
Discourse Representation Structure Parsing with Recurrent
Neural Networks and the Transformer Model

Jiangming Liu Shay B. Cohen Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

jiangming.liu@ed.ac.uk, {scohen,mlap}@inf.ed.ac.uk

Abstract

We describe the systems we developed for Discourse Representation Structure (DRS) parsing
as part of the IWCS-2019 Shared Task of DRS Parsing.1 Our systems are based on sequence-to-
sequence modeling. To implement our model, we use the open-source neural machine translation
system implemented in PyTorch, OpenNMT-py. We experimented with a variety of encoder-decoder
models based on recurrent neural networks and the Transformer model. We conduct experiments on
the standard benchmark of the Parallel Meaning Bank (PMB 2.2.0). Our best system achieves a score
of 84.8% F1 in the DRS parsing shared task.

1 Introduction

Discourse Representation Theory is a popular theory of meaning representation designed to account for
a variety of linguistic phenomena, including the interpretation of pronouns and temporal expressions
within and across sentences (Kamp and Reyle, 1993). The Groningen Meaning Bank (GMB; Bos et al.
2017) provides a large collection of English texts annotated with Discourse Representation Structures
(DRS), while the Parallel Meaning Bank (PMB; Abzianidze et al. 2017) provides DRSs in English,
German, Italian and Dutch. Furthermore, the PMB introduces clause representation, as shown on the top
of Figure 1.

With the recent introduction of neural network learning to the Natural Language Processing commu-
nity, several neural DRS parsers have been developed for the problem of DRS parsing, i.e. the problem
of taking a document or a sentence as input, and outputting their corresponding DRS. Liu et al. (2018)
convert box-style DRSs to tree-style DRSs and propose the three-step tree DRS parser on the GMB,
while van Noord et al. (2018) adopt a neural machine translation approach to parse sentences to their
clause-style DRSs on PMB. Due to the different standard of annotations between GMB and PMB, and
that the IWCS-2019 Shared Task of DRS Parsing mainly focuses on averagely short sentences in PMB
annotations, our systems take sentences as input and output a clause-style DRS of PMB represented as a
sequence for the IWCS-2018 Shared Task of DRS parsing (Abzianidze et al., 2019).

2 The Parsing System

Figure 2 shows the data pipeline in our system for both training and parsing. There are three main
parts: (a) The component Preprocess, which prepares the input data to make it suitable for training and
parsing models; (b) The component Neural Model which is based on OpenNMT; (c) The component
Postprocess which contains some rules to ensure the system output is a well-formed DRSs.

1https://competitions.codalab.org/competitions/20220

b1 REF e1 b1 live "v.01" e1
b1 REF t1 b1 time "n.08" t1
b1 EQU t1 "now" b1 Location e1 x1
b1 Theme e1 "speaker" b2 REF x1
b1 Time e1 t1 b2 ground floor "n.01" x1

e1 t1 b1

time.n.08(t1)
t1 = now

live.v.01(e1)
Location(e1, x1)
Time(e1, t1)
Theme(e1, speaker)

x1 b2

ground floor.n.01(x1)

Figure 1: The clause representations (top) and box-style representations (bottom) for the sentence I live
on the ground floor..

DRS
preprocess

Training

neural
model

postprocess

sentences

DRSs

sentence
preprocess

Parsing

sentences DRSs

Figure 2: The framework of our DRS parsing system.

2.1 Preprocessing

The Preprocess step works on the sentences and their DRSs of the training data and on the sentences of
the development and the test data. We tried two levels of preprocessing, character-level and word-level.

Character Level We use the scripts of van Noord et al. (2018) to perform character-level preprocessing
for sentences and their DRSs. Each sentence is separated into characters where a special symbol “|||”
is used to mark a word boundary.2 The clauses are represented as a character sequence, except for the
semantic roles, DRS operators and deictic constants, as shown in Figure 3(a). For example, “b1 REF e1”
is preprocessed to “$NEW ||| REF”, which means that a new box (b1) is construct and a new referent (e1)
is introduced by the box; “b2 ground floor “n.01” x1” is preprocessed to “$0 ||| g r o u n d f l o o r |||
“ n . 0 1 ” ||| @0”, which means that the sense ground floor.n.01 is constructed and then assigned to the
referent @0, which is latest introduced, where @n (n∈ Z) denotes the referent |n|th latest introduced.3.
Similarly, $n (n∈ Z) denotes the box |n|th latest constructed.

