## Variational Inference for Adaptor Gramars

Shay Cohen School of Computer Science Carnegie Mellon University

David Blei Computer Science Department Princeton University

Noah Smith School of Computer Science Carnegie Mellon University

## Outline

#### The lifecycle of unsupervised learning:



## Outline

We give a new representation to an existing model (adaptor grammars)

This representation leads to a new variational inference algorithm for adaptor grammars

We do a sanity check on word segmentation, comparing to state-of-the-art results

Our inference algorithm permits to do dependency unsupervised parsing with adaptor grammars

## Problem 1 - PP Attachment



4/32

## Problem 2 - Word Segmentation

Matthewslikeswordfighting Matthews like sword fighting Matthewslikeswordfighting Matthews likes word fighting





# What is missing?

Context could resolve this ambiguity

But we want unsupervised learning...

Where do we get the context?



## Problem 1 - PP Attachment

(S (NP The boy with the telescope) (V entered) (NP the park))



I saw the boy with the telescope

I saw the boy with the telescope





## Problem 2 - Word Segmentation

Word fighting is the new hobby of computational linguists. Mr. Matthews is a computational linguist.

Matthewslikeswordfighting

Matthews like sword fighting



Matthews likes word fighting





# **Dreaming Up Patterns**

Context helps. Where do we get it? Adaptor grammars (Johnson et al. 2006)

Define a distribution over trees

New samples depend on the history - "rich get richer" dynamics

Dream up "patterns" as we go along

## Adaptor Grammars

Use the Pitman-Yor process with PCFGs as base distribution

To make it fully Bayesian, we also have a Dirichlet prior over the PCFG rules

Originally represented using the Chinese restaurant process (CRP)

CRP is convenient for sampling - not for variational inference

## Variational Inference in a Nutshell

"Posterior inference" requires that we find parse trees  $z_1, ..., z_n$  given raw sentences  $x_1, ..., x_n$ 

Mean-field approximation: take all hidden variables:  $z_1, ..., z_n$ and parameters  $\theta$ . Find a posterior of the form  $q(z_1, ..., z_n, \theta) = q(\theta) \prod_{i=1}^n q(z_i)$ (makes inference tractable)

Makes independence assumptions in the posterior

That's all! Almost. We need a manageable representation for  $z_1, ..., z_n$  and  $\theta$ 

# Sampling vs. Variational Inference

|                 | MCMC sampling | variational inference  |
|-----------------|---------------|------------------------|
| convergence     | guaranteed    | local maximum          |
| speed           | slow          | fast                   |
| algorithm       | randomized    | objective optimization |
| parallelization | non-trivial   | easy                   |



Sticks are sampled from the GEM distribution Everything which is a number in this slide, belongs to  $\theta$ 



Shay Cohen, David Blei, Noah Smith Variational Inference for Adaptor Grammars 14/32







Total probability of "the boy ate an apple" is 0.4!

Probabilities for sampling trees are chosen based on the stick probabilities only, as if independently from the PCFG!

The PCFG determines the trees the sticks are populated with



#### **Truncated Stick Approximation**



# Sanity Check - Word Segmentation

Task is to segment a sequence of phonemes into words

• Example: yuwanttulUk&tDIs  $\rightarrow$  yu want tu IUk &t DIs

Models language acquisition in children (using the corpus from Brent and Cartwright, 1996)

The corpus includes 9,790 utterances

Has been used before with adaptor grammars with three grammars

Baseline: Sampling method from Johnson and Goldwater, 2009

## Word Segmentation - Grammars



- "Word" is adapted (hence, if something was a Word constituent previously, it is more likely to appear again)
- There are additional grammars: collocation grammar and syllable grammar (take into account more information about language)
- Words are segmented according to "Word" constituents
- All grammars are not recursive
- Used in Johnson and Goldwater (2009)

## Word Segmentation - Results

| grammar           | our paper | J&G 2009 |
|-------------------|-----------|----------|
| <b>G</b> Unigram  | 0.84      | 0.81     |
| GColloc           | 0.86      | 0.86     |
| <b>G</b> Syllable | 0.83      | 0.89     |

J&G 2009 - Johnson and Goldwater (2009) - best result

Scores reported are F1 measure

#### Variants

#### Model:

Pitman-Yor Process vs. Dirichlet Process (did not have much effect)

#### Inference:

Fixed Stick vs. Dynamic Stick Expansion (fixed stick is better)

Decoding: Minimum Bayes Risk vs. Viterbi (MBR does better)

See paper for details!

# **Running Time**

Running time (clock time) of the sampler and variational inference is approximately the same (note that implementations are different)

However, variational inference can be parallelized

Reduction in clock time by factor of 2.8 when parallelizing on 20 weaker CPUs

## Syntax and Power Law



Motivating adaptor grammars for unsupervised parsing, a plot of log rank of constituents vs. their log frequency

Shay Cohen, David Blei, Noah Smith Variational Inference for Adaptor Grammars 25/32

## **Recursive Grammars**



#### **Recursive Grammars - Solution**

Our finite approximation of the stick zeros all "bad" events in the variational distribution

Equivalent to inference when assuming the model is:

$$p'(x,z) = rac{p(x,z)l(x,z \notin bad)}{\sum_{(x,z)\notin bad} p(x,z)}$$

where p is the original adaptor grammar model that gives non-zero probability to bad events and l is an 0/1 indicator

#### **Unsupervised Parsing Setting**

Experiments on the English Penn Treebank

Stripped off punctuation and kept only part-of-speech tags

Used adaptor grammars with dependency model with valence (Klein and Manning, 2004)

DMV has a PCFG representation (Smith, 2006)

We "adapt" the nonterminals that head noun constituents

#### **Unsupervised Parsing - Results**

| model                 | Viterbi | MBR  |
|-----------------------|---------|------|
| non-Bayesian          | 45.8    | 46.1 |
| Dirichlet prior       | 45.9    | 46.1 |
| with adaptor grammars | 48.3    | 50.2 |

Results are attachment-accuracy - fraction of parents correctly identified

A gain over vanilla Dirichlet, which is the prior used with adaptor grammars on the PCFG rules

Other priors (instead of Dirichlet prior) give performance  ${\sim}60.$  Can use it with adaptor grammars - future work

# Summary

We described a variational inference algorithm for adaptor grammars

We showed it can lead to improvement in performance for various grammars

We showed it can be faster than sampling when parallelization is used

We applied adaptor grammars to dependency unsupervised parsing

#### Thanks! Questions?

## Sampling vs. Variational Inference





Shay Cohen, David Blei, Noah Smith

Variational Inference for Adaptor Grammars 32/32