
Obfuscation for Privacy-preserving Syntactic Parsing

Zhifeng Hu♠∗ Serhii Havrylov♦ Ivan Titov♦♥ Shay B. Cohen♦
♠School of Computer Science, Fudan University, Shanghai 201203, China
♦School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
♥ILLC / FNWI, University of Amsterdam, Amsterdam 1098XG, Netherlands

zfhu16@gmail.com, s.havrylov@ed.ac.uk
ititov@inf.ed.ac.uk, scohen@inf.ed.ac.uk

Abstract

The goal of homomorphic encryption is to en-
crypt data such that another party can operate
on it without being explicitly exposed to the
content of the original data. We introduce an
idea for a privacy-preserving transformation
on natural language data, inspired by homo-
morphic encryption. Our primary tool is ob-
fuscation, relying on the properties of natural
language. Specifically, a given English text is
obfuscated using a neural model that aims to
preserve the syntactic relationships of the orig-
inal sentence so that the obfuscated sentence
can be parsed instead of the original one. The
model works at the word level, and learns to
obfuscate each word separately by changing
it into a new word that has a similar syntac-
tic role. The text obfuscated by our model
leads to better performance on three syntactic
parsers (two dependency and one constituency
parsers) in comparison to an upper-bound ran-
dom substitution baseline. More specifically,
the results demonstrate that as more terms are
obfuscated (by their part of speech), the sub-
stitution upper bound significantly degrades,
while the neural model maintains a relatively
high performing parser. All of this is done
without much sacrifice of privacy compared
to the random substitution upper bound. We
also further analyze the results, and discover
that the substituted words have similar syntac-
tic properties, but different semantic content,
compared to the original words.

1 Introduction

We consider the case in which there is a powerful
server with NLP technology deployed on it, and a
set of clients who would like to access it to get out-
put resulting from input text taken from problems
such as syntactic parsing, semantic parsing and ma-
chine translation. In such a case, the server models

∗ Work done at the University of Edinburgh.

S

NP

PN

Johny
Paul

VP

V

phonedy
scared

NP

D

they
the

N

terroristsy
children

Figure 1: An example of a sentence (words on top)
and an obfuscated version of the sentence (words at bot-
tom), both having identical syntactic structure. The ob-
fuscated sentence hides the identity of the person who
performs the action and the action itself.

may have been trained on large amounts of data,
yielding models that cannot be deployed on the
client machines either for efficiency or licensing
reasons. We ask the following question: how can
we use the NLP server models while minimizing
the exposure of the server to the original text? Can
we exploit the fact we work with natural language
data to reduce such exposure?

Conventional encryption schemes, including
public-key cryptography which is the one widely
used across the Internet, are not sufficient to answer
this question. They encrypt the input text before
it is transferred to the server side. However, once
the server decrypts the text, it has full access to it.
This might be unacceptable if the server itself is
not necessarily trustworthy.

The cryptography community posed a similar
question much earlier, in the 1970s (Rivest et al.,
1978) with partial resolutions proposed to solve it
in later research (Sander et al., 1999; Boneh et al.,
2005; Ishai and Paskin, 2007). These solutions al-

low the server to perform computations directly on
encrypted data to get the desired output without
ever decrypting the data. This cryptographic proto-
col is known as homomorphic encryption, where a
client encrypts a message, then sends it to a server
which performs potentially computationally inten-
sive operations and returns a new data, still en-
crypted, which only the client can decipher. All
of this is done without the server itself ever be-
ing exposed to the actual content of the encrypted
input data. While solutions for generic homomor-
phic encryption have been discovered, they are ei-
ther computationally inefficient (Gentry, 2010) or
have strong limitations in regards to the depth and
complexity of computation they permit (Bos et al.,
2013).

In this paper, we consider a softer version of ho-
momorphic encryption in the form of obfuscation
for natural language. Our goal is to identify an effi-
cient function that stochastically transforms a given
natural language input (such as a sentence) into an-
other input which can be further fed into an NLP
server. The altered input has to preserve intra-text
relationships that exist in the original sentence such
that the NLP server, depending on the task at hand,
can be successfully applied on the transformed data.
There should be then a simple transformation that
maps the output on the obfuscated data into a valid,
accurate output for the original input. In addition,
the altered input should hide the private semantic
content of the original data.

This idea is demonstrated in Figure 1. The task
at hand is syntactic parsing. We transform the input
sentence John phoned the terrorists to the sentence
Paul scared the children – both of which yield iden-
tical phrase-structure trees. In this case, the named
entity John is hidden, and so are his actions. In
the rest of the paper, we focus on this problem for
dependency and constituency parsing.