Word Level Each sentence is tokenized using the Moses script4 and then transformed to its lowercase
form. Clauses are represented as sequences without changing the order, where a special symbol “|||” is
used to start a new clause. We rule out quotation marks in clauses (e.g. “tom” is converted to tom) and

2Here, sentences are not further tokenized than they are in the data, and a token could be I’m or floor. .
3When n is positive, @n denotes the referent is nth latest introduced in future.
4https://github.com/moses-smt/mosesdecoder

sentence: i ||| l i v e ||| o n ||| t h e ||| g r o u n d ||| f l o o r .
DRS: $NEW ||| REF *** $0 ||| REF *** $0 ||| EQU ||| @0 ||| “now” *** $0 ||| Theme ||| @-1

||| “speaker” *** $0 ||| Time ||| @0 ||| @-1 *** $0 ||| l i v e ||| “ v . 0 1 ” ||| @-1 *** $0
||| t i m e ||| “ n . 0 8 ” ||| @0 *** $0 ||| Location ||| @-1 ||| @1 *** $NEW ||| REF ***
$0 ||| g r o u n d f l o o r ||| “ n . 0 1 ” ||| @0

(a) character level

sentence: i live on the ground floor .
DRS: $NEW REF ||| $0 REF ||| $0 EQU @0 now ||| $0 Theme @-1 speaker ||| $0 Time @0

@-1 ||| $0 live v.01 @-1 ||| $0 time n.08 @0 ||| $0 Location @-1 @1 ||| $NEW REF ||| $0
ground floor n.01 @0

(b) word level

Figure 3: An example of preprocessing in character level and word level, respectively.

LSTM
Parameter Value Parameter Value Parameter Value
layers 2 batch size 12 global attention general
rnn size 300 batch type sents copy attention True
rnn type LSTM optim sgd copy attn type dot
dropout 0.2 learning rate 0.7 start decay steps 5000
bridge True learning rate decay 0.7 decay steps 1000
encoder type brnn max grad norm 5 decoder type rnn

Transformer
Parameter Value Parameter Value Parameter Value
layers 6 batch size 512 encoder type transformer
rnn size 300 batch type tokens decoder type transformer
transformer ff 2048 optim adam position encoding True
heads 6 learning rate 0.001 copy attn type dot
dropout 0.2 global attention general max grad norm 5
bridge True copy attention True

Table 1: Choice of hyperparameters for our neural network models.

remain them case-sensitive. Following previous work (van Noord et al., 2018), the indices of variables
in clauses are relative, as shown in Figure 3(b), which is the same to the character-level preprocessing.

2.2 Neural Models

We adopt Recurrent Neural Networks (RNNs) equipped with Long Shot-Term Memory (LSTM; Hochre-
iter and Schmidhuber 1997) units and the Transformer model (Vaswani et al., 2017) as our neural models.
For the model implementation, we use the one provided by the OpenNMT-py toolkit (Klein et al., 2017).
The hyperparameters we used are shown in Table 1 which are institutionally set without optimization.

Fine-tuning We propose a fine-tuning approach to enable the system to effectively use more training
data in various quality, i.e. bronze and silver data. The fine-tuning approach allows the system train
to convergence on one dataset (e.g. silver and gold data) and then continues to train to convergence on
another dataset (e.g. gold data), where the optimizers are reset.

LSTM
character word

P R F1 time(h) P R F1 time(h)
sg-data 73.91 75.00 74.45 13.1 73.81 73.75 73.78 7.8
sg-data + g-data 86.05 84.78 85.41 +2.0 84.80 82.83 83.80 +0.8

Transformer
character word

P R F1 time(h) P R F1 time(h)
sg-data 69.11 69.93 69.52 5.2 75.41 75.36 75.38 5.1
sg-data + g-data 82.32 81.19 81.75 +0.6 85.76 84.45 85.10 +0.6

Table 2: Results on test partition of the Parallel Meaning Bank.

P R F1
bsg-data 74.27 75.78 75.02
bsg-data + sg-data 77.74 78.78 78.26
bsg-data + g-data 86.98 86.55 86.76
bsg-data + sg-data + g-data 87.04 87.17 87.10

Table 3: Results on test dataset by word transformer

2.3 Postprocessing and Evaluation

We adopt the postprocessing scripts of van Noord et al. (2018) to transform back the output of our models
to the clause format, and then use COUNTER (van Noord et al., 2018) as our evaluation metric.

3 Experiments

In this section, we introduce the training data that we used and the results on the PMB benchmarks.

3.1 Data

The training data consists of all of the bronze data (bronze), all of the silver data (silver), and the training
section of the gold data (gold). All data is preprocessed. We mix bronze, silver and gold as bsg-data,
and mix silver and gold as sg-data, and name the training section of gold data as g-data. Meanwhile,
we adopt GloVe (Pennington et al., 2014) pre-trained word embeddings5 to initialize the representation
of input tokens.

3.2 Results

Table 2 shows the results on test data, where sg-data means that the models are only trained on sg-data,
and + g-data means that the models are continually fine-tuned on g-data. With LSTM, the character
model performs marginally better than the word model. However, with Transformer, the word model
performs significantly better than the character model. With both LSTM and Transformer, fine-tuning
on g-data significantly improves the performance. Although the character LSTM is marginally better
than the word Transformer, we still prefer the word Transformer as our final model, because it could be
trained faster.

