that the backward elimination version of CSA is significantly superior to
other feature selection methods considered. Section 4 discusses the empiri-
cal results and provides further insights into the success and failure of the
backward elimination version of the CSA algorithm. Section 5 summarizes
the results.

2 Classification as a Coalitional Game

Cooperative game theory introduces the concept of coalitional games in
which a set of players is associated with a real function that denotes the
payoff achieved by different subcoalitions in a game. Formally, a coalitional
game is defined by a pair (N, v) where N = {1, . . . , n} is the set of all players
and v(S), for every S ⊆ N, is a real number associating a worth with the
coalition S. Game theory further pursues the question of representing the
contribution of each player to the game by constructing a value function,
which assigns a real value to each player. The values correspond to the
contribution of the players in achieving a high payoff.

The contribution value calculation is based on the Shapley value
(Shapley, 1953). An intuitive example of the potential use of the Shapley
value is a scenario of a production machine in a factory composed of nu-
merous components. During its operation, the machine undergoes various
malfunctions from time to time. In each such malfunction, the normal activ-
ity of a subset of its components may be shut down, resulting in reduction
in the machine’s productivity and output. Based on annual data of these
multicomponent failures and their associated production drops, the Shap-
ley value provides a fair and efficient way to distribute the responsibility
for the machine’s failure among its individual components, identifying the
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ones needing the most attention and maintenance, while considering their
possible intricate functional interactions. In reference to feature selection,
the machine is analogous to the predictor and its components to the classi-
fication features. The task of feature selection then involves identifying the
features contributing most to the classification in hand.

The Shapley value is defined as follows. Let the marginal importance of
player i to a coalition S, with i /∈ S, be

�i (S) = v(S ∪ {i}) − v(S). (2.1)

Then the Shapley value is defined by the payoff

�i (v) = 1
n!

∑

π∈�

�i (Si (π )), (2.2)

where � is the set of permutations over N and Si (π) is the set of players
appearing before the ith player in permutation π . The Shapley value of a
player is a weighted mean of its marginal value, averaged over all possible
subsets of players.

Transforming these game theory concepts into the arena of feature selec-
tion, in which one attempts to estimate the contribution of each feature in
generating a classifier, the players are mapped to the features of a data set
and the payoff is represented by a real-valued function v(S), which mea-
sures the performance of a classifier generated using the set of features
S.

The use of Shapley value for feature selection may be justified by its
axiomatic qualities:

Axiom 1 (normalization or Pareto optimality). For any game (N, v) it holds
that

∑
i∈N

�i (v) = v(N).

In the context of feature selection, this axiom implies that the performance
on the data set is divided fully between the different features.

Axiom 2 (permutation invariance or symmetry). For any (N, v) and permuta-
tion π on N, it holds that �i (v) = �π (i)(πv).

This axiom implies that the value is not altered by arbitrarily renaming or
reordering the features.

Axiom 3 (preservation of carrier or dummy property). For any game (N, v)
such that v(S ∪ {i}) = v(S) for every S ⊆ N, it holds that �i (v) = 0.
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This axiom implies that a dummy feature that does not influence the clas-
sifier’s performance indeed receives a contribution value 0.

Axiom 4 (additivity or aggregation). For any two games (N, v) and (N, w), it
holds that �i (v + w) = �i (v) + �i (w) where (v + w)(S) = v(S) + w(S).

This axiom applies to a combination of two different payoffs based on the
same set of features. For a classification task, these may be, for example,
accuracy and area under the receiver operator characteristic curve or false-
positive rate and false-negative rate. In this case, the Shapley value of a
feature that measures its contribution to the combined performance mea-
sure is the sum of the corresponding Shapley values. The linearity of the
Shapley value is a consequence of this property. If the payoff function v

is multiplied by a real number α, then all Shapley values are scaled by α:
�i (αv) = α�i (v). In other words, multiplying the performance measure by
a constant does not change the ranking of the features, a vital property for
any scheme that ranks features by their importance.

Since it was introduced, the Shapley value has been successfully applied
to many fields. One of the most important applications is with cost allo-
cation, where the cost of providing a service should be shared among the
different receivers of that service (Shubik, 1962; Roth, 1979; Billera, Heath,
& Raanan, 1978). This use of the Shapley value has received recent atten-
tion in the context of sharing the cost of multicast routing (Feigenbaum,
Papadimitriou, & Shenker, 2001). In epidemiology, the Shapley value has
been used as a means to quantify the population impact of exposure factors
on a disease load (Gefeller, Land, & Eide, 1998). Other fields where the Shap-
ley value has been used include politics (starting from the strategic voting
framework introduced by Shapley and Shubik, 1954), international envi-
ronmental problems, and economic theory (see Shubik, 1985, for discussion
and additional references).