We consider a neural model of obfuscation that
operates at the word level. We assume access to
the parser at training time: the model learns how to
substitute words in the sentence with other words
(in a stochastic manner) while maintaining the high-
est possible parsing accuracy. This learning task
is framed as a latent-variable modeling problem
where the obfuscated words are treated as latent.
Direct optimization of this model turns out to be
intractable, so we use continuous relaxations (Jang
et al., 2016; Maddison et al., 2017) to avoid explicit
marginalization.

x
y

client server

eavesdropper

Figure 2: General setting illustration (figure adapted
from Coavoux et al. 2018). An NLP client encrypts
an x into y through obfuscation and y is sent to an
NLP server. The NLP server (potentially even a legacy
one) does not need to be modified to de-obfuscate
y. An eavesdropper (a possibly malicious channel lis-
tener) only has access to y which is needed to be de-
obfuscated to gain any information about x.

Our experimental results on English demonstrate
that the neural model performs better than a strong
random-based baseline (an upper bound; in which
a word is substituted randomly with another word
with the same part-of-speech tag). We vary the
subset of words that are hidden and observe that
the higher the obfuscation rate of the words, the
harder it becomes for the parser to retain its accu-
racy. Degradation is especially pronounced with
the random baseline and is less severe with our
neural model. The improved results for the neural
obfuscator come at a small cost to the accuracy
of the attacker aimed at recovering the original
obfuscated words. We also observe that the neu-
ral obfuscator is effective when different parsers
or even different syntactic formalisms are used in
training and test time. This relaxes the assumption
that the obfuscator needs to have access to the NLP
server at training time. Our results also suggest that
the neural model tends to replace words with ones
that have similar syntactic properties.

2 Homomorphic Obfuscation of Text

Our problem formulation is rather simple, demon-
strated in generality in Figure 2. Let T be some
natural language task, such as syntactic parsing,
where X is the input space and Z is the output
space. Let fT : X → Z be a trained decoder that
maps x to its corresponding structure according
to T . Note that f is trained as usual on labeled
data. Given a sentence x = x1 · · ·xn, we aim to
learn a function that stochastically transforms x

into y = y1 · · · yn such that fT (x) is close, if not
identical, to fT (y), or at the very least, we would
like to be able to recover fT (x) from fT (y) using
a simple transformation.

To ground this in an example, consider the case
in which T is the problem of dependency pars-
ing and Z is the set of dependency trees. If we
transform a sentence x to y in such a way that it
preserves the syntactic relationship between the in-
dexed words in the sentences, then we can expect
to easily recover the dependency tree for x from a
dependency tree for y.

Note that we would also want to stochastically
transform x into a y in such a way that it is hard to
recover a certain type of information in x from y
(otherwise, we could just set y ← x). Furthermore,
we are interested in hiding information such as
named entities or even nouns and verbs. In our
formulation, we also assume that the sentence x
comes with a function t(x) that maps each token in
the sentence with its corresponding part-of-speech
tag (predicted using a POS tagger).

3 Neural Obfuscation Model

In this section we describe the neural model used to
obfuscate the sentence. We note that the model has
to be simple and efficient, as it is being run by the
obfuscating party. If it is more complicated than
parsing the text, for example, then the obfuscating
party might as well directly parse the text.1

3.1 The Main Model

Our model operates by transforming a subset of
the words in the sentence into new words. Each of
these words is separately transformed in a way that
maintains the sentence length after the transforma-
tion. Let x be the original sentence x = x1 · · ·xn
and let y be the output, y = y1 · · · yn. From a high-
level point of view, we have a conditional model:

p(y | x, θ) =
n∏
i=1

p(yi | x, θ). (1)

The selection of words to obfuscate depends on
their part of speech (POS) tags – only words that
are associated with specific POS tags from the set
P are obfuscated under our model. Let ti be the

1In the general case, there is a caveat to this statement. It
might be the case that the training cost for the server’s model
is high, and that the model is proprietary. In that case, even
if the model can be run on the client side, it might not be
possible to do so.

POS tag of the ith word in the sentence. In our
basic model, we apply a bidirectional Long Short-
Term Memory network (BiLSTM) to the sentence
to get a latent representation hi for each word xi
(see Section 3.2).

We assume conditional independence between
the sequence x1 · · ·xi−1xi+1 · · ·xn and yi given
hi (which is a function of x), and as such, our
probability distribution p(yi | x, θ) is given by:

p(yi = y |xi, hi, θ) =
1 ti /∈ P, y = xi

py ti ∈ P, y ∈ Vti \ {xi}
0 otherwise.

(2)

Here, Vti is the set of word types appearing at
least once with tag ti in the training set, and py is
predicted with a softmax function, relying on the
BiLSTM state hi. More specifically, we define py
as follows:

py =
exp(w>ti,yhi)∑

y′∈Vti ,y′ 6=xi
exp(w>ti,y′hi)

,

where wt,y ∈ R1024 are vectors of parameters as-
sociated with every tag-word pair (t, y), y ∈ Vt.
Note that the above probability distribution never
transforms a word xi to an identical word if ti ∈ P .
This is a hard constraint in our model.