Table 3 shows the improved results on test dataset by using word Transformer with bronze data,
where bsg-data means that the model is only trained on bsg-data, + sg-data means that the model is
continually fine-tuned on sg-data, and + g-data means that the model is further fine-tuned on g-data. As
shown in Tables 2 and 3, the improvement gap of fine-tuning on sg-data from bsg-data (3.24% F1) is
narrower than that of fine-tuning on g-data from sg-data (8.84% F1). Fine-tuning on g-data may be the
key to improve the performance on the test dataset. We believe this is due to the high similarity between

5https://nlp.stanford.edu/projects/glove/

char-LSTM word-LSTM char-transformer word-transformer
all clauses 85.41 83.80 81.75 85.10
DRS operators 92.96 93.00 91.67 93.72
Roles 85.03 82.51 81.22 83.40
Concepts 83.23 81.99 78.89 83.89
Synsets-Noun 87.63 87.91 84.34 89.75

Verbs 73.28 66.38 66.16 68.47
Adjectives 68.92 71.06 62.45 74.63
Adverbs 54.55 83.33 50.00 40.00

Table 4: F1-scores of fine-grained evaluation on test dataset.

g-data and the test data. Also, we discover that the model trained on bsg-data then fine-tuned on g-data
can also have good performance, but slightly worse than the final models.

We submitted the word Transformer on bsg-data + sg-data + g-data as our final model to the DRS
parsing shared task. On the test dataset of the shared task, our model achieves 84.80 F1 score.

3.3 Analysis

We further analyze the output of the parsers trained on sg-data + g-data to see what components of
the meaning representation are challenging. Table 4 shows the detailed results of Counter, where DRS
Operators (e.g. negation), Roles (e.g. Agent), Concepts (i.e. predicates), synsets (e.g. “n.01”) are scored
separately.

We compare four parsing models, LSTM with character-level preprocessing (char-LSTM), LSTM
with word-level preprocessing (word-LSTM), Transformer with character-level preprocessing (char-
transformer) and Transformer with word-level preprocessing (word-transformer). The char-LSTM and
word-transformer models both achieve good performance, where word-transformer performs best on the
construction of DRS operators, Concepts, Synsets-Noun and Synsets-Adjectives, and char-LSTM per-
forms best on construction of Roles and Synsets-Verbs. The performance of the word-LSTM model is
mediocre, but it significantly outperforms the other models on the construction of Synsets-Adverbs with
a large gap of 35.14% F1 score.

4 Conclusions

In this paper, we describe the system for the IWCS-2019 Shared Task of DRS parsing. We found that
the character-level LSTM and the word-level transformer are competitive in the task. The training time
of LSTM models increases as input sequences are longer, while training time are not sensitive to the
lengths of input sequences in transformer. The output of LSTM models and transformers have different
error distributions. There is still a large improvement space for the sequential models.

Acknowledgments

We thank Hessel Haagsma, Lasha Abzianidze, Rik van Noord and Johan Bos for their release of the
latest version of PMB (2.2.0). We gratefully acknowledge the support of the European Research Council
(Lapata, Liu; award number 681760), the EU H2020 project SUMMA (Cohen, Liu; grant agreement
688139) and Huawei Technologies (Cohen, Liu).

References

Abzianidze, L., J. Bjerva, K. Evang, H. Haagsma, R. van Noord, P. Ludmann, D.-D. Nguyen, and J. Bos
(2017). The parallel meaning bank: Towards a multilingual corpus of translations annotated with com-

positional meaning representations. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics, Valencia, Spain, pp. 242–247.

Abzianidze, L., R. van Noord, H. Haagsma, and J. Bos (2019). The first shared task on discourse
representation structure parsing. In Proceedings of the IWCS 2019 Shared Task on Semantic Parsing.

Bos, J., V. Basile, K. Evang, N. Venhuizen, and J. Bjerva (2017). The groningen meaning bank. In
Handbook of Linguistic Annotation, pp. 463–496. Springer.

Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural Computation, 1735–1780.

Kamp, H. and U. Reyle (1993). From discourse to logic: An introduction to modeltheoretic semantics
of natural language, formal logic and DRT.

Klein, G., Y. Kim, Y. Deng, J. Senellart, and A. M. Rush (2017). OpenNMT: Open-source toolkit
for neural machine translation. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, Vancouver, Canada, pp. 67–72.

Liu, J., S. B. Cohen, and M. Lapata (2018). Discourse representation structure parsing. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia,
pp. 429–439.

Pennington, J., R. Socher, and C. D. Manning (2014). Glove: Global vectors for word representation. In
Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543.

van Noord, R., L. Abzianidze, H. Haagsma, and J. Bos (2018). Evaluating scoped meaning repre-
sentations. In Proceedings of the Eleventh International Conference on Language Resources and
Evaluation, Miyazaki, Japan, pp. 1685–1693.

van Noord, R., L. Abzianidze, A. Toral, and J. Bos (2018). Exploring neural methods for parsing dis-
course representation structures. Transactions of the Association for Computational Linguistics, 619–
633.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin
(2017). Attention is all you need. In Advances in Neural Information Processing Systems, pp. 5998–
6008.