2.1 Estimating Features Contribution Using MSA. The calculation of
the Shapley value requires summing over all possible subsets of players,
which is impractical in typical feature selection problems. Keinan et al.
(2005) have presented an unbiased estimator for the Shapley value by uni-
formly sampling permutations from �.1 Still, the estimator considers both
large and small features sets to calculate the contribution values. In our fea-
ture selection algorithm, we use the Shapley value heuristically to estimate
the contribution value of a feature for the task of feature selection. Since in
most realistic cases, we assume that the size d of significant interactions be-
tween features is much smaller than the number of features, n, we will limit

1 The estimation in Keinan et al. (2005) is used in a different context: to analyze the
functional contribution in artificial and biological networks. However, the method to
estimate the Shapley value is valid for our purpose as well.
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ourselves to calculating the contribution value from permutations sampled
from the whole set of players, with d being a bound on the permutation
size,

ϕi (v) = 1
|�d |

∑

π∈�d

�i (Si (π )), (2.3)

where �d is the set of sampled permutations on subsets of size d .
Limiting the extent of interactions taken into account is not uncommon in

feature selection methods. Most filter methods are equivalent to using d = 1,
where no feature interactions are taken into account. Explicit restriction
on the level of interactions also characterizes several ensemble methods,
for example, Random Forests (Breiman, 2001), where d � √

n is usually
suggested.

The use of bounded sets, coupled with the method for the Shapley value
estimation, yields an efficient and robust way to estimate the contribution of
a feature to the task of classification. (For a detailed discussion of the MSA
framework and its theoretical background see Keinan et al., 2004, 2005. The
MSA toolbox can be downloaded online from http://www.cns.tau.ac.il/
msa/.)

2.2 The Contribution-Selection Algorithm. The CSA is iterative in na-
ture and can adopt a forward selection or backward elimination approach.
Its backward elimination version, which overall yields better prediction ac-
curacy (see section 3.2) is described in detail in Figure 1. In the backward
elimination version, using the subroutine contribution, the CSA ranks each
feature according to its contribution value and then eliminates e features
with the lowest contribution values (using the subroutine elimination). It
repeats the phases of calculating the contribution values of the currently
remaining features and eliminating new features, until the contribution val-
ues of all candidate features exceed a contribution threshold �. Forward
selection CSA works in a similar manner, selecting on each iteration s fea-
tures with highest contribution values, as long as their contribution values
exceed some threshold.

The algorithm, without further specification of the contribution subrou-
tine, is a known generalization of filter methods. However, the main idea
of the algorithm is that the contribution subroutine, unlike common filter
methods, returns a contribution value for each feature according to its role
in improving the classifier’s performance, which is generated using a spe-
cific induction algorithm and in conjunction with other features. Using the
notation in section 2 and assuming that one maximizes the accuracy level
of the classifier, the contribution subroutine for backward selection calcu-
lates the contribution values ϕi by equations 2.1 and 2.3, where the payoff
function v(S) is simply the validation accuracy of the base classifier fS(x)
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Figure 1: The contribution-selection algorithm in its backward elimination ver-
sion. F is the input set of features. t, d , �, and e are hyperparamters: t = |�d |
is the number of permutations sampled (see equation 2.3), d is the maximal
permutation size for calculating the contribution values, � is a contribution
value threshold, and e is the number of features eliminated in each phase. The
variable c represents the set of candidate features for selection. The contribution
subroutine calculates the contribution value of feature f according to equation
2.3, where f corresponds to the ith player. The elimination subroutine elimi-
nates at most e features with lowest contribution values that do not exceed �.
In the forward selection version, the elimination subroutine is replaced with
a selection subroutine, which selects s features in each phase, and the halting
criterion is changed accordingly.

trained on the training set T,

v(S) = |{x| fS(x) = y, (x, y) ∈ V}|
|V| .

The case S = φ is handled by returning the fraction of majority class
instances. The maximal permutation size d has an important role in deciding
the contribution values of the different features and should be selected in
a way that ensures that different combinations of features that interact
together are inspected. Its impact is demonstrated in section 3.