3.2 Embedding the Sentence
The BiLSTM that encodes the sentence requires an
embedding per word, which we create as follows.
We first map each token xi to three embedding
channels eki , k ∈ {1, 2, 3}. The first channel is
a randomly initialized embedding for each part-
of-speech tag. Its dimension is 100. The second
channel is a pre-trained GloVe embedding for the
corresponding token. The vector e3i is a character-
level word embedding (Kim et al., 2016) which first
maps each character of the word into an embedding
vector of dimension 100 and then uses unidimen-
sional convolution over the concatenation of the
embedding vectors of each character. Finally, max-
pooling is applied to obtain a single feature. This
process is repeated with 100 convolutional kernels
so that e3i ∈ R100.

The three embedding channels {e1i , e2i , e3i } are
then concatenated and used in the BiLSTM en-
coder. We use a three-layer BiLSTM with Bayesian
dropout (Gal and Ghahramani, 2016). The hidden
state dimensionality is 512 for each direction.

4 Training

In our experiments, we focus on obfuscation for the
goal of syntactic parsing. We assume the existence
of a conditional parsing model p0(z | x) where
z is a parse tree and x is a sentence. This is the
base model which is trained offline, and to which
we have read-only access and cannot change its
parameters. As we will see in experiments, the
obfuscator can be trained using a different parser
from the one used at test time (i.e. from the one
hosted at the NLP server).

Let (x(1), z(1)), . . . , (x(n), z(n)) be a set of train-
ing examples which consists of sentences and their
corresponding parse trees. Considering Eq. 1, we
would be interested in maximizing the following
log-likelihood objective with respect to θ:

L0 =
n∑
i=1

log

(∑
y

p(y | x(i), θ)p0(z(i) | y)

)
.

This objective maximizes the log-likelihood of
the parsing model with respect to the obfuscation
model. Maximizing the objective L0 is intractable
due to summation over all possible obfuscations.
We use Jensen’s inequality2 to lower-bound the
cost function L0 by the following objective:

L =

n∑
i=1

∑
y

p(y | x(i), θ) log p0(z(i) | y)

=

n∑
i=1

Ep(·|x(i),θ)
[
log p0(z

(i) | y)
]
.

Intuitively, the objective function maximizes the
accuracy of an existing parser while using as an
input the sentences after their transformation. Note
that the accuracy is measured with respect to the
gold-standard dependency parse tree.3 This is pos-
sible because the sentence length of the original
sentence and the obfuscated sentence are identical,
and the mapping between the words in each version
of the sentence is bijective.

To encourage stochasticity, we also tried includ-
ing an entropy term that is maximized with respect

2Jensen’s inequality states that for a non-negative ran-
dom variable Z and its probability distribution q it holds that
log(Eq[Z]) ≥ Eq[logZ].

3In principle, we may not need access to gold-standard
annotation when training the obfuscator. Instead, we could
train the model to agree with the parser predictions for the
original sentence, i.e. z(i) = argmaxz p0(z|x(i)).

to θ in the following form:

Hi(θ, λ) = −λ
∑
y

p(y | x(i), θ) log p(y | x(i), θ).

However, in our final experiments we omitted that
term because (a) it did not seem to affect the model
stochasticity to a significant degree; (b) the perfor-
mance has become very sensitive to the entropy
weight λ.

While we can estimate the objective L using
sampling, we cannot differentiate through samples
to estimate the gradients with respect to the ob-
fuscator parameters θ. In order to ensure end-to-
end differentiabilty, we use a continuous relaxation,
the Gumbel-Softmax estimator (Jang et al., 2016;
Maddison et al., 2017), and the reparamterization
trick (Kingma and Welling, 2014; Rezende et al.,
2014).

More formally, the i-th token is represented by
the random variable with categorical probability
distribution Cat(pi) that has support Vti . To sam-
ple the word we first draw uk ∼ Uniform(0, 1)
and transform it to the Gumbel noise gk =
− log(− log(uk)), then we calculate

y′ = onehot

{
argmax
k∈Vti

[gk + log(pi,k)]

}
as the sampled discrete choice of substitution from
Vti and

yk =
exp ((gk + log(pi,k)/τ))∑
k′ exp

(
(gk′ + log(pi,k′)/τ)

)
as the “relaxed” differentiable proxy for this choice,
where τ denotes the temperature. When it ap-
proaches 0, the vector (y1, . . . , y|Vti |) is close to
a one-hot vector sampled from the given categori-
cal distribution.4

We use the Straight-Through version of the esti-
mator (Bengio et al., 2013): the discrete sampled
choice is fed into the parser in the forward com-
putation but the relaxed differentiable surrogate
is used when computing partial derivatives on the
backward pass.

During the training of our neural model, the
parser only backpropagates the gradient from the
objective of maximizing the parsing accuracy (i.e.
minimum cross-entropy loss of the correct head
and label for each word), and hence its parameters
are always fixed and are not updated during the
optimization.

4In practice, we anneal the temperature from 1.0 to 0.5
over the course of training.

5 Attacker Approaches

We test the efficiency of our obfuscation model by
developing two independent attacker models. Their
goal is to recover the original words by inspecting
only the obfuscated sentence. The attacker models
may have access to all data that the parser and the
obfuscator models were trained and developed on.
This is perhaps unlike other scenarios in which the
training set is assumed to be inaccessible to any
attacker.

We note that ideally, we would want to show that
our obfuscation model retains privacy universally
for any attacker. However, this is quite a difficult
task, and we follow Coavoux et al. (2018) in pre-
senting two strong attackers which may represent
possible universal attackers.

In our attacker experiments, we assume that it is
known which words in the sentence are obfuscated.
As such, the results we provide for attacking our
obfuscation are an upper bound. In practice, an
attacker would also have to identify which words
were substituted for new words, which may lead to
a small decrease in its accuracy.

5.1 Trained Attacker

Our first attacker works by first encoding the ob-
fuscated sentence with a BiLSTM network. We
then try to predict original words by using a feed-
forward neural network on each of the hidden rep-
resentations obtained from the encoder model. The
architecture is identical to that of the obfuscation
model (see Section 3.1), with the only difference
that there is a softmax over the entire vocabulary V
instead of restricting it to Vti \ {xi}, as in Eq. 2.

5.2 Pretrained Attacker

In addition to a trained attacker, we also use a
conditional language model, BERT (Devlin et al.,
2019).5 BERT is based on the Transformer model
of Vaswani et al. (2017), and uses a bidirectional
encoder to obtain “contextual” embeddings for
each word in a given sentence. We use the BERT
model by masking out each obfuscated word, and
then predicting the masked word similar to the
“masked language task” that is mentioned by De-
vlin et al. (2019). This means that the embed-
dings in each position are fed into a softmax func-
tion to predict the missing word. We use the

5We use the implementation available at
https://github.com/huggingface/
pytorch-pretrained-BERT.

bert-base-uncased model among the avail-
able BERT models.

We note that this attacker is not trained by us.
Its main weakness is that it is trained on the non-
obfuscated text. However, its strength is that it is
trained on large amounts of data (we use the model
that is trained on 3.3 billion tokens). In addition, in
some settings that we consider the obfuscation of
the sentence is done in such a way that much of the
context by which we predict the obfuscated word
remains intact.

6 Experiments

In this section, we describe our experiments with
our obfuscation model. We first describe the exper-
imental setting and then turn to the results.6

6.1 Experimental Setting

In our experiments, we test the obfuscation model
on two parsers. The first parser is used during
the training of our model. This is the bi-affine de-
pendency parser developed by Dozat and Manning
(2017). To test whether our obfuscation model also
generalizes to syntactic parsers that were not used
during its training, the constituency parser that is in-
cluded in the AllenNLP software package (Gardner
et al., 2018) was used.7

For our dependency parser, we follow the canon-
ical setting of using pre-trained word embedding,
1D convolutional character level embedding and
POS tag embedding, each of 100 dimensions as
the input feature. We also use a three-layer bi-
directional LSTM with Bayesian dropout (Gal and
Ghahramani, 2016) as the encoder. We use the bi-
affine attention mechanism to obtain the prediction
for each head, and also the prediction for the edge
labels.

We use the English Penn Treebank (PTB; Mar-
cus et al. 1993) version 3.0 converted using Stan-
ford dependencies for training the dependency
parser. We follow the standard parsing split for
training (sections 01–21), development (section
22) and test sets (section 23). The training set por-
tion of the PTB data is also used to train our neural
obfuscator model.

We also create a spectrum over the POS tags to
decide on the setP for each of our experiments (see
Section 3.1). This spectrum is described in Table 1.

6Our code is available at https://github.com/
ichn-hu/Parsing-Obfuscation.

7We used version 0.8.1.

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/ichn-hu/Parsing-Obfuscation
https://github.com/ichn-hu/Parsing-Obfuscation

i Category description Pi
1 Named entities NNP, NNPS
2 Nouns NN, NNS
3 Adjectives JJ, JJR, JJS
4 Verbs VB, VBN, VBD,

VBZ, VBP, VBG
5 Adverbs RB, RBR, RBS

Table 1: A spectrum of part-of-speech tags to obfus-
cate. In the jth experiment, we set P = ∪ji=1Pi.

Let the ith set in that table be Pi for i ∈ [5]8. In
our jth experiment, j ∈ [5], we obfuscate the set
P = ∪ji=1Pi. This spectrum of POS tags describes
a range from words that are highly content-bearing
for privacy concerns (such as named entities) to
words that are less of a privacy concern (such as
adverbs).