The number of eliminated features e for the elimination subroutine con-
trols the redundancies of the eliminated features; the higher e is, the more
likely it is that correlated features with redundant contribution will be
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eliminated. Although e = 1 minimizes the redundancy dependencies of the
features, increasing e accelerates the algorithm’s convergence and provides
some regularization, as has been verified experimentally. The algorithm’s
halting criterion depends on �, which designates a trade-off between the
number of selected features and the performance of the classifier on the
validation set. With the backward elimination version, choosing � = 0
means that CSA eliminates features as long as there exist features that are
unlikely to improve the classifier’s performance. Increasing � has the oppo-
site effect on the size of the final set of features. The naive halting criterion
that terminates feature elimination when no further performance gain is
expected—when the exclusion of no feature enhances the performance—is
entirely different. For example, during CSA backward elimination, there
are occasionally features with negative contribution values: once they are
eliminated, there is no performance improvement. Still the removal of such
features tends to increase the generalization of the classifier by the mere
reduction of its complexity. Indeed, testing this naive halting criterion has
verified that it leads to considerably inferior performance levels.

3 Results

3.1 Experiments with Artificial Data. In order to demonstrate the al-
gorithm’s behavior, we generated a data set that consists of nine features.
The first three features are binary. The target labels are taken as the parity
function of these three features. The other six features are correlated with
the target by setting them to the target values and adding a random value
taken from the normal distribution with expectancy 0 and standard devia-
tion σ = 1. A simple calculation shows that the correlation between each of
these six features and the target is

√
(1 + σ 2)−1 � 0.71, and the correlation

between the sum of these features and the target is
√

(1 + σ 2/6)−1) � 0.92.
The mean accuracy of a classifier that outputs the sign of the sum of these six
features is 0.84, which will be considered a baseline accuracy (the accuracy
of C4.5 classifier that uses all nine features is 0.82). The data set consists of
200 training examples and 100 test examples.

Using this data set, we inspected the features selected and the per-
formance of several feature selection methods. We used Random Forests
(Breiman, 2001), mutual information, Pearson correlation, regular back-
ward wrapper method (eliminating one feature at a time), regular forward
wrapper method (selecting one feature at a time), and CSA in both back-
ward elimination and forward selection using C4.5 as base learner. CSA was
run with s = 1, e = 1, d = 3, and t = 20.2 No optimization was performed
on these hyperparameters. In all ranking methods (Random Forests, mutual

2 While CSA evaluated 540 permutations, this toy example can be solved by an ex-
haustive search requiring only 29 − 1 = 511 evaluations.
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Figure 2: Behavior of backward selection CSA on the artificial data set.
(A) The accuracy of the backward selection CSA changes with respect to n, the
number of training set instances. (B) The average number of features selected as
a function of n.

information, and Pearson correlation), the first three features were ranked
as least informative features. As expected, the accuracy obtained by using
these methods did not exceed the baseline accuracy 0.84. Forward selection
CSA together with backward wrapper and forward wrapper did not select
any of the first three most relevant features. Yet backward elimination CSA
chose the three features for classification and achieved 100% accuracy. The
reason for this behavior is that the other six features were too confusing
for the classifier with most algorithms. With decision trees, the first three
features will always be used in deep nodes of the tree due to the greedy
criterion used by decision tree algorithm to select a feature for node split-
ting. Therefore, the inclusion or removal of any one of these features will
have less influence on the classifier’s accuracy than any of the six features
linearly correlated with the target.

We further tested the behavior of CSA with respect to the number of
training instances, n. To this end, we produced training sets of different
values of n and ran the algorithm on each sample. For each value of n, five
different training sets were sampled and scored, and the average accuracy
and average number of features selected were computed. The results for
the backward selection CSA are described in Figure 2. As can be seen, for
n ≥ 140, many instances of the backward elimination CSA identify the three
salient features and achieve perfect categorization of the test examples.

3.2 Experiments with Real-World Data. To test CSA empirically, we
ran a number of experiments on seven real-world data sets with number of
features ranging from 278 to 20,000 (see Table 1):
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Table 1: Description of Data Sets Used.

Name
Number of

Classes
Number of

Features
Training Set

Size
Testing Set

Size

Reuters1 3 1579 145 145
Reuters2 3 1587 164 164
Arrhythmia 2 278 280 140
Internet Ads 2 1558 2200 800
Dexter 2 20,000 300 300
Arcene 2 10,000 100 100
I2000 2 2000 40 22

� Following Koller and Sahami (1996), we constructed the Reuters1 data
set from the Reuters-21578 document collection (Reuters, 1997). The
data set consists of articles from the categories coffee (99 documents),
iron-steel (137 documents), and livestock (54 documents). These topics
do not have many overlapping words, making the task of classification
easier. As a preprocessing step, we removed all words that appeared
fewer than three times. Each article was then encoded into a binary
vector, where each element designates whether the word appeared in
the document.

� The Reuters2 data set was constructed, similar to the Reuters1 data
set, from the categories gold (68 documents), gross national product
(124 documents), and reserves (136 documents). These topics are more
similar and contain many overlapping words, making the task of
classification harder. For both of the Reuters data sets, our splits are
not identical to the one in Koller and Sahami (1996) and contain
fewer documents because we could not obtain the exact same data
set.

� The Arrhythmia database from the UCI repository (Blake & Merz,
1998). The task for this database is to distinguish between normal
and abnormal heartbeat. We used a version of the data that was
slightly modified by Perkins et al. (2003): features that were miss-
ing in most of the instances were removed. The data set contains 237
positive instances and 183 negative instances. It can be found online
at http://nis-www.lanl.gov/∼simes/data/jmlr03.

� The Internet Advertisements database from the UCI repository (Blake
& Merz, 1998) was collected for research on identifying advertise-
ments in web pages (Kushmerick, 1999). The features in the database
describe different attributes in a web page, such as the domain it was
downloaded from, the domain that referred to it, and its size. There
are two classes: each instance is either an advertisement or not an
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advertisement. The data set contains 2581 positive instances and 419
negative instances.

� The Dexter data set from the NIPS 2003 workshop on feature selection
(Guyon, 2003). The Dexter data set is a two-class text categorization
data set constructed from a subset of the Reuters data set, using doc-
uments from the category in corporate acquisitions. The data set is
abundant with irrelevant features. (For exact details on how the data
set was constructed, see Guyon, 2003.) The data set contains 300 pos-
itive instances and 300 negative instances. As a preprocessing step,
we binarized each of the instances that originally contained the word
frequency in each document and removed words that appeared fewer
than three times. The validation set of the data served in the following
experiments as T, the test set.

� The Arcene data set from the NIPS 2003 workshop on feature selection
(Guyon, 2003) is a two-class categorization data set, describing mass
spectrometry analysis of the blood serum of patients with a certain
kind of cancer and without it. It is affluent with features and poor
with data instances. (For details on how the dataset was constructed,
see Guyon, 2003.) The data set contains 88 positive instances and
112 negative instances. The validation set of the data served in the
following experiments as T, the test set.

� I2000, a microarray colon cancer data set by Alon et al. (1999) is a
two-class categorization data set for discriminating between healthy
and ill tissues in colon cancer. The data contain the expression of 2000
genes with highest minimal intensity across 62 tissues. The data set
contains 31 positive instances and 31 negative instances. It has a very
high features-to-instances ratio, making the task of feature selection
harder.

In principle, CSA can work with any induction algorithm L . However,
due to computational constraints, we focused on fast induction algorithms,
or algorithms that may be efficiently combined into CSA. We experimented
with Naive Bayes, C4.5, and 1NN. For each of the data sets, we measured
the training set accuracy of each classifier using tenfold cross-validation
on the whole set features. For each data set, all subsequent work used the
induction algorithm L that gave the highest cross-validation accuracy, as
detailed in Table 2.

Nine different classification algorithms were then compared on the data
sets described above:

� Classification using the induction algorithm L without performing
any feature selection.
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Table 2: Parameters and Classifier Used with the CSA Algorithm for Each Data
Set.

Data Set
Induction
Algorithm (L) s (Forward) e (Backward) d t

Reuters1 Naive Bayes 1 100 20 1500
Reuters2 Naive Bayes 1 100 20 1800
Arrhythmia C4.5 1 50 20 500
Internet Ads 1NN 1 100 20 1500
Dexter C4.5 50 50 12 3500
Arcene C4.5 100 100 5 10,000
I2000 C4.5 100 100 3 2000

Notes: s is the number of features selected in forward selection in each phase, e is the
number of features eliminated in backward elimination in each phase, d is the permu-
tation size, and t is the number of permutations sampled to estimate the contribution
values. For an explanation of how hyperparameters were chosen, see the description of
the backward CSA algorithm.

� Classification using soft margin linear SVM with the SVMlight pack-
age (Joachims, 1999). Data sets that had more than two classes were
decomposed to a few one-versus-all binary classification problems.

� Classification using L after performing feature selection by estimation
of the Pearson correlation coefficient. The number of features was
selected by performing tenfold cross validation on the training set
and averaging the results, each time adding more features with the
highest correlation value to the current features set. After this process,
the set that obtained the best result was selected.

� Classification using L after performing feature selection by estima-
tion of mutual information. For data sets with continuous domain
(Arrhythmia, Internet Ads, Arcene, and I2000), we used binning to
estimate the mutual information. The number of features selected
was optimized, as with the Pearson correlation coefficient.

� Classification using L after performing feature selection with Random
Forests (Breiman, 2001). We used the randomForest library implemen-
tation for the R environment (Bengtsson, 2003). The number of features
selected was optimized as with the Pearson correlation coefficient.