We compare our model against a (privacy) upper-
bound baseline which is found to be rather strong.
With this baseline, a word x with a tag t ∈ P is
substituted with another by a word that appeared
with the same tag in the training data from the set
Vt. The substituted words are uniformly sampled.
This random baseline serves as an upper bound
for the privacy level achieved, not a lower bound.
Randomly substituting a word with another makes
it difficult to recover the original word. However,
in terms of parsing accuracy, as we see below, there
is a significant room for improvement over that
baseline. There are words, which when substituted
by other group of words, yield altogether better
parsing accuracy.

We evaluate the model through three different
principal metrics. The first metric is the accuracy of
the parser (Unlabeled Attachment Score or Labeled
Attachment Score, depending on the context9), the
second is the mean reciprocal rank (MRR) of the
attacker on the relevant method. With each of the
attacker methods, we obtain a distribution q over
the possible true outputs recovered from the obfus-
cated word. We use this distribution to calculate
the MRR, the average inverse rank of the correct
word according to q. More precisely, the score we
calculate is:

8For an integer k, we denote by [k] the set {1, ..., k}.
9The unlabeled/labeled distinction refers to whether the

label of the edge in the dependency tree is taken into account
when computing the accuracy.

MRR =
100

N

N∑
i=1

1

ri
,

where ri ∈ N is the rank of the ith word (in the
whole corpus) according to q (the distribution over
possible output words for that word).10 The re-
sult we report is attacker error, or 100 − MRR
(the higher it is, the more privacy is maintained).
Finally, we also report the ratio between the accu-
racy of the parser11 and the accuracy of an attacker
(MRR). This metric provides a way to measure
the amount of accuracy we gain for each point of
privacy we lose, in the form of

accuracy
breach

units.
All neural experiments were run on a single

GeForce GTX 1080 Ti GPU. The time to run each
of the experiments was in the range of 13.3 hours
to 25.2 hours.

6.2 Results with Dependency Parsing

In our first set of experiments, we compare the
random substitution model to the neural model of
obfuscation on the dependency parsing model that
was used during training. As is seen in Table 2(a),
both the neural model and the random model, with
their substitutions, do not significantly harm the
accuracy of the parser for the first three experiments
(corresponds to rows in the table). However, as the
number of obfuscated words increases (with the
categories of verbs and adverbs), the accuracy of
the parser significantly drops, significantly more
for the random model than the neural model.

The attacker error is in the range of the 70%–
80% for all experiments. As expected, the random
model, given its inherent unpredictability, makes it
more difficult for the attacker to identify the origi-
nal words. That leads to the ratio between accuracy
and intrrusion level often being better with the ran-
dom model. In general, it also seems that the BERT
attacker gives similar results to the trained attacker
for the random baseline, and worse results with the
neural model. Finally, it is evident that as we obfus-
cate more terms, the attacker’s accuracy decreases,
with the BERT attacker consistently outperforming
the trained attacker.

We next turn to inspect the problem of depen-
dency parsing without a parser that was trained

10Note that we have a multiplier of 100 in our MRR score
definition. This deviates from the standard definition of this
score.

11The accuracy is labeled attachment score in the case of
dependency parsing.

(a)

Random (baseline) Neural model
Obf. terms trained BERT trained BERT

acc (U L) prv ratio prv ratio acc (U L) prv ratio prv ratio
tr

ai
ne

d
de

p.
Named ent. 94.1 93.0 68.3 2.97 66.9 2.84 94.3 92.9 68.4 2.98 66.4 2.81
+Nouns 93.7 92.9 70.7 3.20 70.3 3.15 94.1 92.4 69.7 3.11 69.4 3.08
+Adjectives 93.1 92.4 71.9 3.31 72.3 3.36 93.6 91.7 70.5 3.17 70.1 3.13
+Verbs 85.2 80.4 68.1 2.67 80.2 4.30 87.3 78.7 65.3 2.52 78.1 3.99
+Adverbs 86.4 78.7 67.2 2.63 81.2 4.60 88.6 76.6 64.2 2.47 77.5 3.94

No obf. 95.0/93.5 (U/L)

A
lle

nN
L

P
de

p. Named ent. 91.9 89.7 68.3 2.90 66.9 2.78 92.2 90.1 68.4 2.92 66.4 2.74
+Nouns 91.5 89.2 70.7 3.12 70.3 3.08 91.5 89.4 69.7 3.02 69.4 2.99
+Adjectives 90.8 88.5 71.9 3.23 72.3 3.28 91.2 89.0 70.5 3.09 70.1 3.05
+Verbs 78.2 75.3 68.1 2.45 80.2 3.95 82.2 79.4 65.3 2.37 78.1 3.75
+Adverbs 76.7 73.5 67.2 2.34 81.2 4.08 82.0 78.9 64.2 2.29 77.5 3.64

No obf. 94.2/92.6 (U/L)

(b)