� Classification using L after performing feature selection with back-
ward elimination CSA with d = 1. The number of permutations
selected was large enough that each feature is sampled with high
probability. This is equivalent to regular wrapper technique, in which
backward elimination is used to eliminate the features that most de-
grades the accuracy of the classifier. This algorithm is chosen to check
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whether it is sufficient to examine each feature separately for perform-
ing feature selection on the data set.

� Classification using L after performing feature selection with forward
selection CSA with d = 1. The number of permutations selected was
large enough that each feature is sampled with high probability. This
is equivalent to the regular wrapper technique, in which forward
selection is used to select the features that most improve the accuracy
of the classifier. This algorithm is similar to that of the backward
wrapper.

� Classification using L after performing feature selection with back-
ward elimination CSA and parameters as described in Table 2. The
parameters d and t were chosen such that the expected number of
times that each feature is sampled is higher than five. This num-
ber was chosen according to error analysis considerations of MSA
(Keinan et al., 2004) and following preliminary experimentation with
an artificial data set. When computation times allowed, the number of
permutations sampled was much larger than the minimal value. The
contribution value threshold for stopping elimination was � = 0. No
hyperparameter selection was performed on d , t, or �.

� Classification using L after performing feature selection with forward
selection CSA and parameters as described in Table 2. The parameters
d and t were chosen such that the expected number of times that
each feature is sampled is higher than five. The termination of feature
selection was fixed by choosing a contribution value threshold � = 0.
No hyperparameter selection was performed on d , t, or �.

CSA is prone to overfitting on the validation set. When the classifier’s
performance is always evaluated on a possibly small validation set, the
curse of dimensionality appears, and irrelevant features are selected, even
if the classifier itself is trained using techniques that avoid overfitting. It
might seem at first that evaluating the classifier each time on a different
training set and validation set split can solve the problem. However, this
leads to another problem: the classifier’s performance depends on the split,
so the marginal contributions of the different features do not reflect their
real value. In order to avoid both of these problems, we used tenfold cross
validation; the training set was split into several parts, and the payoff
function was evaluated by averaging a classifier’s performance on the whole
training set.

3.3 Feature Selection and Classification Results. Table 3 summarizes
the classifiers’ performance on the test set and the number of features se-
lected in each of the experiments. The accuracy levels are the fraction of
correctly classified test set instances.
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Table 3: Accuracy Levels and Number of Features Selected in the Different Data
Sets.

Data Set No FS SVM Corr MI RF

Reuters1 84.1% 94.4% 90.3% (20) 94.4% (20) 96.3% (6)
Reuters2 81.1% 91.4% 88.4% (20) 90.2% (5) 87.2% (21)
Arrhythmia 76.4% 80% 71.4% (20) 70% (20) 80% (40)
Internet Ads 94.7% 93.5% 94.2% (15) 95.75% (70) 95.6% (10)
Dexter 92.6% 92.6% 92.6% (1240) 94% (230) 93.3% (800)
Arcene 83% 83% 83% (6600) 81% (5600) 82% (6000)
I2000 86.3% 72.7% 81.8% (260) 90.9% (1060) 86.3% (100)

Data Set Wrapper Bwd Wrapper Fwd CSA Bwd CSA Fwd

Reuters1 94.4% (35) 92.4% (7) 98.6% (51) 96.5% (10)
Reuters2 95.7% (53) 91.4% (5) 93.2% (109) 90.1% (14)
Arrhythmia 77.8% (17) 70% (5) 84.2% (21) 74.2% (28)
Internet Ads 95% (62) - 96.1% (158) 95.6% (8)
Dexter 92.6% (653) 80% (10) 93.3% (717) 92.6% (100)
Arcene 82% (6800) 58% (7) 86% (7200) 81% (600)
I2000 86.3% (1600) 86.3% (550) 90.9% (1100) 86.3% (500)

Notes: Upper table: No FS: no feature selection; SVM: linear soft margin SVM without
feature selection; Corr: feature selection using Pearson correlation; MI: feature selection
using mutual information; RF: feature selection using Random Forests. Bottom table:
Wrapper Bwd and Wrapper Fwd: wrapper with backward and forward selection, respec-
tively; CSA Bwd and CSA Fwd: CSA with backward elimination and forward selection,
respectively, with parameters from Table 2. Accuracy levels are calculated by counting the
number of misclassified parentheses. The number of features selected is given in paren-
theses. Notice that the accuracies obtained by our algorithms on the Dexter and Arcene
data sets are inferior to those of the winners of NIPS 2003 feature selection competition.

3.3.1 Reuters1 Data Set. Feature selection using CSA with backward
elimination did best, yielding an accuracy level of 98.6% with 51 features.
Koller and Sahami (1996), for example, report that the Markov Blanket
algorithm yields approximately 600 selected features with accuracy levels
of 95% to 96% on this data set.

3.3.2 Reuters2 Data Set. Wrapper with backward elimination did best,
yielding accuracy level of 95% with 53 features. For comparison, Koller
and Sahami (1996) report that the Markov Blanket algorithm yields
approximately 600 selected features with accuracy levels of 89% to 93%
on this data set.3

3 The data sets used in Koller and Sahami (1996) are not identical to the data sets we
used. We were unable to obtain the same data sets and had to reconstruct them from the
original Reuters-21578 collection.
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3.3.3 Arrhythmia Data Set. This data set is considered a difficult one.
CSA with backward elimination did best, yielding an accuracy level of 84%
with 21 features. Forward selection with higher depth value (d = 20) did
better than with d = 1, implying that one should consider many features
concomitantly to perform good feature selection for this data set. For com-
parison, the grafting algorithm (Perkins et al., 2003) yields an accuracy level
of approximately 75% on this data set.

3.3.4 Internet Ads Data Set. All the algorithms did approximately the
same, leading to accuracy levels between 94% and 96%, with CSA slightly
outperforming the others. Interestingly enough, with d = 1, the algorithm
did not select any feature. In the first phase, the 1NN algorithm had neigh-
bors from both classes with the same distance for each feature checked,
leading to arbitrary selection of one of the classes, and the classifier’s
performance was constant through all the phase, yielding zero contribu-
tion values. However, when selecting the higher depth levels, the sim-
ple 1NN algorithm was boosted up to outperform classifiers such as
SVM.

3.3.5 Dexter Data Set. For the Dexter data set, we used algorithm L
(C4.5 decision trees) only for the process of feature selection and linear
SVM to perform the actual prediction on the features selected. This was
done because C4.5 did not give satisfying accuracy levels for any of the
feature selection algorithms, and it is impractical to use SVM with CSA
for large data sets. To overcome the difference between the classifiers per-
forming feature selection and the classifier used for the actual classification,
we added an optimization phase for the forward selection algorithm af-
ter it stopped. In this phase, a tenfold crossvalidation is performed on
the data set in a similar way to the one used to optimize filter methods.
The simple mutual information feature selection performed best, followed
closely by the CSA in its backward elimination version and by Random
Forests. This implies that in Dexter, the contribution of single features
significantly outweighs the contribution of feature combinations for the
task of classification. The forward selection algorithm did as well as linear
SVM without feature selection, but with a significantly lower number of
features.

3.3.6 Arcene Data Set. Here, just as in the case of Dexter, we use C4.5
for the process of feature selection and linear SVM to perform the actual
prediction on the features selected. The CSA with backward elimination
obtained better performance than the rest of the algorithms.

3.3.7 I2000 Data Set. CSA with backward elimination, together with fea-
ture selection using mutual information, yielded the best results. The poor
performance of CSA with forward selection can be explained by the poverty
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Table 4: Wilcoxon Signed-Rank Test p-Values.

CFwd. WBwd. WFwd. RF MI No FS SVM Corr.

CBwd. 0.015 0.078 0.031 0.093 0.015 0.015 0.015 0.015
CFwd. - 0.672 0.219 0.625 0.218 0.625 0.687 0.156
WBwd. - 0.016 0.031 0.094 0.016 0.016 0.016
WFwd. - 0.156 0.046 0.625 0.437 0.937
RF - 0.562 0.156 0.156 0.156
MI - 0.078 0.437 0.109
No FS - 0.812 0.812
SVM - 0.109

Notes: This table specifies the Wilcoxon signed-rank test p-values related to the results in
Table 3. The entry on row i and column j specifies the p-value related to testing whether
method i is superior to method j . CBwd stands for CSA with backward elimination
and WBwd stands for Wrapper with backward elimination. CFwd and WFwd follow
similar naming. p-values were calculated using the exact distribution for n = 7 tests,
which can easily be calculated by enumeration. It can be seen that the backward elimi-
nation CSA is better than the other methods tried with significance level 0.05, except for
Random Forests and Wrapper backward elimination, where only a marginal significance
is achieved. No other feature selection method was found to be significantly better than
the majority of the remaining methods.

of data compared to the number of features. The algorithm selected in the
first phases features that explain well the training data by coincidence and
avoided selecting features that truly contribute to the task of classification.
This phenomenon is explained section 3.5.2.