Random (baseline) Neural model
Obf. terms trained BERT trained BERT

acc (F1) prv ratio prv ratio acc (F1) prv ratio prv ratio

A
lle

nN
L

P
co

ns
t. Named ent. 92.4 68.3 2.91 66.9 2.79 92.5 68.4 2.93 66.4 2.75

+Nouns 88.2 70.1 2.95 70.3 2.97 89.0 69.7 2.94 69.4 2.91
+Adjectives 86.8 71.9 3.09 72.3 3.13 88.1 70.5 2.99 70.1 2.95
+Verbs 79.2 68.1 2.48 80.2 4.00 82.5 65.3 2.38 78.1 3.77
+Adverbs 76.8 67.2 2.34 81.2 4.09 79.5 64.2 2.22 77.5 3.53

No obf. 93.7

Table 2: (a) Results of parsing accuracy and attacker error for two different dependency parsers. “acc” denotes
accuracy (Unlabeled Attachment Score/Labeled Attachment Score for the dependency parsers), “prv” denotes the
attacker error (trained attacker and BERT attacker as described in Section 5.1 Section 5.2) and “ratio” is the ratio
between the parser accuracy and the attacker error. Two parsers are considered: a parser that participates in the
obfuscation model optimization (top part), and offline-trained parsers from the AllenNLP for dependency (bottom
part). Two obfuscation models are considered: neural (Section 3.1) and a random baseline. “No obf.” are parsing
results without obfuscation. See Table 1 for a description of each category of obfuscation terms.. Note that the
categories are expanded in the cumulative fashion: e.g., “+Adjectives” refers to the union of named entities, nouns
and adjectives. “acc” and “prv” are better when they are higher. (b) Results of parsing accuracy and attacker error
for the AllenNLP constituency parser. “acc” denotes accuracy (F1 PARSEVAL). The constituency parser does not
participate in the obfuscation model optimization. The results demonstrate how quickly the parsers degrade when
more terms obfuscated with the random baseline, while retaining a much higher accuracy with the neural system
(acc. column).

with the neural obfuscation model (bottom part of
Table 2(a)). We see similar trends there as well,
in which the first three experiments give a reason-
able performance for both the neural and the ran-
dom model with a significant drop in performance
for the two experiments that follow. We also see
that the differences between the neural obfuscation
model and the random model are smaller (though
still significant), pointing to the importance of us-
ing the dependency model during the training of
the neural model.

6.3 Results with Constituency Parsing

Table 2(b) describes the results for constituency
parsing with the AllenNLP constituency parser as
described in Section 6.1. The results point to a
similar direction as was described for dependency

parsing. While the ratio between accuracy and
privacy is slightly better for the random model,
there is a significant drop in performance for the
fourth and fifth experiments when comparing the
random model to the neural model.

6.4 Analysis of Syntactic Preservation

Table 3 presents five sentences and their obfuscated
versions both by the neural model and the random
model. In general, when we inspected the results
for the two models, we found that the neural model
tends to replace words by others that have a func-
tional syntactic role that is closer to the original.
For example, in the examples we present, was is
replaced with were and n’t is replaced with not.
The random model, however, does not adhere to
any syntactic similarity between the original word

original I do n’t feel very ferocious .
random I liberalize Usually spin firsthand undistinguished .
neural I have not choose even Preliminary .
POS PRP VBP RB VB RB JJ .

original Individuals can always have their hands slapped .
random drugstores can secretly galvanize their persons hurt .
neural brokerages can even get their Outflows vetoed .
POS NNS MD RB VB PRP$ NNS VBN .

original Analysts do n’t see it that way .
random carpenters merge unilaterally undertake it that wind .
neural brokerages have not choose it that direction .
POS NNS VBP RB VB PRP DT NN .

original The device was replaced .
random The admiral echoed blunted .
neural The insulation were vetoed .
POS DT NN VBD VBN .

original “ That was offset by strength elsewhere .
random “ That produced flawed by professionalism near .
neural “ That were vetoed by direction even .
POS “ DT VBD VBN IN NN RB .

Table 3: Example of five sentences obfuscated with the random and neural models. Words in italics are the
ones being substituted (or the substitutes). The obfuscated terms are named entities, nouns, adjectives, verbs and
adverbs.

and its substituted version beyond them having
been seen in the training data with the same part-
of-speech tag.

To further test whether the neural model pre-
serves other syntactic similarities between the orig-
inal and obfuscated sentences, we took all verbs
from Propbank (Kingsbury and Palmer, 2002) and
created a signature for each one: the list of argu-
ment types it can appear with. For example, the sig-
nature for yield is 01,012, which means that “yield”
appears with two frames in Propbank, one with two
arguments and the other with three arguments. We
then calculated for each verb12 that appears in the
original sentence the overlap between its signature
and the signature of the verb in the obfuscated sen-
tence (neural or random). This overlap is counted
as the size of the intersection of the frame signa-
tures of the two verbs. For example, the signature
of advocate might be 012 while the signature of
affect is 012,01. Therefore, their overlap is 1.