3.4 Significance of the Results. The McNemmar test (Gillick & Cox,
1989) on the results summarized in Table 3 identified no significant su-
periority of any feature selection method on any of the data sets. The
accuracies are too close to each other compared to the size of the test
sets.

However, in five of the seven data sets, CSA with backward elimination
achieved the highest accuracy. In the other case, it achieved the second-
best accuracy. So although the results are not significant for each data set,
the overall picture may suggest otherwise. To test whether the backward
elimination version of CSA is indeed superior to the other feature selection
algorithms, we performed a one-sided Wilcoxon signed-rank test (Kanji,
1994). This test takes into account the ranking of feature selection meth-
ods across all data sets and tests whether the set of rankings significantly
deviates from the H0 distribution that assumes that all methods are equal.
Table 4 lists the p-values of these tests. As can be seen, the backward elim-
ination version of CSA has significantly higher performance than most of
the other methods tried.
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Figure 3: Dependency of CSA performance on its hyperparameters. (A) The ac-
curacy of the backward elimination version of CSA for various values of d , size of
subsets. As expected, for small values of d , there is a substantial improvement of
performance as d is increased. But beyond a certain point (here, around d = 10),
the accuracy stays stable around 83%. (B) The accuracy of backward elimination
of CSA for various values of t, the number of permutations sampled. The overall
picture is compatible with the fact that the estimate of the contribution value
becomes more robust as more samples are taken.

3.5 A Closer Inspection of the Results

3.5.1 Behavior of the Algorithm with Different Parameters. In order to ex-
amine the effect of different parameter values on the algorithm, we ran the
CSA on the Arrhythmia data set with different values of d (size of sub-
sets analyzed) and values of t (number of permutations examined in each
phase of eliminating new features). The results were averaged over five
experiments for each value of d and t.

Figure 3 describes the result. Figure 3A implies that there are optimal
values of d for which the performance achieved is highest. For small values
of d , not enough interactions between the different features are considered.
As d increases, the performance on the data set increases until it reaches a
critical value. For values of d larger than that critical value, the performance
stays stable around the critical value’s performance.

Figure 3B implies that the algorithm is rather robust to the number of
permutations analyzed in each phase. For very small t values, the algo-
rithm’s performance is limited. But as t grows to values a little higher, the
performance grows as well, until it stays rather stable.

3.5.2 The Distribution of the Contribution Values. The MSA, intent on cap-
turing correctly the contribution of elements to a task, enables us to examine
the distribution of the contribution values of the features. Figure 4 depicts a
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Figure 4: Power law distribution of contribution values. This log-log plot of
the distribution of the contribution values (absolute value) in the first phase for
Arrhythmia and Dexter, prior to making any feature selection, demonstrates a
power law behavior. For both axes, natural logarithms are used. The p-values for
the regression were 0.0047 (Arrhythmia) and 0.0032 (Dexter). The corresponding
plots for the other data sets show power law characteristics with different slopes
and were eliminated for clarity.

log-log plot of the distribution of the contribution values in the first phase
for Arrhythmia and Dexter, prior to making any feature selection. This dis-
tribution follows a scale-free power law, implying that large contribution
values (in absolute value) are very rare, while small ones are quite common,
justifying quantitatively the need of feature selection. The other data sets
were also observed to possess a similar power law characteristic.

The behavior of the algorithm through the process of feature selection
and feature elimination is displayed in Figure 5. After the forward selection
algorithm identifies the significant features in the first few phases, there
is a sharp decrease in the contribution values of the features selected in
the following phases, while with backward elimination, there is a gradual
and rather stable increase in the contribution values of the noneliminated
features. The peaks in the graph of the contribution values in Figure 5A
demonstrate that the contribution values change as the CSA iterates. In this
case, the selection of a single feature considerably increased the contribu-
tion value of another feature, pointing at intricate dependencies between
features.

Figures 4 and 5 also assist in explaining why backward elimination usu-
ally outperforms several feature selection methods, including forward se-
lection. Due to the high dimensionality of the data sets, a feature that assists
in prediction merely by coincidence may be selected on account of other
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Figure 5: Prediction accuracy and feature contribution during forward selec-
tion (A) and backward elimination (B) for the Arrhythmia data set. Both parts
of the figure show how the performance of the C4.5 classifier improves on
the validation set as the algorithm selects (eliminates) new features, while the
contribution values of the selected features decrease (increase). The backward
elimination generalizes better on the test set through the algorithm’s progress.
The behavior for the other data sets is similar.

truly informative features. Forward selection is penalized severely in such
case: among the few significant features, some will not be chosen. How-
ever, backward elimination always maintains the significant features in the
noneliminated set; a feature that truly enhances the classifier’s generaliza-
tion will do so for the validation set as well and will not be eliminated. This
leads to a more stable generalization behavior for backward elimination on
the test set through the algorithm’s progress (see Figure 5).

4 Discussion

CSA evaluates on each phase t feature sets for each coalition size in the
range 1 to d , leading to O( td

e n) sets being evaluated. However, in order to
obtain reliable estimates of the contribution values, td should scale linearly
with n. Therefore, in practice, CSA requires O(n2) evaluations, like standard
forward selection or backward elimination (Wrappers). The filter methods,
ranking features by their Pearson correlation (Corr) or by by their mutual
information (MI) with the targets, both have linear time complexity. The
time complexity of Random Forest (RF) is difficult to assess, since in order
to get a reliable estimate of feature importance, one should increase the
number of trees; the resulting trees are usually deeper, and with each node,
O(

√
n) features are being considered.

The O(n2) behavior of CSA poses a real challenge when using it with non-
trivial problems. To cope with it, fast induction algorithms such as naive
Bayes, KNN, or decision trees must be used. Running times can be further
reduced by parallelizing, an advantage not shared by wrapper algorithms,
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which use search methods such as hill climbing; At each phase, the permuta-
tions can be computed in parallel and combined on completion to obtain an
estimate of contribution values. Furthermore, as the algorithm progresses,
the number of candidate features for either selection (forward selection) or
elimination (backward elimination) decreases. Consequently, the number
of permutations sampled may be reduced, speeding up the algorithm sig-
nificantly. The restriction in selecting the learning algorithm for CSA does
not apply to the prediction once the features are selected. After a set of
features is found by the CSA, it may be used by any induction algorithm,
as demonstrated in section 3.3 with the Dexter and Arcene data sets.

Several learning algorithms, such as KNN with Euclidean metric, Naive
Bayes classifier and fisher’s linear discriminant, allow an optimization that
dramatically reduces the time spent in the contribution subroutine. Without
such optimizations, running times can be considerable: For example, using
C4.5 as a base learning algorithm, the total running time for the Arrhythmia
data set was on average 41 minutes on a 1.73 Ghz Pentium 4 for backward
elimination and 34 minutes for forward selection. The standard deviations
of running times were approximately 8 minutes and 6 minutes, respec-
tively. For comparison, the running times for the filter algorithms (mutual
information and Pearson correlation) were less than 4 minutes. Forward
selection and backward elimination wrapper methods took 28 minutes and
33 minutes, respectively, and the running time of Random Forests on the
same data set was 12 minutes.

Since the contribution value is based on extensive sampling of feature
sets, the CSA algorithm is capable of identifying intricate dependencies be-
tween features and the target. We therefore expect that CSA will be effective
for data sets where feature independence is strongly violated, as demon-
strated in section 3.1. However, CSA may fail in certain circumstances, for
example, when a large coalition should be formed to aid in prediction. In
such a case, it may well be that this coalition will not be sampled—and
hence, the contribution value of the corresponding features will not be in-
creased. Obviously, forward selection CSA is more prone to this pitfall.
Furthermore, when the data are scarce, overfitting could pose a real prob-
lem for CSA. The significance of contribution estimates can be rather low,
and the resulting noise can play a substantial role in driving the algorithm.
Further incorporation of regularization into CSA may help to deal with
such a situation.

5 Conclusion

The contribution-selection algorithm presented in this letter views the task
of feature selection in the context of coalitional games. It uses a wrapper-
like technique combined with a novel ranking method based on the Shap-
ley contribution values of the features to the classification accuracy. The
CSA works in an iterative manner, each time selecting new features (or



Feature Selection via Coalitional Game Theory 1959

eliminating them) while taking into account the features that were selected
(or eliminated) so far.

We verified that the feature sets selected by CSA are significantly differ-
ent from those selected by other filter methods. It turns out that the first
strong features are selected by most methods. But within a few iterations,
CSA selects entirely different features from other methods due to the fact
that the contribution values of the candidate features are modified along
the run of the algorithm, sometimes drastically, according to the features
already selected.

The CSA was tested on number of data sets, and the results show that the
algorithm can improve the performance of the classifier and successfully
compete with an existing array of filter and feature selection methods,
especially in cases where the features interact with each other. In such
cases, performing feature selection with a permutation size higher than one,
namely, not using the common greedy wrapper approach, can enhance the
classifier’s performance significantly.

The results successfully demonstrate the value of applying game theory
concepts to feature selection. While the forward selection version of the
algorithm is competitive with other feature selection methods, our experi-
ments show that overall, the backward elimination version is significantly
superior to them and produces features sets that can be used to generate a
high-performing classifier.
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