12The verbs were lemmatized first using the WordNet lem-
matizer available in NLTK.

There was a stark difference between the two av-
erages of the overlap sizes. For the random baseline
model, the average was 1.46 (over 5,680 tokens)
and for the neural model the average was 1.80. The
difference between these two averages is statisti-
cally significant with p-value< 0.05 in a one-sided
t-test.

7 Related Work

There has been a significant increase in interest in
the topic of privacy in the NLP community in re-
cent years. For example, Reddy and Knight (2016)
focused on obfuscation of gender features from so-
cial media text, while Li et al. (2018), Coavoux
et al. (2018) and Elazar and Goldberg (2018) fo-
cused on the removal of private information from
neural representations such as named entities and
demographic information. Unlike the latter work,
we are interested in preserving the privacy of the
inputs themselves, while requiring no extra work
from deployed NLP software which processes these

inputs. Marujo et al. (2015), for example, perform
multi-document summarization on an approximate
version of the original documents.

Differential privacy (Dwork, 2008) which aims
to protect the privacy of information contained in
a dataset has also been actively researched. Re-
cent research brings differential privacy into natu-
ral language processing, for example, the work by
Fernandes et al. (2019) that targets the removal of
authorship identity in a text classification dataset.

With homomorphic encryption being a long-
standing important topic in cryptography, it has
also made its way into the field of privacy in ma-
chine learning, particularly in terms of designing
neural networks which enable homomorphic op-
erations over encrypted data (Hesamifard et al.,
2017; Bourse et al., 2018). For example, Gilad-
Bachrach et al. (2016) designed a fully homomor-
phic encrypted convolutional neural network that
was able to solve the MNIST dataset with practical
efficiency and accuracy. The scheme of direct ho-
momorphic encryption (Brakerski et al., 2014) is
constrained by the multiplication depth degree in
the circuit, which makes deep models intractable.
Other schemes were developed in recent years
(Cheon et al., 2017; Fan and Vercauteren, 2012;
Dathathri et al., 2018), but achieving satisfactory
performance is still a challenge. To the best of
our knowledge, no prior work has demonstrated
that homomorphic encryption could be directly ap-
plied to the design of recurrent neural networks or
discrete tokens as input.

8 Conclusions

We presented a model and an empirical study for
obfuscating sentences so that the obfuscated sen-
tences transfer syntactic information from the orig-
inal sentence. Our neural model outperforms in
parsing accuracy a strong random baseline when
many of the words in the sentence are obfuscated.
In addition, the neural model tends to replace words
in the original sentence with words which have a
closer syntactic function to the original word than
a random baseline.

Acknowledgments

The authors thank Marco Damonte and the anony-
mous reviewers for feedback and comments on a
draft of this paper. This research was supported by
a grant from Bloomberg, an ERC Starting Grant
BroadSem 678254 and the Dutch National Science

Foundation NWO VIDI grant 639.022.518.

References
Yoshua Bengio, Nicholas Léonard, and Aaron C.

Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. CoRR, abs/1308.3432.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. 2005.
Evaluating 2-dnf formulas on ciphertexts. In The-
ory of Cryptography Conference, pages 325–341.
Springer.

Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and
Michael Naehrig. 2013. Improved security for a
ring-based fully homomorphic encryption scheme.
In Cryptography and Coding - 14th IMA Interna-
tional Conference, IMACC 2013, Oxford, UK, De-
cember 17-19, 2013. Proceedings, pages 45–64.

Florian Bourse, Michele Minelli, Matthias Minihold,
and Pascal Paillier. 2018. Fast homomorphic eval-
uation of deep discretized neural networks. In Ad-
vances in Cryptology - CRYPTO 2018 - 38th An-
nual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceed-
ings, Part III, volume 10993 of Lecture Notes in
Computer Science, pages 483–512. Springer.

Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. 2014. (leveled) fully homomorphic en-
cryption without bootstrapping. TOCT, 6(3):13:1–
13:36.

Jung Hee Cheon, Andrey Kim, Miran Kim, and
Yong Soo Song. 2017. Homomorphic encryption for
arithmetic of approximate numbers. In Advances in
Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryp-
tology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I, volume
10624 of Lecture Notes in Computer Science, pages
409–437. Springer.

Maximin Coavoux, Shashi Narayan, and Shay B. Co-
hen. 2018. Privacy-preserving neural representa-
tions of text. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, Brussels, Belgium, October 31 - November 4,
2018, pages 1–10. Association for Computational
Linguistics.

Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim
Laine, Kristin E. Lauter, Saeed Maleki, Madanlal
Musuvathi, and Todd Mytkowicz. 2018. CHET:
compiler and runtime for homomorphic evaluation
of tensor programs. CoRR, abs/1810.00845.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association

http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.18653/v1/d18-1001
https://doi.org/10.18653/v1/d18-1001
http://arxiv.org/abs/1810.00845
http://arxiv.org/abs/1810.00845
http://arxiv.org/abs/1810.00845
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423

for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Cynthia Dwork. 2008. Differential privacy: A survey
of results. In Theory and Applications of Models of
Computation, 5th International Conference, TAMC
2008, Xi’an, China, April 25-29, 2008. Proceedings,
volume 4978 of Lecture Notes in Computer Science,
pages 1–19. Springer.

Yanai Elazar and Yoav Goldberg. 2018. Adversarial
removal of demographic attributes from text data. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages 11–
21. Association for Computational Linguistics.

Junfeng Fan and Frederik Vercauteren. 2012. Some-
what practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch., 2012:144.

Natasha Fernandes, Mark Dras, and Annabelle McIver.
2019. Generalised differential privacy for text docu-
ment processing. In Principles of Security and Trust
- 8th International Conference, POST 2019, Held
as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings, vol-
ume 11426 of Lecture Notes in Computer Science,
pages 123–148. Springer.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Informa-
tion Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, De-
cember 5-10, 2016, Barcelona, Spain, pages 1019–
1027.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E.
Peters, Michael Schmitz, and Luke Zettlemoyer.
2018. Allennlp: A deep semantic natural language
processing platform. CoRR, abs/1803.07640.

Craig Gentry. 2010. Computing arbitrary functions of
encrypted data. Commun. ACM, 53(3):97–105.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine,
Kristin E. Lauter, Michael Naehrig, and John Werns-
ing. 2016. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy.
In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, volume 48 of JMLR

Workshop and Conference Proceedings, pages 201–
210. JMLR.org.

Ehsan Hesamifard, Hassan Takabi, and Mehdi
Ghasemi. 2017. Cryptodl: Deep neural networks
over encrypted data. CoRR, abs/1711.05189.

Yuval Ishai and Anat Paskin. 2007. Evaluating branch-
ing programs on encrypted data. In Theory of Cryp-
tography, 4th Theory of Cryptography Conference,
TCC 2007, Amsterdam, The Netherlands, Febru-
ary 21-24, 2007, Proceedings, volume 4392 of Lec-
ture Notes in Computer Science, pages 575–594.
Springer.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat-
egorical reparameterization with Gumbel-Softmax.
CoRR, abs/1611.01144.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-
17, 2016, Phoenix, Arizona, USA., pages 2741–
2749.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings.

Paul R. Kingsbury and Martha Palmer. 2002. From
treebank to propbank. In Proceedings of the Third
International Conference on Language Resources
and Evaluation, LREC 2002, May 29-31, 2002, Las
Palmas, Canary Islands, Spain. European Language
Resources Association.

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018.
Towards robust and privacy-preserving text represen-
tations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 2: Short Papers, pages 25–30. Association
for Computational Linguistics.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous re-
laxation of discrete random variables. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Comput. Lin-
guistics, 19(2):313–330.

Luı́s Marujo, José Portêlo, Wang Ling, David Martins
de Matos, João P Neto, Anatole Gershman, Jaime
Carbonell, Isabel Trancoso, and Bhiksha Raj. 2015.
Privacy-preserving multi-document summarization.
arXiv preprint arXiv:1508.01420.

https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.18653/v1/d18-1002
https://doi.org/10.18653/v1/d18-1002
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-030-17138-4_6
https://doi.org/10.1007/978-3-030-17138-4_6
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks
http://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1803.07640
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1007/978-3-540-70936-7_31
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1611.01144
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://www.lrec-conf.org/proceedings/lrec2002/sumarios/283.htm
http://www.lrec-conf.org/proceedings/lrec2002/sumarios/283.htm
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/P18-2005
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl

Sravana Reddy and Kevin Knight. 2016. Obfuscating
gender in social media writing. In Proceedings of
the First Workshop on NLP and Computational So-
cial Science, NLP+CSS@EMNLP 2016, Austin, TX,
USA, November 5, 2016, pages 17–26. Association
for Computational Linguistics.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and
approximate inference in deep generative models.
In Proceedings of the 31th International Confer-
ence on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014, volume 32 of JMLR Work-
shop and Conference Proceedings, pages 1278–
1286. JMLR.org.

Ronald L Rivest, Len Adleman, Michael L Dertouzos,
et al. 1978. On data banks and privacy homo-
morphisms. Foundations of secure computation,
4(11):169–180.

Tomas Sander, Adam Young, and Moti Yung. 1999.
Non-interactive cryptocomputing for nc/sup 1. In
40th Annual Symposium on Foundations of Com-
puter Science (Cat. No. 99CB37039), pages 554–
566. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

https://doi.org/10.18653/v1/W16-5603
https://doi.org/10.18653/v1/W16-5603
http://proceedings.mlr.press/v32/rezende14.html
http://proceedings.mlr.press/v32/rezende14.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need

